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Abstract

T he experiment plays a central role in science. It is

the wealth of experimental results that provides a

basis for the understanding of the chemical machinery of

life. Experimental techniques, such as X-ray diffraction [1,

2], nuclear magnetic resonance (NMR) [3], or cryogenic

electron microscopy (cryo-EM) [4], allow the determina-

tion of the structure and elucidation of the function of

large molecules of biological interest. Yet, the experiment

alone is often not sufficient to gain sufficient insight in the

mechanisms and processes that take place at the molecular

level. To this end, it is necessary to complement the di-

rect experimental investigation with models and theories.

Computer simulations have altered the interplay between

experiment and theory. The essence of simulation is the

use of the computers to model a physical system. Calcu-

lations implied by a mathematical model are carried out

by the machine, and the results are interpreted in terms

of physical properties. Since computer simulation deals

with models, it may be classified as a theoretical method

[5]. On the other hand, physical quantities can (in a sense)

be measured on a computer, justifying the term computer

experiment [6, 7]. The crucial advantage of simulations is

the ability to expand the horizon of the complexity that

separates ‘solvable’ from ‘unsolvable’. Basic physical theo-

ries applicable to biologically relevant phenomena, such as

quantum, classical and statistical mechanics, lead to equa-

tions that cannot be solved analytically (exactly), except

for a few special cases. The quantum Schrödinger equa-
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tion for any atom (or any molecule), except the hydrogen,

or the classical Newton’s equations of motion for a sys-

tem of more than two-point masses can be solved only

approximately. This is what physicists call the many-body

problem. It is intuitively clear that less accurate approxima-

tions become inevitable with growing complexity. We can

compute a more accurate wave function for the hydrogen

molecule than for large molecules. It is also much harder

to include explicitly the electrons in the model of a protein,

rather than representing the atoms as classical point-like

masses and the bonds as springs. The use of the computer

makes less drastic approximations feasible. Thus, bridging

experiment and theory by means of computer simulations

makes it possible to test and improve our models using a

more realistic representation of nature. It may also bring

new insights into mechanisms and processes that are not

directly accessible through the experiment.

However, the amount of available computational re-

sources can be insufficient to simulate, for a physically

meaningful time, even the simplest nontrivial macromolecu-

le. Indeed, it is often the case that “interesting” phenomena

occur on very long time-scales: a simple example of this is

provided by the diffusion of a polymer in a melt [8, 9]; the

same behavior can observed in conformational changes

of proteins [10–15]. At the same time, in many cases the

massive amount of data that are produced in a simulation

is composed mostly of non-useful information. A relevant

example is given by the solvent: the water molecules that

solvate a protein or a membrane are usually discarded

from the analysis that follows the simulation. In this case a

large fraction of the computational effort is employed in
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the integration of the equations of motion of degrees of free-

dom which are extremely relevant during the simulations,

but are neglected afterwards. In order to overcome this

limitation, coarse-grained models [16–19] have been devel-

oped, where the structure and interactions of the original

system are replaced with simpler ones, which are easier to

describe, model, simulate and understand. In recent years,

systematic coarse graining approaches have gained more

and more prominence. Currently, these models are often

used in a multiscale simulation framework [20–27], where

higher and lower levels of resolution are concurrently em-

ployed. In these approaches, the region of the system in

which the chemical details play a crucial role is described

by an accurate but computational expensive model, while

the remainder has a lower resolution.

One of such multi-resolution techniques is the force-

based Adaptive Resolution Scheme (AdResS): employed ex-

tensively in liquids and complex mixtures [28–34]. In this

approach, the two resolutions (for instance, all-atom and

coarse-grained) are simultaneously employed in different

sub-regions: an essential feature of this method is that par-

ticles are allowed to diffuse from one region to the other

freely.

Another class of multi-resolution models is known as

Dual Resolution for proteins. The peculiarity of this model

is that it is not adaptive; therefore, the resolution is fixed

during the simulation. Several coarse-grained methodolo-

gies have been developed to describe the entire protein

and afterwards employed in dual resolution models for

treating the lower detailed part, e.g. the Gō Model [35],

or the Elastic Network Model (ENM) [24, 36]. Since the



4 Abstract

latter is one of the main objects of this thesis, it will be ana-

lyzed in detail in section 1.4.1: specifically, in this approach,

only the C↵ carbons of the protein chain are retained in

the coarse-grained part, and connected one with other by

harmonic springs.

In this work, we first make use of the Adaptive Reso-

lution Scheme (AdResS) in combination with thermody-

namic integration (TI) to calculate the solvation free ener-

gies of amino acid sidechain analogues in water. Then, we

use the dual resolution method with a dual purpose:

I To compute the binding free energy of hen egg-white

lysozyme (HEWL) with the inhibitor di-N-acetylchito-

triose. Particular attention is posed to the impact

of mapping, namely the selection of atomistic and

coarse-grained residues on the binding free energy.

The choice of the residues belonging to the protein

active site modeled atomistically has a significant

impact on such a value.

I To capture the dynamic properties of a small protein

known as Bovine Pancreatic Polypeptide (PDB code

1BBA) in terms of free energy landscapes obtained

after choosing two collective variables apt to describe

the system. The original contribution in this thesis

work is the refinement of the ENM because we use

different elastic constants between CG beads, based

on their distance distribution.

Lastly, we illustrate a novel multi-resolution approach

dubbed coarse-grained anisotropic network model for variable

resultion simulations (CANVAS), applied to a protein, Adeny-

late Kinase. It allows to smoothly couple virtually any de-

sired degrees of coarse-graining within the same model.



Introduction 1
M olecular modeling and, in particular, Molecular dy-

namics ( MD ) has brought significant progress in

a wide range of biological applications in the last decades

due to the advancement of novel algorithms and high-

performance computing. The gap between simulation and

experimental timescales has been significantly reduced

due to the concurrent advances in the corresponding tech-

niques. Scientists can nowadays access microsecond-to-

millisecond timescales with atomic detail, which is suf-

ficient to characterize many critical biological processes,

such as the folding dynamics proteins [37, 38].

However, classical molecular dynamics is often computa-

tionally expensive for many large-scale problems in molec-

ular modeling. For example, the time scales on which most

proteins fold cannot be reached with all-atom MD simu-

lation: milliseconds are the norm and the fastest known

protein folding reactions are complete within a few mi-

croseconds [38]. Similarly, biological membranes are often

too large to allow for an atomistic description. Another

challenge occurs in many complex polymer systems.

A solution is provided by coarse-grained (CG) models
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[19, 39–42] and, in particular, multiscale simulation tech-

niques developed in the last years [43, 44]. The latter are

the main subject of this thesis. To set the work in the right

context, we first provide an overview on proteins, since

they are the main object of interest in this thesis work; sub-

sequently we recapitulate in section 1.2 of this introductory

chapter the birth and the development of computational

molecular modeling in the last few decades. Next, in sec-

tion 1.3, we discuss the molecular dynamics technique an-

alyzing all required ingredients to perform a classical MD

simulation. Section 1.4 illustrates coarse-grained models

in general focusing, in particular, on the Elastic Network

Model (ENM), widely used in this work. In section 1.5, we

discuss the idea of multiscale modeling and review some

of its applications. In this contest, the section 1.6 describes

in full detail the Force-based Adaptive Resolution Scheme

(AdResS), a computational method for the efficient multi-

scale simulation of molecular systems. Finally, in section

1.7, we provide an outline of the following chapters.

1.1 Biophysical background

1.1.1 What are proteins?

Proteins are large molecules consisting of amino acids.

Our body structures, and functions, as well as the reg-

ulation of the body cells, tissues and organs are largely

constituted by proteins. The human body’s muscles, skin,

bones and many other parts contain significant amounts

of protein. In fact, protein accounts for 20% of total body

weight [45]. Enzymes, hormones and antibodies are pro-

teins. Proteins also work as neurotransmitters and carri-
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ers of oxygen in the blood (hemoglobin). We can imagine

proteins as machines making all living things (viruses, bac-

teria, butterflies, jellyfish, plants and human), functions.

The human body is made up of approximately 100 trillion

cells, each one having a specific function. Each cell has

thousands of different proteins, which together make the

cell do its job.

The enormous variety of protein functions is based on

their high specificity for the molecules with which they in-

teract. However, this specific relationship demands a fairly

rigid spatial structure of the protein⇤. This is the reason

why the biological functions of proteins are closely con-

nected with the rigidity of their three-dimensional (3D)

structures. A little damage to these structures is often the

reason for the loss of or dramatic changes in protein activi-

ties. A knowledge of the 3D structure of a protein is thus

necessary to understand how it functions.

Proteins are heteropolymers: they are built up by amino

acids that are linked into a peptide chain, as discovered

by E. Fischer at the beginning of the 20th century. In the

early 1950s Sanger [49] showed that the sequence of amino

acid residues (a residue is the portion of the amino acid that

remains free after polymerization) is unique for each pro-

tein. The chain consists of a chemically regular backbone

(main chain) from which various side chains (R1, R2, . . . ,

RN ) project, as shown in Fig. 1.1.

The number M of residues in a protein chain ranges from

a few dozen to many thousands. There are twenty main

species of proteinogenic amino acid residues.

⇤ The main exception to this rule are the intrinsically disordered pro-
teins (IDPs) that lack a fixed or ordered three-dimensional structure
[46–48].
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Figure 1.1: Amino acid chain.
[Adapted from Ref. [50]].

NH — CH — CO — NH — CH — CO — … — NH — CH — CO —

— — —

R1 R2 RM

Figure 1.2: Structure of an amino
acid in its un-ionized form.

Figure 1.3: Amino acid repre-
sentation showing the position
of C↵, and C� . In particular,
the alpha carbon is the central
point of all amino acids, while
the beta carbon the first atom
of the sidechain. Adapted
from Userblog:LociOiling/
NewYear’sResolutions

In particular, the amino acids (Fig. 1.2) are biologically

important organic compounds containing an amine (-NH2)

and a carboxylic acid (-COOH) functional groups, along

with a side-chain that is specific to each amino acid. Fig. 1.4

displays the names and the structures of the naturally oc-

curring amino acids.

The carbon that connects these two functional groups is

called alpha carbon (or ↵-carbon or C↵), as shown in Fig.

1.3. It is the central point in the backbone of every amino

acid, and it also serves as the point of attachment for the

side chains of 19 out of 20 amino acids used in protein

building. The sole exception is represented by the glycine,

the only amino acid with no side chain (a hydrogen atom

takes the spot where a side chain is attached to the C↵ in

the other amino acids).

On the other hand, the beta carbon (�-carbon or C�)

is the first atom of the side chain in an amino acid. It is

present in all twenty proteinogenic amino acids except for

glycine.

To be able to perform their biological function, proteins

fold into one or more specific spatial conformations driven

by a number of non-covalent interactions such as hydro-

gen bonding, ionic interactions, Van der Waals forces, and

hydrophobic packing [51]. To understand the functions

of proteins at a molecular level, it is often necessary to

determine their three-dimensional structure [51]. This is

the topic of the scientific field of structural biology, which
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Glycine

 Gly, G

Alanine

 Ala, A

Valine

Val, V

Leucine

 Leu, L

Methionine

Met, M

Isoleucine,

Ile, I

Phenylalanine

 Phe, F

Tyrosine

Tyr, Y

Lysine

Lys, K

Histidine

His, H

Tryptophan

Trp, W

Asparagine

Asn, N

Glutamate

Glu, E

Aspartate

Asp, D

Serine

Ser, S

Threonine

Thr, T

Cysteine

Cys, C

Proline

Pro, P

Aspartate

Asp, D

Glutamine

Gln, Q

Nonpolar, aliphatic side groups

Polar, uncharged side groups

Positively charged side groups

Negatively charged side groups

Aromatic side groups

Figure 1.4: The naturally occurring 20 amino acids with complete name, abbreviations and chemical struc-
tures.

employs techniques such as X-ray crystallography [1, 2],

or NMR spectroscopy [3]. In the late 1950s, Perutz and

Kendrew [52] solved the first protein spatial structures

and demonstrated their highly intricate and unique nature.

Proteins perform their functions under various environ-

mental conditions, which leave an obvious mark on their

structures.

The less water there is around, the more valuable the hy-

drogen bonds are, and the more regular the stable protein

structure ought to be. According to their environmental

conditions and general structure, proteins can be roughly

divided into three classes:
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I Fibrous proteins form vast, usually water-deficient

aggregates; their structure is usually highly hydrogen-

bonded, very regular and maintained mainly by in-

teractions between various chains.

I Membrane proteins are surrounded by lipids⇤: about

a third of all human proteins falls into this class,

and these are targets for more than half of all drugs.

Nonetheless, determining membrane protein struc-

tures remains a challenge in large part due to the dif-

ficulty in establishing experimental conditions that

can preserve the correct conformation of the protein

in isolation from its native environment. Membrane

proteins reside in a water-deficient membrane en-

vironment (although they partly project into water)

and they have an amphiphilic nature: indeed, the

lipids have one end that is soluble in water (‘polar’)

and an ending that is soluble in fat (‘nonpolar’).

