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ARTICLE INFO ABSTRACT

Reliable quantification of savanna vegetation structure is critical for accurate carbon accounting and biodiversity
assessment under changing climate and land-use conditions. Inventories of fine-scale vegetation structural at-
tributes are typically conducted from field-based plots or transects, while large-area monitoring relies on a
combination of airborne and satellite remote sensing. Both of these approaches have their strengths and lim-
itations, but terrestrial laser scanning (TLS) has emerged as the benchmark for vegetation structural para-
meterization - recording and quantifying 3D structural detail that is not possible from manual field-based or
airborne/spaceborne methods. However, traditional TLS approaches suffer from similar spatial constraints as
field-based inventories. Given their small areal coverage, standard TLS plots may fail to capture the hetero-
geneity of landscapes in which they are embedded. Here we test the potential of long-range (> 2000 m) ter-
restrial laser scanning (LR-TLS) to provide rapid and robust assessment of savanna vegetation 3D structure at
hillslope scales. We used LR-TLS to sample entire savanna hillslopes from topographic vantage points and col-
lected coincident plot-scale (1 ha) TLS scans at increasing distances from the LR-TLS station. We merged multiple
TLS scans at the plot scale to provide the reference structure, and evaluated how 3D metrics derived from LR-TLS
deviated from this baseline with increasing distance. Our results show that despite diluted point density and
increased beam divergence with distance, LR-TLS can reliably characterize tree height (RMSE = 0.25-1.45m)
and canopy cover (RMSE = 5.67-15.91%) at distances of up to 500 m in open savanna woodlands. When ag-
gregated to the same sampling grain as leading spaceborne vegetation products (10-30 m), our findings show
potential for LR-TLS to play a key role in constraining satellite-based structural estimates in savannas over larger
areas than traditional TLS sampling can provide.
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1. Introduction

Savannas are heterogeneous ecosystems composed of mixed-tree
grass communities that cover 20% of the global vegetated land surface
(Scholes and Archer, 1997). Given their significant contribution to
terrestrial net primary production (1-12Mgha~!yr™1), savannas are
important for the regulation of the global carbon cycle (Grace et al.,
2006). However, understanding of savanna structural dynamics and
their carbon sequestration potential remains limited in the face of
global environmental (Williams et al., 2004; Wigley et al., 2010;
Buitenwerf et al., 2012; Stevens et al., 2017) and land-use changes
(Archibald et al., 2013). To effectively implement sustainable land
management practices, while at the same time maintaining a range of
tree-grass mixtures for biodiversity conservation, savanna ecosystems
warrant comprehensive and timely inventory efforts. Structural
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information is not only fundamental to advancing savanna ecological
process understanding, but also assists in the development of baseline
information required for global carbon emission agreements (e.g. REDD
+). Therefore, regular monitoring campaigns are necessary to char-
acterize and map savanna vegetation structure under diverse land-use
conditions.

Mapping savanna vegetation structure is challenging due to het-
erogeneity at hillslope and regional scales that arises from the inter-
action of topography, soils, climate and biological factors (Meyer et al.,
2007; Levick and Rogers, 2011; Sankaran et al., 2008; Vaughn et al.,
2015). Most of our current understanding of savanna vegetation
structure derives from field-based measurements using either plots or
transects. While such field data can be scaled to larger extents with
remote sensing imagery (Lucas and Armston, 2007; Boggs, 2010), their
limited spatial coverage means they may fail to account for variable
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vegetation structure across the landscape (Asner et al., 2009; Mathieu
et al., 2013). In response, there has been growing interest in the use of
light detection and ranging (LiDAR) to augment traditional field mea-
surements (Dubayah and Drake, 2000; Lefsky et al., 2002; Asner et al.,
2007) with high-resolution 3D data of vegetation canopies. LiDAR data
can be acquired from spaceborne, airborne or terrestrial sensors, with
each sensor meeting different vegetation mapping needs (Urbazaev
et al., 2015; Levick and Rogers, 2008; Staben et al., 2018), improving
predictions and minimizing extrapolation errors (Frazer et al., 2011). A
key advantage of airborne LiDAR is wide geographic coverage but de-
tection of smaller trees and shrubs, which are important components of
savanna ecosystem functioning, is still challenging.

