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An Image Transform Based on
Temporal Decomposition

Felix Cremer , Mikhail Urbazaev, Christian Berger, Miguel D. Mahecha,
Christiane Schmullius, and Christian Thiel

Abstract— Today, very dense synthetic aperture radar (SAR)
time series are available through the framework of the European
Copernicus Programme. These time series require innovative
processing and preprocessing approaches including novel speckle
suppression algorithms. Here we propose an image transform
for hypertemporal SAR image time stacks. This proposed image
transform relies on the temporal patterns only, and therefore
fully preserves the spatial resolution. Specifically, we explore the
potential of empirical mode decomposition (EMD), a data-driven
approach to decompose the temporal signal into components of
different frequencies. Based on the assumption that the high-
frequency components are corresponding to speckle, these effects
can be isolated and removed. We assessed the speckle filtering
performance of the transform using hypertemporal Sentinel-1
data acquired over central Germany comprising 53 scenes.
We investigated speckle suppression, ratio images, and edge
preservation. For the latter, a novel approach was developed.
Our findings suggest that EMD features speckle suppression
capabilities similar to that of the Quegan filter while preserving
the original image resolution.

Index Terms— Multitemporal filtering, radar data, speckle,
synthetic aperture radar (SAR).

I. INTRODUCTION

IN APRIL 2014 and in April 2016, the European Space
Agency launched the new synthetic aperture radar (SAR)

satellites Sentinel-1A and Sentinel-1B. Their sensors feature
an enhanced radiometric and spatial resolution as well as a
fundamentally improved temporal coverage compared with
previous (C-band) SAR satellites. Imagery based on the same
relative orbit is acquired with a time step of only six days.
This acquisition strategy enables the acquisition of 60 images
per year for a given region of interest. These new dense time
series permit and require the development of new filtering and
interpretation algorithms. However, SAR images are affected
by speckle—a physical phenomenon inherent to coherent
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imaging systems featuring a greater geometric resolution
compared with the sensing wavelength [2]. In most remote
sensing applications based on SAR imagery, speckle is con-
sidered as disturbing noise that should be reduced to obtain
images allowing for classic and proven information extraction
techniques. Therefore, speckle filtering is a common pre-
processing step. A comprehensive overview of monotemporal
speckle filters is given in [3]. The backscatter response of
a resolution cell is influenced by geometric and dielectric
properties of the surface [4]. If we are tracking one resolution
cell in time, temporal changes of the geometric and dielec-
tric properties cause variations of the speckle. For instance,
changes of the geometric properties can be related to vegeta-
tion dynamics or human activities. The dielectric properties are
mostly determined by the water content in the soil or the veg-
etation. The water content can change on different time scales,
e.g., seasonally following hydrometeorlogical cycles, or at the
monthly scale in response to, e.g., droughts, but may also
reflect rapid rainfall pulses. Therefore, a pixel time series
can be regarded as a superposition of different processes that
are influencing the dielectric properties on different temporal
frequencies (i.e., time scales). We can also expect that the
resulting signals are typically nonstationary.

After the launch of the European Remote Sensing satellites
in the 1990s, several techniques to use the multitemporal
information were developed. One frequently used approach
is the multitemporal filter by [1], which is a recursive version
of the filter proposed in [5]. The filter computes local statistics
in every band with a moving window approach. These local
statistics are then multiplied with their temporal average.
Therefore, the ordering of the time series is not considered.
This approach leads to the same filtering statistics at each
time step, which is a drawback for land-cover types with
nonstationary temporally changing speckle behavior such as
expected over agricultural areas. Our aim is to develop an
image transform that solely operates in the time domain in
order to fully preserve spatial details. Specifically, we explore
the potential of using a variant of “empirical mode decomposi-
tion” (EMD) originally proposed in [6] as a filtering approach
that additionally enables a suitable interpretation of the data.
This letter is structured as follows. In Section II, we describe
the temporal decomposition using EMD and define the filter
settings. In Section III, we use Sentinel-1 data to compare
the results of this filter with the results of the multitemporal
speckle filter after [1]. Section IV discusses the findings and
explores its potential for future applications.
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II. METHOD