Their intramembrane portions are extremely regular

(like fibrous proteins) and vastly hydrogen-bonded,

but restricted in size by the membrane thickness.

I Water-soluble (residing in water) globular proteins

are less regular (especially small ones). Their struc-

ture is maintained by interactions of the chain with it-

self (where an important role is played by hydropho-

bic interactions between hydrocarbon groups that are

far apart in the sequence but adjacent in space) and

sometimes by chain interactions with co-factors.

The above classification is certainly extremely rough.

Some proteins may comprise a fibrous tail and a globular

head (like myosin, for example), and so on.
⇤ membrane proteins need a membrane for structural stability and

function
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Amino Acids

Pleated sheet Alpha helix

Pleated 

sheet

Alpha

helix  

 a

 b
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 d

Figure 1.5: The different lev-
els of protein organization: (a)
primary, (b) secondary, (c) ter-
tiary and (d) quaternary struc-
tures. The primary protein struc-
ture is the sequence of a chain
of amino acids. The secondary
protein structure occurs when
the sequence of amino acids are
linked by hidrogen bonds. The
tertiary one occurs when certain
attractions are present between
↵-helices and pleated sheets. Fi-
nally, the quaternary structure
consists of more than one amino
acid chain [Adapted from [53]].

1.1.2 Protein structures

The structure of a protein is usually described in terms

of primary, secondary, tertiary and quaternary structures

(Fig. 1.5)

The primary structure of a protein refers to the linear

sequence of amino acids in the polypeptide chain. It is held

together by covalent (peptide) bonds, which are formed

during the process of protein biosynthesis or translation.

The two ends of the polypeptide chain are referred to as the

carboxyl terminus (C-terminus) and the amino terminus

(N-terminus) based on the nature of the free group on each

extremity.

Secondary structures refers to highly regular local sub-

structures in the polypeptide backbone chain. The presence

of two main types of secondary structure, the ↵-helix and

the �-sheet was proposed in 1951 by Linus Pauling and

coworkers [54]. The former is often represented by helical

ribbons (as shown in the grey part of Fig. 1.6), while the

latter by arrows (red part of Fig. 1.6). Both structures are

held in shape by hydrogen bonds, which form between the

carbonyl O of one amino acid and the amino H of another,

as represented in Fig. 1.7.

In an ↵-helix, the carbonyl O of one amino acid is hy-

drogen bonded to the amino H of an amino acid that is far

down the chain. (E.g., the carbonyl of amino acid 1 would

form a hydrogen bond to the N–H of amino acid 5.) This

pattern of bonding pulls the polypeptide chain into a he-

lical structure that resembles a curled ribbon, with each

turn of the helix containing 3.6 amino acids. The R groups

of the amino acids stick outward from the ↵-helix, where

they are free to interact [55].
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Figure 1.7: The two most com-
mon types of protein secondary
structure, ↵-helices and �-sheets.
that form because of hydro-
gen bonding (indicated by dots)
between carbonyl and amino
groups in the peptide backbone.
Image from OpenStax Biology
2e / CC BY 4.0.

beta-sheet

alpha-helix

Figure 1.6: Generic fragment of
a protein showing the two sec-
ondary structures: ↵-helix (grey
helical ribbon) and �-sheet (red
arrows).

Figure 1.8: Tertiary structure of
a protein. Disulphide bonds are
highlighted by red lines.

In a � pleated sheet, two or more segments of a polypep-

tide chain line up next to each other, forming a sheet-like

structure held together by hydrogen bonds. The hydro-

gen bonds form between carbonyl and amino groups of

backbone, while the R groups extend above and below the

plane of the sheet [55].

Secondary structures are characterized by a regular pe-

riodic shape (conformation) of the main chain with side

chains assuming a variety of conformations.

The overall three-dimensional structure of a polypep-

tide is called its tertiary structure. In practice the ↵-helices

and � pleated-sheets are folded into a compact structure.

The folding is primarily due to interactions between the R

groups of the amino acids that make up the protein. Also

important are the non-specific hydrophobic interactions,

but the structure is stable only when the parts of a protein

domain are locked into place by specific tertiary interac-

tions, such as salt bridges, hydrogen bonds, and disulphide

bonds (Fig. 1.8).

Many proteins are made up of a single polypeptide chain
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Figure 1.9: Quaternary struc-
tures of Human Aquaporin-4
(pdb code AQP4). This structure
is a tetramer.

and have only three levels of structure. However, some of

them contain multiple polypeptide chains, also known as

subunits. When these subunits come together, they give

the protein its quaternary structure (Fig. 1.9). Complexes

of two or more polypeptides (i.e. multiple subunits) are

called multimers. Specifically it would be called a dimer if it

contains two subunits, a trimer if it contains three subunits,

a tetramer if it contains four subunits, and a pentamer if

it contains five subunits. Multimers made up of identical

subunits are referred to with a prefix of “homo-” (e.g. a ho-

motetramer) and those made up of different subunits are

referred to with a prefix of “hetero-”. The quaternary struc-

ture is stabilized by the same non-covalent interactions

and disulphide bonds as the tertiary one.

1.2 History and overview

Molecular simulation techniques have a relatively recent

history. The first attempts to perform complex calculations

using computers, as required to build the atomic bomb,

date back to the early 1940s. However, the most significant

progress in this field was achieved in the ‘50s, starting

with the first simulations using Monte Carlo techniques

for simple lattice systems. The method was published in

1953 [56] and became known as the Metropolis algorithm,

the name of the first author. Simultaneously, the work of

Fermi, Pasta, Ulam, and Tsingou [57] set the foundations

of MD. The following years saw to the development of

methods to calculate long-range interactions (Ewald sum),

and various pioonering applications [51, 58]. This growing

interest was favored by the technological developments
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that brought computers to become more powerful, smaller,

and cheaper.

In the ‘70s, the field of simulations was already so vast

to encompass chemistry and molecular biology, thus build-

ing the basis of the research field of “soft matter”⇤. The

first works that addressed the issue of a system out of

equilibrium were also published in the ‘70s. Meanwhile,

molecular simulations became increasingly related to the

discipline of statistical mechanics, for two significant rea-

sons. On the one hand, the need to calculate averages of

different physical observables: these averages can be cal-

culated along the trajectory of the system or as a result

of proper sampling. In this sense, statistical mechanics is

used as a tool to analyze the data produced by a computer.

On the other hand, the increased performance of comput-

ers allowed simulating the behavior of systems composed

of a large number of particles. Hence, the latter are ideal

benchmarks for theories and approximations that properly

pertain to statistical mechanics.

The development of molecular simulations at the quan-

tum level of detail is more recent and can be traced back to

1985 with the first so-called ab initio calculations (that is at-

tributable to first principles, such as the Schrödinger equa-

tion). Of particular importance in this context is the Car-

Parrinello molecular dynamics method. Finally, in more

recent years, the field of molecular simulations has seen

the most significant progress in the development of free

energy calculation and enhanced sampling techniques.

Nowadays, computer simulations play an essential role

in molecular modeling. Molecular dynamics and related

⇤ the field of “soft matter” research has been pioneered by Pierre-Gilles
de Gennes [59].
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techniques are applied in many fields of science: from

chemical physics to material science, as well as in bio-

physics and biochemistry. They are used to discover new

and efficient materials for organic electronics [60, 61], to

investigate millions of chemical compounds in drug screen-

ing applications [62], to study the functionality of biologi-

cal properties [21, 63–65].

However, despite ever-growing computer power, and

modern parallelization techniques (e.g. by using GPUs),

many applications are still a challenge: for instance, many

proteins fold on timescales far beyond milliseconds, while

fully atomistic protein folding simulations reach only a few

milliseconds [66–68]. Moreover, other computational chal-

lenges occur on different time and length scales: they have

driven the continuous development of advanced simula-

tion methods for molecular modeling [69, 70]. In general,

these techniques can be described in a hierarchy (see Fig.

1.10).

Time (sec)

1

10-8 - 10-4

10-10

Length (Å)1 - 10 10 - 100 100 - 1000

Ab initio  
methods

classical

atomistic

Coarse-Grained

methods

mesoscale

continuum
Figure 1.10: Multi-scale nature
of matter. Depending on length
and time scales of interest, a
different approach should be
used to describe a specific phe-
nomenon.

In particular, depending on time and length scales of

the phenomena, the approaches and methods are classified

differently. Starting from the left-bottom corner, we find

the ab initio methods, necessary at the electronic scale, in

which the quantum mechanical effects are not negligible
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and calculated by solving the Kohn-Sham equations [71, 72].

At the atomic scale, the molecular dynamics simulation

method is used. In this approach, various numerical tech-

niques are used to solve Newton’s equation of motion. At

the mesoscopic scales, coarse-grained molecular descrip-

tions are employed. Eventually, the largest scales is the

continuum level, in which the dynamics of the system is

described by field equations, obtained by imposing local

macro-scale conservation laws.

On the one hand, highly accurate techniques (e.g., ab ini-

tio simulations) are computationally expensive and thus ap-

plicable on small length and short time scales. On the other

hand, numerically efficient but less accurate approaches,

like effective, coarse-grained models, allow longer simula-

tion of larger systems. In the following, we will discuss in

further detail molecular dynamics and, in particular, the

Coarse-Grained and Multi-Resolution methods: both are

particularly crucial for the investigation of the system of

interest in this thesis.

1.3 Molecular Dynamics

For nearly all systems of interest to us, the most trans-

ferable and fundamental description of matter is one that

invokes quantum mechanics. At the highest level of accu-

racy, this requires to solve Schrödinger’s equation for all

of the subatomic particles in a system. Computationally,

many approximations need to be made in order to use ab

initio methods, and even these techniques are limited to

small numbers of atoms. There are both practical and philo-

sophical reasons for performing simulations on simpler
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systems that do not entail a full solution of the quantum-

mechanical equations. Practical reasons stem from the need

to treat larger systems and run simulations for longer times

than those that ab initio methods can achieve.

In this respect, Molecular Dynamics (MD) [51, 73] is a

technique allowing the calculation of thermodynamic and

dynamic properties of a large number of systems in differ-

ent conditions. It is based on the applicability of the laws

of classical mechanics to microscopic systems composed

of molecules and atoms described as point particles. In

general, many atoms are sufficiently massive to allow the

description of their motion quite accurately by the laws of

Newtonian mechanics. The setup of a classical MD simula-

tion has several analogies with the setup of an experiment.

A MD simulation essentially requires three basic ingredi-

ents:

I A model for the interaction between system con-

stituents. Often, it is assumed that particles interact

only pairwise, with the exception of bonded inter-

actions. This assumption dramatically reduces the

computational effort.

I An integrator, which propagates particles’ positions

and velocities from time t to t + �t. It is a finite dif-

ference scheme that yields trajectories defined at dis-

crete values of the time.

I A statistical ensemble, where thermodynamic quan-

tities like temperature, pressure, and the number of

particles are controlled. The natural choice for the en-

semble is the microcanonical one “NVE” (i.e., number

of particles, volume, and energy constants, respec-

tively) since the Hamiltonian of the system is a con-
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served quantity if external potentials are not present.

Nevertheless, there are extensions to the equations

of motion that also allow the simulation of different

statistical ensembles.

In classical MD simulations, the time evolution of a set

of interacting particles is usually calculated by numerically

solving Newton’s equations of motion of the particle be-

longing to the system. For a system of N point particles of

masses mi (i = 1, . . . , N) at position ri(t) = (xi(t), yi(t), zi(t))
and velocity vi(t) the force acting upon the i-th particle at

time t can be computed as follows:

Fi = mi
d2ri (t)

dt2 (1.1)

where Fi is obtained from the potential energy of the sys-

tem U (r1, r2, . . . , rN ) via the Eq. 1.2

Fi = �rriU (r) = �
✓
@U
@xi

,
@U
@yi

,
@U
@zi

◆
(1.2)

Given the initial condition ri (to) and vi (to) at a certain

time t0, the solution of Eq. 1.1 provides the complete infor-

mation on the motion of the system. Alternatively, Hamil-

ton’s equations of motion for the (generalized) momenta pi

and position ri can be used to calculate the time evolution

of the system:

€ri = rpi
H €pi = �rriH (1.3)

where H is the Hamiltonian of the system:

H=

N’
i=1

p2
i

2mi
+U (r) (1.4)
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In Cartesian coordinates, Hamilton’s equations become:

€ri =
pi
mi

€pi = �rriU (r) = Fi (1.5)

Due to the complexity of the many-body problem, the

only feasible way to solve Eq. 1.1 when N > 2 is by discretiz-

ing the time and solving it numerically through a computer.

The positions and velocities are propagated with a finite

time interval using numerical integrators, such as the Ver-

let algorithm (it will be described later). The position of

each particle in space is defined by ri(t), whereas the ve-

locities vi(t) or the momenta pi(t) are used to get kinetic

energy and temperature in the system. As the particles

‘move’, their trajectories may be displayed and analyzed,

providing averaged properties. The dynamic events that

may influence the functional properties of the system can

be directly traced at the atomic level, making MD particu-

larly valuable in molecular biology [51, 73, 74].

