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We investigate the spin-1/2 Heisenberg antiferromagnet on a kagome lattice with breathing anisotropy (i.e.,
with weak and strong triangular units), constructing an improved simplex resonating valence bond (RVB) ansatz
by successive applications (up to three times) of local quantum gates, which implement a filtering operation
on the bare nearest-neighbor RVB state. The resulting projected entangled pair state involves a small number
of variational parameters (only one at each level of application) and preserves full lattice and spin-rotation
symmetries. Despite its simple analytic form, the simplex RVB provides very good variational energies at strong
and even intermediate breathing anisotropy. We show that it carries Z, topological order which does not fade
away under the first few applications of the quantum gates, suggesting that the RVB topological spin liquid
becomes a competing ground state candidate for the kagome antiferromagnet at large breathing anisotropy.
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I. INTRODUCTION

The resonating valence bond (RVB) state, defined as an
equal weight superposition of (nonorthogonal) nearest neigh-
bor (NN) singlet (or dimer) coverings, was first proposed by
Anderson [1] to describe a possible spin liquid ground state
(GS) of the S = 1/2 antiferromagnetic Heisenberg (HAF)
model on the triangular lattice. Later on, it was also intro-
duced as the parent Mott state of high-T, superconductors [2].
Several works [3-6] have demonstrated that NN RVB states
defined on triangular and kagome lattices are gapped spin
liquid states with Z, topological order and GSs of local parent
Hamiltonians [4,7].

Spin liquid behaviors are expected in two-dimensional
(2D) frustrated quantum magnets where magnetic frustration
prohibits magnetic ordering at zero temperature. The spin-1/2
Heisenberg antiferromagnet on the kagome lattice (KHAFM)
is believed to be the simplest archetypical model hosting a
spin liquid GS with no Landau-Ginzburg spontaneous sym-
metry breaking. However, the precise nature of this spin
liquid is still actively debated. While the HLSM theorem [8]
excludes a unique GS separated from the first excitations by a
finite gap (so-called “trivial” spin liquid), a gapless spin liquid
[9-12] or a gapful topological spin liquid (of the RVB type)
[13—15] are the two favored candidates.

An important aspect is to understand the stability of
the spin liquid GS against various perturbations, such as
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long-range interactions or different anisotropies. Beyond be-
ing of interest by itself, it might also yield alternative ways to
assess the nature of the ground state of the isotropic KHAFM
by allowing to adiabatically connect it to a limiting case
which might be easier to study. An important case of such
perturbations is the HAF model on the kagome lattice with
anisotropy, which can be written as

Hy)= ) SiSj+y ) SiS; (M

(ij)e> (ij)e<

with 0 <y <1 (where S, = i%). The Hamiltonian H(y),
except at y = 1, explicitly breaks the inversion symmetry
between the strong (or right-pointing) > and the weak (or
left-pointing) < triangles of the kagome lattice (Fig. 1). The
anisotropic model (1) (also referred to as “breathing” HAF
[16]) has gained additional relevance because recent studies
have shown a realization of (1) for particular values of y in
a vanadium-based compound [17-19]. Moreover, in the limit
of strong anisotropy, y — 0, it can be mapped to a simpler
model with two spin-1/2 degrees of freedom per site, similar
to a Kugel-Khomskii model [20].

The Hamiltonian (1) has been studied using different nu-
merical methods. In Ref. [21], Gutzwiller-projected general-
ized BCS wave functions have been used, finding a gapped
Z, topological phase throughout; in contrast to this, Ref. [22],
supplementing the same ansatz with two Lanczos steps and
anisotropic couplings in an enlarged unit cell, finds that
around the isotropic point y = 1, a gapless U(1) Dirac spin
liquid (DSL) phase outperforms the gapped Z, phase for
sufficiently large systems, while for y < 0.25, valence bond
crystal (VBC) order dominates. Finally, Ref. [23] analyzes the
model using iDMRG, supplemented by exact diagonalization,
and finds a U(1) DSL for sufficiently large y, which at y <
0.1 transitions to a phase with nematic order (i.e., breaking
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lattice rotation symmetry). In the light of these conflicting
results, the nature of the strongly anisotropic limit, and the
question whether it is adiabatically connected to the isotropic
KHAFM seems wide open.

In this paper, we use an ansatz based on a systematic
optimal cooling procedure, applied to the RVB state, to an-
alyze the nature of the breathing KHAFM, focusing on the
strong anisotropy limit. Our ansatz, which we term “‘simplex
RVB,” clearly outperforms the previous results obtained for
the thermodynamic limit, and clearly yields a gapped Z,
spin liquid rather than a VBC phase. Our ansatz differs from
previous approaches in several ways: First, it implements a
systematic and optimized cooling procedure—in essence, an
optimized imaginary time evolution scheme—which can be
systematically constructed from any Hamiltonian at hand.
Second, it requires only a very small number of parameters
with a clear physical interpretation; in our case, we use at
most three parameters. Third, those parameters have a clear
physical interpretation in terms of a variational RVB-type
wave function: their role is to create longer-range singlets
with suitable amplitude and phase such as to systematically
decrease the energy of the variational wave function. And
lastly, the clear role of the variational parameters in the ansatz
facilitates the analysis of its order.

Our analysis reveals a gapped Z, topological spin liquid
phase for the whole range 0 < y < 1. In particular, in the
strongly anisotropic limit, our results clearly outperform the
energies previously obtained in the thermodynamic limit [22]
which found a VBC phase, while at the same time they
require a significantly smaller number of variational param-
eters. More specifically, our ansatz with two parameters—
corresponding to only one optimized trotterized imaginary
time evolution step on top of the RVB state—already yields
a slightly better energy than the VBC ansatz with two
Lanczos steps, while it clearly outperforms it with an addi-
tional parameter (half a Trotter step). This can be attributed
to the fact that our ansatz, unlike Lanczos steps, captures
the extensive nature of perturbations and thus correctly re-
produces the perturbative expansion in the thermodynamic
limit [24].

On a technical level, we use the formalism of projected
entangled pair states (PEPS) [25] to implement the simplex
RVB ansatz. The idea of the PEPS description is to specify
the entanglement structure of the wave function as a network
of local tensors. The so-called bond dimension determines
the efficiency of the PEPS description. The NN RVB state
on the kagome lattice can be represented as a PEPS with
bond dimension D = 3 [4,26]. While the bond dimension
required for p half Trotter steps—corresponding to singlet
coverings which contain long-range singlets with range p +
l—grows as D, = 3 x 27~ a number p of steps (and thus
a singlet span) large enough to yield competitive energies
for the anisotropic limit can be reached with computationally
accessible bond dimension. A key advantage of this explicit
PEPS construction, which is obtained from the RVB PEPS
by applying cooling steps, is that it gives us direct access
to the relevant entanglement properties for determining the
topological nature of the system, and thus allow for a direct
and unambiguous identification of the quantum phase of the
wave function.