The temporal backscatter signal is the superposition of
signals with differing frequencies. The main idea of the
image transform is to decompose the temporal backscatter
information of each pixel in the logarithmic scale into these
different frequency domains. For this, we use the EMD,
which is suitable to handle nonstationary data. This method
was developed in [6] and improved in [7] as the complete
ensemble EMD (CEEMD). It can be understood as a gen-
eralization of the discrete Fourier transformation, as it also
decomposes the signal into parts of different frequencies.
Unlike a Fourier or wavelet transform, however, EMD does
not rely on an a priori defined set of base functions. Rather,
the EMD approach decomposes a time series in a fully data-
adaptive manner. The retrieved partial signals are “intrinsic
mode functions” (IMFs) and can show moderate phase and
amplitude modulations, which makes the method very suitable
for short and nonstationary time series. The IMFs are defined
to have an equal number of zero crossings and local extrema
and an average of the splines through the local minima
(respectively, maxima) of zero.

The algorithm to compute the IMFs works as follows.

1) Detect the local extrema of the original data set x(t).
2) Compute one spline through the local minima (smin),

and one through the maxima (smax), respectively.
3) Compute the mean of smin and smax and subtract it

from x(t)

h1,k(t) = x(t) − smin − smax

2
.

4) Repeat the previous steps with h1,k as x(t) until the
numbers of zero crossings and local extrema of h j,k are
equal. Then h j,k is the preliminary IMF c1(t) of x(t).

5) Repeat steps 1–4 with added Gaussian white noise
and employ the average of the different representation
as IMFl .

6) Repeat steps 1–5 with the difference between x(t) and
IMFl until there is no IMF to extract, i.e., the remaining
signal has at most one extremum.

This procedure decomposes the data set x(t) into N IMFs ci

and one residual r

x(t) =
N∑

i=1

ci (t) + r(t).

We use the implementation of CEEMD implemented by [8]
in C. This package has python bindings available at [9].

At the beginning and the end of the time series, the
algorithm cannot decide if the data are a local minimum or
maximum. Accordingly, the filter needs an initialization phase
and a small number of images at the edges of the time series
must be discarded.

Fig. 1 shows the decomposition of the Sentinel-1 time series
of a 3×3 matrix of broadleaved forest pixels. The frequency is
decreasing for increasing IMF numbers. The IMF 0 and IMF 1
are high-frequency components. In contrast, for the higher
IMF numbers such as IMF 2 and IMF 3, the temporal behavior
of the nine neighboring pixels becomes similar. This indicates

Fig. 1. Decomposition of the time series of a 3 × 3 matrix into the IMFs.
All graphs correspond to broadleaved forest.

that these higher IMF numbers are less affected by speckle but
driven by similar biophysical processes in similar (adjacent)
resolution cells. IMF 2 features a periodicity of half a year
and IMF 3 of one year. The residual of the IMF process is
related to the overall trends.

According to the IMF behavior, we can assume that speckle
mainly impacts the IMFs representing the higher frequencies
of the temporal signal. IMFs with lower frequencies are related
to biophysical processes. Thus, for the transformation of the
image, the two IMFs with the highest frequencies are removed.
Note, however, that also short-term extrema such as increased
backscatter after a rainfall event will be filtered, which can be
a desired side effect for many applications.

III. EXPERIMENTAL RESULTS

A. Data and Preprocessing

The proposed method was tested on a stack of 53 Sentinel-1
GRD images of the same relative orbit collected over Central
Germany (close to Erfurt) at flat terrain (mean slope 3.44° ±
3.38°) between October 2014 and November 2016. The time
span between the acquisitions was 12 days for most of the
images. Exceptions include a gap of 48 days at the beginning
of the time series and eight gaps of 24 days. Fig. 2 shows one
image of the temporal stack.

The data have been preprocessed using the GAMMA
software [10]. The single time steps are multilooked to a
10 m × 10 m pixel spacing. The orthorectification is based
on the original orbit state vectors and the 30-m SRTM dig-
ital elevation model [11]. The preprocessing also included
radiometric terrain flattening after [12], which results in
γ 0 backscatter values. All images were coregistered in the
DEM geometry after geocoding to achieve a subpixel coregis-
tration precision that is of eminent importance when the pixels
are investigated in the temporal domain only.