1.3.1 Force Field

In MD simulations [51, 73], the force is derived from

the potential energies (U) that are defined by a force field

(FF). A force field is a model that describes the interactions

between atoms inside the molecular system of interest. The

parameters used in the functional forms of the model are

usually obtained by experimental data or quantum me-

chanics calculations such as the density functional theory

(DFT) [71, 72]. There are many FF’s, each one best suited

to the description of a particular category of systems. For

instance, the CHARMM [75], GROMOS [76], and AMBER

[77] force fields describe proteins and biological systems,
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while OPLS-AA [78] describes systems in the liquid state.

The functional forms of the different FF are very similar.

Here, we will describe the AMBER model used in this

works. The potential is a function of the positions of all

the atoms of the system, and it is given by the sum of two

terms:

U = Ubonded +Unon�bonded (1.6)

I Ubonded takes into account the interactions between

the atoms chemically bonded by a covalent bond.

Such interactions depend on the bond lengths, angles

and rotations of the bonds in a molecule;

I Unon�bonded takes into account the interactions between

the atoms which are not chemically bonded or be-

tween atoms separated by three or more covalent

bonds.

We can even separate the contribution to each of the two

terms as follows:

Ubonded = Ubond +Ubend +Utors +Uimpr

Unon�bonded = UVan�der�Waals +UCoulomb

(1.7)

The functional form for the AMBER force field is thus the

following:

V =
’

bonds

kb (b� b0)2 +
’

angles

k✓ (✓ � ✓0)2 +

+
’

dihedrals

k✓ [1 + cos (n� � �)] +
’
impr

k! (! �!0)2 +

+
’

i j

4✏i j

"✓
�i j

ri j

◆12

�
✓
�i j

ri j

◆6
#
+
’

i j

qiqj

4⇡✏0ri j

(1.8)

The first term is the energy function accounting for the
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bond stretches for a given bond where kb is the bond force

constant, b is the bond length, and b0 is the equilibrium

bond distance.

The second term in the equation accounting for the bond

angles, where k✓ is the force constant, ✓ is the bond angle

and ✓0 is the equilibrium angle formed by three bonded

atoms. The third term describes dihedrals: k� is the dihe-

dral force constant, n is the multiplicity of the function, � is

the dihedral angle, and � is the phase shift. The fourth term

accounts for the impropers, that is out-of-plane bending:

k! is the force constant and !�!0 is the out-of-plane angle

(Fig. 1.11). It is also possible to notice that the functional

form of the interaction is harmonic in all cases, except for

dihedrals where it is expressed as a truncated fourier se-

ries.

b

θ
ω

ϕ

A  B  

C  D  

Fig. 1.11: Representation of
terms: (A), Ubond. (B), Utors. (C),
Ubend (D), Uimpr .

Non-bonded interactions are given by the sum of the

last two energy terms in Eq. 1.8. In particular, the Lennard-

Jones potential (fifth term) is used to model the Van der

Waals (VdW) interactions:

I � is a measure of how close two atoms can get. Thus
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it corresponds to the Van der Waals radius of a given

atom. �i j is the arithmetic mean between the radii of

particle i and j respectively, namely �i j =
�i+�j

2 .

I ✏ determines the magnitude of the attractive energy

between atoms i and j. The parameters ✏i j are ob-

tained with a geometric mean, namely ✏i j =
p
✏i✏ j .

With the 6th and 12th powers, the Lennard-Jones poten-

tial decays very fast with the distance. Thus it is often

treated by using the cutoff method, where the potential is

truncated or smoothly switched to zero at a distance larger

than a certain cutoff distance. The sixth term of Eq. 1.8 is

the Coulomb potential, which is used to model the electro-

static interactions such as dipole-dipole, ion-dipole, and

ion-ion interactions. In Eq. 1.8 qi denotes the fixed partial

charge associated to the i-th atom. The total charge of a

molecule will be given by the sum of partial charges on its

constituent atoms. In comparison with the Lennard-Jones

potential, the Coulomb potential is long-ranged and de-

cays very slowly. Therefore, the cutoff method cannot be

applied to compute electrostatic interactions, thus increas-

ing the computational cost of this contribution to the total

potential energy. A popular method to compute the long-

range electrostatic interactions is the Ewald summation

[73]. In the Ewald summation, the slow-decaying Coulomb

interaction is decomposed into a pair of fast converging

terms: one can be directly computed in the Cartesian space,

while the other one is calculated in the reciprocal space

upon Fourier transformation. The reciprocal sum is made

over an infinite number of periodic images: in fact, the

Ewald summations were originally designed to compute

the long-range interactions of crystals. Due to the periodic
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boundary conditions, the Ewald summations can now be

widely applied in MD simulations.

The Ewald summation is still computationally expensive

because the cost of the reciprocal sum increases with O(N2),
where N is the number of particles in the system. There-

fore, the application of the Ewald summation is limited to

small systems. The performance of the reciprocal sum was

improved by the development of the Particle Mesh Ewald

(PME) method [79], in which the charges are assigned to

grid-points using interpolating functions. The computa-

tional cost of the PME method scales as N · log(N), and

thus it has been widely used in simulating complex sys-

tems such as proteins.

1.3.2 Integrators

As previously discussed, solving Newton’s equations

of motion analytically is impossible due to the complex

form of the potential energy function U (r1, . . . , rn) that de-

pends on the positions of all the particles (r1, r2, . . . , rn) in

the system. Therefore, several numerical integration algo-

rithms have been developed to solve Newton’s equations

of motion. All these algorithms are based on the Taylor

expansions of positions⇤.

Verlet integrator

This integrator was developed by Verlet in 1967 [80]. In

order to derive it, we first write down the Taylor expansion

of r (t + �t) for small �t:

⇤ Formally the Trotter decomposition of Liouville operator formulation
is employed [73].
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ri (t + �t) = ri(t) + vi(t)�t +
1
2

Fi(t)
mi
�t2 +

1
3!
›ri(t)�t3 + O

⇣
�t4

⌘
(1.9)

where vi(t) is the velocity of the particle i and Fi is the force

acting on the particle i at time i. The Taylor expansion of

r (t � �t) is:

ri (t � �t) = ri(t) � vi(t)�t +
1
2

Fi(t)
mi
�t2 � 1

3!
›ri(t)�t3 + O

⇣
�t4

⌘
(1.10)

Summing up both sides of Eqs. 1.9 and 1.10, we obtain:

ri (t + �t) = 2ri(t) � ri (t � �t) + Fi(t)
mi
�t2 + O

⇣
�t4

⌘
(1.11)

The velocities do not appear in equation 1.11 but can be

obtained by subtracting Eq. 1.10 from Eq. 1.9:

vi(t) =
ri (t + �t) � ri (t � �t)

2�t
(1.12)

Leap-frog algorithm

The Verlet algorithm requires knowledge of position at

times t and t � �t to obtain the coordinates at time t + �t.

A fully equivalent alternative is provided by the leap-frog

algorithm. This algorithm defines the speed at half time

steps:

vi

✓
t � �t

2

◆
=

ri(t) � ri (t � �t)
�t

(1.13)

vi

✓
t +
�t
2

◆
=

ri (t + �t) � ri(t)
�t

(1.14)

From these definitions we find immediately, ri (t + �t) by
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solving:

ri (t + �t) = ri(t) + �t · vi

✓
t +
�t
2

◆
(1.15)

Velocity Verlet algorithm

Although fully equivalent to the Verlet algorithm, the

leap-frog algorithm yields coordinates and velocities at

different instants of time. This implies that it is not pos-

sible to calculate the total energy of a system at any time

since the kinetic and potential energies will be defined

at semi-integer and integer multiples of �t, respectively.

An improvement of the leap-frog algorithm was later pro-

posed by Swope et al. [81]. Considering the expansion of

the coordinates up to the second order, we have:

ri (t + �t) = ri(t) + vi(t) · �t +
�t2

2mi
Fi(t) (1.16)

We can also start from ri(t + �t) and vi(t + �t) and then

integrate back in time to ri(t) obtaining:

ri(t) = ri (t + �t) � vi(t + �t)�t +
�t2

2mi
Fi (t + �t) (1.17)

Combining the Eqs. 1.16 and 1.17 and solving for vi (t + �t)
we get:

vi (t + �t) = vi(t) +
�t

2mi
[Fi(t) + Fi (t + �t)] (1.18)

The two Eqs. 1.16 and 1.18 allow calculating the time

evolution of positions and velocities simultaneously. It can

be easily shown that the Velocity Verlet algorithm is fully

equivalent to the Verlet algorithm.
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1.3.3 NPT and NVT ensembles

The direct application of the integrators introduced in

section 1.3.2 will produce simulations in the microcanoni-

cal ensemble. However, in many cases, we wish to simulate

the system at a constant temperature or in the canonical

ensemble. Several methods have been proposed to achieve

temperature control in MD simulations.

These methods mimic the effect of a large energy reser-

voir (thermostat) coupled to the system. The temperature

in an MD simulation is obtained through the equipartition

theorem using the instantaneous value of the total kinetic

energy:

kbT⇤ =
1
D

N’
i=1

miv2
i (1.19)

where D is the number of degrees of freedom of the system,

and kb is the Boltzmann constant. A first intuitive approach

would be to rescale all velocities at each time step to keep

T constant. This approach is wrong for two reasons: in

fact, it introduces sudden jumps of the kinetic energy of

each particle trajectories at certain points in time. This

discontinuity fits badly with the approach of molecular

dynamics. Moreover, this algorithm cancels in whole (or in

part if the correction is applied only when the temperature

exceeds a certain degree) the fluctuations of the kinetic

energy, which are instead typical of a canonical ensemble.

To overcome the first problem, the Berendsen thermostat

(1984) [82] introduces an additional differential equation

for the kinetic energy :

€K = 2K � 3NkbT⇤

⌧
(1.20)
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Figure 1.12: Molecular structure
of water molecule. The corre-
sponding coarse-grained bead is
shown with a transparent green
bead.

where ⌧ is a time constant. The Berendsen thermostat can-

not produce a proper canonical ensemble since it sup-

presses the fluctuations of the kinetic energy. However, it

has the advantage of easy tuning of the coupling strength:

it is thus recommended in the equilibration phase of a simu-

lation. A later study fixed some of the issues in the Berend-

sen thermostat by introducing an additional stochastic

term that ensures the correct fluctuations of the kinetic

energy. This improved Berendsen scheme is also called the

velocity-rescaling thermostat [83].

Other methods widely used in the physics community a-

chieve temperature control in MD simulation by modeling

the interaction with a heat reservoir in a stochastic fashion

through introducing random perturbations and friction

acting on the particles [84, 85].

1.4 Coarse-Grained models

Atomistic molecular dynamics simulations (MD) with

an all-atom force field provide deep and broad insights

into molecular-scale phenomena. Nevertheless, all-atom

simulations are limited to tiny systems and nanosecond

time scales. Therefore the development of simplified or

coarse-grained (CG) molecular models has become an ac-

tive field of research in the past few decades.

Coarse-grained models are a reduced representation

of all-atom models: in this approach, several atoms are

grouped together and described jointly as a single point-

like particle (see Figs. 1.12 and 1.13 for a visualization).

This significantly reduces the number of particles in the

system and hence also the computational cost allowing the
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Figure 1.13: Polyalanine struc-
ture in three different represen-
tations: (a) all-atoms, (b) coarse
grained of functional groups, (c)
coarse-grained of amino acid
residues.

simulation of large-scale biological systems.

Other three aspects are prominent: first, the interaction

potentials in CG models are typically much softer than

atomistic force fields; second, larger time steps can be cho-

sen when integrating the equations of motion, further al-

leviating the numerical effort; third, the potential energy

surface on which the molecules move is smoothed, leading

to an acceleration of the molecular dynamics [86].

However, it is not only their computational efficiency

that makes CG models attractive though. In many large-

scale applications, we are not interested in the microscopic

details of the system anyhow. In a sense, CG approaches

automatically average out these details and focus only on

the relevant length scales [19].

As stated above, CG models typically entail pseudoatom

sites that are designed to represent combined groups of

atoms. Usually, pseudo atoms are defined as groups of

atoms of common chemistry, like methyl or carbonyl groups.

Alternatively, they can contain many functional units, as

represented in the Fig. 1.13. The latter, in particular, shows

the polyalanine in three different representations: (a) all-

atom, (b) coarse-grained of functional groups, and (c) coarse-

grained of amino acid residues.

Such a description of a system requires the definition of

a mapping function. The latter takes as input a set of atom-

istic coordinates in the fully atomistic system and maps

this to a unique bead in the CG system. Mathematically,

this means the CG coordinates R are constructed from the

atomistic coordinates r via

R =Mr (1.21)
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where M is an n ⇥ N matrix (n and N being the number of

particles in the atomistic and CG system, respectively).

However, the main challenge of coarse-graining lies in

the derivation of CG models that correctly catch only the

relevant features of the system, neglecting the unnecessary

details. A wide variety of approaches for the parametrisa-

tion of CG model exists that can be divided into two main

groups: bottom-up and top-down.