The outline of this paper is as follows. In Sec. II, we
motivate and formally define the simplex RVB ansatz, and
give its PEPS construction. In Sec. III, we present our numer-
ical results: First, we discuss the optimal variational energies
and corresponding parameters for our ansatz; second, we use
PEPS techniques for analyzing the quantum phase of the
system as well as the properties of its topological (anyonic)
excitations (specifically, anyon masses and order parameters
for anyon condensation and deconfinement); and third, we
discuss the physical structure of the optimal wave function
(this is possible due to the clear physical picture behind
our variational parameters), as well as possible extensions to
potentially further improve the ansatz. Finally, we summarize
our results and give an outlook in Sec. IV.

II. SIMPLEX RVB ANSATZ AND PEPS

The key idea behind the simplex RVB ansatz is motivated
by the construction used in Ref. [27] to study the isotropic
KHAFM. The motivation behind it is to transform a quantum
state into the ground state of a given Hamiltonian by algo-
rithmic cooling, that is, by applying local quantum gates (or
potentially more broadly local modifications to the wave func-
tion) which systematically lower the energy where applied.
Unlike the construction of the GS in terms of applications
of a trotterized imaginary time evolution operator, where
all evolution operators are chosen identical and close to the
identity, in the simplex ansatz the step size of each evolution
operator is optimized variationally such as to minimize the
energy. In addition, we start from a well-chosen initial state
which already by itself captures essential features of the low-
energy physics of the system at hand.

For what follows, it will be convenient to rewrite the
Hamiltonian (1) as

Zp(ijk) +vy ZP(ijk) - w ZH , )

3
H = 7
(ijk)er (ijk)e< (ijk)

where Pj;ji) is a projector onto the spin-3/2 subspace of
% ® % ® % In order to obtain an approximation of the ground
state of H, we can perform imaginary time evolution [) =
e PH| i) for sufficiently large B and a suitable initial state
|@inic) . If we trotterize e P | this yields

W) =107 (@) (a5 )1¥ [ hini) 3)
with
0% ()= [] T—asPip), )
(ijk)er>

and accordingly for Q< ().

When applied to a suitable initial state, such as
the nearest-neighbor RVB state (i.e., a superposition of
all nearest-neighbor singlet coverings of the lattice), Eq. (3)
has a natural interpretation: First, it is known [28,29] that each
NN singlet covering on the kagome lattice contains exactly
25% of “defect triangles,” that is, triangles which do not
contain a singlet (Fig. 1). Those defect triangles have overlap
with the spin-3/2 subspace and thus incur a higher energy than
triangles holding a singlet (whose energy is locally optimal).
The effect of Q% (Q<) is to decrease the weight of defect
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FIG. 1. A singlet covering of RVB state on the kagome lattice.
Arrowheads indicate the counterclockwise orientation of singlets on
edges. Gray indicates defect triangles of the singlet covering.

triangles on right-pointing (left-pointing) triangles. This is
achieved by creating longer-range singlets: since

Pijiy = ${L+ Rajp) + R } ©

(where R(;ji) rotates the qubits), acting with Py on a defect
triangle produces longer-range singlets, i.e.,

oot g

(Note, however, that the linear dependence between pairwise
permutations and rotations for three qubits—which allows for
the form (5)—implies that this way of looking at the longer-
range singlet patterns is not unique; a unique pattern within
the singlet subspace can be singled out by avoiding crossings.)

Unfortunately, representing imaginary time evolution ac-
curately using a Trotter expansion such as Eq. (3) is costly,
as it requires a large number of Trotter steps which grows
with the system size; in particular, in the context of tensor
networks this incurs an exponentially growing bond dimen-
sion. One option here is to compress e ## to a more compact
tensor network [30,31]; however, in this process, translational
invariance is either lost or obfuscated, and the physical inter-
pretation of the parameters missing. We therefore resort to a
different approach: We restrict to a small number of “Trotter”
layers in Eq. (3), but we allow for independent parameters «;
for each step i and optimize all those parameters such as to
minimize the variational energy. This leads to the following
ansatz, which we term simplex RVB:

IRVB(@)) = 0 (@1)Q (2) - - 0*(,)INN RVB),  (6)

where * € {I>, <1} is determined by the parity of p, and the
a;, i =1,..., p, are the variational parameters. Note that we
choose to apply Q" leftmost: This way, the ansatz yields the
correct behavior in leading order perturbation theory around
y = 0 (we discuss this in detail in Sec. III A); in agreement
with this, we observe that this ordering gives better energies
in particular in the limit of strong anisotropy.

We now give the PEPS description of the simplex RVB
ansatz. We start by reviewing the construction of the NN
RVB state [4,26] which is comprised of triangular and on-site
tensors. The triangular tensor is defined to be the sum of one
configuration with a defect (containing no singlet) and three
configurations without defect (containing one singlet each):

’Ll>k_
J” " = 8088k + €ijk @)

(b) =T-a,;P
|0)—av| 1@

FIG. 2. Construction of the tensor network for the simplex RVB.
(a) Each local tensor contains three kagome spins. In particular, the
NN RVB has a PEPS description of this form with bond dimension
D = 3. (b) The operator Q = I — o,;P acts on three physical spins.
It can be considered as an operation controlled by a control qubit
in state |0) — o;]1). (c) The tensor network for the simplex RVB for
p = 3, obtained by three applications of Q.

where § and ¢ denote three-dimensional Kronecker delta and
fully antisymmetric tensors, respectively. The on-site tensor
ensures that every site is paired with exactly one of its neigh-
bors,

R
il (810850 + 81851)8j2 + (80850 + 818,182 . (8)

The resulting tensor network, obtained by blocking the trian-
gular and on-site tensors, has a three-site unit cell and is given
in Fig. 2(a). We implement each local action (I — «P), which
is not unitary, as a “controlled” gate on three qubits, controlled
by a control qubit (this will be useful for extensions of the
ansatz discussed later). The gate acts trivially when the control
qubit is |0), while a projector onto the energetically favorable
spin-1/2 subspace of the three qubits is applied if the control
qubit is |1) [Fig. 2(b)]. For the time being, we choose the
control qubits in a product state |0) 4+ «|1), leading to a
gate Q = (I — aP), as described previously. For illustration,
the tensor network obtained through three applications of O
to the NN RVB, starting with the right-pointing triangles, is
shown in Fig. 2(c).

