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Analysis teams results 

The Spearman correlation of the distance of the outcome from 0.5 (i.e., how consistent the 

results were across teams) and the mean confidence level across hypotheses was positive (r = 0.69, 

p = 0.039, n = 70), indicating that when variability of the outcome across teams was smaller, the 

teams were more confident in their results. The Spearman correlation between the distance of the 

outcome from 0.5 and the mean estimated similarity to other teams was not significant (r = 0.40, 

p = 0.286, n = 70). 

Variability of unthresholded statistical maps 

No teams were consistently anticorrelated with the mean pattern across all hypotheses, 

though three teams showed a correlation of r < 0.2 with the mean pattern across hypotheses, 

whereas 32 teams showed correlations of r > 0.7 with the mean pattern. 

Prediction markets 

A limitation of the prediction markets part of the study is that the number of observations 

for each set of prediction markets is low, as the number of observations for each set of prediction 

markets equals the number of hypotheses (n = 9) tested by the teams in the fMRI dataset. This 

meant that we had nine prediction market observations for “team members” and nine prediction 

market observations for “non-team members”. These were aggregated market observations about 

predictions of the fraction of teams reporting significant results for each hypothesis (bounded 

between 0 and 1). The low number of observations implied that the statistical power to find 

statistically significant effects was limited, and the test results should therefore be interpreted 

cautiously. 

Prediction markets results 

Traders self-ranked expertise. On average, participants’ self-reported expertise in 

neuroimaging (Likert scale from 1 to 10) was 6.54 (sd = 1.93) for the “team members” prediction 

market and 5.98 (sd = 2.39) for the “non-team members” prediction market, respectively (Welch 

two-sample t-test: t(173.19) = 1.77, p = 0.078). The mean self-reported expertise in decision 

sciences (Likert scale from 1 to 10) was significantly higher for the “non-team members” (mean 

= 5.13, sd = 2.36) compared to the “team members” (mean = 4.23, sd = 2.46) prediction market 

(Welch two-sample t-test: t(184.97) = 2.56, p = 0.011). These tests comparing the value of the 



variables between the two samples were not pre-registered and are included for descriptive 

purposes.  

Exploratory analyses. Although not stated in the pre-analysis plan, we examined the 

correlation between participants’ final payoffs, as an indicator of market performance and 

prediction accuracy, with participants’ self-reported expertise in neuroimaging and decision 

sciences. The Spearman correlations between payoffs and self-rated expertise turn out to be low 

in magnitude and statistically insignificant for expertise in both neuroimaging (r = 0.06, p = 0.45, 

n = 148) and decision sciences (r = -0.07, p = 0.369, n = 148). This exploratory result also holds 

if we examine Spearman correlations for “team members” and “non-team members” separately 

(expertise in neuroimaging: “non-team members”, r = 0.19, p = 0.141, n = 65; “team-members”, r 

= -0.12, p = 0.273, n = 83; expertise in decision sciences: “non-team members”, r = 0.04, p = 

0.745, n = 65; “team-members”, r = 0.02, p = 0.829, n = 83). 

To explore whether and how market prices (i.e., market’s predictions) aggregate traders’ 

private information over time, we calculated the absolute error of the market price from the 

fundamental value on an hourly basis (average price of all transactions within an hour), resulting 

in a time series of 240 observations (10 days x 24 hours; see Supplementary Figure 13). We ran 

two panel regressions with 18 cross-sections (i.e., nine hypotheses run for both sets of markets) 

and 240 time observations each. In the model (1), we regressed the absolute error on a binary 

prediction market indicator “team members” and control for linear time effect. The statistically 

significant coefficient for the team membership dummy (𝛽 = −0.22, p < 0.001) indicated that, on 

average, predictions in the “team members” prediction market were closer to the fundamental 

value than aggregate market’s predictions in the “non-team members” prediction market. The 

positive coefficient for the time trend (𝛽 = 4.41 x 10-4, p < 0.001) in the model suggested that 

information aggregation got worse over time, i.e. that prices in both prediction markets tended to 

drift away from the fundamental value as time progressed. Adding the interaction term of the time 

trend and the prediction market indicator variable in model (2) revealed that prediction errors over 

time increased at a significantly higher rate in the “team members” prediction market compared to 

the “non-team members” prediction market. Despite the lower prediction errors in the “team 

members” prediction market, this suggests that information aggregation over time was more 

effective in the “non-team members” prediction market. The results are presented in 

Supplementary Table 12.  