The last decade has witnessed a growing interest in ground-based
LiDAR, or terrestrial laser scanning (TLS), for high precision 3D quan-
tification of vegetation structure. TLS instruments facilitate un-
precedented spatial structure and reflective representation of vegeta-
tion components, right down to individual branch and leaf scales
(Dassot et al., 2012; Newnham et al., 2015). 3D data collected from TLS
is considered to capture a much more holistic representation of vege-
tation structure than can possibly be achieved through manual field-
work, and has successfully been applied as an effective and accurate
approach to calibrate vegetation models (Dittmann et al., 2017; Calders
et al.,, 2018), and define stand structural diversity (Ehbrecht et al.,
2017). Also, metaproperties from TLS such as laser returns, intensity
and distance can reflect the underlying conditions of the ecosystem
(Paynter et al., 2018). Key geometrical attributes including tree height
(Hopkinson et al., 2004; Strahler et al., 2008), vertical height profiles
(Singh et al., 2018) and canopy structure (Hardiman et al., 2018) can be
reconstructed and measured with high accuracy from TLS data. Besides
basic vegetation attributes, TLS point clouds enable non-destructive
approaches to quantify canopy and stem volume, which reduces un-
certainties in biomass estimations that arise from conventional in-
ventory methods (Calders et al., 2015; Disney et al., 2018; Stovall et al.,
2018; Gonzalez de Tanago et al., 2018).

Realization of the ecological importance of the 3D information that
TLS provides has led to optimizations in data acquisition and proces-
sing. The acquisition of single scan TLS measurements offers a rapid and
efficient means of characterizing vegetation structure (Liang et al.,
2016), due to reduced field effort and faster post-processing, thereby
enabling data acquisition at a greater number of sampling points. Single
scan approaches have been successfully used for the estimation of ca-
nopy cover (Muir et al., 2018), wood volume (Astrup et al., 2014), basal
area measurement (Seidel and Ammer, 2014) and vertical plant profiles
(Calders et al., 2014). However single scan approaches can physically
only sample one side of a tree and are more prone to occlusion of
distant vegetation by the foreground elements (Strahler et al., 2008;
Hilker et al., 2010; Wilkes et al., 2017). The degree of occlusion within
a single scan is influenced directly by the vegetation structure, tree
stand density and plot size (Olofsson and Olsson, 2018). A systematic
multiple scanning approach with subsequent co-registration of scans
reduces this occlusion effect (Wilkes et al., 2017), and has been shown
to produce improved accuracy of vegetation structural metrics (Calders
et al., 2015; Saarinen et al., 2017). The additional setup time and lo-
gistics associated with multiple position scanning (Wilkes et al., 2017)
can lead to similar to that required for manual field inventories of ve-
getation structure (Newnham et al., 2015), and this often constrains the
TLS measurements to plot-scales (< 1 ha).

Much of the progress to date in TLS measurement of vegetation
structure has taken place in temperate and tropical forested systems. As
such, the sampling range of common TLS sensors has not been con-
sidered a limiting factor, since field of view seldom exceeds sensor
range. In open systems like savannas, field of view can greatly exceed
the sampling range of common TLS sensors. However recent break-
throughs in time-of-flight LiDAR sensor technology have dramatically
increased the usable sampling range of TLS sensors, with some provi-
ders now offering ranges of up to 6000 m (e.g. Riegl VZ-6000). These
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instruments have the potential to map entire hillslopes from a suitable
vantage point with a single scan approach, allowing capture of data at
10-100's ha scales. Long-range terrestrial laser scanning (LR-TLS) ne-
cessitates trade-offs between laser energy and pulse frequency, where
increasing pulse energy subsequently reduces the laser pulse frequency
and increases scanning time. Although laser beams are coherent light
energy, most sensors are subject to a degree of beam divergence,
meaning that the width of the beam (footprint) increases with distance
from the scanner. Over the short distances typical of plot-based TLS
approaches this is of little consequence, but understanding the effects of
beam diverge on the retrieval of the vegetation structure parameter
becomes important when considering long-range scanning.

In this study, we aimed to assess the potential of LR-TLS scans for
extracting key structural attributes of savanna woody vegetation at
hillslope scales. Specifically, we explore how structural measurements
from LR-TLS degrade with distance from the scanner, and identify the
distances over which LR-TLS can be reliably used for 3D structural
characterization.