What is the bond dimension of the simplex RVB PEPS with
p layers? We work with the square unit cell shown in Fig. 2(a),
which contains three kagome spins. With this unit cell and the
triangular tensor (7), the NN RVB itself has D = 3. O™ («;)
on right-pointing triangles lie within the unit cell and therefore
carry no increase in the bond dimension. Operators Q< («;) on
left-pointing triangles can be implemented with bond dimen-
sion 4: for example, they can be constructed by teleporting
the left and bottom neighboring spin to the central site [cf.
Fig. 2(a)], applying Q<(¢;), and teleporting them back. D,
is therefore multiplied by 4 for every even p, ie., D, =
3,12,12,48,... for p=1,2,3,4,... However, for p even,
we can do better. There, the rightmost Q< is applied directly
to the NN RVB, in which case the state of the teleported spins
is already known to the central tensor if the NN RVB index
is 0 or 1, allowing to compress the bond dimension for p = 2

155141-3



IQBAL, POILBLANC, AND SCHUCH

PHYSICAL REVIEW B 101, 155141 (2020)

to D, = 6; thus, we obtain D, = 3 x 271 =3,6,12,24, ...
[32]

II1. RESULTS

Let us now discuss our results obtained by using simplex
RVB states as a variational ansatz for the breathing kagome
Heisenberg Hamiltonian (1). The PEPS formalism enables the
computation of expectation values of local observables and
correlation functions directly in the thermodynamic limit, in
contrast to other methods. We use standard numerical methods
for infinite PEPS (GiPEPS) [33,34], which approximate the
boundary by an infinite matrix product state (iMPS) of bond
dimension x (which determines accuracy and computational
cost). This allows us to compute the variational energy of an
iPEPS with high accuracy and thus to determine the varia-
tionally optimal state. In addition, the PEPS approach allows
us to utilize the entanglement symmetries of the PEPS and
the way in which the iMPS boundary orders relative to those
symmetries to study the quantum phase and the topological
properties of the optimized wave function [35,36]. In our
calculations, we choose not to truncate the PEPS tensor before
contraction but rather keep the exact simplex ansatz, which
avoids truncation errors and gives us direct access to the
entanglement symmetries relevant to study the nature of the
order in the system; on the other hand, this limits our ansatz
to at most p = 3 computationally attainable applications of

Os.

A. Energies

Let us start by giving the results on the optimal variational
energy obtained within the simplex RVB ansatz family. For
all calculations, we have determined the optimal parameters
{ar;} through a gradient search using the corner transfer ma-
trix method with a boundary bond dimension x = 36, and
subsequently extracted the energies of the optimized wave
functions using boundary iMPS (i.e., the fixed point of the
transfer operator) with x = 64 (this only requires truncation
along one direction, resulting in a better convergence of the
energy in x). A table with the detailed energies, including a
convergence analysis and error bounds, as well as a discussion
of a potential extrapolation in p, are given in Appendix A.

In Fig. 3(a), we plot the energy density e (i.e., the energy
per site) of the optimized simplex RVB wave function for
the breathing kagome Hamiltonian (1) as a function of the
anisotropy y, for p =1, 2, and 3. For better comparison in
the strongly anisotropic limit, we plot in Fig. 3(b) e(y) +
0.1353 y for 0 < y < 0.2, where the subtracted linear offset
corresponds to the behavior in first order perturbation the-
ory, as obtained by extrapolating DMRG calculations [23,37]
for the effective first-order model [20] on finite cylinders.
Beyond the p =1, 2, and 3 simplex RVB results, we also
show the data obtained for the VBC (and the energetically
less favorable U(1) DSL) ansatz in Ref. [22] using VMC.
We find that already for p = 2, our ansatz gives energies
slightly below the VBC ansatz, and for p =3, it clearly
outperforms it. This is particularly remarkable since the p =
2 (p = 3) simplex ansatz has only two (three) parameters,
corresponding to effectively one (one and a half) imaginary
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FIG. 3. (a) Energy densities for the simplex RVB ansatz with
p=1, 2, and 3. (b) Comparison of energy densities for the simplex
RVB ansatz with the data from variational Monte Carlo (VMC) [22]
and DMRG [23,37]. Solid lines give quadratic fits to the data for
y € [0, 0.3]. The gray region is bounded by lines —0.25 — 0.1354y
and —0.25 — 0.133y, which are the slopes extracted from DMRG
calculations for the full model for N, = 12 and the extrapolation
N, — 00, respectively.

time evolution steps, while the VMC ansatz of Ref. [22] has
11 parameters, including two Lanczos steps (cf. the discussion
in the introduction). In addition, Fig. 3(b) also shows energies
obtained by extrapolating DMRG data for the full model (1)
for cylinders with N, =8, 10, and 12 to N, — oo, which
we find to be remarkably close to our p =3 data in the
strong anisotropy regime around y < 0.04, given that our
ansatz only depends on three parameters rather than about
103. Since the extrapolation of the DMRG data is subtle (cf.
Appendix B), the gray cone indicates the linear order ex-
tracted from the N, = 12 and N, — oo DMRG data, which
we expect to provide reliable lower and upper bounds to the
true slope for the full model.

For better comparison in the strong anisotropy limit, we
expand the energy density for small y as

e(y)=—-025+c1y +cy+..., )

where the ¢; depend on p. The values c; for the slope at
y = 0 for the different methods are given in Table I (see
Appendix B for details on the extraction). They confirm that
for p = 2, our ansatz performs slightly better than the VBC
ansatz [22], while for p = 3, it clearly outperforms it. The
DMRG data for the nematic spin liquid are the same as the
gray cone in Fig. 3(b), that is, obtained from the DMRG
data of Refs. [23,37] for N, = 12 cylinders and the N, — oo
extrapolation, which should give lower and upper bounds
to the true value. Finally, we give values for ¢; obtained
by extrapolating to p — oo in the inverse bond dimension
1/D, ~ 1/2P, which we expect to be a reasonable fit in a
gapped phase, and which yields a value competitive with the
DMRG results. However, these values should be taken with
due care due to the small number of data points and lack of
established extrapolation procedures, see Appendix A for a
discussion.

An alternative way to extract ¢; is by using a perturbative
expansion. Perturbation theory predicts that for small y, the
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TABLE I. Coefficient of the linear term in the energy density
e ~ —0.25 + ¢y, obtained with different methods (see text). The
simplex RVB values labeled e%; have been obtained using first-order
perturbation theory, cf. text.

Ansatz (o3}
U(1) DSL (VMC) [22] —0.119(1)
VBC (VMC) [22] —0.125545(20)
Nematic SL (DMRG) —0.1354 (fit, N, = 12)
[23,37] —0.133 (fit, N, — 00)
simplex RVB, p =1 —0.1242 (fit)
—0.1241978(4) (e)
—0.1243(3) ([22], extrap. N,)
wp=2 —0.1261 (fit)
—0.126217(7) (ex)
wp=3 —0.1319 (fit)
—0.13225(5) (ex)
,p=00 —0.1345 (extrap. fit)
—0.1349 (extrap. e%;)
energy per site is given by
1
e ~ —0.254+ c;y = — min H , 10
) 1Y = in (YIH)IY) (10)

where G denotes the ground state manifold at y = 0, that is,
the subspace of all states with spin 1/2 on the right-pointing
triangles. Within our variational family, this corresponds to
fixing oy = 1 (which explains why we want to have Q%
leftmost in Eq. (6) if we want to correctly reproduce the
perturbative limit), and letting G be the set of simplex RVBs
for a given p with fixed o = 1. We thus find that within our
ansatz family, we can determine c; perturbatively as

1

1
= v m 9] i 2
“ V[N min (13, SiSj+y 3o 8:8;1¥) +0 5}

1
= ¥ in (W12 4SSy,
that is, by minimizing the energy density e, on the left-
pointing triangles within the simplex RVB family with «; =
1. This optimization incurs one less variational parameter
and does not require fitting, and can thus be carried out to
significantly higher precision; we report the corresponding
values in Table I alongside the values obtained from fitting
e(y), which are in excellent agreement.