Concerning individual traders and how their opinions were incorporated in the market’s 

predictions, we carried out two analyses for the “team members” prediction market only. First, 

Spearman correlations between the results their team has reported (a binary outcome) and their 

individual final holdings in the asset for each of the nine hypotheses range from 0.23 to 0.74 (all 

correlations are statistically significant, except for Hypothesis #7: ⍴s = 0.23, p = 0.104; for details, 

see Supplementary Table 9). In a second analysis, we calculated the percentage of trades in the 

“team members” prediction markets which are consistent with the results their team reported (i.e., 

whether they buy when their team reported a significant result in the hypothesized direction, but 

the market prices reflect “no significant result” and vice versa) for each of the nine hypotheses. 

The fractions of consistent trades ranged from 0.68 to 0.89. One-sample Wilcoxon signed-rank 

tests for a share of 0.5 revealed that the share of consistent trades was significantly higher than 

50% (z-values range from 2.78 to 6.81; p < 0.004 for all tests; see Supplementary Table 9 for 

details). However, it turns out that inconsistent trades are disproportionately larger (in terms of 

volume) than consistent trades, explaining the systematic overvaluation of fundamental values. 

In order to test whether overoptimism of traders in the team prediction market was the 

result of over-representation of teams reporting significant results, we computed the fraction of 

active traders that reported a significant result for each hypothesis. Overall, active traders in the 

teams prediction market were representative with respect to the overall results. The absolute 

differences in the fraction of significant results for active traders compared to all teams are small 

and vary from 0.021 to 0.088. For all hypotheses, the fraction of significant results for active 

traders lies within the 95% confidence intervals associated with the fraction of significant results 

reported by all teams, indicating that the active traders’ information in the market are 

representative for the overall results. Moreover, for all hypotheses but one (Hypothesis #5), the 

fraction of significant results was lower for the active traders compared to all teams (see 

Supplementary Figure 11). Therefore, overoptimism of the traders in the teams prediction market 

could not be attributed to a biased outcome for these researchers.  

 

Supplementary Discussion 

Analytic variability and its related factors 

In NARPS, 70 analysis teams independently analyzed the same fMRI dataset to test the same nine 

ex-ante hypotheses which were based on the relevant scientific literature. Reported analysis 



outcomes demonstrated substantial variability in results across analysis teams. We further found 

that while the agreement between thresholded statistical maps was largely limited to regions with 

no active voxels, correlations between the unthresholded statistical maps across teams were 

moderate. Our exploratory analysis pointed out specific factors that significantly contributed to the 

variability. Higher estimated smoothness of the unthresholded statistical map, analyzing the data 

with FSL and using parametric correction methods were all related to more significant results. 

While the analysis software and correction method used are analytic choices directly made by each 

team, the estimated smoothness is a feature of the map and is affected by multiple earlier analytic 

choices. For example, exploratory analysis showed that modeling head movement was related to 

reduced estimated smoothness.  

We did not find significant differences in results between analysis teams that chose to use 

the preprocessed (with fMRIPrep) shared dataset versus the teams that chose to use the raw dataset 

and preprocess the data by themselves. However, it should be noted that preprocessing includes 

many analytical procedures, and the effect of each specific procedure on the variability of final 

results was not directly tested here due to lack of power resulting from the multiple available 

options for each step. 

The indications that correlated unthresolded statistical maps resulted in substantially 

different binary results across analysis teams suggested that a main source of the variability comes 

from the final stages of analysis: thresholding, correcting for multiple comparisons and anatomical 

ROI specifications. Although the general correction method used (parametric versus 

nonparametric) was found to be related to the final results, exploratory analysis applying a fixed 

threshold, correction method and anatomical ROI specification did not yield qualitatively more 

similar binary results compared to the reported ones (Supplementary Figure 9 and Supplementary 

Table 7). Nonetheless, correlated statistical maps should not necessarily produce similar binary 

results when applying the same threshold, since the correlation coefficient is not sensitive to 

overall scaling and thus correlated values could differ substantially in magnitude. Use of consistent 

thresholding and meta-analytic approaches provide another view on the heterogeneity 

(Supplementary Table 7). Hypotheses 2, 4, 5 & 6 all had at least 50% of teams showing activation 

on some thresholding approach and image-bsaed meta-analysis (IBMA) significance. While 

IBMA is based on the mean activation map, coordinate-based meta-analysis (CBMA) results can 

be driven by a subset of studies, and notably CMBA finds significance on all hypotheses except 



#7; e.g. hypothesis 1 had over 50% activation and 1184 CBMA-significant voxels but none with 

IBMA, suggesting particular heterogeneity for that hypothesis’ results.  