B. Evaluation of Speckle Reduction
We compare the results of our approach with the results

derived by the Quegan filter using 3 × 3 and 5 × 5 spatial
windows. Fig. 3 shows the results of the different filters in a
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Fig. 2. Study area near Erfurt. The northeast of the image contains mixed
forest. The straight lines in the southeast and the curve in the center are high-
ways. The dark and bright rectangles are agricultural fields. This Sentinel-1
image was acquired at September 8, 2015 and has a resolution of 10 m. The
red squares indicate the homogeneous forest areas for the computation of
the ENL.

Fig. 3. Comparison of the different filters on Sentinel-1 data acquired
on October 6, 2015. It is visible that all filters reduce the speckle in
homogeneous areas. In the middle of the image, the highway crossing is
better distinguishable in the transformed image.

subset of the study area. Visually, forest areas and agricultural
fields are apparently smoothed in all filtered images. However,
linear features such as highways, rails, or edges between
different land-cover types appear clearer with the EMD filter.

We compute the equivalent number of looks (ENL) for every
filter approach to compare the level of smoothing in homoge-
nous areas. The ENL was defined in [13] and corresponds
to the number of looks, which would be needed to obtain
the same level of smoothing via multilooking. The ENL is

Fig. 4. Averaged ENL of 10 forest samples over time. The proposed filter
has equal smoothing capabilities as the Quegan filter with a 5 × 5 spatial
window.

Fig. 5. ENL of the proposed method with different time series lengths. The
ENL is computed over the same areas as in Fig. 4. The transform stabilizes
with more than 13 images.

defined as

ENL = μ( f̂i )
2

Var[ f̂i ]
.

Hereby f̂i is the filtered image in a homogenous area at time
step i and μ and Var are the mean and the variance.

For this computation, we defined 10 homogeneous samples
of forest areas. The positions of the samples are shown
in Fig. 2. Each sample has a size of 25×25 pixels (6.25 km2).
Fig. 4 shows the averaged ENL for the forest samples. The
ENL of the original image fluctuates between four and five,
which is the expected value according to the multilooking.
The noise reduction of the EMD filter is improved against the
3 × 3 Quegan filter and comparable with the 5 × 5 Quegan.

The dropping of the ENL for the EMD Filter at the temporal
edges is one of the characteristics of this approach that requires
an initialization phase. To determine the length (number
of images) of the initialization phase, the EMD filter was
applied to time stacks of different lengths (Fig. 5). For this,
the ENL is computed for the acquisition of October 20, 2015.
The temporal stack was stepwise extended by concatenating
Sentinel-1 images at both temporal sides of the stack. The
ENL stabilizes when a number of approximately 13 images
are reached. Accordingly, six images should be discarded from
both sides of the time series to avoid less efficient filtering due
to the initialization phase.
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Fig. 6. Comparison of an edge between different crops on October 6, 2015 in
different speckle filters. The median of the lines orthogonal to an assumed
edge is approximated by a sigmoid function. The black points indicate the
width of the edge as a measure of the blurring effect and the red dotted line
indicates the slope of the sigmoid function.

C. Evaluation of Edge Preservation
The assessment measures of the edge preservation are

mostly based on the use of reference images (see [3] for a
discussion of measures). The only measure that is suitable for
real SAR images is the edge preservation index by [14]. This
approach is, however, not robust in the sense that: 1) edge
detection algorithms are not usable on unfiltered SAR images
and 2) the subjectivity of manual edge localization.

We therefore propose a novel approach for assessing edge
preservation. Fig. 6 shows an edge between two agricultural
fields with different crops. The SAR data were filtered using
the Quegan filter and the EMD filter. The map shows a
24 × 12 pixel subarea comprising the edge. The gray lines
in Fig. 6 show the pixel values as lines orthogonal to the edge.
The black line is the median parallel to the edge in every pixel.
To determine the position and magnitude of the edge, we fit
a sigmoid function depicted in red. We use the generalized
logistic function defined by [15]

f (x) = l + u − l

(1 + q ∗ e−g∗(x−M))
1
ν

where x denotes the pixel position, l and u are the lower
and upper bounds, and g is the growth rate. The parameter
M moves the function in the x-direction and ν and q fine-
tune the length and position of the slope. The edge is located
at the inflection point of the sigmoid function. The width of
the edge is indicated by the position of the extrema of the
third derivative of the sigmoid function. By the use of the
fitted sigmoid function, small deviations in the backscatter
are not influencing the assessment of the wideness of the
edge. According to the results, it can be concluded that EMD
filter improves the edge between the two fields, while the
Quegan filter tends to introduce blurring. The edge preserva-
tion evaluation was applied to further acquisitions of the time
series (Tables I and II). According to the results, an improved