As an additional check for the quality of the optimal
variational state, we have considered the energetics of left-
and right-pointing triangles at and around the Heisenberg
point. We find that even though the p =3 ansatz treats
the inequivalent triangles differently (in particular, Q acts
twice on the right- and only once on the left-pointing tri-
angles), the energy splitting between the triangles vanishes
for the optimal energy wave function (Fig. 4(a)); we observe
the same effect also for the optimal wave function with
p = 2. Alternatively, we can consider the optimal energy
density in a symmetric gauge, H(§) = (1 — §) Z> Si.S; +
(1+8)Y Si.S;, in the vicinity of the Heisenberg point.
We obtain a fit egzz(B) ~ —0.4283 + 0.0018 — 0.0838% and

( )-0.36 - : -
a R o —
038 \ P2 /
Y 3 //
O -04 /-

'I'

-0.42 - './-../-'

0.44 = ! 3

02 0 02

(6> — €q)

FIG. 4. Restored inversion symmetry at the Heisenberg point.
(a) Convex hull of energy densities for y = 1 vs energy difference
between left- and right-pointing triangles for the p = 2, 3 simplex
ansatz states. The inversion symmetry, which is not explicitly con-
tained in the ansatz, is essentially perfectly restored in the energy.
(b) Optimal energies for p = 2, 3 in the symmetric gauge, where §
measures the distance to the Heisenberg point, with quadratic fits.
The slope at § = 0 is essentially zero, reconfirming that inversion
symmetry of the energy is restored at the Heisenberg point.

eg§3(8) ~ —0.4333 — 0.0016 — 0.0718? for the simplex RVB
ansatz with p = 2 and p = 3, respectively [Fig. 4(b)], which
essentially show a zero slope at § = 0 and is thus symmetric
around § = 0 to very good accuracy, as required by symmetry
considerations [38].

B. Order, correlations, and quantum phase

The PEPS description of the NN RVB has a Z, symmetry
on the entanglement degrees of freedom. Such a symmetry has
been shown to be essential to explain the topological features
of PEPS models, as well as to understand and analyze the
breakdown of topological order in such systems [35,36,39—
42]. This is accomplished by considering the boundary iMPS
obtained when contracting the 2D PEPS (i.e., the fixed point
of the transfer operator), and analyzing how it orders relative
to those symmetries. The specific type of order is directly
related to the quantum phase displayed by the bulk wave func-
tion. From those symmetries, we can construct half-infinite
string operators which on the one hand create anyonic bulk
excitations in a given anyon sector a (with a = s, v, sv for
spinon, vison, and the composite fermion, respectively), but
at the same time form (string) order parameters which detect
the ordering of the boundary state. By computing expectations
values of these string operators either in one layer (denoted
(a)) or in both layers (denoted (aa')), we can construct order
parameters which probe the condensation and confinement
of anyons, and thus the proximity to a topological phase
transition; specifically, a nonzero value of the “deconfinement
fractions” (aa'), as well as “condensate fractions” (a) = 0,
are indicative of the topological phase. At the same time, for
vanishing order parameters, we can study the rate at which
the corresponding expectation value for finite strings with two
dual endpoints decays to zero as their separation increases,
giving rise to corresponding length scales for condensation
(mass gap) and confinement.

We have computed anyonic order parameters for the vi-
son, as well as correlation lengths for all anyons, for the
optimized simplex RVB for p =1, 2, and 3 as a function
of the anisotropy y. Since we do not truncate local tensors
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FIG. 5. (a) Deconfinement fraction (vv') and condensate frac-
tion (v) of visons as a function of y. (b) Different correlation lengths
for p = 3, computed with y = 192: for the trivial (0), spinon (s),
vison (v), and fermionic (sv) sectors, as well as the spin-spin (S.S)
and connected dimer-dimer (f).ﬁ) correlations shown in (d) and (f).
(c) Comparison of & and &y, for p =1, 2, and 3. [(d)—(g)] Spin-
spin and dimer-dimer correlation functions at y = 0 and y = 1 for
p=1, 2, and 3 up to distance r = 5 (type of correlation indicated
in the insets). We observe an increase of the spin-spin correlations
at y = 1 with growing p, significantly above the increase at y = 0,
consistent with the existence of a gapless U(1) spin liquid at the
Heisenberg point; on the other hand, at y = 0, the dimer-dimer
correlations rather decrease for p = 3 (unlike at y = 1), providing
no evidence for a nematic phase at small y.

during optimization, the entanglement symmetries of our
tensors remain easily accessible, facilitating the analysis. The
corresponding data are shown in Fig. 5. For the anyonic order
parameters [Fig. 5(a)], we find that (v) =0 and (vvf) > 0,
which implies that the system is in a Z, topologically ordered
phase for the given p = 1, 2, and 3. The ( va) for the differ-
ent p all show only a small y dependence, with no indication
of a phase transition at some intermediate y building up at
larger p. On the other hand, at least for y close to 1, (va)
clearly decreases with p, leaving open the possibility of a
critical phase around the Heisenberg point.

Next, let us analyze the correlation lengths, shown in
Fig. 5(b) for p = 3. We find that the dominant correlation
length is given by spinon correlations, as known for the NN
RVB state [42]. In addition to the different anyon correla-
tions, the figure also shows data for spin-spin correlations
(S;.S;.,) and (connected) dimer-dimer correlations (ﬁi.ﬁi+,),
computed for the spin and dimer pairs indicated in the inset
of Figs. 5(d) and 5(f). Here, D; = D; — (D;), where D; =
Sii)-Sriy» with r(i) and [(i) the spins adjacent to the edge
i; note that (S;) =0 due to SU(2) symmetry of the wave
function. Again, all lengths change smoothly with y, and
while we observe a minor increase of correlations with y,
there is no sign of a phase transition. Note that the similar
behavior of spinon and leading trivial (including dimer-dimer)

correlations and their relative scale is consistent with previous
observations [43] which could be explained as arising from
correlations between pairs of spinons [44].