There are several important analytic choices that could not be directly tested here. For 

example, as each hypothesis was related to a specific brain region, each team was required to 

choose an operative definition of the specific hypothesized region (i.e., in order to decide whether 

a significant activation was found within this region or not). Given the exact same thresholded 

statistical map, different teams could potentially conclude differentially 44. Moreover, one of the 

three regions of interest in the current study was the ventromedial prefrontal cortex (vmPFC), for 

which there is no specific agreed-upon anatomical definition. This may have further contributed 

to variability across teams. However, we could not include this analytic choice in the tested model, 

as there were too many distinct methods used by the teams (e.g., different atlases, Neurosynth 45, 

visual examination, etc.) resulting in the lack of power to detect significant differences. Another 

important step we could not directly measure here was the general linear model specification. For 

example, modelling response time (RT) (or not) could potentially affect the results; the majority 

of teams (44) did not do so, but there were several different methods used by the teams that did. 

We did find several model specification errors that resulted in statistical maps that were 

anticorrelated with the majority of teams. While some of these errors might be related to the 

relative complexity of the particular task used here, other errors, such as those involving the 

inclusion of multiple correlated parameters in the model, likely generalize to all models.  

It should also be noted that our results are conditional on the specific task we chose to use 

here, the mixed gambles task. This task is relatively complex, with multiple parametric modulators 

that could be (and were) modeled in a number of different ways. While this is a relatively 

representative task, a simpler task may have resulted in lower variance across pipelines (e.g., if 

there was less flexibility in the specification of the statistical model and region definitions).  

Prediction markets 

We used prediction markets to test the degree to which researchers from the field can 

predict the results. While traders in the “team members” prediction market had the data and knew 

their own results, traders from the “non-team members” reported significantly higher expertise in 

decision-sciences and are therefore assumed to be more familiar with the relevant literature. 

Nonetheless, we found that both groups of traders strongly overestimated the fraction of significant 

results. These results indicate that researchers in the field are over-optimistic with regard to the 



reproducibility of results across analysis teams. Nonetheless, team members predicted the relative 

plausibility of the hypotheses very well. Surprisingly, neither self-rated expertise in neuroimaging 

nor self-rated expertise in decision-sciences were related to better performance in the prediction 

markets (i.e., to better prediction of the results; see Supplementary Materials). 

Implications regarding previous findings with the mixed gamble task 

There is a spectrum of concerns regarding the quality of research, ranging from replicability (the 

ability to reproduce a result in a new sample) to computational reproducibility (the ability to 

reproduce a result given data and analysis plans)46. Concerns over replicability across many areas 

of science have led to a number of projects in recent years that have attempted to assess the 

replicability of empirical findings across labs6,20,37,47. While such an undertaking would certainly 

be useful in the context of fMRI, the expense of fMRI data collection makes a large-scale 

replication attempt across many studies very unlikely. The present study does not broadly assess 

the replicability of neuroimaging research, but it does provide valuable insights, given that the 

design of the present study overlaps (in the equal indifference group) with the previous study of 

Tom et al.8. Out of the four primary claims made in the initial paper (reflecting significant 

outcomes on Hypotheses #1, #3 and #5, and a null outcome on Hypothesis #7), two were supported 

by a majority of teams in the present study. Moreover, as results largely differed for the equal 

indifference group (for which the design was similar to Tom et al.8) and the equal range group (for 

which the design was similar to De Martino et al9.), mainly for the negative loss effect in the 

vmPFC (Hypothesis #5 vs. Hypothesis #6), inconsistent findings across these studies may be the 

result of the different designs they used. However, as the present study did not aim to directly test 

replicability of fMRI findings, but rather the variability across analysis pipelines, the implications 

are limited and should be interpreted with caution. 

General implications and proposed solutions 

In this study, we assessed the degree to which results are reproducible across multiple analysts 

given a single dataset and pre-defined hypotheses. Our findings raise substantial concerns and 

indicate an urgent need for minimizing the effect of analytic choices on reported results44. 

Furthermore, our findings indicate that the further one gets from raw data the more divergent the 

results are. One implication of these findings is that meta-analyses should be more effective when 



using less processed data (i.e. unthresholded statistical maps versus thresholded statistical maps or 

activation coordinates) cf. 48. 

Importantly, the analysis teams who participated in the present study were not incentivized 

to find significant effects, which is thought to drive a number of questionable research practices 

(e.g., “p-hacking”2). Thus, the variability in the present results is more likely to reflect actual 

variability in the standard analytic methods used in the participating research groups and their 

interaction with the nature of the signals in the data, as well as model specification errors present 

for some teams. Moreover, the present study exclusively focused on univariate analysis. While 

this type of analysis is frequent, many fMRI studies in recent years have been using multivariate 

pattern analyses, which are less standardized and are therefore even more prone to be affected by 

specific analytic choices (although these methods may partially overcome the voxelwise 

thresholding stage). An open question is how the present results would generalize to those studies 

in which the researchers are motivated to detect a significant result (due to the prevalent bias for 

publication of significant results). We here note that our results imply substantial researcher 

degrees of freedom resulting in ample scope for p-hacking, as a significant result for each 

hypothesis could be reported based on at least four (based on the number of teams that reported a 

significant result for hypotheses 7-9) of the pipelines used in practice by analysis teams.  