Bottom-up coarse-graining approaches employ informa-

tion from a more detailed model (usually all-atom refer-

ence) to systematically fit the potential for a CG model of

the same system. The most common techniques are Iter-

ative Boltzmann Inversion (IBI) [87, 88] and Inverse Mon-

te Carlo [89, 90], which aim at preserving reference pair cor-

relation functions, Force Matching [91, 92], which tries to

reproduce the multi-body potential of mean force, and Rel-

ative Entropy based methods [93, 94] which minimize the

information loss between the CG and the reference system.

In top-down models, the interactions are parametrized

without explicit consideration of a more detailed model.

Usually, the interactions are determined either based on

physico-chemical properties to reproduce some structural

or thermodynamic feature that is observed on larger scales.

MARTINI force field [95, 96] falls into this category⇤.

Another example of a CG model derived from the top-

down approach is the classical Elastic Network Model

(ENM) [36, 97–102] in which the interactions between the

CG beads are parametrized based on a reference structure,

but without any knowledge of the real forces acting be-
⇤ More precisely, MARTINI is parametrised “top-down” regarding the

non-bonded interaction; on the other hand, the bonded interactions
are defined “bottom-up”, parametrised starting from all-atom or
ab-initio simulations.
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tween the atoms. Hereafter we discuss in further detail

such a method.

1.4.1 Elastic Network Models (ENMs)

Generalities

Elastic Network models for proteins were introduced,

for the first time, by Monique Tirion [36] as a simplified

approximation of the potential energy function of a system

(e.g., macromolecules) near equilibrium. In particular, she

proved that the all-atom force field of a protein could be

replaced by local springs, reproducing with great fidelity

the protein’s low-energy vibrational spectrum. In other

words, the very accurate potential of a realistic model, i.e.,

bonds, angles, torsion, bending potentials, Van der Waals

forces, and electrostatic interaction, can be substituted by

an effective potential, whose form is:

VAT
ENM(r) =

1
2

K
’
i< j

Ci j(ri j � r 0
i j)2 (1.22)

where:

I ri j is the scalar distance between the particles i and j

computed as the absolute value of the distance vector

i.e. ri j = |ri � r j |;
I r0

i j corresponds to the same quantity but evaluated in

the reference conformation: r0
i j = |r0

i � r0
j |;

I K is the spring constant;

I Ci j is called contact matrix and it is defined as:

Ci j =

8>>><
>>>:

1, if r0
i j  Rc

0, otherwise
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where Rc is the cutoff distance within which two

atoms must be located in the reference structure to

interact.

Thus, despite the ENMs are a coarse-grained model, the

number of degrees of freedom is not reduced.

It is important to realize that the potential energy func-

tion in the Eq. 1.22 is not quadratic in the coordinates ri

because the distance ri j involves the calculation of a square

root, by definition. Nevertheless, it is possible to expand

the Eq. 1.22 in terms of the displacements ri � r0
i from the

reference structure, according with the Taylor formula:

VAT
ENM(r) = VAT

ENM(r0) +
’

i

@VAT
ENM(r0)
@ri

����
r0

�
ri � r0

i
�
+

+
1
2

’
i, j

@2VAT
ENM(r)
@ri@r j

����
r0

�
ri � r0

i
� ⇣

r j � r0
j

⌘
+ O

�
r � r0

� 3

(1.23)

The constant term VAT
ENM(r0) can be neglected because it is

just a shift of the potential, and therefore can be consid-

ered as an irrelevant constant. Moreover, the first deriva-

tive in the previous equation vanishes at r0 because of the

extremality condition: indeed, in correspondence of the

minimum, the first derivative of a function is zero. Thus,

the first non-zero contribution to the potential is given by

its second derivative. All these considerations lead to:

VAT
ENM(r) ⇡

1
2

’
i, j

@2VAT
ENM(r)
@ri@r j

����
r0

�
ri � r0

i
� ⇣

r j � r0
j

⌘

=
1
2

’
i, j
�r†i Hi j�r j

(1.24)

where we used the substitutions �ri = ri � r0
i , while Hi j is
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the Hessian matrix defined as:

Hi j =
@2VAT

ENM(r)
@ri@r j

����
r0

(1.25)

The elastic network model described in the Eq. 1.22 is

also called Anisotropic Elastic Network Model (ANM) since

the energy cost associated with the displacement for an

atom depends on its direction: the information about the

orientation of each interaction with respect to the global

coordinates system is considered within the Force Hessian

matrix Hi j .

On the contrary, in the so-called Gaussian ENM (or GNM)

[98, 103, 104], the potential is given by:

VGNM =
�

2

"
N’
i, j

(�Rj � �Ri)2
#
=
�

2

"
N’
i, j
�Ri�i j�Rj

#
(1.26)

where � is a force constant uniform for all springs and �i j

is the i jth element of the Kirchhoff (or connectivity) matrix

of inter-residue contacts, defined by:

�i j =

8>>>>>>>>><
>>>>>>>>>:

�1, if i , j and Ri j  rc

0, if i , j and Ri j > rc

�
N’

j, j,i

�i j , if i = j

(1.27)

where rc is a cutoff distance for spatial interactions and

taken to be 7 Å for amino acid pairs, represented by their

↵-carbons.

Since in the Eq. 1.26 the pairwise interaction is propor-

tional to the square vector displacement (�Rj � �Ri)2, the

energy cost associated at a displacement does not depend

on the direction in which it is performed, unlike the ANM.
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From now on, except if explicitly declared, we will focus

on ENM, always intended as anisotropic models.

From atomistic to Coarse Grained

As explained in Sec. 1.4, the approaches to coarse-graining

can be enclosed in two main categories: bottom-up and

top-down. In particular, the ENMs fall in the latter group,

as the interactions between the CG beads are parametrized

based on a reference structure, but without any knowledge

of the real forces acting between the atoms.

However, the construction of a low-resolution ENM (or

CG-ENM) requires, as a first thing, the choice of a smaller

set of new degrees of freedom, and second the definition

of effective interactions among them. The first step can be

expressed by using a mapping between the atoms described

in the high-resolution level (all-atom representation) and

the smaller number of CG sites in the lower resolution.

Usually, the mapping is such that the CG coordinates

(RI) can always be expressed as a linear combination at

atomistic coordinates (ri). In this case, the mapping func-

tion becomes a mapping matrix M:

RI =MIiri (1.28)

where the convention of summation over repeated indices

is employed.

When constructing CG-ENMs, the most common choice

for mapping is to retain only the C↵ for each amino acid,

whose position is precisely the same of the C↵ in the fully-

atomistic representation. It leads to a quasi-uniform mass

distribution along the protein backbone. This strategy is
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(a) (b)

(c)

Figure 1.14: Adenylate kinase (4AKE) in case of: (a) all-atom representation, (b) mapping of each residue
onto its C↵ colored in light transparent yellow (c) C↵-only for each residue representation colored in yellow.

graphically shown in Fig. 1.14. In particular, in (a) and (c) is

represented the all-atom, and the C↵-only representation of

a protein Adenylate Kinase respectively; in (b) is shown the

intermediate step between the two, mapping each residue

onto its C↵. Other mappings may be possible, for instance,

retaining both C↵ and C� for each residue, but it is less

frequent.

Once the mapping has been established, interactions

have to be defined. Usually, the interaction is harmonic,
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as in the Eq. 1.22. In analogy, in our specific CG case, we

could write that:

VCG
ENM(R) = 1

2

’
I<J

KI J(RI J � R0
I J)2 (1.29)

where KI J is the spring constant between the site I and

J. Its value is 0 in case there is no spring between two

sites. This model as well can be expanded in Taylor series.

In analogy with the Eqs. 1.22, 1.23 and 1.24, it turns out

that:

VCG
ENM(r) =

1
2

’
I,J
�R†

I HI J�RJ (1.30)

where the Hessian Matrix is given by:

Hi j =
@2VCG

ENM(R)
@RI@RJ

����
R0

(1.31)

Two applications of the Elastic Network Models [36, 105,

106] in the context of protein modelling can be found in

chapters 3 and 4 representing the coarse-grained part of

the Multiscale Simulations. The latter are the subject of the

next section.

1.5 Multiscale Simulations

Although using a coarse-graining technique (see Sec. 1.4)

makes it possible to characterize the relevant properties of

a system at a cheaper computational costs, it is not able to

answer the questions related to the systems in which the

chemical details of a small region have major effects on the

system behavior.
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Figure 1.15: Schematic represen-
tation of a solvated protein (in
green) that interacts at its active
site (in green). The box of water
is schematically shown with a
light blue. The region of interest,
namely the active site of the pro-
tein in which the ligand-binding
and catalytic reactions occur, is
shown with a red rectangle.

Let us consider, for instance, the case of a solvated pro-

tein that interacts at its active site with a ligand (as pro-

posed in Chapter 3 and Ref. [24]) schematically shown in

the Fig. 1.15: in this case, on one hand, the computational

cost increases by employing high resolution simulation

(atomistic model) of all regions and, on the other hand, the

system’s properties at the region of interest are largely dis-

torted or cancelled by simulating this part with low resolu-

tion (coarse-grained model). The solution to this dilemma

is given by the multiscale models in which both atomistic

and coarse grained resolutions are concurrently employed.

Specifically, in the example reported in Fig. 1.15, the high-

resolution treatment is limited only to the protein’s active

site and the ligand and the surrounding water (red square

in the figure), while the rest is modeled at a lower reso-

lution level, sufficient to capture the large-scale structure

and thermodynamics.

In general, these multi-resolution approaches are very

useful when in a small region of the system the chemical

details play a crucial role, such that no simplification of the

description is feasible: thus, it requires a high-resolution

modeling; the remainder on the other hand, allows a lower

resolution treatment.

More generally, the term multiscale modeling is widely

used to describe a hierarchy of simulation approaches to

treat systems across different scales. For a given length

and time scale of interest, one picks a method capable of

simulating the systems. A common way of graphically rep-

resenting this approach is a multiscale diagram, as shown

in Fig. 1.10 (see Sec. 1.2). As we have already seen, when

one moves to larger scales, a coarse-grained model is re-
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quired to make simulations feasible.

During the last few years, many methodologies have

been developed in order to couple multiple resolution

methods. However, linking fully-atomistic simulations

with coarse-grained modelling is a challenging process

[20, 39, 107, 108], which allows in principle to describe the

behavior of the system at multiple scales.

One of the most known concurrent multiple-resolution

schemes is the quantum mechanic/molecular mechanic

(QM/MM) method [109–112]. It allows a connection be-

tween ab initio resolution and classical all-atom models. In

particular, in a small domain forces acting on atoms are

obtained through quantum calculations, while in the rest

classical atomistic force fields are employed. Such a scheme

is widely used in studying enzymatic chemical reactions

[113, 114].

Another class of multi-resolution schemes focuses on

the connection between atomistic and CG models simul-

taneously [115–118]. In practice, this idea lies in a smooth

spatial interpolation on the atomistic and CG force field.

Several methods have been proposed in the past few years,

which can be classified into two main classes: on the one

hand, some methods interpolate on the forces acting on

the particles; on the other hand, some methods interpo-

late the interaction potential. In the former category falls a

very popular technique known as Adaptive Resolution Sim-

ulation (AdResS) [115], while in the second class we find

the Hamiltonian Adaptive Resolution Simulation (H-AdResS)

[116] based on a well defined Hamiltonian, as the name

suggests.

Both schemes have advantages and disadvantages de-
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pending on the application of interest, and none of the two

is somewhat better in the absolute sense. In short, when

an exact fulfillment of Newton’s third law is essential, it

could be better to use force-based AdResS, whereas, for

all applications that require an Hamiltonian formulation,

H-AdResS is preferable. Indeed, both methods have been

successfully used in soft matter systems, such as solvated

proteins, DNA, macromolecules, and so on [20, 28, 30, 116,

119–122] in comparison with all-atom simulations.

Another class of multiple resolution scheme is known

as Dual Resolution Model. At difference with the AdResS

method, such a model is not adaptive; thus, the resolution

is fixed during the simulation. In particular, the region

of the system that plays a pivotal role is treated at high-

resolution level, while the remainder is coarse-grained, for

example as an Elastic Network Model (ENM).

Since part of this research work (e.g. Chapter 2) focuses

on the force-based Adaptive Resolution (AdResS) method-

ology, the latter will be discussed in further detail in the

next section, while the Dual Resolution method is de-

scribed in chapter 3 and 4.

1.6 Adaptive Resolution Simulation

(AdResS)

The force-based AdResS methodology was proposed in

2005 by Praprotnik et al. [20, 115]. It allows to simulate a

system where two different models, for instance, an all-

atom one and a coarse-grained one, are simultaneously

employed in different sub-regions of the simulation do-
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main. An important feature of this scheme is that particles

are allowed to diffuse from one region to the other freely.

The atomistic region can have different, but regular geome-

tries, such as a spherical one (Fig. 1.16(a)) or a cuboid one

(Fig. 1.16(b)) or a cylindrical one.

(a)

CG CGHY HYAT

(b)

Figure 1.16: AdResS system in
case of: (a) spherical atomistic re-
gion [119] and (b) cuboid atom-
istic region [123]. In particular, in
both cases, the atomistic region
(AT) is shown in red and white,
the hybrid one (HY) in red, blue
and white, and finally the coarse-
grained domain (CG) is colored
in blue.