In Fig. 5(c), we compare the spinon and dimer correlation
lengths &7 for the different p = 1, 2, and 3. We find a surpris-
ing behavior: While the curves for p = 1 and 2 show qualita-
tively similar behavior (with increased correlation length for
p = 2), and display a decrease of correlations with growing
y, the p = 3 curve exhibits the opposite behavior. Even more
noteworthily, while at the Heisenberg point, correlations keep
increasing with p (consistent with a gapless phase), in the
small y regime the correlations decrease again, speaking
against a long-range ordered or critical system. The behavior
for p =1 and 2 can be qualitatively explained from the way
the Q(«) act (cf. the next section where the optimal « are
discussed): O™ (ay) acts on the strong right triangles. As it
decreases the energy of the latter, oy will increase with grow-
ing anisotropy. At the same time, the Qs create longer-range
singlets, which should give rise to longer-range correlations:
Correlation functions are obtained from overlaps of singlet
configurations, weighted by the number ¢ of singlets involved
as 27%/2, and longer-range singlets allow to connect two points
at a given distance with smaller £ and thus larger weight [45].
The additional increase in correlation length for p = 2 can be
explained from the presence of the Q< (a;) layer which gives
rise to additional longer range singlets before the application
of Q% (a1). However, why does the behavior change for p =
3? As we discuss in more detail in the next section, the role
of the topmost Qs is to adjust the energy, as they shift the
weight between spin 1/2 and 3/2 right before applying the
Hamiltonian; the optimal value of the corresponding o;—and
thus the amount of correlations they create—is thus governed
by immediate energetic considerations (i.e., the overlap with
the spin 1/2 space). The lower-lying Q layers, on the other
hand, are not directly relevant for the energetics—rather, their
job is to set up the underlying wave function by creating
longer-range singlets in a way where the topmost layers can
produce the best possible energies for left- and right-pointing
triangles simultaneously. Thus it is only with the lower layers
i > 3 that the Qs primarily serve the purpose of creating the
right type of long-range singlets and correlations, rather than
just tuning the value of the energy. It therefore seems plausible
that the p = 3 behavior of the correlations is closer to the true
behavior at large p, and we expect this tendency to continue
as we further increase p.

Let us now have a closer look at the possibility of a nematic
phase in the strongly anisotropic limit, as well as of a gapless
phase at the Heisenberg point. This requires particular care,
since we construct our ansatz starting from a gapped Z, spin
liquid (the RVB state), which potentially biases our ansatz
towards that phase, and in addition, our ansatz by construction
keeps all lattice symmetries. Here, it is important to note that
our ansatz is still capable of reproducing the correct physics of
the system. First, by construction the ansatz will approximate
the low-energy physics increasingly well for larger p. Second,
since the Q°(¢;) are not unitary, they do not have a light
cone and can thus alter long-range properties of the system
even at finite p (in fact, a general PEPS can be seen as
producing intricate states, including topological and critical
models, from a product state in a single step). Third, despite
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the fact that lattice symmetries cannot be explicitly broken,
the system can spontaneously break lattice symmetries, that
is, yield an equal weight superposition of the symmetry bro-
ken states which exhibits long-range order, and which can
be witnessed through connected correlation functions. Yet,
building such a superposition of symmetry broken states uses
up part of the bond dimension, potentially biasing the ansatz
away from those states. In addition, optimizing the energy
of a local Hamiltonian will primarily try to optimize the
local correlations, with the long-range physics emerging as a
secondary effect from constraints on the state space [46]. Thus
it is natural to expect that long-range order will initially show
up in an increase of shorter-range correlations which only later
propagate to larger distances, and thus, a careful study of both
those correlations and the longer-range behavior is required
to assess the emergence of symmetry breaking or critical
phases.

In the light of this, let us discuss the possibility of a nemat-
ically ordered phase, as proposed in Ref. [23] for the strongly
anisotropic limit; here, the nematic order was found to break
rotational symmetry around the center of the triangles, leading
to different Heisenberg energies along inequivalent links. As
argued above, while our ansatz keeps all symmetries of the
Hamiltonian, if nematic order were favored we would expect
the system to form a long-range ordered state, reflected in a
diverging correlation length for the connected dimer correla-
tions. The absence of any such divergence in the dimer-dimer
correlations at small y (which in fact rather decrease) speaks
against the presence of a nematically ordered phase. To further
strengthen this point, we also consider the behavior of the
dimer correlations at short distance » < 5 for y =0 as p is
increased, shown in Figs. 5(f) and 5(g). There, we see that
while correlations increase for p = 2, they decrease again for
p = 3 to a similar value as for p = 1, and moreover, they are
no larger than the correlations found at the Heisenberg point,
speaking against the formation of nematic order. In addition,
the observed values of (Dy.D,) are of the order of 10~* even
for r = 1, while for the nematic order observed in Ref. [23]
[Fig. 5(a), therein], we would expect them to be on the order of
0.016(2). Overall, we find that our results show no indications
of a nematic phase in the strong anisotropy limit y < 1.

On the other hand, our data are compatible with the emer-
gence of a U(1) spin liquid at y = 1, which should be accom-
panied by algebraically decaying spin-spin correlations: Even
though no divergence of the asymptotic correlation length is
observed in Fig. 5(b), the analysis of the shorter-range spin-
spin correlations in Figs. 5(d) and 5(e) shows a systematic in-
crease with increasing p, and moreover, the p = 3 correlations
at y = 1 exceed those at y = 0 especially at short distances,
compatible with an algebraic decay of these correlations at
large p.

As a final test for the Z, topological spin liquid nature of
the simplex RVB state for p = 3 for all values of y, we study
the deconfinement order parameter for visons and the spinon
correlation length as we interpolate from the NN RVB state
(which is known to be a gapped Z, topological spin liquid)
to the optimal simplex RVB wave function, by interpolating
a(f) =0 x oz; from 6 = 0 (NN RVB) to 6 = 1 (optimized
simplex RVB), where & denotes the optimal parameter val-

¥
ues for a given y. The result is shown in Fig. 6. Again, we

0t

FIG. 6. Curves in (a) and (b) share the same color for each y
along the path a(0) = 0 x a; for the p = 3 simplex ansatz. (a) The
deconfinement fraction of visons. (b) The length scale of spinon
excitations with x = 144.

find that both quantities change smoothly, re-confirming the
topological Z, spin liquid nature of the optimal wave function
for the whole range of y.

C. Structure of optimal wave function and
possible generalizations

The fact that our simplex RVB ansatz encompasses only
very few parameters with a clear interpretation allows us to
directly study how the structure of the optimal wave function
changes as we vary y and increase p. We recall that our ansatz
[Eq. (6)] was of the form

IRVB(®)) = 0% (@1)Q%(2) - - - 0*(p)INN RVB), (1)

where Q°(«;), ® € {<, >} projects onto the spin-1/2 subspace
of the corresponding triangles for «; = 1 and acts trivially
for a; = O—that is, it lowers the energy of those triangles as
o; approaches 1. At the same time, it increases the number
of longer-range singlets, as it acts by permuting the singlets;
following Eq. (5), one can argue that the largest amount of
singlets is permuted at @ = 3, though this has to be taken with
due care due to the large number of linear dependencies of
different long-range singlet patterns, as well as cancellations
in the singlet range growth from permutations on adjacent
sites. Indeed, the fact that the Qs arise from trotterizing the
imaginary time evolution implies that a certain amount of such
long-range singlets is required to obtain a good variational
wave function.