2. Methods
2.1. Study area

This study was conducted in the semi-arid savanna landscapes of
Kruger National Park (KNP), South Africa (23°98’S, 31°55’E) (Fig. 1).
KNP is a national reserve located in north-eastern South Africa that
encompasses an area of almost 2 million ha. We focused on two sites in
the south-western part of the park, using natural vantage points at
Mathekinyani and Stevenson Hamilton lookouts (Fig. 1). The areas
around these vantage points comprise of flat and low slope terrain that
are dominated by the short height class and broad canopies of semi-
deciduous Combretums and Accacia nigrescens, which occur in a matrix
of evergreen Euclea divinorum (Gertenbach, 1983). Woody canopy cover
ranges from as low as 20% to near closed canopy cover of 50% across
dispersed trees and shrubs, and closed woodlands of more than 80%
cover in riparian areas (Table 1). The region has a mean annual rainfall
of 550mmyr~!, most of which falls between October and March
(MacFadyen et al., 2018). Soils in most of the south-western KNP are
derived from granite substrates which are nutrient-poor, and exhibit
significant catenal variations from deep sand and loam on upland to
duplex sodic soil on bottomlands (Venter, 1986).

2.2. Terrestrial LiDAR sampling at landscape and plot-scales

Both sites were mapped in October 2016 (late dry season) using a
Riegl VZ-2000 terrestrial laser scanning system (RIEGL Laser
Measurement Systems GmbH). The RIEGL VZ-2000 is a multiple return
long-range 3D scanner, which operates in the near-infrared spectrum
(1550 nm) and produces a beam divergence of 0.35 mrad. The instru-
ment provides the 3D information at a rate of 400,000 measure-
mentss~ !, and the measurements can be obtained up to a distance of
2500 m on a natural surface. The inclination sensor provides rotation
matrices (roll, yaw and pitch) of the scanner, allowing for accurate
projection of the laser pulses. To improve the accuracy of the 3D po-
sitioning, LiDAR laser ranges were combined with an external differ-
ential Leica GS14 GNSS GPS (accuracy < 3 cm).

The landscape scanning design consisted of acquiring single long-
range scans from elevated vantage points. Scans were taken with an
azimuth and zenith range of 180° and 100° respectively. The scanner
settings were the same at both sites and are summarized in Table 2. This
scanning setup resulted in a mean point density of 158.6 laser returns
per m? at 100 m to 6.02 laser returns per m? at a distance of 600 m.

In each landscape, we collected reference-plots using a multi-scan
set-up within equidistant 1 ha areas. Each reference plot was located
within the footprint of the LR-TLS scans (Fig. 2). We placed six refer-
enceplots in 100 m intervals up to a distance of 600 m from the vantage
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Fig. 1. (a) Location of the two sampling landscapes (shown with black circles) in Kruger National Park, South Africa. The rightmost panels show examples of 2D
LiDAR data from the two sites, with the level-plots describing vegetation heterogeneity. Mathekinyani and Stevenson sites are shown in (b) and (c) respectively.

Table 1
Characteristics of two study landscapes located in Kruger National Park, South
Africa. Canopy cover and slope are calculated from the multi-scan TLS data.

Site  Plot Canopy cover

(%)

Elevation (m) Understorey Slope (%)

KNP Mathekinyani 52.21 12
KNP  Stevenson 37.7 25

Little 1.95
Little 3.13

Table 2
Specifications for the RIEGL VZ-2000 scanner utilized for
the 3D long-range data acquisition in Kruger National

Park, 2016.
Beam divergence 0.35 mrad
Pulse repetition rate 50 kHz
Angular sampling 0.02°
Maximum range 1500 m
Acquisition time 35 min

point. The reference-plots were scanned from the four cardinal direc-
tions at 550 kHz, with an angular resolution of 0.02°. The multi-scan
approach captured the full 3D structure of the plots, providing a level of
structural detail that cannot be achieved through manual field-mea-
surement. As such, we treated these plots as ground-truth data against
which to assess the LR-TLS (Fig. 3).

2.3. Point cloud processing

LR-TLS and reference-plot scans for each respective landscape were
co-registered using the RiSCAN PRO package (RIEGL GmbH), to elim-
inate the rotation errors between different scans. A coarse registration
between the scans was achieved by using large woody trees (branch tips

and nodes) as the tie points. Fine tuning of translation and rotation
errors within the scans was done by using multi-station adjustment
(MSA) approach. MSA uses iterative closest point (ICP) algorithm to
adjust the orientation and position of each 3D dataset, and calculates
the best overall fit. The best fit transformation and rotation matrix are
applied to each raw point cloud to associate them to a common co-
ordinate system. The standard deviation for the distances between
merged point clouds ranged from 0.01 to 0.02 m. The point clouds were
post-processed to remove noise occurring due to partial or false returns
from the sky or dust by using the range and deviation default filters in
RiSCAN PRO.