Between the atomistic region (AT) and the coarse-grained

one (CG), a hybrid (or transition) region (HY) is employed

in which the coupling between different levels of resolu-

tion occurs. In particular, the non-bonded force F↵� acting

between two particles ↵ and � is given by:

F↵� = �(r↵)�(r�)FAT
↵� +

⇥
1 � �(r↵)�(r�)

⇤
FCG
↵� (1.32)

where:

FAT
↵� =

’
i2↵

’
i2�

FAT
i j (1.33)

Here, FAT
i j is the interaction between atoms i and j us-

ing the atomistic force-field, while FCG
↵� is the interaction
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HY

rat

dhy

CG

AT

Figure 1.17: Schematic represen-
tation of AdResS approach in
case of atomistic spherical re-
gion. The figure also shows the
hybrid and coarse-region. The
water molecules, the protein in
the center, and the regions are
not in scale.

between molecules ↵ and � using the coarse-grained force-

field. Finally, � is a transition function varying smoothly

and monotonically between 1 and 0. In particular, it as-

sumes the value 1 in the atomistic region and 0 in the

coarse-grained domain. Actually, from the Eq. 1.32 it turns

out that:

F↵� =

8>>>><
>>>>:

FAT
↵� , if � = 1

FCG
↵� , if � = 0

(1.34)

In the hybrid region � assumes intermediate values be-

tween 0 and 1: the precise shape of � can vary, but it is

essential that it guarantees a smooth transition between the

force fields. To this end, squared cosine functions are com-

monly used [115–117, 119, 122, 124]. For instance, in case

of spheric atomistic regions [28, 119], � has the following

shape:

�(r) =

8>>>>>>><
>>>>>>>:

1, r < rat

cos2
✓
⇡

2dhy
(r � rat)

◆
, rat < r < rat + dhy

0, rat + dhy < r

(1.35)

where dhy is the diameter of the hybrid region, whereas rat

is the radius of the atomistic part, as schematically shown

in the Fig. 1.17

Another important aspect is that the force interpolation

scheme described by Eq. 1.32 conserves Newton’s third

law, but it does not admit a Hamiltonian formulation. In

fact, the requirement of having Newton’s third law satis-

fied everywhere in the system is not compatible with an

energy interpolation. Therefore, the consequence is that
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the energy is not conserved, and excess heat is produced

in the transition region. This surplus of energy can be re-

moved by using a thermostat, such as Langevin thermostat,

establishing thermal equilibrium [22, 122] everywhere.

Thermodynamic Force

In general, the coarse-grained potential does not repro-

duce all thermodynamical properties of the atomistic po-

tential, which it is supposed to represent [125–127]. The

pressure of the CG and AT potential differs significantly

from each other, and it also leads to a non-uniform density

profile. This undesirable thermodynamic imbalance can be

corrected by using the so-called Thermodynamic Force (TF),

a compensatory force that is applied within the hybrid

region, ensuring a flat density profile along the direction

of resolution change [118].

The thermodynamic force can be obtained with an itera-

tive procedure via the following expression:

Fi+1
TH = Fi

TH � 1
⇢0T

r⇢i(r) (1.36)

where ⇢0 is the molecular density reference, T is the sys-

tem’s isothermal compressibility, and ⇢i(r) is the molecular

density profile as a function of the position, whose direc-

tion is orthogonal to the CG-AT interface. In the beginning,

we impose that F0
TH = 0, and the initial density profile is cal-

culated. The protocol converges by construction once the

density profile is flat, namely when the condition r⇢(r) = 0

is satisfied.
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Computational cost in AdResS

From the numerical/computational point of view, the

possibility of treating a system with a reduced number of

degrees of freedom except where it is strictly necessary

making use of AdResS scheme, represents an advantage,

since a much smaller number of force calculations are re-

quired in the coarse-grained region. This is particularly

true for parallel MD codes such as GROMACS [128], where

a dynamical decomposition of the simulation box allows

one to subdivide the box with a finer grid in the AT and

HY region, while a smaller number of processors is as-

signed to the CG region. For example, for a water system

with an AT region covering 1/6 of the total simulation box,

simulated with GROMACS on a 16-cores processor, the

speed-up is about a factor three. This factor is nonetheless

small compared to what can be achieved with other sim-

ulation packages, such as ESPResSo++ [129, 130]: in fact,

water simulation in GROMACS is extremely optimized,

and any modification of the standard code can introduce a

bottleneck. Other results obtained with AdResS approach

and their relative computational cost can be found in Chap-

ter 2: in the simple test system studied (methanol and 3-

methylindole in a cubic box of water), we observed that

this method provides a substantial reduction in simula-

tion time with respect to a fully atomistic simulation; the

speed-up is about a factor three.

AdResS or not?

As aforementioned, in this scheme, a Hamiltonian for-

mulation is not possible, but it is not a problem: equilib-

rium and canonical sampling can be enforced by using a
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Langevin thermostat. Moreover, the thermodynamics of

the system is under control introducing an external field

– the thermodynamic force – in the hybrid region to com-

pensate for the density imbalance. Nevertheless, the lack of

Hamiltonian can have negative consequences: for instance,

microcanonical simulation is not feasible, and no Monte

Carlo scheme can be implemented. The solution is using

another method called H-AdResS [116] where H stands for

Hamiltonian. As always, everything has a cost: Newton’s

third law is satisfied only on average in the hybrid region.

However, this is another story [131, 132], whose discussion

goes beyond the scope of this introduction.

1.7 Outline

In the following, a brief overview of Chapters 2-5 is

given. In particular:

I The second chapter focuses on the force-based Adap-

tive Resolution Scheme and its use, in combination

with Thermodynamic Integration (TI) [133], for the

calculation of free energy solvation of amino acid

sidechain analogs. All simulations have been per-

formed with the ESPResSo++ package [129, 130].

I The third chapter describes another multi-resolution

scheme, in which the CG part is modeled in Elastic

Network Model ENM [36, 97–102]. In particular, this

scheme has been employed to calculate the binding

free energy of egg white lysozyme (HEWL) with the

inhibitor di-N-acetylchitotriose. Particular attention

is paid in the selection of the atomistic and the coarse-

grained part: indeed, the active site is modeled with



44 1 Introduction

different numbers of residues treated all-atom.

I The fourth chapter focuses, once again, on the Dual

Resolution scheme proposed in Chapter 3, applied

on a small protein called Bovine Pancreatic Polypep-

tide (or 1BBA in short). The first part has the purpose

of computing the free energy landscapes in terms of

collective variables that describe the solvated system,

comparing atomistic and Dual Resolution simula-

tions. The second part, on the other hand, proposes a

further refinement of the ENM part by using different

elastic constants between CG beads.

I The fifth chapter illustrates a novel multi-scale reso-

lution scheme dubbed CANVAS or coarse-grained

anisotropic network model for variable resolution

simulations. The model is implemented in a python

script, that generates GROMACS input files. The

mapping function of a group of atoms onto a CG site

is determined by a Voronoi-like partitioning of the

structure. The parametrization of the CG interactions

is based on simple averaging rules of the properties

of the group of atoms which map on a given CG site.

Each survived atom has average properties of the

entire block, at which it belongs. The chapter shows

the first attempts to simulate the protein Adenylate

Kinase by means of this new model in GROMACS

[128] with the purpose of characterising the model’s

performance, advantages, and limits, and to identify

possible modifications to improve its accuracy based

on these preliminary results.
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T he calculation of free energy differences is a crucial

step in the characterization and understanding of the

physical properties of biological molecules. In the develop-

ment of efficient methods to compute these quantities, a

promising strategy is that of employing a dual-resolution

representation of the solvent, specifically using an accurate

model in proximity of a molecule of interest and a sim-

plified description elsewhere. One such concurrent multi-

resolution simulation method is the Adaptive Resolution

Scheme (AdResS), in which particles smoothly change their

resolution on-the-fly as they move between different sub-
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regions. Before using this approach in the context of free

energy calculations, however, it is necessary to make sure

that the dual-resolution treatment of the solvent does not

cause undesired effects on the computed quantities.

Here, we show how AdResS can be used to calculate

solvation free energies of small polar solutes using Ther-

modynamic Integration (TI). We discuss how the potential-

energy-based TI approach combines with the force-based

AdResS methodology, in which no global Hamiltonian is

defined. The AdResS free energy values agree with those

calculated from fully atomistic simulations to within a frac-

tion of kBT . This is true even for small atomistic regions

whose size is on the order of the correlation length, or when

the properties of the coarse-grained region are extremely

different from those of the atomistic region. These accurate

free energy calculations are possible because AdResS al-

lows the sampling of solvation shell configurations which

are equivalent to those of fully atomistic simulations.

The results of the present work thus demonstrate the via-

bility of the use of adaptive resolution simulation methods

to perform free energy calculations, and pave the way for

large-scale applications where a substantial computational

gain can be attained.

2.1 Introduction

One of the most challenging applications of computa-

tional methods in biochemistry is the accurate calcula-

tion of solvation and binding free energies. A prototyp-

ical example is provided by in silico drug design, where

one needs to obtain, by means of computational experi-
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ments, quantitative information about the effectiveness of

a new molecule or set of molecules in promoting or inhibit-

ing a given enzyme. It is often the case that the number

of viable candidates to become usable drugs is too large

for experimental screenings, where the complexity of the

processes under examination makes it difficult to dissect

the observed system properties into its different compo-

nents.

Computer simulations represent a valuable tool, as they

enable the pre-screening of large numbers of different sys-

tems and the comprehension of their properties at the

molecular and atomic level. This detailed information can

prove crucial to identify the most promising molecules,

thus allowing experimental research to focus on a reduced

subset of case studies.

However, the detailed determination of ligand-enzyme

binding free energies still remains a daunting task in most

cases, due to the large size of the molecules under exami-

nation. In particular, a considerable bottleneck can be the

simulation of the solvent, which might represent a substan-

tial fraction of the computational cost.

A promising way of mitigating the computational over-

head due to the explicit solvent molecules is to employ con-

current multi-resolution simulation methods. These use a

combination of computationally expensive high-resolution

potentials and cheaper low-resolution potentials simulta-

neously in order to facilitate the study of systems in which

a large range of time and length-scales play a role. The

accurate high-resolution model is used to describe those

parts of the system where fine-grained or chemically de-

tailed processes take place, while use of the less expensive
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coarse-grained (CG) potential in the rest of the system

allows bigger system sizes and longer simulations.

One such multi-resolution method is called adaptive

resolution scheme (AdResS) [108], in which the simula-

tion box is divided into atomistic (AT) and coarse-grained

regions, with particles [134] smoothly changing their reso-

lution on-the-fly as they move between regions. This reso-

lution change is achieved by the interpolation of energies

[116] or forces [115] across a transition region. The AdResS

methodology allows a significant reduction in the number

of degrees of freedom simulated atomistically, while still

reproducing the properties of a sub-region of a fully atom-

istic simulation [108]. In the past decade, most works using

the AdResS approach have concentrated on the study of

structural and sometimes dynamical properties, as well as

basic thermodynamic quantities such as density, pressure,

chemical potential or compressibility [24, 115, 119, 121, 124,

135–137]. So far, less attention has been paid to how well

free energies can be computed within an AdResS set-up.

Recent explorations of the thermodynamics of AdResS

include Refs. [31] and [138]. In particular, Agarwal et al.

compared chemical potentials calculated as an intrinsic

side-product of their Grand Canonical AdResS setup to

free energies of solvation calculated in fully atomistic sys-

tems [139].

Here we introduce the combination of the force-based

AdResS approach and Thermodynamic Integration [133]

(TI) to calculate free energies. We obtain solvation free

energies of amino acid sidechain analogues in water, a set

of classic systems studied notably by Shirts et al. [140], and

also recently employed in an exploration of a non-adaptive
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multi-resolution technique, in which Kuhn et al. discussed

the influence of density deviations and orientational edge

effects on the solvation free energy in that approach [23].

In our AdResS setup, we describe the solute molecule

and surrounding solvent molecules using an atomistic po-

tential, while the rest of the system is modelled at a cheaper,

coarse-grained level. We explore the influence of atom-

istic region size, coarse-grained potential and density con-

trol on the free energy. We also discuss how the potential-

energy-based Thermodynamic Integration approach com-

bines with the force-based AdResS methodology, in which

no global Hamiltonian is defined. We show that, because

AdResS allows the sampling of atomistic configurations

which are equivalent to those of fully atomistic simulations

in the equivalent ensemble, we can nevertheless accurately

calculate free energy values with this approach.

These results demonstrate that the usage of the force-

based AdResS method in tandem with Hamiltonian-based

free energy calculations is viable and quantitatively sound.

This validation paves the way to large-scale applications in-

volving large macromolecules and, therefore, large amounts

of explicit solvent to be treated at dual resolution.

2.2 Methodology

In this work, we calculate the solvation free energy of

amino acid sidechain analogues methanol and 3-methylin-

dole (analogues of serine and tryptophan, respectively).

These two molecules were chosen because they have sig-

nificantly different sizes: methanol has a fairly similar

size to water and a molar mass of 32.04 g mol�1, while
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3-methylindole has a molar mass of 131.18 g mol�1. The

radii of gyration, 0.08 nm for methanol and 0.21 nm for

3-methylindole, give an indication of the size difference.