We propose that complex datasets should be analyzed using multiple analysis pipelines, 

preferably by more than one researcher, who would be blinded to the hypotheses of interest23, and 

the results compared to ensure concordance across validated pipelines. The current study and 

future ones could point at the main analytic choices that lead to variable results. “Multiverse 

analysis” thus can be focused on those analytic choices to save required computational resources 

and allow a wider use across research groups. Previous studies in other fields have suggested 

different versions of “multiverse” analysis26,27, but these have yet to be widely implemented. Meta-

analysis methods can be used to draw conclusions based on multiple analysis pipelines and/or 

studies (when unthresholded statistical maps would be shared alongside neuroimaging 

publications). We believe this is a promising and important future direction, given the substantial 

influence of analytic choices on reported results. We also propose that the use of well-engineered 

and well-validated software tools instead of custom solutions, when appropriate, can help reduce 

the presence of errors and suboptimal analysis choices simply by the fact that these have been 



tested by multiple users and often employ more rigorous software engineering practices (but, 

importantly, should not be used as a “black box”). 

It is important to note, however, that concordance among different analysis pipelines does 

not necessarily imply that the conclusion of those analyses is correct. In the present study we do 

not have a “ground truth” regarding the effects (i.e., we do not know for certain whether each 

hypothesis is correct or not). Therefore, the present study provides crucial evidence and insights 

regarding the variability of results across analysis pipelines “in the wild” and its related factors, 

but not regarding the validity of each analytic choice or which analytic choices are the best ones. 

Future studies can use simulated data or null data, where the ground truth is known, to validate 

analysis workflows (e.g.34,49). These studies could potentially identify optimal analysis pipelines, 

on which the “multiverse analysis” could rely. We do not, however, believe that there is a single 

(or even a few) best analysis pipeline across studies50,51. Novel analysis methods are important for 

scientific discovery and progress, and different pipelines are optimal for different studies and 

scientific questions. Therefore, we suggest to focus on “multiverse analysis”, while aggregating 

evidence across studies by sharing unthresholdd statistical maps and applying meta-analysis 

approaches. The discussed challenges and potential solutions are relevant far beyond 

neuroimaging, to any scientific field where the data are complex and there are multiple acceptable 

analysis workflows. 



Supplementary Figure 1: Results from coordinate-based meta-analysis (CBMA) using activation likelihood
estimation (ALE) across the thresholded statistical maps submitted by the analysis teams, separately for
each hypothesis. Maps are thresholded at p < 0.05 corrected using false discovery rate. Images can be
viewed at https://identifiers.org/neurovault.collection:6049.
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Supplementary Figure 2: Unthresholded map analysis for Hypotheses 2 and 4 (which both relate to the
same contrast and group, but different regions). Top: Heatmap based on Spearman correlation between
unthresholded statistical maps. Red / green color in the columns represent the decision regarding hypothesis
2 (no / yes, respectively). Bottom: Average of unthresholded images for each cluster (cluster colors in titles
refer to colors in left margin of heatmap). Maps are thresholded at an uncorrected value of Z > 2.0 for
visualization.
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Supplementary Figure 3: Unthresholded map analysis for Hypothesis 5. Top: Heatmap based on Spearman
correlation between unthresholded statistical maps. Red / green color in the columns represent the decision
regarding hypothesis 5 (no / yes, respectively). Bottom: Average of unthresholded images for each cluster
(cluster colors in titles refer to colors in left margin of heatmap). Maps are thresholded at an uncorrected
value of Z > 2.0 for visualization.
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Supplementary Figure 4: Unthresholded map analysis for Hypothesis 6. Top: Heatmap based on Spearman
correlation between unthresholded statistical maps. Red / green color in the columns represent the decision
regarding hypothesis 6 (no / yes, respectively). Bottom: Average of unthresholded images for each cluster
(cluster colors in titles refer to colors in left margin of heatmap). Maps are thresholded at an uncorrected
value of Z > 2.0 for visualization.
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Supplementary Figure 5: Unthresholded map analysis for Hypothesis 7. Top: Heatmap based on Spearman
correlation between unthresholded statistical maps. Red / green color in the columns represent the decision
regarding hypothesis 7 (no / yes, respectively). Bottom: Average of unthresholded images for each cluster
(cluster colors in titles refer to colors in left margin of heatmap). Maps are thresholded at an uncorrected
value of Z > 2.0 for visualization.
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Supplementary Figure 6: Unthresholded map analysis for Hypothesis 8. Top: Heatmap based on Spearman
correlation between unthresholded statistical maps. Red / green color in the columns represent the decision
regarding hypothesis 8 (no / yes, respectively). Bottom: Average of unthresholded images for each cluster
(cluster colors in titles refer to colors in left margin of heatmap). Maps are thresholded at an uncorrected
value of Z > 2.0 for visualization.
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Supplementary Figure 7: Unthresholded map analysis for Hypothesis 9. Top: Heatmap based on Spearman
correlation between unthresholded statistical maps. Red / green color in the columns represent the decision
regarding hypothesis 9 (no / yes, respectively). Bottom: Average of unthresholded images for each cluster
(cluster colors in titles refer to colors in left margin of heatmap). Maps are thresholded at an uncorrected
value of Z > 2.0 for visualization.