The co-registered LiDAR data points from reference-plots and LR-
TLS scans were then ground classified, and height normalized. Canopy
height models (CHM) from normalized point clouds were generated by
selecting the highest ‘2’ coordinate 3D point among all LiDAR returns
within a ‘1 X 1 m’ grid cell, thus converting the 3D data to raster for
further analysis. The resulting canopy height grids were classified in
SAGA GIS (www.saga-gis.org). LIDAR data between 0.0 and 0.5 m was
classified as ground points, while all points above 0.5m were cate-
gorized as vegetation. These classified grids were aggregated to per-
centage canopy cover at ‘30 X 30m’ for every reference and LR-TLS
plots. The number of ‘1 X 1’m pixels in every ‘30 x 30 m’ grid with
height greater than 0.5m were then divided by the total number of
‘1 x 1’ pixels in that grid, yielding the percentage of canopy cover
present in each grid cell. For the comparison between LR-TLS and the
reference-plots, difference values were derived by subtracting the value
of each pixel of the LR-TLS raster from the corresponding pixel of the
reference-plot raster.

Normalized point clouds were used to produce the LiDAR return
counts from O m at every 0.5 m interval of the LiDAR data in LAStools
(rapidlasso GmbH, 2014; Isenburg, 2014). These LiDAR counts were
converted to percentage of frequency, and plotted against canopy
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Fig. 2. Conceptual representation of the long-range scanning set-up adopted in this study. The black outlined grey squares indicate the multi-scan reference plots
positioned 100 m apart from each other, and overlaid in the long-range scan footprint up to 600 m, with an associated decreases in point density.

height to visualize the vertical vegetation profiles of the two sites.

2.4. TLS derived indicators for validation at individual tree scales

3D data collected from LR-TLS and reference-plots were used to
estimate structural parameters for individual trees, such as the plant
height (m) and ground projected area of the canopy (m?). The in-
dividual trees and shrubs were extracted from the normalized LR-TLS
and reference-plot scans, using Quick Terrain Modeler (www.
appliedimagery.com). In each segmented tree and shrub, LiDAR mea-
sured plant height was determined as the vertical distance between the
highest point and stem base at the ground. The segmented trees and
shrubs were converted to raster form by generating the individual ca-
nopy height models (described in Section 2.3). Gaussian filtering with
varying parameters were implemented on the individual trees and
shrubs to smooth the canopy surface. A standard deviation of 1 and
search radius ranging from 2 to 5 m was used in the Gaussian filter. The
next step was applying the watershed segmentation, which assumes the
presence of dark pixels in between tree crowns, where dark pixels re-
present ground surface while bright pixels represent tree canopies. To
reduce the high degree of over-segmentation within a tree crown,
threshold based region merging was implemented to amalgamate the
segments. These segments were later converted to polygons and area
geometry was calculated to extract canopy area. An individual wa-
tershed segmentation approach over plot-scale segmentation was im-
plemented to overcome the high degree of segmentation within in-
dividual trees due to presence of multiple stem allometry.

Fig. 3. Reference-plot example, derived from multi-scan TLS
and shown in oblique view with color scale representing
height above ground level. TLS instruments capture vegeta-
tion 3D structural detail in a holistic manner that cannot be
recorded manually in the field. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to
the web version of this article.)

2.5. Statistical analyses

To evaluate the effect of increasing distance on LR-TLS perfor-
mance, we distributed a 30 x 30 m grid within overlapping footprints
of the LR-TLS scans and the reference-plots, and extracted the height
and canopy cover metrics. Statistically significant differences among
canopy metrics from LR-TLS and reference plots were determined with
a paired-sample t-test (p < 0.05). A linear regression between re-
ference and long-range LiDAR woody cover and height at plot and in-
dividual scale was calculated and model performance was assessed with
coefficient of determination (R%). To account for the error propagation
in the two sites, root mean square error (RMSE) and bias between LR-
TLS and reference-plots was calculated.

Vertical height distribution profiles from the LR-TLS and reference-
plots at increasing distance from the scanner were compared with re-
spect to distribution patterns. To test whether increasing distance from
the scanner had a significant effect on the vertical vegetation profiles, a
two-tailed Mann Whitney U test was performed with a confidence in-
terval of 0.05. The statistical significance was evaluated at 3 height
classes — (i) 0-2.5 m (understorey and shrub), (ii) 2.5-5.5 m (midstorey)
and (iii) 5-8 m (overstorey).