Each simulation system used contains one solute molecule

in aqueous solution. We perform fully atomistic reference

simulations with a range of box sizes, and AdResS simula-

tions with a range of different atomistic region sizes and

two different coarse-grained potentials for water. The first

coarse-grained potential used is derived via the system-

atic coarse-graining procedure Iterative Boltzmann Inver-

sion (IBI) [87, 88, 141] to reproduce as closely as possible

the atomistic water centre-of-mass structure. In the sec-

ond case, the coarse-grained region contains a gas of non-

interacting particles, i.e., an ideal gas, which can be seen

as the most extreme possible coarse-grained “potential”

[142].

2.2.1 Adaptive Resolution Scheme and

Thermodynamic Integration

In the AdResS methodology (illustrated in Figure 2.1(a)),

the simulation box is divided into different regions: the

atomistic (AT) region, where non-bonded interactions are

modeled using an atomistic force field, and the coarse-

grained (CG) region, where a coarse-grained force field is

used. Between them is a hybrid (HY) region where particles

smoothly change their resolution between atomistic and

coarse-grained. In this work, the AT region is a sphere of

radius rat centered on an atom with coordinates rcentr at the

center of the solute molecule. With this definition, the AT

region follows the solute and moves together with it: this

strategy, which relies on the translational invariance of the
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Figure 2.1: (a) Illustration of the AdResS approach, showing the atomistic, hybrid and coarse-grained regions
(not to scale) (b) Schematic representation of fully atomistic and AdResS systems used. The methanol or
3-methylindole solute is represented by a black dot in the centre of the box, (c) Up: methanol chemical
structure, Down: 3-methylindole chemical structure. Atomistic details are shown in red, blue, cyan and
white (O, N, C and H atoms).

uniform solvent with periodic boundary conditions, makes

it unnecessary to restrain the molecule in a particular point

of the simulation box.

The HY region is then a spherical shell of width dhy,

and the remainder of the system is the CG region. Wa-

ter molecules diffuse freely between regions, changing

resolution as a function of their instantaneous position.

Particle resolution is described using a function w that

varies smoothly and monotonically across the HY region,

from a value of 1 in the AT region to 0 in the CG region.

For a molecule ↵ whose center of mass r↵ is at a distance

r = |rcentr � r↵ | from the center of the AT region, it has the

form:

w(r) =

8>>>>>>><
>>>>>>>:

1, r < rat

cos2
✓
⇡

2dhy
(r � rat)

◆
, rat < r < rat + dhy

0, rat + dhy < r

(2.1)

Note that in many works which use the AdResS method-

ology, the resolution function w is referred to using the
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symbol �. We write w here to avoid confusion with the

order parameter � used in Thermodynamic Integration.

Non-bonded interaction forces are then modeled using

a force-interpolation scheme, in which the intermolecular

force between the centers of mass of molecules ↵ and � is

given by

F↵� = w(r↵)w(r�)FAT
↵� + [1 � w(r↵)w(r�)]FCG

↵� (2.2)

where

FAT
↵� =

’
i2↵

’
j2�

FAT
i j (2.3)

where FAT
i j is the atomistic non-bonded interaction between

atoms i and j, and FCG
↵� is the coarse-grained non-bonded

interaction between molecules ↵ and �. In this scheme, the

forces interacting between two atomistic water molecules

simplify to FAT
↵� and between two coarse-grained water

molecules to FCG
↵� . Water-water interactions across the reso-

lution boundaries are treated using the interpolation Eq. 2.2.

This scheme allows simulations which are momentum-

conserving but not energy-conserving. The global system

Hamiltonian corresponding to Eq. 2.2 is not defined [143],

and a local thermostat must be applied to deal with heat

production in the HY region [32, 115].

The dual-resolution treatment of the solvent allows a

reduction of the computational cost of the simulations. The

systems under examination here have a relatively small

size and, most importantly, a relatively large atomistic-to-

total volume ratio, meaning that the fraction of volume

where molecules are treated at the atomistic level is rela-

tively large. Because of this, in the simple test systems stud-

ied here, the computational gain is not large, and indeed a
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R Ideal sim speedup AdResS sim speedup
methanol

1.0 5.6 3.1
1.5 3.0 2.4
2.0 1.8 1.7

3-methylindole
1.0 7.1 3.6
1.5 3.7 2.6
2.0 2.3 2.3

Table 2.1: Comparison of the
speedup in simulation time pro-
vided by AdResS simulations
with respect to fully atomistic
simulations of the same size
(namely, 6.3 nm side for the
methanol and 6.8 nm side for
3-methylindole) run on a single
core. These data are obtained
from 19 ps long runs, in or-
der to minimize the idle time
employed in non-run processes
(system setup, memory alloca-
tion etc.). These speedups are
also compared to the ideal ones,
defined as the inverse of the frac-
tion of AdResS system volume
where the calculation of atom-
istic forces takes place.

major speedup is not the goal of the present investigation.

Nonetheless, we could observe that the AdResS method

provided a substantial reduction in simulation time with

respect to a fully atomistic simulation. This gain, quantita-

tively reported in Table 2.1, is defined as the inverse of the

ratio of atomistic-to-total volume. The latter is obtained as

the volume of a sphere of radius R = rat + dhy divided by

the simulation box volume. The obtained speedup is some-

what lower than the corresponding ideal value; however

the discrepancy diminishes as the volume where atom-

istic forces are computed increases. This behavior stems

from the approximation on which the definition of ideal

AdResS simulation time relies, namely, that the only com-

putational cost is due to the calculation of forces, and that

this takes place only in the atomistic and hybrid regions.

This assumption willfully neglects surface and finite size

effects, hence the deviations for systems with small atom-

istic regions. For the setups with the smallest atomistic

regions, the speedup is between ' 3 (methanol) and ' 3.6

(methylindole).
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We calculate solvation free energies using the Thermo-

dynamic Integration (TI) method [133]. For any two states

A and B in which the solute-solvent interaction differs, we

write the solute-solvent interaction potential Usw as a func-

tion of an order parameter � which takes values between

0 and 1, defining a pathway from state A to B. The free

energy difference between the states is then given by

�G =
π 1

0

⌧
dUsw(�, q)

d�

�
�

d� (2.4)

In practice this is done by discretising � and sampling

dUsw(�, q)/d� for a series of different � values between 0

and 1.

We now address one perceived possible problem. TI in-

volves derivatives of the potential energy with respect to

the parameter �, while in force-based AdResS no global

Hamiltonian is defined [143]. For the calculation of solva-

tion free energies, the energy derivative required is that

of the potential energy of the interaction between solute

and solvent, since all other energy terms in the system are

independent of �. This is defined in AdResS as long as all

atoms in all pairs contributing to dUsw/d� fall within the

AT or HY regions. Moreover, the value of hdUsw/d�i� will

be the same in the fully atomistic and AdResS systems as

long as two conditions are fulfilled: (i) all interaction pairs

contributing to Usw fall within the AT region (i.e., the in-

teraction cutoff plus the solute size is less than rat), and (ii)

both systems sample the same ensemble of configurations

in the atomistic region. We will show below that this is

indeed the case.

There also exists a formulation of AdResS (called H-

AdResS) based on the interpolation of energies instead of
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forces [116]. In this case, a global Hamiltonian is defined

and simulations are energy-conserving. We anticipate that

this formulation of AdResS can also be used without prob-

lems in TI calculations. However, using H-AdResS with

moving atomistic regions is inadvisable because the forces

in H-AdResS involve a term which is a derivative of the res-

olution function; in particular cases, that force term could

create additional spurious forces on that atom. This would

happen if the position of the atomistic region were made

mathematically dependent on the instantaneous position

of a given atom, which would be necessary to have an

isolated Hamiltonian with no external forces. This problem

could be circumvented; however it could overshadow the

issues specific to the usage of Kirkwood TI in the context of

adaptive resolution simulations. Because of these reasons,

and since in the long term we are interested in complex

applications such as protein-ligand binding which will re-

quire the use of moving AT regions, we decided to validate

the TI/force-based AdResS combination.

We note also at this point that in H-AdResS and in the

auxiliary Hamiltonian approach of Agarwal et al. [139], free

energies (excess chemical potentials) can be obtained auto-

matically as a by-product of the standard process of system

set-up. However, this “by-product” approach applies only

in the case of simple interactions between small molecules

and can no longer be used for the calculation of free en-

ergies in more complex situations such as protein-ligand

binding or interactions involving solids.
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2.2.2 Thermodynamic Force

In general, coarse-grained potentials cannot necessarily

reproduce all thermodynamic properties of the atomistic

reference potential which they are intended to represent

[125–127]. In this work, we use a CG potential derived via

Iterative Boltzmann Inversion, and also simulate a system

in which particles in the CG region are modelled using a

gas of non-interacting particles. In both cases, the pressure

of the CG potential differs significantly from that of the AT

potential, and would lead to an undesirable density differ-

ence between AT and CG regions. In order to avoid this, we

use a thermodynamic force [118] FT , a compensatory force

which is applied within the HY region, ensuring a flat den-

sity profile along the direction of resolution change. FT is

generally obtained via an iterative procedure based on the

gradient of the density profile along the direction of resolu-

tion change [118]. How straightforward it is to obtain this

tabulated force depends on factors such as the thermody-

namic difference between AT and CG potentials, atomistic

region size and geometry, and concentration of different

particle types in multicomponent systems [144].

For the current purpose of calculating free energies, a

very accurate density is required in the AT region. In order

to reach this level of accuracy, even in the most difficult

conditions (such as very small spherical atomistic region or

large differences between AT and CG potentials in terms

of thermodynamical properties such as pressure or com-

pressibility), we have developed an upgraded algorithm to

compute the thermodynamic force. Specifically, we include

an additional term in the previously established procedure

for obtaining FT in tabulated form, and define the thermo-
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dynamic force at iteration i + 1 as:

FT (r)i+1 = FT (r)i � 1r⇢i(r) + 2(Xre f � Xi)rw(r) (2.5)

where ⇢i(r) is the density profile along the direction of res-

olution change, calculated from a simulation using FT (r)i.
In the newly added term 2(Xre f � Xi)rw(r), w(r) is a func-

tion that goes smoothly from 1 to 0 across the region in

which FT is applied. We use the same functional form as

given in Equation 2.1 for w(r) which defines the resolu-

tion change in AdResS, but this is just for convenience and

there is no fundamental theoretical connection between

them. The term Xi is a measure of the density throughout

the atomistic region. It must be a well-defined value which

can be determined with very high accuracy. In the current

work, since the atomistic region is centered on an atom,

the density profile is equivalent to a radial distribution,

and we define Xi as the height of the first-solvation-shell

peak. Xre f is the corresponding value in the fully atomistic

reference system. Other measures of the density are pos-

sible and equally valid, for example the average number

of particles in the AT region. We found that the measure

we used here [height of the first solvation-shell peak in the

radial distribution function (RDF)] converged fastest as a

function of simulation trajectory length and was therefore

easiest to work with.

Finally, 1 and 2 are prefactors which can be varied to

aid convergence. A useful procedure is to start with 1 , 0,

2 = 0 and perform many iterations using relatively short,

inexpensive simulations in order to rapidly obtain a good

approximation of FT . One can then set 1 = 0, 2 , 0 and

perform iterations with simulations long enough to de-
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termine X with high accuracy, continuing these iterations

until the density in the atomistic regions is as close as de-

sired to the reference density. These two steps can then be

repeated as necessary.

Since finite-length simulations inevitably yield a density

profile containing statistical noise which is then transmit-

ted to the tabulated thermodynamic force, it can be helpful

to use some procedure to smoothen the density profile ⇢(r),
such as replacing each atom (which is a delta function, i.e.

is located at one defined point in space) by a triangle or

Gaussian function, to smooth out its mass over several bins

[123].

We note in passing that it is also possible to obtain via

IBI a coarse-grained potential with the same pressure as

the atomistic reference [88]; however this is at the cost of

having the wrong compressibility in the coarse-grained

region. Here, we chose to work with the non-pressure-

corrected IBI potential, which has the same compressibility

and structure as for the atomistic potential. This provides

a strong contrast to the other coarse-grained “potential”

we use, the fluid of non-interacting particles, in which the

structure, compressibility and pressure all differ from the

atomistic reference.

2.2.3 Simulation details

Fully atomistic and AdResS systems containing methanol

or 3-methylindole were constructed using the simulation

box sizes and atomistic region radii summarised in Ta-

ble 2.2 and illustrated in Figure 2.1(b). The box sizes range

from a little over twice the non-bonded interaction cutoff

to almost eight times the cutoff. The amino acid forcefield
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used was Amber94 [145] (we note that the non-bonded

parameters are the same as in the more recent Amber force-

fields, which were mostly focussed on improvements in

backbone parameters, not relevant here).

