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SUPPLEMENTAL MATERIAL

Magnus expansion. Solving the time-dependent Schrö-
dinger equation for a time-independent system described by
the Hamiltonian H yields the well-known time-evolution op-
erator U(0, t) = e−iHt. If the system is time-dependent, the
time-evolution operator can be expressed as

U(0, t) = eΩ(t) = exp

{ ∞∑
k

Ωk(t)

}
, (8)

where t 7→ Ω(t) is a series known as the Magnus expansion.
The first three terms in the Magnus expansion are given by

Ω1(t) =

∫ t

0

dt1A(t1),

Ω2(t) =
1

2

∫ t

0

dt1

∫ t1

0

dt2 [A(t1), A(t2)],

Ω3(t) =
1

6

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

[A(t1), [A(t2), A(t3)]] + [A(t3), [A(t2), A(t1)]], (9)

withA(t) = −iH(t). If the Hamiltonian is time-independent,
all Magnus terms but the first vanish.

The time-periodic Hamiltonian of Eqs. (1) and (2) is now
plugged into this expansion, and one focuses on times t which
are an integer multiple of the driving period T = 2π/ω. The
first-order term involvingH1 vanishes (since the time-average
is zero), and the one involving H2 yields the second and third
term of Eq. (3). The second-order contribution associated with
[H1(t1), H1(t2)] yields the first term of Eq. (3). The second-
order contribution involving [H1(t1), H2(t2)] as well as all
higher-order terms scale away with 1/

√
ω or faster. A bench-

mark of how well the time-evolution computed using the ef-
fective Hamiltonian Heff agrees with the one governed by the
full t 7→ H(t) is shown in Fig. 3, Fig. 6, and Fig. 7.

Single preparations. An important question relates to the
behavior of individual systems in contrast to disorder aver-
aged ones such as those directly feasible in experiments. In
Fig. 8 we show typical individual calculations that enter the
disorder average focused upon in the main text. We show that
those qualitatively behave like the averaged results.

Numerical details. In order to tackle the time-evolution
governed by t 7→ H(t), we first compute the time-evolution
operator U(0, t) for t = T = 2π/ω numerically using a
discrete time step of ∆t = T/100. The periodicity of the
Hamiltonian implies that U(t1, t2) = U(t1 + T, t2 + T ) and
thus U(0, 2T ) = U(0, T )2, U(0, 4T ) = U(0, 2T )2, which
allows one to efficiently propagate the system to large times
t/T ∼ 107.
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FIG. 6. Same as Fig. 3 of the main text but for more values of the
system size L. The driving frequency is ω = 1000.
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FIG. 7. Same as Fig. 3 of the main text but for various driving fre-
quencies ω at a fixed system size L = 8.
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FIG. 8. Same as Fig. 5 of the main text but for three individual dis-
order configurations for a fixed value of T2 − T1 = 1.57.