7



L R

z=-10

L R

z=4

L R

z=18

L R

z=32

L R

z=52

L R

z=64
0

1

2

3

4

L R

z=-10

L R

z=4

L R

z=18

L R

z=32

L R

z=52

L R

z=64
0

1

2

3

4

L R

z=-10

L R

z=4

L R

z=18

L R

z=32

L R

z=52

L R

z=64
0

1

2

3

4

L R

z=-10

L R

z=4

L R

z=18

L R

z=32

L R

z=52

L R

z=64
0

1

2

3

4

L R

z=-10

L R

z=4

L R

z=18

L R

z=32

L R

z=52

L R

z=64
0

1

2

3

4

L R

z=-10

L R

z=4

L R

z=18

L R

z=32

L R

z=52

L R

z=64
0

1

2

3

4

L R

z=-10

L R

z=4

L R

z=18

L R

z=32

L R

z=52

L R

z=64
0

1

2

3

4

L R

z=-24

hyp 1:+gain: equal indiff

L R

z=-24

hyp 2:+gain: equal range

L R

z=-24

hyp 5:-loss: equal indiff

L R

z=-24

hyp 6:-loss: equal range

L R

z=-24

hyp 7:+loss: equal indiff

L R

z=-24

hyp 8:+loss: equal range

L R

z=-24

hyp 9:+loss:ER>EI

Supplementary Figure 8: Maps of estimated between-team variability (tau) at each voxel for each separate
unthresholded map. Hypotheses #2 and #4 are not shown, as they share the same statistical maps as
Hypothesis #1 and #3 respectively, which are for the same contrast and group but for different regions (see
Table 1). Images can be viewed at https://identifiers.org/neurovault.collection:6050.
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Supplementary Figure 9: Activation for each hypothesis as determined using consistent thresholding and
ROI selection across teams (y-axis), versus proportion of teams reporting activation (x-axis). Numbers next
to each symbol represent the hypothesis number for each point.
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Supplementary Figure 10: Image-based meta-analysis (IBMA) results. A consensus analysis was performed
on the unthresholded statistical maps submitted by the analysis teams to obtain a group statistical map for
each hypothesis, accounting for the correlation between teams due to the same underlying data. Maps are
presented for each hypothesis showing voxels (in color) where the group statistic was significantly greater
than zero after voxelwise correction for false discovery rate (p < .05). Color bar reflects statistical value (Z)
for the meta-analysis. Hypotheses #1 and #3, as well as hypotheses #2 and #4, share the same statistical
maps as the hypotheses are for the same contrast and group, but for different regions (see Table 1). Images
can be viewed at https://identifiers.org/neurovault.collection:6051.
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Supplementary Figure 11: The fraction of significant results is presented for each hypothesis, for all analysis
teams (red) and separately for active traders only (green). The error bars represent the 95% confidence
interval for the mean of all traders, computed using a normal approximation.