Figure 7 shows the optimal values of {o;}?_, for p=
1, 2, and 3, as a function of the breathing anisotropy parame-
ter y. For p = 1, we find that for maximum anisotropy y = 0,
a) = 1—this is expected, as it forces all strong triangles to
have spin 1/2 and thus minimum energy, and the state of
the weak triangles is irrelevant for y = 0. As we increase
y, we observe that the value of «; decreases, increasing the
probability of the weak triangles to have spin 1/2. Remark-
ably, however, we see that the optimal value of «; even at the
symmetric point y = 1 is significantly above 0. This can be
understood from the fact that Q in the simplex RVB ansatz
does act not only by shifting the weights of defects between
inequivalent triangles in the RVB, but at the same time
creates energetically favorable longer-range singlets. Note,
however, that those singlets are created by decreasing, rather
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FIG. 7. Optimal values of variational parameters for the simplex
RVB ansatz for p =1, 2, and 3.

than increasing, o, suggesting that for p = 1, the amount of
longer-range singlets at the Heisenberg point is smaller than
fory <« 1.

For p = 2, the behavior of o closely resembles that for
p =1, but with a smaller change (i.e., a larger value «;)
towards y = 1. The correspondingly lower energy gain on
the left-pointing triangles is compensated by Q< (a,), which
lowers the energy of the left-pointing triangles prior to the
application of Q% («), while in addition allowing for the
creation of NNN neighbor singlets, thus being energetically
favorable.

For p =3, we make a similar observation. The curves
for oy and «, are again quite close to the p = 2 case. Now,
the value of a, for small y has increased—giving the weak
left-pointing triangles a lower energy, but also creating longer-
range singlets. The energy gain of the weak triangles is now
compensated by biasing the system towards strong triangles
using «3. An interesting point to note is that o3 > 1, unlike
o; and «p. That is, in the first layer applied to the NN
RVB, it is now favorable to flip the sign of the spin-3/2
space or—to the extent the picture of Eq. (5) as creating
longer-range singlets is correct—to create a larger fraction
of longer-range singlets at the expense of not lowering the
energy of the strong D> triangles as much as possible. Indeed,
the latter interpretation is plausible, given that longer-range
singlets are overall energetically favorable, and the immediate
energetics is taken care of by QO (). If we were to follow this
reasoning, we would expect further layers to also have o; > 1,
i > 3; this suggests that the qualitative change in the behavior
of order parameters and correlations occurring at p = 3 will
persist for larger values of p.

Given the observation that the lowest layer [i.e., O®(a,)]
significantly biases the NN RVB towards configurations with
no defects on one kind of triangles, it seems plausible that
a modification of the NN RVB layer in a way which biases
it towards configurations with less defects on the suitable
triangles should further improve the ansatz. This can be done
following the idea of the original simplex RVB paper [27].
We modify the right-pointing triangular tensor (7) of the NN
RVB as

le>k’ = (1 — B)3indj2dr2 + €ijic (12)

where a parameter 8 > 0 (8 < 0) effectively shifts the
amplitude of defect configurations towards left-pointing
(right-pointing) triangles. Importantly, this modification does
not lead to an increase in the bond dimension. Subsequently,
we can apply the Qs as before,

0% (@1)Q(a2) - - 0" (p)INN RVB(B)) , (13)

to obtain an enhanced simplex RVB ansatz with one additional
parameter. We have tested this ansatz and found that it does
not lead to better variational energies, except in the case p =
1. We attribute this to two facts: As discussed, the energetics is
predominantly taken care of by the top Q layers (in particular
o and op), rather than the low-lying §; on the other hand,
the lower layers mostly serve the purpose to create longer
range singlets, whereas §, while changing the weight of the
spin-1/2 space on the corresponding triangles, does not give
rise to longer range singlets (and in fact reduces the spinon
correlation in the system).

As mentioned earlier, we can consider the Q operators as
gates which are controlled by a “control qubit” |0) + «;|1).
This enables us to interpret the simplex ansatz as a variational
optimization over p control qubits chosen from the manifold
of product states [Fig. 2(c)]. In principle, we can further
enrich the simplex ansatz (6) by allowing the control qubits
to be in a general p-qubit state, i.e., correlating the «; of
the different layers. This provides a significantly enlarged
simplex manifold, even though it does not allow to increase
the range of the singlets. However, we have found that for the
computationally feasible values of p, the optimization over the
manifold of general p-qubit control states does not lead to an
improvement in energy as compared to the optimization over
the manifold of p-qubit product states.

IV. SUMMARY AND OUTLOOK

In this paper, we have introduced a simple yet powerful
ansatz for the kagome Heisenberg antiferromagnet (KHAFM)
with breathing anisotropy, termed simplex RVB. Our ansatz
is physically motivated from algorithmic cooling, and effec-
tively consists of p/2 imaginary time evolution layers with
optimized step sizes applied to the NN RVB, approaching the
true ground state as p — oo. It yields simple few-parameter
families of wave functions with a clear physical interpretation
in terms of longer range singlets, which are energetically fa-
vorable. The ansatz has a simple PEPS representation, which
makes it amenable to numerical simulations and an in-depth
analysis of its order.

We have analyzed the optimal simplex RVB ansatz for
p=1, 2, and 3 for the breathing KHAFM, with a focus on
the strong anisotropy limit, and found that already for p = 2 it
improves over existing VMC results, while for p = 3 it clearly
outperforms them, even though it requires significantly less
parameters. We also find that for p = 3, our energies are rather
close to extrapolated DMRG energies. It is thus probable that
with just a few more layers, the simplex RVB will be fully
competitive with DMRG simulations, which is remarkable
given the small number of parameters.

We have investigated the nature of the order in the op-
timized simplex RVB for the breathing Heisenberg model,
using a wide range of probes based on the explicit PEPS
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description and the underlying entanglement symmetries. We
find that for the whole parameter regime, our ansatz yields a
gapped Z, topological spin liquid for the accessible values of
p. In order to rule out a bias towards the underlying Z, spin
liquid, we in addition have carefully investigated the behavior
of the correlations, both asymptotically and at short distances,
as we increase p, which would indicate the formation of
some different (long-range) order as p is increased. In the
strongly anisotropic regime, we find that the relevant dimer-
dimer correlations saturate as we increase p, thus exhibiting
no signs of long-range order which one would expect, e.g.,
for a nematically ordered phase. On the other hand, at the
Heisenberg point, our results show a clear tendency to larger
correlation lengths and increasing spin-spin correlations as p
increases, which is consistent with a critical DSL phase at
the Heisenberg point; both the improvement in energy and
the growth of correlations with p points to the relevance of
long-range fluctuating singlets for the kagome Heisenberg
antiferromagnet.