3. Results
3.1. Vegetation height-class characterization with LR-TLS

Comparison of the proportional distribution of LiDAR returns by
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Fig. 4. Comparison of vertical height distribution derived from LR-TLS and reference-plots in vertical intervals of 0.5 m at increasing distances in the Mathekinyani
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Fig. 5. Comparison of vertical height distribution derived from LR-TLS and reference plots in vertical intervals of 0.5 m with increasing distances in the Stevenson-

Hamilton landscape.

height class showed that LR-TLS scans were capable of closely re-
plicating the structure of the vertical vegetation profile of the savanna
landscapes, despite their lower point density (Figs. 4 and 5 ). A general
trend of increasing divergence between LR-TLS and reference-plot data
was observed with increasing distance of laser ranging.

With a mean woody canopy cover of 52.21% within the 1ha re-
ference plots at the Mathekinyani site, the overall distribution of LiDAR
returns at a distance of 100 m from the LR-TLS was analogous to the
reference (t = —1.84, df = 14, p = 0.08) (Fig. 4). In general, up to a
distance of 400 m, the LR-TLS derived vertical profiles represent a
symmetric distribution with those of the reference-plots (p > 0.05, for
the 3 height classes). At 500 m distance, significant differences in point
distribution arose in the shortest height class (p = 0.04, t = —2.92,
df = 4), while the relative distribution of points for the two taller
classes was similar between LR-TLS and reference-plots (¢t = 1.8331,
df = 4,p = 0.14).

Differences in  vertical vegetation profiles in  the
Stevenson-Hamilton landscape were more variable across the range of

distances explored. The shape of the vertical profiles was very similar
up to 400 m distance (p > 0.05) (Fig. 5). However, some individual
plots showed large discrepancy between the LR-TLS and reference
profiles. For example, at 100 m distance there was a relatively greater
proportion of returns from the mid-storey vegetation in the LR-TLS
profiles than the reference-plot profiles, and deviated across the height
range at distances of 500 and 600 m (Fig. 5).

3.2. Canopy height and cover differences

The overall distribution of canopy heights within the three defined
height classes measured with LR-TLS correlated well with the reference-
plot metrics, performing better at Mathekinyani (R?> = 0.80) than at
Stevenson-Hamilton (R? = 0.54) (Table 3) and (Fig. 6).

The performance of LR-TLS in the estimation of mean canopy height
was similar among the two landscapes, and tended to slightly over-
estimate canopy height. Mean canopy height differences between the
LR-TLS reference-plot values were not statistically different up to a
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The mean canopy height (m) values derived from reference plots (RP) and LR-TLS (LR). SD is the standard deviation.

Ranging distance (m) Mathekinyani Stevenson
RPpean RPsp LRnean LRsp p RPinean RPsp LRmean LRsp p

100 1.49 0.26 1.31 0.25 0.33 2.92 0.58 2.61 0.45 0.14
200 1.50 2.19 1.78 0.51 0.38 1.95 0.37 1.33 0.41 0.02
300 2.25 1.10 2.51 0.62 0.54 3.08 1.02 2.10 0.64 0.08
400 1.53 0.51 1.97 0.54 0.11 0.98 0.37 0.70 0.51 0.47
500 1.35 0.58 1.45 1.05 0.12 3.17 2.12 1.55 0.74 0.05
600 2.73 0.41 1.43 0.55 0.79 1.49 0.47 1.20 0.59 0.26

distance range of 600 m in either landscape (Mathekinyani: p = 0.79,
Stevenson: p = 0.26). Underestimation of the canopy height was
greater (1.62m difference) where undulating hillslopes and denser
canopy was present, such as at the 500 m plot in Stevenson-Hamilton
landscape, and negligible (0.10 m) on flatter more open sites.

Canopy cover estimates from LR-TLS demonstrated a high correla-
tion with the reference-plot data, with slight overestimation in both
landscapes (Table 4). Differences in canopy cover estimates increased
exponentially with ranging distance, varying from 1% in the closer
plots to a maximum of 15.43% in the distant plots (Fig. 6). Agreement
between LR-TLS and reference-plots was best across plots on flatter
terrain.

Mathekinyani

(@ 2

Canopy height difference (m

-2

3.3. Individual tree metrics

For individual trees and shrubs, LR-TLS measured canopy heights
were linearly correlated with the reference-plot data in both landscapes
up to 400m ranging distance (R®> = 0.99-0.87, Fig. 7a and b). The
detection of individual stems, especially shorter-statured shrubs, de-
clined at distances greater than 500 m in both landscapes, resulting in
an underestimation of height. The RMSE for the canopy height at the
furthest measured plots (600 m) were 2.44 and 1.14 m respectively for
Mathekinyani and Stevenson-Hamilton landscapes.