11



Supplementary Figure 12: Screenshots of the market overview (top panel) and the trading interface for
a particular hypothesis (bottom panel). On the left hand side of the web-based interface, traders were
informed about their current balance (i.e., the Tokens available) and the sum of the current value of the
Tokens invested. The history tab showed a table of all transactions that have been submitted by the trader
so far.
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Supplementary Figure 13: Market prices for each of the nine hypotheses separated for the team members
(green) and non-team members (blue) prediction markets. The figure shows the average prediction market
prices per hour separated for the two prediction markets for the time the markets were open (10 days, i.e.,
240 hours). The gray line indicates the actual share of analysis teams reporting a significant result for the
particular hypothesis (i.e., the fundamental value).
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Supplementary Table 1: Results submitted by analysis teams*. For each team (represented by its team ID, left column),
the left section of the table represents the reported binary decision (green = yes, red = no) and how confident they were in
their result (from 1 [not at all] to 10 [extremely]). The right section displays the information included for each team in the
statistical model for hypothesis decisions. FWHM: estimated smoothing (full width at half-maximum). Teams with a blank
value for the FWHM variable (estimated smoothness) were excluded from further analysis. Testing: P = parametric, NP
= nonparametric. * It should be noted that three teams changed their decisions after the end of the project. Team L3V8
changed their decision regarding Hypothesis #6 from yes to no. Team VG39 changed their decisions regarding Hypotheses
#3, #4 and #5 from yes to no. Team U26C changed their decision regarding Hypothesis #5 from yes to no. Results along
the paper and in this table reflect the final results as they were reported at the end of the project (i.e., before this change),
as prediction markets were based on those results.
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Supplementary Table 2: Links to public NeuroVault collections of all analysis teams.

Team
ID

Link Team
ID.1

Link.1

08MQ https://neurovault.org/collections/4953/ C88N https://neurovault.org/collections/4812/
0C7Q https://neurovault.org/collections/5652/ DC61 https://neurovault.org/collections/4963/
0ED6 https://neurovault.org/collections/4994/ E3B6 https://neurovault.org/collections/4782/
0H5E https://neurovault.org/collections/4936/ E6R3 https://neurovault.org/collections/4959/
0I4U https://neurovault.org/collections/4938/ I07H https://neurovault.org/collections/5001/
0JO0 https://neurovault.org/collections/4807/ I52Y https://neurovault.org/collections/4933/
16IN https://neurovault.org/collections/4927/ I9D6 https://neurovault.org/collections/4978/
1K0E https://neurovault.org/collections/4974/ IZ20 https://neurovault.org/collections/4979/
1KB2 https://neurovault.org/collections/4945/ J7F9 https://neurovault.org/collections/4949/
1P0Y https://neurovault.org/collections/5649/ K9P0 https://neurovault.org/collections/4961/
27SS https://neurovault.org/collections/4975/ L1A8 https://neurovault.org/collections/5680/
2T6S https://neurovault.org/collections/4881/ L3V8 https://neurovault.org/collections/4888/
2T7P https://neurovault.org/collections/4917/ L7J7 https://neurovault.org/collections/4866/
3C6G https://neurovault.org/collections/4772/ L9G5 https://neurovault.org/collections/5173/
3PQ2 https://neurovault.org/collections/4904/ O03M https://neurovault.org/collections/4972/
3TR7 https://neurovault.org/collections/4966/ O21U https://neurovault.org/collections/4779/
43FJ https://neurovault.org/collections/4824/ O6R6 https://neurovault.org/collections/4907/
46CD https://neurovault.org/collections/5637/ P5F3 https://neurovault.org/collections/4967/
4SZ2 https://neurovault.org/collections/5665/ Q58J https://neurovault.org/collections/5164/
4TQ6 https://neurovault.org/collections/4869/ Q6O0 https://neurovault.org/collections/4968/
50GV https://neurovault.org/collections/4735/ R42Q https://neurovault.org/collections/5619/
51PW https://neurovault.org/collections/5167/ R5K7 https://neurovault.org/collections/4950/
5G9K https://neurovault.org/collections/4920/ R7D1 https://neurovault.org/collections/4954/
6FH5 https://neurovault.org/collections/5663/ R9K3 https://neurovault.org/collections/4802/
6VV2 https://neurovault.org/collections/4883/ SM54 https://neurovault.org/collections/5675/
80GC https://neurovault.org/collections/4891/ T54A https://neurovault.org/collections/4876/
94GU https://neurovault.org/collections/5626/ U26C https://neurovault.org/collections/4820/
98BT https://neurovault.org/collections/4988/ UI76 https://neurovault.org/collections/4821/
9Q6R https://neurovault.org/collections/4765/ UK24 https://neurovault.org/collections/4908/
9T8E https://neurovault.org/collections/4870/ V55J https://neurovault.org/collections/4919/
9U7M https://neurovault.org/collections/4965/ VG39 https://neurovault.org/collections/5496/
AO86 https://neurovault.org/collections/4932/ X19V https://neurovault.org/collections/4947/
B23O https://neurovault.org/collections/4984/ X1Y5 https://neurovault.org/collections/4898/
B5I6 https://neurovault.org/collections/4941/ X1Z4 https://neurovault.org/collections/4951/
C22U https://neurovault.org/collections/5653/ XU70 https://neurovault.org/collections/4990/
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Supplementary Table 3: Description of teams excluded from the analyses of statistical maps.