AdResS fully atomistic
rat hÕwii ⇡ box length ⇡ box length # molecules

methanol
1.0 608 6.3 2.8 694
1.5 1330 6.3 4.1 2189
2.0 2486 6.3 6.3 8212
3.0 5915 8.9 8.9 23399

3-methylindole
1.5 1330 6.8 6.8 10164
2.0 2486 6.8 - -
3.0 5915 9.3 - -

Table 2.2: Simulation box length,
atomistic region radius (rat ) and
number of atomistic or atomistic-
like particles in the AdResS and
fully atomistic systems used to
perform free energy calculations.
Distances are given in nm, while
wi is defined in Equation 2.1. As
a function of its position in the
HY region, each HY particle has
a weight between 0 and 1 (the
closer it is to the AT region, the
bigger wi is), whereas wi is 0
in the CG region and 1 in the
AT region. hÕwii in the second
column is the summation of all
the weights averaged over the
whole trajectory.

The water model used was TIP3P [146]. Side chain ana-

logue force fields were constructed from Amber94 amino

acid residue force fields using the procedure of Ref. [140]:

the backbone atoms were replaced by a hydrogen of the

same atom type and with the same charge as other hydro-

gen atoms connected to the �-carbon, and the �-carbon

charge was adjusted so that the molecule was neutral over-

all. All other parameters were exactly as in the amino acid

residue force field. The IBI coarse-grained potential was

obtained using the VOTCA package [147].

In free energy calculations using TI, the alchemical change

was performed in two steps: first switching off Coulom-

bic solute-water interactions (�GCoul), then Lennard-Jones

(�GLJ). The Coulomb step had a linear dependence of Usw

on �, while for the Lennard-Jones step we used the soft-

core potential of Ref. [148] with parameters ↵ = 0.5 and p =

1.0 to avoid possible singularities from overlapping atoms
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during the alchemical change.

The temperature was kept constant at 298K by a Langevin

thermostat with a friction constant � of 15 ps�1. The non-

bonded cutoff was 1.2 nm. The integration time step was

2 fs. Electrostatics were treated using the reaction field

method with a dielectric constant ✏ = 80 and a cutoff of

1.2 nm; these parameters provide a good compromise be-

tween accuracy and speed, as it was verified in [140]. The

SETTLE [149] and RATTLE [150] algorithms for rigid water

and rigid bonds to hydrogen were used.

Each system was prepared using fully atomistic mini-

mization with the steepest descent method, 500 ps NPT

equilibration and 500 ps NVT equilibration. All free en-

ergy calculations used 21 � values per �GCoul value and 40

equidistant � values (with a separation of 0.025) per �GLJ ,

with 1 ns of simulation per � value, of which the first 100 ps

were discarded as equilibration. Free energy calculations

were performed in the NVT ensemble throughout, i.e. we

approximate the Gibbs by the Helmholtz free energy, af-

ter initially verifying that the difference is negligible for

systems at these concentrations. This approximation was

validated through the comparison of system density with

and without the solute molecule. The change in concentra-

tion is in fact on the order of 0.01 � 0.1%, thus suggesting

that the amount of solvent in the system is sufficiently large

to absorb the effective volume change due to the decou-

pling from the solute. Finally, production runs for studying

system properties with full solute-solvent interaction were

6 ns long each. All AdResS and most fully atomistic sim-

ulations used the ESPResSo++ simulation package [129],

in which we have implemented TI. Some preliminary fully
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atomistic equilibration simulations used the GROMACS

simulation package [128].

All error bars shown were calculated using the Student t

distribution [151] at the 95% confidence limit, via standard

deviations obtained using block averaging in which all

trajectories were divided into five blocks of equal length.

2.3 Results

Figure 2.2 shows the solvation free energy values for

methanol and 3-methylindole, comparing fully atomistic

systems with different simulation box sizes to AdResS sys-

tems with different atomistic region sizes and different CG

potentials. The systems are those visualised in Figure 2.1(b).

The Coulomb (Figure 2.2(a),(c)) and Lennard-Jones (Fig-

ure 2.2(b),(d)) contributions to the free energy are plotted

as a function of the number of atomistic or atomistic-like

molecules in the system. For fully atomistic systems this is

simply the total number of molecules. For AdResS systems

this is the sum of the w values as defined in Equation 2.1,

i.e., each fully atomistic molecule contributes 1 to the sum,

each fully coarse-grained molecule contributes 0, and wa-

ter molecules in the hybrid region contribute in accordance

with their degree of atomistic character.

In Figures 2.2(a) and (b), for methanol, the four fully

atomistic values (black diamonds) correspond to the four

different simulation box sizes. Previous studies have shown

that in fully atomistic systems there are no detectable finite-

size effects for solvation free energies of neutral solutes as

a function of simulation box size [152], and we make the

same observation here. The four values for the AdResS
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Figure 2.2: (a),(c) Coulomb and
(b),(d) LJ contributions to the
free energies of solvation for
(a),(b) methanol and (c),(d) 3-
methylindole, fully atomistic
versus AdResS with an IBI CG
potential and with an ideal gas
CG region. (a) and (b) subplots
are plotted such that the y-axis
covers a range of 2.5 kJ mol�1, or
approximately kBT , instead (c)
and (d) are plotted so that y-axis
covers a range of 5.0 kJ mol�1.
Note that the x-axes use a loga-
rithmic scale. The quantity plot-
ted on the x-axis is defined in
the text. The color legend in (d)
is the same as in (c).

(a) (b)
Methanol

3-Methylindole

(c) (d)

103 104

no. of atom ist ic or atom ist ic-like m olecules

26.5

26.0

25.5

25.0

24.5

24.0

G
C

ou
l
/ 

kJ
 m

ol
1

fully atom ist ic
AdResS atom ist ic +  IBI
AdResS atom ist ic +  ideal gas

103 104

no. of atom ist ic or atom ist ic-like m olecules

6.5

7.0

7.5

8.0

8.5

G
L

J
/ 

kJ
 m

ol
1

fully atom ist ic
AdResS atom ist ic +  IBI
AdReSS atom ist ic +  ideal gas

103 104

no. of atom ist ic or atom ist ic-like m olecules

30.0

29.5

29.0

28.5

28.0

27.5

27.0

26.5

26.0

25.5

G
C

ou
l
/ 

kJ
 m

ol
1

fully atom ist ic
AdResS atom ist ic +  IBI

103 104

no. of atom ist ic or atom ist ic-like m olecules

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

G
L

J
/ 

kJ
 m

ol
1

systems using the IBI coarse-grained potential (red cir-

cles) correspond to the four different atomistic region sizes

(rat = 1.0 to 3.0 nm), while the value for the AdResS system

using a coarse-grained reservoir of non-interacting parti-

cles (blue square) has an atomistic region with rat = 1.5 nm.

In all cases, the AdResS free energy values agree with the

fully atomistic reference to within at least 0.6 kJ mol�1, or

0.2kBT at 298 K, kB being the Boltzmann constant and T

the temperature. This is the case even when the radius

of the atomistic region rat is 1.0 nm, somewhat less than

the non-bonded interaction cutoff 1.2 nm, and some of

the water molecules contributing to dUsw/d� fall within

the HY region. The use of such a small atomistic region is

possible because the interpolation-based AdResS approach

creates a smooth transition from AT to CG regions. The wa-

ter molecules within the HY region close to the AT region
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have w values close to 1.0 (Equation 2.1), and therefore

considerable atomistic character and atomistic-like prop-

erties. Nevertheless, in practice and taking into account

the non-bonded cutoff, a prudent choice for the minimum

atomistic region would be closer to 1.5 nm, or the solute

radius of gyration, Rg (0.08 nm for methanol), plus a 1.2 to

1.4 nm thick layer of atomistic water. This is in accordance

with the rule of thumb we suggested previously based

on a consideration of structural and dynamical properties,

which was (Rg + 1.3) nm [119].

Similarly, for 3-methylindole (Figures 2.2(c) and (d)),

fully atomistic and AdResS free energy values agree to

within at least 1.5 kJ mol�1, or 0.6 kBT . The three values

for the AdResS systems using the IBI coarse-grained po-

tential (red circles) have atomistic region sizes rat = 1.5,

2.0, 3.0 nm. Of course the minimum advisable AT region

size is bigger for 3-methylindole (radius of gyration = 0.21

nm) than for the smaller molecule, methanol. Error bars

are larger for 3-methylindole than for methanol because

the solvation shell of the larger molecule has a more com-

plex configurational space. Moreover, error bars are larger

for Lennard-Jones than for Coulomb contributions to the

free energy because the linear dependence of the Coulomb

energy on � produces a smoother, more easily integrated

curve than the non-linear softcore potential used for the

Lennard-Jones alchemical step.

Finally, Table 2.3 summarizes the comparison between

experimental solvation free energy values and those calcu-

lated in this work. We note that simulated solvation free

energy values for these amino acid sidechain analogue

systems are known to differ by roughly 1 kcal mol�1 or 4
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methanol 3-methylindole
experimental [140, 153] -21.1 to -21.5 -24.6
fully atomistic, this work -18.5 to -18.6 -21.6
AdResS + IBI, this work -18.0 to -18.4 -20.2 to -22.0
AdResS + ideal gas, this work -18.1 -

Table 2.3: Experimental solvation free energy values in kJ mol�1 compared to total solvation free energies
(�G = �GCoul + �GLJ ) calculated in this work. In the second and third row of the table we report the values
for methanol and 3-methylindole obtained in fully atomistic reference simulations and in adaptive resolution
simulations with IBI CG potential, respectively. The last row, shows the value of �G for methanol obtained
with ideal gas CG potential. It is useful to point out that the latter model has in fact been employed only in
the case of methanol for testing purposes and therefore the value of total free energy solvation for AdResS
with ideal gas CG potential for 3-methylindole was not computed.

kJ mol�1 from experimental values [140], something we

also see here. Simulated free energy values also depend

sensitively on the force field chosen and the method used

to treat non-bonded interactions [140]. We stress that our

main goal here is the comparison of AdResS free energy

values to the equivalent fully atomistic reference, for a

given force field and set of simulation parameters, and that

for this comparison the differences are within the statistical

error bars of the simulations, and well below kBT .

The AdResS approach can yield such accurate free en-

ergy values relative to the fully atomistic reference because

in the atomistic region the AdResS simulations sample con-

figurations from the same ensemble as the fully atomistic

simulations. We now examine some of the structural and

thermodynamic properties of the atomistic region in the

methanol system.

Fig. 2.3 shows the radial distribution functions (RDF) of

water oxygen atoms around selected solute heavy atoms,

comparing the various AdResS systems to the fully atom-

istic reference. In every case, the structure of the solute’s

solvation shell is perfectly reproduced in the AdResS sys-

tems, as has been shown before for a variety of other
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Figure 2.3: Radial distribution
functions between water oxygen
atoms and selected solute heavy
atoms, compared to the fully
atomistic reference: (a) and (b)
methanol, fully atomistic versus
AdResS with IBI coarse-grained
potential, (c) and (d) methanol,
fully atomistic versus AdResS
with ideal gas coarse-grained re-
gion, (e) and (f) 3-methylindole,
fully atomistic versus AdResS
with IBI coarse-grained poten-
tial: in particular in figure (e) we
used the carbon atom with sp3
hybridization as solute heavy
atom.

solutes [30, 119, 121]. In Fig. 2.4 we plot the molecular

fluctuations
�
hN2i � hNi2� /hNi along the direction of res-

olution change, where N is the instantaneous number of

particles in a given bin, and all bins have the same surface-

to-volume ratio. The molecular fluctuations are propor-

tional to the compressibility. Figures 2.4(a) and (c) show the

AdResS systems using the IBI CG potential for methanol

and 3-methylindole respectively, which is parametrised

to have the same structure, and therefore the same com-

pressibility, i.e., the same molecular fluctuations, as the

atomistic reference. In these AdResS systems, therefore, the

molecular fluctuations across the entire system including

atomistic and coarse-grained regions correspond to those
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Figure 2.4: Molecular fluctua-
tions in spherical concentric bins
of equal surface-to-volume ratio,
as a function of distance from
the solute atom defining the cen-
ter of the atomistic region, (a)
and (c) AdResS with IBI coarse-
grained potential for methanol
and 3-methylindole respectively,
(b) AdResS with ideal gas coarse-
grained region for methanol.
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measured in the fully atomistic system. More striking is

the case shown in Figure 2.4(b) for the system where the

coarse-grained region contains a fluid of non-interacting

particles (ideal gas) only for methanol. The molecular fluc-

tuations there are considerably larger than in the atomistic

model and the coarse-grained fluid is completely structure-

less. Nevertheless, even in this extreme case the properties

of the atomistic region remain unperturbed and hence the

atomistic solvation free energy values are still reproduced

in this system.

2.4 Conclusions

We have shown how the force-based adaptive resolution

approach can be used to calculate solvation free energy val-

ues, even when using a coarse-grained region or reservoir
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with extremely different thermodynamic properties. The

free energy values obtained in the AdResS setup are accu-

rate to within a fraction of kBT compared to fully atomistic

reference values. These calculations highlight one of the

strengths of the AdResS approach, in that it allows accurate

control of the atomistic region density, and a smooth tran-

sition between atomistic and coarse-grained regions, with

no perturbation of the structural and thermodynamic prop-

erties of the solute and its solvation shell even for atomistic

regions whose size is on the order of the correlation length.