Canopy ground projected area for the individual trees can be de-
termined with high confidence from the long-range scans up to 300 m
of distance (R* = 0.99-0.79, Fig. 7c and d). As canopy ground projected

Stevenson
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Fig. 6. Canopy height (a) and canopy cover (b) differences between LR-TLS and reference-plots with increasing ranging distance.
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Table 4
Mean canopy cover (%) values derived from reference plots (RP) and LR-TLS (LR). SD is the standard deviation.
Ranging distance (m) Mathekinyani Stevenson
RPrean RPsp LRmean LRsp p RPrmean RPsp LRmean LRsp p
100 24.82 6.07 28.65 5.32 0.17 34.59 11.64 35.59 9.71 0.84
200 25.80 7.40 26.30 4.85 0.86 22.73 13.00 17.72 5.75 0.29
300 24.71 7.76 23.55 4.25 0.70 26.77 11.98 23.53 5.83 0.48
400 26.63 7.98 19.78 9.23 0.11 8.32 4.42 4.09 2.07 0.02
500 25.25 5.35 26.98 12.02 0.70 13.92 7.86 9.53 5.16 0.18
600 26.97 7.72 16.81 7.10 0.01 20.96 9.99 5.53 2.22 0.01
Mathekinyani Stevenson
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area is directly proportional to the point density, strong under-
estimation in the long-range scans is observed after a distance of 300 m
(RMSE > 3.05). The linear regression model between reference and
long-range scans differed at two sites, with the slopes of Stevenson site
model diverging the most from the 1:1 reference line after a distance of

300m (500 m:

R?>=0.16, RMSE =10.3; 600m: R?=0.12,

RMSE = 7.87, Fig. 7c and d).

4. Discussion

Our results demonstrate the utility of long-range terrestrial laser
scanning (LR-TLS) for quantifying savanna vegetation structural me-
trics at hillslope-scales. Despite the trade-offs of long range scanning
(reduced point density and increased beam divergence at longer ran-
ging distances), we found that vegetation structural parameters can be
reliably extracted up to 500m distance with LR-TLS in savanna
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Fig. 8. An example of height normalized LiDAR returns of a single tree (a) and shrub (b) from reference-plots and LR-TLS at a ranging distance of 400 m.

landscapes, enabling structural sampling over broader areas that en-
compass the inherent heterogeneity.

4.1. The effect of increased ranging distance on the error propagation

LR-TLS and reference-plot vertical profiles were generally well
matched, indicating that long-range scan observations can account for
3D vegetation structural patterns. The vegetation vertical profiles from
LR-TLS mirrored the shape of the reference-plot profiles, with the re-
lationships only degrading at ranging distances longer than 400-500 m.
This effect arises from both the increased beam divergence, leading to
reduced sensitivity to finer-scale vegetation elements, and a decrease in
point density. We consider the decrease in point density to be a function
of both the angular sampling resolution of the scanner, as well as site
specific conditions which relate to increased occlusion from foreground
vegetation and a loss of ground returns at lower incidence angles at
longer ranging distances.

The reliable performance of height estimation from LR-TLS in our
study landscapes was likely due to the presence of sparse canopies, and
the clear lines of sight that characterize savanna landscapes. The ac-
curacy of long-range scanning for vegetation metrics retrieval differed
slightly among the two landscapes, reflecting differences in vegetation
physiognomy and terrain morphology. Increased ranging distance from
the scanner had less impact on canopy height retrieval in the
Mathekinyani landscape, characterized by larger trees, than at the
Stevenson-Hamilton landscape which was more shrub dominated. In
addition to the distribution of taller trees, differences in canopy archi-
tecture due to leaf shape and branching angles, could have influenced
these differences. For instance frequent crown openings in large tree
dominated Mathekinyani landscape allowed a deeper penetration of the
laser pulses, and thereby resulting in a low RMSE of 0.32 at 500 m
distance. Srinivasan et al. (2015) also reported the underestimation of
canopy height due to increasing canopy branching and distance from
the scanner. Thus, when employing single scans for quantifying vege-
tation metrics, it is important to consider the laser pulse penetration

through canopies to reduce the shadow effects and incomplete sampling
of the vertical profiles. Also, some errors of the canopy height mea-
surements at the Stevenson-Hamilton landscape occurred as a result of
topographic effects, where occlusion from catenal hillslope crests
caused a reduction in ground returns. At the longer distances of 600 m,
this shadowing by topography can misrepresent the true tree height in
the normalization phase of the processing chain. This potentially leads
to canopy height bias because accurate representation of the terrain is
crucial for calculating the canopy height models.