Team ID Exclusion reason Unthresholded
maps excluded

Thresholded
maps excluded

1K0E Used surface-based analysis (only provided
data for cortical ribbon)

X X

L1A8 Not in MNI standard space X X
VG39 Performed small volume corrected instead of

whole-brain analysis
X X

X1Z4 Used surface-based analysis (only provided
data for cortical ribbon)

X X

16IN Values in the unthresholded images are not z
/ t stats

X

5G9K Values in the unthresholded images are not z
/ t stats

X

2T7P Used a method which does not create
thresholded images (and are therefore not
included in the analyses of the thresholded
images)

X
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Supplementary Table 4: Summary of mixed-effects logistic regression modeling of decision outcomes as a function of different
factors including the hypothesis (1-9) and various aspects of statistical modeling including estimated spatial smoothing, use
of fMRIprep preprocessed data, software package, multiple testing correction method, and use of movement modeling. For
modeling details, see https://github.com/poldrack/narps/blob/master/ImageAnalyses/DecisionAnalysis.Rmd.

Effects Chi-squared P value Delta R2

Hypothesis 185.390 0.000 0.350
Estimated smoothness 13.210 0.000 0.040
Used fMRIPprep data 2.270 0.132 0.010
Software package 13.450 0.004 0.040
Multiple correction method 7.500 0.024 0.020
Movement modeling 1.160 0.281 0.000
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Supplementary Table 5: Variability in the number of activated voxels reported across teams.

Hyp # Minimum sig voxels Maximum sig voxels Median sig voxels N empty images

1 0 118181 1940 8
2 0 135583 8120 2
3 0 118181 1940 8
4 0 135583 8120 3
5 0 76569 6527 11
6 0 72732 167 25
7 0 147087 9383 8
8 0 129979 475 16
9 0 49062 266 29
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Supplementary Table 6: Mean Spearman correlation between the unthresholded statistical maps for all pairs of teams and
separately for pairs of teams within each cluster, for each hypothesis.

Hyp Correlation
(mean)

Correlation
(cluster1)

Cluster size
(cluster1)

Correlation
(cluster2)

Cluster size
(cluster2)

Correlation
(cluster3)

Cluster size
(cluster3)

1/3 0.394 0.670 50.000 0.680 7.000 0.095 7.000
2/4 0.521 0.736 43.000 0.253 14.000 0.659 7.000
5 0.485 0.777 41.000 0.329 20.000 0.342 3.000
6 0.259 0.442 47.000 0.442 12.000 0.156 5.000
7 0.487 0.851 31.000 0.466 25.000 0.049 8.000
8 0.302 0.593 36.000 0.256 23.000 -0.044 5.000
9 0.205 0.561 47.000 0.568 8.000 0.106 9.000
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Supplementary Table 7: Results from re-thresholding of unthresholded maps using uncorrected (p < 0.001, cluster size k > 10)
and false discovery rate correction (pFDR < 5%) and common anatomical regions of interest for each hypothesis. A team is
recorded as having an activation (act.) if one or more significant voxels are found in the ROI. Results for coordinate-based
meta-analysis (CBMA) and image-based meta-analysis (IBMA) for each hypothesis are also presented, each thresholded at
pFDR < 5% as well.

Hypothesis N voxels in
ROI

proportion
of teams
reporting
act.

proportion
of teams w/
act.
(p < 0.001,
k > 10)

proportion
of teams w/
act. (FDR)

CBMA (n
voxels in
ROI)

IBMA (n
voxels in
ROI)

1 3402.000 0.371 0.734 0.594 1184.000 0.000
2 3402.000 0.214 0.391 0.766 144.000 7.000
3 173.000 0.229 0.156 0.344 56.000 0.000
4 173.000 0.329 0.234 0.609 65.000 7.000
5 3402.000 0.843 0.906 0.859 2815.000 2101.000
6 3402.000 0.329 0.562 0.359 2265.000 39.000
7 672.000 0.057 0.062 0.172 0.000 0.000
8 672.000 0.057 0.016 0.125 4.000 0.000
9 672.000 0.057 0.047 0.094 2.000 0.000
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Supplementary Table 8: Prediction market results. The table summarizes the prediction market results for each of the
nine ex-ante hypotheses, separated for the team members and non-team members prediction markets. FV indicates the
fundamental value, i.e., the actual fraction of teams reporting significant results for the particular hypothesis. 95% CI refers
to the 95% confidence interval corresponding to the fundamental value. Market belief refers to the final prediction market
price (i.e. markets predictions) and within CI indicates whether the market beliefs are within or outside the 95% confidence
interval. Note that this is not a formal hypothesis test as it does not take into account the uncertainty in the final prediction
market prices, given that we have no measure of the standard error for the aggregated market prediction for each specific
hypothesis. Thus, only for the single prediction that is within the 95% confidence interval (Hypothesis #7) it is clear that
the aggregated belief does not differ significantly from the fundamental value.