In order to benchmark a gapped versus a gapless spin liquid
in particular at the Heisenberg point, it would be interesting to
compare the simplex RVB ansatz with a variant where one
starts from a gapless U(1) spin liquid rather than the gapped
NN RVB. One idea which fits well with the PEPS picture is
to change the Z, invariant PEPS tensors by U(1) invariant
ones (which we expect to give a critical wave function), e.g.,
by omitting those Z,-invariant configurations which break
U(1). We describe and test such an ansatz in Appendix C.
However, while the resulting ansatz indeed yields a gapless
spin liquid, we find that the corresponding wave function
is energetically unfavorable for the Heisenberg model. The
reason for this can be found in the general approach of
the construction: Since different Z, configurations map to
different singlet patterns, removing configurations amounts to
omitting certain singlet patterns and thus breaks the lattice
symmetry, which induces doping with visons and ultimately
closes the vison gap. However, as we have observed, the
dominating correlation (and thus gap) at the Heisenberg point
is given by spinon correlations. Thus a suitable ansatz would
have to drive the system into criticality through doping with
spinons. To this end, we would have to resort to a different
approach and allow for longer-range singlets, e.g., by intro-
ducing teleportation bonds in the PEPS [47], which break the
Z, symmetry. We leave the study of such an ansatz for future
work.

Our ansatz can be generalized by adding further Trotter
layers, at the cost of introducing a truncation of the bond
dimension; as long as the truncation respects the Z, entangle-
ment symmetry, information about the topological properties
can still be extracted. On the other hand, truncation alters
the character of the variational ansatz: While the resulting
truncated wave function is in principle still variational, the
physical interpretation of the individual parameters as creating
longer-range singlets and thereby decreasing the energy of the
corresponding triangles is lost. It should also be noted that
even though our ansatz resembles an imaginary time evolution
as in a simple/full update PEPS algorithm, and both converge
to the correct solution as p — oo, it differs in that we aim
to optimize over each parameter independently, rather than
using a fixed rule for the Trotter step size, yielding much faster
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FIG. 8. Energy density e, as the function of bond dimension x
for the optimized p = 3 simplex RVB for different y. The offset ey
is chosen by averaging e, for x > 16. We use e, for x > 60 to obtain
the mean energies and standard deviations given in Table II, cf. text.

o

convergence to the ground state. A systematic comparison of
our method to other PEPS optimization schemes, such as full
update or variational PEPS optimization, is left open for future
work.
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APPENDIX A: ENERGY DENSITIES,
CONVERGENCE, EXTRAPOLATION

First, we report in this Appendix the energy densities of
optimal states within the simplex RVB ansatz for the breathing
Hamiltonian. Then we discuss the convergence of energies
with an increasing bond dimension of environment tensors.
In the end, we discuss a possible extrapolation of energies for
p —> 00.

We have computed the energy densities for different y
and p for x < 84. Figure 8 shows the behavior of the energy
densities e, vs. 1/, relative to an arbitrary offset. We see that
the fluctuations decrease by roughly an order of magnitude as
we increase x to y = 60. We therefore choose to estimate
the energy and its error by taking the mean and standard
deviation of e, for x > 60. The resulting energy densities
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TABLE II. Energy densities for different p and y. Mean energies
have been computed by taking data points with x > 60.

4 p=1 p=2 p=3
0.02  —0.252498053(7)  —0.2525466(2)  —0.2526672(7)
0.04  —0.25502425(1) —0.2551382(3)  —0.2553798(6)
0.10  —0.26277062(4) —0.2631931(9)  —0.263828(1)
020  —0.27622938(7) —0.277585(2) —0.278971(3)
040  —0.3050715(1) —0.30996(5) —0.312873(6)
0.50  —0.3203627(2) —0.327776(7) —0.331305(4)
0.60  —0.3361675(2) —0.346514(9) —0.35054(2)
0.70  —0.3524367(2) —0.36605(1) —0.37045(2)
096  —0.3965909(2) —0.41978(1) —0.42472(3)
1.00  —0.4035897(2) —0.42833(1) —0.43333(3)

are listed in Table II. We find that energies tend to converge
more quickly in the strongly anisotropic regime as compared
to near the Heisenberg point; moreover, their convergence is
faster for smaller values of p. Let us note that due to the
finite x, we observe a small splitting in the different bond
energies within the left- or right-pointing triangles, of the
same magnitude as corresponding flucutations of e, in Fig. 8.
It is instructive to note that the computation of the expectation
values of local observables is more expensive in comparison
to the calculation of correlation lengths. The calculation of
correlation lengths does not require the whole environment,
but only the two fixed points of the transfer operator, which
enables us to compute them for larger x [34,36].

As can also be seen from the data in Table II, the con-
vergence of energies in p is qualitatively different for small
and large values of y [Figs. 9(a)-9(c)]. The energies exhibit
negative (positive) curvature in the presence of strong (weak)
anisotropy. One could try to argue that the different scaling
behavior of energy densities is a manifestation of the system
undergoing a transition from a gapped Z, to a gapless SL
phase as y increases, but a meaningful assessment would
clearly require further data points in p.

Given that we only have p = 1, 2, and 3, and there might
well exist even-odd effects at smaller p, extrapolating the
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FIG. 9. [(a)—(c)] Energies vs inverse bond dimension 1/D, of
local tensors in the presence of strong, intermediate, and weak
anisotropies. (d) Extrapolated energy densities for small y obtained
from a linear fitin 1/D,, for p = 1 and 3.

energy for p — oo is fairly speculative. One attempt would
be based on assuming a gapped phase at small y, which
suggests an exponential convergence of the energy in the
number of Trotter steps (as states above the gap are exponen-
tially suppressed) and thus in p; this amounts to the common
extrapolation in the inverse bond dimension 1/D, o< 1/27.
Figure 9(d) shows e,—, obtained from fitting the odd p with
1/27; the obtained values for small y are in good agreement
with the extrapolated DMRG data (see Table I). Note that
we choose the odd p as in that case, the Qs act on the
strong triangles both in the first and last layer, which is not
the case for p = 2, and in the strongly anisotropic limit, the
strong triangles profit more from from the action of Q. This is
confirmed by Figs. 9(a)-9(c), where for low y, odd p perform
better, while for y & 1, even p do. At the same time, as seen in
Fig. 9(a), fitting p = 1, 3 gives a more conservative estimate
for the energy than fitting p = 2, 3 or a quadratic fit to all three
data points.