These factors discussed above are also relevant for the estimation of
the canopy cover, however as cover is an area based measure further
considerations also apply. The high deviation and RMSE of canopy
cover estimates after 400 m can be attributed to the occlusion of lower
strata vegetation, the step size, at which ‘2’ value is interpolated for
every output pixel of the CHM, and the window size for subsequent
analysis. Decreased sensitivity to smaller vegetation individuals and
components with ranging distance leads to a cumulative decline in
canopy cover estimates. Usually a step size close to the laser spot size is
recommended for resolving small vegetation individuals (Khosravipour
et al., 2014), however we found that small vegetation elements and
understorey plants cannot be reliably identified by keeping the same
step size with increasing distance from the LR-TLS. Laser spot size for
Riegl VZ-2000 increases by 0.3 mm per 100 m of range (Riegl VZ-2000
datasheet), and as such the step size should therefore be adjusted at
every 100 m range to account for the increasing beam diameter. The
window size used for subsequent analyses also strongly influenced the
accuracy of canopy cover estimates derived from LR-TLS. We found that
the RMSE and linear regression model fits improved as window size
increased from 0.09 to 1ha. Though, Wilkes et al. (2017) describes
10 x 10 m sampling grid as an upper size limit for characterizing ve-
getation structure in homogeneous and closed canopy sites. However,
in a heterogeneous savanna landscape, trees are non-uniform in size
and widely spaced, providing enough laser pulse penetration through
the sampled area. Also, large plot sizes result in fewer plot-edge effect,
due to presence of tree crowns located outside the plot (Levick et al.,
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2016).

For individual large trees, LR-TLS accurately depicted the structure
at ranging distances up to 400 m. Even small branches were docu-
mented at these distances, and the branching structure was retained in
the LR-TLS data (Fig. 8a). While LR-TLS could characterize the shrub
height reliably, the internal canopy structure of shrubs in the farthest
plots could not be differentiated (Fig. 8b).

Underestimation of individual tree height with increased ranging
distance was most often due to the loss of the lower stem architecture
and ground points. Denser scan patterns, i.e. multi-scan approaches,
increases the ability to resolve the stem architecture, particularly to-
wards the ground, and therefore increases the fidelity of canopy height
and projected area estimates. Larger differences in individual tree ca-
nopy height and ground projected area at distances further than 300 m
were particularly evident in the Stevenson-Hamilton landscape, where
presence of undulating terrain and a slope of 3.1° led to the attenuation
of laser pulses and more occlusion.

4.2. Reliable quantification of 3D vegetation structure at hillslope-scales

LR-TLS suitably captured vegetation structural measures such as
height, height profile distribution, and canopy cover at both plot and
individual tree scales at distances of up to 400 and 500 m in the two
landscape we studied. Earlier studies demonstrate, that the utilization
of TLS to estimate vegetation metrics is confined only to 0.01-1-ha
spatial scale (Beland et al., 2019). In our study, if we consider 400 m as
conservative range for reliable structural quantification, LR-TLS could
theoretically be used to sample 50 ha of landscape in a single scan —
taking less than 1 hour with the settings used in this study. Of course
this is assuming a full 360° scan from a point elevated above the ca-
nopy, which is not feasible in many situations. Nonetheless, even if only
180° or 90° scanning is possible — this approach still enables the ac-
quisition of 3D structural data over 10's ha — scales that are required to
adequately represent the heterogeneity of savanna ecosystems. Even
larger areas can potentially be reliably mapped with the proposed
method, if the vegetation is not obscured by occlusion and if the survey
position can be elevated higher above the canopy. Topographic occlu-
sion in the sampled areas was lowest at the Mathekinyani landscape,
while the 3D point cloud at Stevenson-Hamilton displayed greater oc-
clusion. The amount of occlusion also varied with vegetation physiog-
nomy and distribution, as well as the height of the sensor in relation to
the landscape. A sparse canopy and a mean nearest difference of 2-3 m
between individuals was sufficient to prevent the attenuation of laser
pulses in the Mathekinyani landscape. Also, the wider beam diameter at
increasing distance (beam diameter = 0.3m at 1000m) from the
scanner reduced the penetration through the understorey. Ducey et al.
(2013), suggested that a small beam diameter leads to a better pene-
tration through low branches and understorey vegetation. Raising the
scanner higher above the canopy layer is the best option for reducing
the occlusion effect, but statistical methods can also be employed to
adjust the effects of occlusion (Strahler et al., 2008; Lovell et al., 2011).