Hyp # FV CI Non-teams
FV

Teams FV

1 0.370 [0.26-0.48] 0.727 * 0.814 *
2 0.210 [0.12-0.31] 0.73 * 0.753 *
3 0.230 [0.13-0.33] 0.881 * 0.743 *
4 0.330 [0.22-0.44] 0.882 * 0.789 *
5 0.840 [0.76-0.93] 0.686 * 0.952 *
6 0.330 [0.22-0.44] 0.685 * 0.805 *
7 0.060 [0.00-0.11] 0.563 * 0.073
8 0.060 [0.00-0.11] 0.584 * 0.274 *
9 0.060 [0.00-0.11] 0.476 * 0.188 *
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Supplementary Table 9: Consistency of traders holdings and team results. The top section of the table reports Spearman
rank correlations (s) between traders final holdings and the binary result reported by their team and the corresponding
p-value for each of the nine hypotheses. The lower section reports the share of traders holdings that are consistent with the
results reported by their team. In particular, consistent refers to positive (negative) holdings if the team reported a significant
(non-significant) result. z- and p-values refer to Wilcoxon signed-rank tests for the share of consistent holdings being equal
to 0.5. Avg. holdings if (in)consistent refer to the mean final holdings, separated for consistent and inconsistent traders.

Hypothesis # 1 2 3 4 5 6 7 8 9

Spearman rho 0.580 0.560 0.580 0.640 0.470 0.740 0.230 0.370 0.310
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.104 0.007 0.020
Share of consistent
holdings

0.710 0.680 0.700 0.800 0.890 0.740 0.800 0.800 0.750

Z (signed rank
test)

3.400 2.780 2.820 4.240 6.810 3.240 4.340 4.340 3.640

p-value (signed
rank test)

0.000 0.003 0.002 0.000 0.000 0.001 0.000 0.000 0.000

Average holdings if
consistent

5.610 21.140 25.800 13.110 -
115.500

7.310 34.610 24.230 23.540

Average holdings if
inconsistent

1.040 -6.900 -8.030 0.030 18.260 1.580 -14.630 -8.290 -11.610
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Supplementary Table 10: Links to shared analysis codes of some of the analysis teams.

Team ID Link to shared analysis codes

16IN https://github.com/jennyrieck/NARPS
2T7P https://osf.io/3b57r
E3B6 DOI: 10.5281/zenodo.3518407
Q58J https://github.com/amrka/NARPS Q58J
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Supplementary Table 11: Market details. The table depicts additional data for each of the nine hypotheses, separated for the
team members and non-team members prediction markets. Tokens invested indicates the average number of token invested
per transaction and Volume (Shares) refers to the mean number of shares bought or sold per transaction. Transactions
describes the overall number of transactions recorded and No. of Traders refers to the number of traders who bought or sold
shares of the particular asset at least once.

Hyp
#

Tokens
invested
(Non-
teams)

Volume
(Non-
teams)

# Traders
(Non-
teams)

# Transac-
tions
(Non-
teams)

Tokens
invested
(Teams)

Volume
(Teams)

# Transac-
tions
(Teams)

# Traders
(Teams)

1 8.568 20.175 55 139 12.643 25.671 213 64
2 10.510 22.544 53 98 11.632 22.908 171 58
3 12.818 24.709 58 132 7.773 15.837 141 52
4 11.134 20.397 49 112 8.126 15.479 127 52
5 6.873 14.636 38 71 14.480 30.760 244 76
6 6.806 12.663 35 72 8.097 16.676 134 46
7 7.990 15.209 41 98 7.131 15.864 160 52
8 8.791 19.072 45 91 7.085 14.598 141 52
9 10.427 21.118 50 131 9.506 18.812 178 56
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Supplementary Table 12: Panel regressions. The table summarizes the results of pre-registered fixed-effects panel regressions
of the predictions absolute errors (i.e., the absolute deviation of the market price from the fundamental value) on an hourly
basis (average price of all transactions within an hour) on time and prediction market indicators. Standard errors are
computed using a robust estimator.

Effect Beta (full
model)

t (full
model)

p (full
model)

Beta (no
interac-
tion)

t (no
interac-
tion)

p (no
interac-
tion)

Intercept 0.440 64.120 0.000 0.410 74.610 0.000
Time 0.000 3.380 0.001 0.000 12.480 0.000
Teams -0.290 -29.500 0.000 -0.220 -45.350 0.000
Time X Teams 0.000 7.780 0.000
——–
Adjusted R-squared 0.350 0.340
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