APPENDIX B: EXTRACTION OF LINEAR
COEFFICIENTS ¢;

In this Appendix, we discuss the extraction of the co-
efficient ¢; of the energy expansion e(y) = —0.25 + ¢y +
c2y*+... in the strongly anisotropic limit. Since ¢ =
lim, _,o g—;, given a sufficient number of points, we can re-
liably take the numerical derivative of the energy density and
examine its behavior in the limit y — 0. Figures 10(a)-10(d)
shows the derivative of energy density as a function of y for
the simplex RVB. From a linear fit of the data, we can extract
¢y for different values of p. As an alternative approach, we
can also directly fit the energy densities quadratically over the
interval [0, Ymax], and extract c¢; in the limit yp,x — 0. The
values of ¢; which we get for the simplex RVB by using either
the derivative or quadratic fitting are in very close agreement
with each other.

Furthermore, as explained in Sec. III, we can use pertur-
bation theory to extract ¢; for the simplex RVB by fixing
a; = 1 and minimizing the energy density e%, = ¢; of left-
pointing triangles. The corresponding ¢ are indicated by stars
in Fig. 10; they match well with the values we get by fitting
the derivative of energies. Figure 11 shows the energy density
of left-pointing triangles for the simplex RVB with p =3 as
a function of the remaining two parameters; noteworthily, we
find that the energy landscape has no local minima and thus
allows for a reliable minimization. Let us emphasize here that
in the case of simplex RVB, the perturbative approach for
evaluating ¢; is more efficient as it eliminates one variable
from the variational optimization.

For comparison, we have extracted the coefficient ¢; for
the DMRG data from Refs. [23,37]. Figure 10(e) shows
the derivative of the energy density for different YCN,-2
cylinders, as well as the derivative of the N, — oo energy
obtained by linear extrapolation in 1/N, (changing the order
of limit and derivative gives almost extactly the same values).
However, one needs to be very careful about the extrapolation
as the DMRG data suggests a phase transition to the nematic
phase in the strongly anisotropic limit, and the phase boundary
is sensitive to N,. To extract bounds on ¢; from the DMRG
data, we therefore examine the behavior of ¢;(Ymax) Which is
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FIG. 10. [(a)—(d)] Numerical derivative of the energy density
with respect to y in the strongly anisotropic regime for the simplex
RVB for p=1, 2, 3, 00; in (d), the limit p — oo has been taken
before the derivative. (e) Derivative of the energy density and (f)
coefficient ¢ (Ymax ) for the DMRG data from Refs. [23,37]; the limit
N — oo has been taken before the derivative.

obtained by linear fitting of g—; over the interval [0, Ymax] for
both the N, = 12 and extrapolated N, — oo data [Fig. 10(f)].
A further linear extrapolation of ¢| (¥max ), Where we restrict to

-0.1 -0.05 0

UL L L L B L

FIG. 11. Energy density of left-pointing triangles as the function
of parameters «, and a3 with the constraint o; = 1 for the p =3
simplex RVB, used to perturbatively extract c;. Note that the energy
landscape possesses no local minima, rendering the optimization
stable.

points ymax in the nematic phase, gives estimates of ¢; for the
DMRG data.

APPENDIX C: SIMPLEX ANSATZ AND VISON
CONDENSED GAPLESS SPIN LIQUID STATES

In RVB-type wave functions, U(1) symmetries are typ-
ically related to critical behavior. This is most prominent
in the square lattice dimer or RVB model, which can be
mapped to a height model and thus a critical U(1) field theory
[48,49]. Corresponding behavior has also been observed in
PEPS, where continuous virtual symmetries (corresponding
to the counting of singlets) have been related to critical
behavior, both in the context of RVB-type models and beyond
[47,50,51].

In this Appendix, we construct a modification of the
kagome NN RVB which acquires a U(1) symmetry, and show
that it yields a gapless spin liquid state; subsequently, we
use this state to build a candidate for a critical simplex RVB
and analyze its suitability as a candidate for the breathing
KHAFM. For the PEPS description, we begin by considering
the blocked local tensor of the NN RVB wave function. It is
defined on a three-site unit cell containingone right-pointing
triangle and is of the form

(ChH

with L = 1. Here, each term in the sum can be regarded as
a tile, marked with a “bond” color (red or black) at each
edge. The tiling rule is that only edges with equal color can
be connected. If we subsequently ignore the black edges, this
results in a pattern where pairs of neighboring vertices on the
kagome lattice are connected by red lines: If we replace those
by singlets, this precisely yields a NN singlet covering, and it
is straightforward to check that all NN coverings are obtained
this way. (At a technical level, the bond dimension is D = 3,
where black legs correspond to a |2) “no singlet” state, while
red legs are in the states |0), |1), and perfectly correlated with
the corresponding physical spin. Pairs of red vertices within
a unit cell are placed in a singlet, and contraction involves an
ioy in the {|0), [1)} subspace, see Refs. [4,26]).

The red legs clearly obey a Z, Gauss law with a —1
charge per unit cell. We can now introduce a generaliza-
tion of the NN RVB by changing A, which corresponds to
changing the relative weight of different singlet coverings. In
particular, if we choose A = 0, we are left only with terms
which all have exactly one red leg. The tensor A(A = 0) has
acquired a (staggered) U(1) Gauss law, in analogy to the
square lattice RVB state, suggestive of a critical behavior at
y =0.

We start by analyzing the behavior of the “bare” RVB as
we change A. Figure 12(a) shows the correlation lengths for
trivial and anyon-anyon correlations for the different anyon
sectors. We find that as we approach A — 0, the vison and
trivial correlations diverge; this is consistent with the in-
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FIG. 12. (a) Correlation lengths of topologically trivial and non-
trivial excitations for the U(1)-invariant variant of the NN RVB state
as defined in Eq. (C1) with A = 0. (b) Optimal energy density for
the p = 3 simplex RVB built on top of the RVB with A(A = 0) and
Ar=1).

terpretation that changing A, which introduces a disbalance
between different singlet configurations, dopes the systems
with visons which ultimately makes the vison gap close and
gives rise to criticality due to vison condensation. The critical
nature at A = 0 is confirmed by analyzing the dependence

of the correlation length at A =0 on x, which exhibits a
rapid growth. Note that we observe criticality only at A =
0, which is quite different from the model in Ref. [52]
where an extended critical region around the U(1) point is
reported.

We now use the U(1) RVB (i.e., at A = 0) to construct
a simplex RVB, that is, we follow Eq. (6), but with the
A = 0 RVB as a starting state. We have computed the optimal
energies for p = 3, shown in Fig. 12(b). However, we find that
the energies are above the energies for the simplex RVB ansatz
built on top of the NN RVB state, in particular in the vicinity
of the Heisenberg point. This is consistent with the fact that we
expect a closing of the spinon gap to be the driving mechanism
behind a potential critical spin liquid at the Heisenberg point,
while our ansatz at A = 0 exhibits criticality to due a closing
vison gap. For the same reason, the application of Q tends
to increase the spinon correlations at the cost of decreasing
vison correlations, thus effectively driving the ansatz away
from criticality (at least initially); this can also be understood
from the fact that the Q permute singlets and thus can re-
store the singlet patterns which are missing in the RVB at
A=0.
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