With a high angular resolution of 0.02°, 3D point clouds with a
density of > 5/m?, at distances up to 600 m was produced, allowing
long-distance scans to capture a large proportion of the target canopies
and tree individuals. Point density diluted exponentially as the distance
to the scanner increased, resulting in a heterogeneous point density.
Many studies have reported that heterogeneous point density from
single scanning mode has no adverse effect on the retrieval of physical
attributes such as canopy height and cover (Thies and Spiecker, 2004;
Maas et al., 2008; Moskal and Zheng, 2011), but ours is the first to
explore the consequences over such long distances. Uniform point
density is often required for clustering and classification of 3D point
clouds with semi-automatic approaches (Olofsson et al., 2014), but this
could be achieved by sub-sampling the point clouds if needed.

Int J Appl Earth Obs Geoinformation 90 (2020) 102070

4.3. Limitations and future direction for large scale monitoring of savanna
vegetation

Our use of LR-TLS has provided an alternative method for char-
acterizing savanna vegetation structure at hillslope scales. However, we
acknowledge a few limitations of this approach, which should direct
new research and method development in this direction. First, our re-
sults may not extrapolate well from open savanna to other vegetation
communities. For example, at riparian sites occlusion by dense under-
storey layers will inhibit deep laser pulse penetration up to 400 m. Also,
performance of the LR-TLS will differ among flat and undulating ter-
rain, with more bias in canopy height measurements in landscapes with
undulating morphology. In general, occlusion could be reduced by ac-
quiring multiple LR-TLS scans from different positions. Second, our
study explored the efficiency of LR-TLS over two landscapes in open
savanna, and a larger sample size will be required to ascertain the
generality of this method in different systems. Third, our use of LR-TLS
is unique in that the scanner was positioned above the canopy to cap-
ture hillslope-scale 3D data. We had the advantage of the elevated
vantage points, but at other sites alternatives such as elevating tripods
or vehicle roof top mounts can be explored. Lastly, the individual plant
scale analysis required a high degree of processing from extracting
single trees from the point cloud data to calculating canopy area of
individual trees. Although much progress has been made on automating
these tasks in forested systems (Burt et al., 2018), these techniques need
further development before they can be successfully applied to savanna
tree structures which are more complex. This opens up the possibility of
testing various automatic segmentation approaches for single tree ex-
traction from LR-TLS, and subsequently realizing the potential of open
access tools such as ForestR (Atkins et al., 2018) in defining the vege-
tation complexity.

In the next few years, vegetation structural information will be
available from a number of satellite missions, including L- and S-band
SAR (NISAR), P-band SAR (BIOMASS), spaceborne ISS-mounted LiDAR
(GEDI) and ICESat-2. These products will facilitate mapping at regional
and global scales, and will complement the availability of open-access
and high spatio-temporal resolution imagery from the Sentinel plat-
forms — providing very valuable opportunity for fine characterization of
savanna vegetation at landscape to regional scales. While the data
collection capabilities can always be enhanced, the real challenges for
applying these sensors to large area monitoring are calibration and
validation. Field-based plot inventory data are not suitable in isolation,
and while airborne LiDAR currently plays a key role and will continue
to do so, we also need to explore new ways for reducing uncertainty in
biomass allometries and upscaling models. For open tree-grass systems
and shrublands, the LR-TLS approach presented in this paper can pro-
vide the continuum of ground reference data that can also encompass
stand variation. This has the potential to improve the spatial extra-
polation of vegetation structure from remote sensing proxies, which is a
key to reducing uncertainties in the global carbon budget. Furthermore,
the fixed scanning position of LR-TLS will enable repeat measurements
of higher precision than what is possible from aircraft or UAV plat-
forms, opening the door for examining fine-scale dynamics in vegeta-
tion canopies over hillslope scales. This is particularly relevant in sa-
vanna ecosystems, where future research should explore the potential
of repeat LR-TLS to analyze structural changes over time for under-
standing the loss of big trees and patterns of woody encroachment
(Levick and Asner, 2013; Lindenmayer et al., 2012).

4.4. Conclusions

Our exploration of long-range terrestrial scanning (LR-TLS) shows
great promise for the reliable extraction of inventory parameters of
savanna woody vegetation including canopy height, vertical profile
distribution, and canopy cover at hillslope scales. Plot and individual
tree level metrics can be accurately retrieved from ranging distances of
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400 m, meaning that 10-50 ha can be sampled in under one hour de-
pending on the landscape. The use of LR-TLS for vegetation mapping in
savanna will help to overcome a key limitation of TLS in terms of
limited spatial extent, enabling measurement and monitoring at hill-
slope-scales. LR-TLS will provide a useful tool to complement field and
airborne surveys in the direct calibration and validation of satellite
derived biophysical attributes.
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