TABLE I

LENGTH OF THE INCLINE OF THE DETECTED EDGE. A LOW
LENGTH OF THE INCLINE INDICATES A SHARP EDGE

TABLE II

HIGH SLOPE INDICATES A HIGH BACKSCATTER
DIFFERENCE IN THE NEIGHBORING FIELDS

Fig. 7. Ratio images of the different filters converted to decibel differences.

edge preservation can be observed compared with the Quegan
filter.

D. Ratio Images
For a further assessment of the performance of the EMD

filter, ratio images of despeckled and original images were
computed. The ratio of the despeckled image with the original

rspeckle = I

Î

should be white noise only because of the multiplicative noise
assumption. The visibility of other features indicates spatial
blurring or temporal mixing of the filtered data. Fig. 7 shows
examples of such ratios.

For the Quegan filter, the ratio basically corresponds to
white noise. Nevertheless, some linear features are visible.
In the ratio of the EMD filter, no linear structures appear.
However, in contrast to the Quegan filter, structures related
to agricultural fields are clearly visible. This indicates that
extreme temporal peaks appearing in one or two chrono-
logically adjacent images are smoothed by the proposed
image transform. These temporary outliers of backscatter
can be related to various environmental impacts such as
heavy precipitation events, flooding, frost, or special scattering
processes of a specific crop at a particular growing stage. For
applications focusing on those special events, the proposed
filter might result in decreased detection rates. However, most
application such as land-cover monitoring, change detection,
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or degradation monitoring shall benefit from the filtering of
these backscatter outliers.

IV. DISCUSSION

The use of multitemporal radar images has been shown
to be an effective method to filter speckle in SAR
imagery [1], [16]–[18]. However, in contrast to [1], in this
letter, we filtered the SAR imagery in time domain only, which
preserves the spatial resolution. This is of great importance
for applications that require high geometric resolution such
as forest degradation monitoring. Our results showed similar
statistical results compared with the Quegan filter in terms
of speckle suppression and an improved edge preservation.
According to the experiment, ENL values of up to 15 can be
achieved over forested areas. If further smoothing is needed,
the proposed transform could be combined with a monotem-
poral speckle filter (see [13]). The proposed transform also
removes short-term deviations (appearing in only one or two
consecutive images) of backscatter that can be related to
specific environmental conditions. Depending on the aim of
the SAR data usage, this characteristic of the EMD filter can be
beneficial. If the SAR data application aims at the detection of
short-term extreme events, monotemporal filters such as [13]
are preferable.

V. CONCLUSION

To the best of our knowledge, this letter presents the first
approach of using dense SAR time series (up to 60 acquisitions
per year) to filter speckle in SAR imagery in the time domain
only. Exploring novel approaches of this kind is highly relevant
to enable the usage of Sentinel-1 satellites. The filter is based
on the EMD, such that each pixel is separately decomposed
into intrinsic mode functions (IMFs) of different temporal
frequencies. In order to reduce the speckle, the two IMFs with
the highest frequencies are removed. This results in a non-
parametric image transform that fully preserves the geometric
resolution. The test results show that the speckle suppression
is comparable with the Quegan filter. We developed a new
method to measure edge preservation by approximating the
width and slope of an edge. This showed that the EMD filter
has a better edge preservation than the Quegan filter. Ratios
of the filtered and original images show that the EMD filter
removes not only the speckle but also temporal outliers.

The conservation of the full geometric resolution might
open new opportunities for applications requiring high spatial
resolution. One prominent example is forest degradation map-
ping in the context of the Reducing Emissions from Deforesta-
tion and Forest Degradation (REDD+) initiative. Future work
will address the use of 2-D or 3-D EMD in order to combine
temporal and spatial filtering to further improve the realizable
smoothing. This new image transform will be examined for
deforestation and degradation mapping.
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