We also discussed how the energy derivative is defined in

the case of a system with no global Hamiltonian.

The speed-up obtained via the AdResS approach com-

pared to fully atomistic simulations depends on the ratio of

the coarse-grained and atomistic region volumes, and the

relative computational cost of atomistic and coarse-grained

potentials. In this work we studied relatively small systems

where the atomistic region occupies a large proportion of

the total simulation box, and where fully atomistic sim-

ulations are also feasible. Studying these small systems

allowed us to validate the AdResS approach via compar-

ison to fully atomistic reference values. Our long-term

goal is the calculation of free energies in large, complex

systems where fully atomistic simulations are unfeasible

because of system size or indeed because not all system

components have been characterised to within atomistic

resolution [24]. This includes, for example, ligand binding

processes in high-molecular-weight proteins, ligand inter-

calation in DNA, or small molecule-surface interactions.

In such systems, the AdResS approach can be used to sim-

ulate at an atomistic level only those solvent molecules
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in the vicinity of the process of interest, thus significantly

reducing the number of atomistic degrees of freedom in

the system. The current work forms the basis for such cal-

culations.
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Ligand-protein interactions in lysozyme investigated
through a dual-resolution model.

A fully atomistic modelling of biological macromole-

cules at relevant length- and time-scales is often

cumbersome or not even desirable, both in terms of com-

putational effort required and a posteriori analysis. This

difficulty can be overcome with the use of multi-resolution

models, in which different regions of the same system

are concurrently described at different levels of detail. In

enzymes, computationally expensive atomistic detail is

crucial in the modelling of the active site in order to cap-

ture e.g. the chemically subtle process of ligand binding.

In contrast, important yet more collective properties of the

remainder of the protein can be reproduced with a coarser
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description. In the present work, we demonstrate the ef-

fectiveness of this approach through the calculation of the

binding free energy of hen egg white lysozyme (HEWL)

with the inhibitor di-N-acetylchitotriose. Particular atten-

tion is posed to the impact of the mapping, i.e. the selection

of atomistic and coarse-grained residues, on the binding

free energy. It is shown that, in spite of small variations of

the binding free energy with respect to the active site res-

olution, the separate contributions coming from different

energetic terms (such as electrostatic and van der Waals

interactions) manifest a stronger dependence on the map-

ping, thus pointing to the existence of an optimal level of

intermediate resolution.

3.1 Introduction

One of the most relevant challenges of computational

biochemistry and biophysics is the accurate calculation of

binding free energies [154–156], which represents one of

the key steps in the identification of pharmacological tar-

gets as well as in the development of new drugs [157–159].

However, the large sizes of the molecules under exami-

nation (often above the hundred of residues), as well as

the necessity to screen through large datasets of potential

candidate molecules, make this effort onerous in terms of

time and computational resources.

A promising way to mitigate these limitations is the

use of multiple-resolution models of the protein, that is,

representations in which different parts of the molecule

are concurrently described at different levels of resolution

[24–27, 29, 108, 160–162]. The chemically relevant part of
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the protein, e.g. the active site, is modelled at the highest

level of detail, typically atomistic. For the remainder, on

the contrary, a simplified representation is used, where

several atoms are lumped together in effective interaction

sites. The working hypothesis underlying these methods

is that only a relatively small part of the molecule requires

an explicitly atomistic treatment; the remainder, in fact, is

mainly responsible for large-scale, collective fluctuations

whose function-oriented role is well recognised and promi-

nent [15, 24, 163–165], however also prone to be accurately

reproduced by lower-resolution representations [36, 166–

170]. Hence, the resulting model favourably joins the ac-

curacy of an atomistic (AT) description where needed and

the computational efficiency of a coarse-grained (CG) one

where possible.

In order to take full advantage of the dual-resolution

approach to protein modelling, though, one has to solve a

few key open issues: first, the definition of the appropriate

coarse-grained model to employ in the low-resolution part

[106, 170–177]; second, the coupling between high- and

low-resolution models, which has to be performed so as to

guarantee that the appropriate observables are reproduced

with respect to the reference provided for example by a

fully atomistic simulation. This issue entails a further one,

namely the identification of the correct observables apt

to quantify the fidelity with which the behaviour of the

system is reproduced by the dual-resolution model. Third,

the selection of the subpart of the molecule that requires

a high-resolution modelling. In the present work we will

focus specifically on this third aspect.

Various methods and approaches have been developed
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in the past few years to describe proteins in dual resolu-

tion [25–27, 160–162]. In general, the high-resolution part

is modelled at the all-atom level, making use of one of the

several atomistic force fields available. The coarse-grained

representations employed, on the other hand, range from

simple bead-spring elastic networks [24, 36, 168] to more

sophisticated Gō-type models [160]. Recently, we have pro-

posed a dual-resolution model [24] where, in the CG part,

only the C↵ carbons of the protein chain are retained and

connected one with the other by harmonic bonds. This

model has been employed in the present work with the

aim of assessing the accuracy of a hybrid atomistic/coarse-

grained description of a protein for binding free energy

calculations. The system under examination is hen egg-

white lysozyme in explicit water, bound to a sugar sub-

strate, di-N-acetylchitotriose. We carried out calculations

of the binding free energy of the ligand in the active site,

with a twofold objective. In fact, not only we aimed at ver-

ifying that the computed quantity in the dual-resolution

model matches a reference, all-atom calculation; but rather

we also investigated the impact of different choices in the

definition of the high-resolution subdomain. This aspect

bears the highest prominence, as it is becoming increas-

ingly more evident that a crucial component in the con-

struction of accurate and effective low-resolution models

for biological and soft matter systems is represented by the

mapping [24, 106, 177], that is, the particular selection of

collective variables employed to describe the system. Here,

we provide novel evidence of this general property in the

context of a dual-resolution model of a biomolecule, and

describe a transferable strategy to tackle this issue.
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3.2 Methods

The system under examination in the present work is

hen egg-white lysozyme (HEWL) in aqueous solution. In

this model, the binding site of the enzyme and the sub-

strate molecule, the inhibitor di-N-acetylchitotriose, are

represented with atomistic detail. The protein model em-

ployed is not adaptive, that is, the resolution of a given

residue is fixed – either atomistic or coarse-grained – and

does not change throughout a simulation. However, at

difference with other works [29, 108, 160], several values

of the number of protein residues treated at high resolu-

tion have been explored and employed in independent

calculations. The impact of choosing different numbers

of active site residues to model at the atomistic level is

a central aspect of this study. The coarse-grained model

employed to describe the low-resolution part of the protein

is a simple bead-spring representation where the selected

sites (namely the C↵ atoms) are connected by elastic bonds

penalising the deviations from the distances that interact-

ing atoms have in the reference conformation. Two values

of elastic constants employed, one for C↵’s along the chain,

and one for all other bonds. Water molecules are described

in atomistic detail throughout the whole simulation box:

the interaction with the high-resolution part of the protein

takes place through the standard all-atom force field, while

the interaction with the coarse-grained beads is mediated

by a purely repulsive potential acting on the sole oxygen

atom.

Hereafter we provide a detailed description of the model.

We first discuss the calculation of the binding free energy

�Gbind , then we outline the dual-resolution model and its
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coupling to the atomistic part, and finally report informa-

tion about the simulation setup. Further details are made

available in the Supporting Information.

3.2.1 Binding Free Energy calculation

One of the key points of this work is the calculation

of the protein-ligand binding free energy �Gbind , which

quantifies the affinity of a molecule towards a protein [154–

156]. As such, it plays a prominent role in the investigation

of the biochemical function and activity of enzymes and

similar biomolecules, and in the development of effective

drugs.

�Gbind is defined as the difference between the free en-

ergy of the system in the configuration in which the ligand

is bound to the active site (Gb) and the corresponding value

when the ligand is absent (Gub):

�Gbind = Gb � Gub (3.1)

This value, in the specific case under examination, changes

according to the number of active site residues modelled

with atomistic resolution, as we will see in Sect. 3.3.

The free energy difference between two states is here

computed by means of thermodynamic integration (TI)

[133]. Specifically, a scalar � 2 [0, 1] is defined which

parametrises the potential energy of the system as

U�(r) = �UA(r) + (1 � �)UB(r)

connecting the states A and B. The sought quantity is given

by:
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Since the free energy is a state function, the nature of the

path is unimportant, and one can choose a thermodynamic

cycle that connects the bound and unbound states through

several intermediate ones, as illustrated in Fig. 3.1. In par-

ticular, we can identify two main terms: the insertion of the

ligand from vacuum to water �Glig, and the decoupling

from the protein �Gcompl . A further step is the removal of

the restraints that keep the ligand in proximity of the pro-

tein during the damping of the ligand-protein interactions,

�Gr_o f f ; this latter calculation can be carried out analyti-

cally without the need to run simulations. Hence, �Gbind is

the algebraic sum of the previous three terms:

�Gbind = �Gcompl + �Glig + �Gr_o f f (3.3)

According to the previous definitions of each term, nei-

ther �Glig nor �Gr_o f f changes with the protein resolution:

indeed, the former corresponds to the solvation free energy

of the ligand, which is always treated at the atomistic level;

likewise, the calculation of the restraint removal free en-

ergy is analytic [156]. The unique term that varies depend-

ing on the number of active site residues modelled in high

resolution is the free energy change of the protein-ligand

complex between the bound state and the state where the

ligand is removed, that is, the variation of �Gbind is equal

to the variation of �Gcompl .

The alchemical change in the calculation of �Gcompl is

performed in three steps (in the following, the subscripts

c and ` stand for complex and ligand, respectively). First,

one adds a set of restraints between protein and ligand
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Figure 3.1: pictorial represen-
tation of thermodynamic cycle.
Starting from the top-right cor-
ner of the figure, we decou-
ple the ligand from the protein
(�Gcompl , which also includes a
set of restraints between ligand
and protein) and subsequently
introduce it in water (�Glig). A
further step is the restraints re-
moval (�Gr_of f ) whose calcula-
tion is analytical.

�Gr o�

�Glig
�Gcoul,�

�GLJ,�

+
�Gbind

�Gcompl

�Gr on

�Gcoul,c

=+

+

(�Gr_on) in order to avoid the problem of the ligand leaving

the binding pocket when interactions are being removed.

The presence of restraints is indicated in the cycle scheme

of Fig. 3.1 with a red circle: it represents the fact that the

ligand is confined in a certain volume. For this work we

use the set of restraints described by Boresch [156]. Sec-

ond, Coulomb interactions are switched off (�Gcoul,c); third,

the Lennard-Jones potentials modelling van der Waals in-

teractions are removed (�GLJ,c). Likewise, the alchemical

change in the ligand free energy �Glig is performed in two

steps: first switching on Coulomb interaction (�Gcoul,`),

and then Lennard-Jones (�GLJ,`). The last contribution to

the binding free energy, �Gr_o f f , derives from restraint

removal: its calculation is analytical and therefore it does

not require alchemical changes. These transformations are

summarised in Fig. 3.1 and Tab. 3.1. Further details can be
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found in the Supporting Information in the section relative

to the thermodynamic cycle.

prot. res.alchemical changes dependence
DGcompl �Gcoul,c + �GLJ,c + �Gr_on YES
DGlig �Gcoul,` + �GLJ,` NO
DGr_off Analytical NO

Table 3.1: Summary of the al-
chemical changes and the pro-
tein resolution dependence for
each contribute of Binding free
energy �Gbind .

The calculation of �Gcompl can be carried out in two

different ways, namely decoupling and annihilation. De-

coupling refers to turning off the interaction between the

molecule and its environment, while maintaining the po-

tentials among atoms constituting the molecule; annihila-

tion, on the other hand, implies turning off the interaction

between the molecule and the environment as well as the

intramolecular interaction. Here we consider the values of

�G obtained through ligand decoupling, since this process

is more intuitive with respect to annihilation; furthermore,

the ligand is always treated at fully atomistic detail, there-

fore it is not involved in the change of free energy while

varying the protein resolution. In Tab. 3.3 and Fig. 3.6 (and

with greater detail in the Supporting Information, annihila-

tion section) we provide data showing that the values of

binding free energy obtained using decoupling and anni-

hilation are consistent within the error bars.

3.2.2 Dual-Resolution protein model

In this work the solvent is treated with all-atom de-

tail, while the protein has a fixed (i.e. position- and time-

independent) dual-resolution. The binding site is modelled

with atomistic resolution, whereas the rest of the protein

is coarse-grained. To describe the lower-resolution part
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we employ an elastic network model (ENM) [24, 36], in

which each residue is mapped onto a bead whose position

corresponds to the C↵ atom in the atomistic description.

These beads are connected by harmonic springs as shown

in Fig. 3.2.

Figure 3.2: Visualisation of the
dual-resolution protein. The
residues included in atomistic
detail are shown in red, blue,
cyan and white (O, N , C and H
atoms). The grey spheres are
ENM nodes, the stiff backbone
springs are shown as dark blue
lines and all others (weaker)
springs are shown in green.
Adapted from [24].

The potential energy is given by:

E =
’

i

’
j

ki j

⇣
ri j � r0

i j

⌘2
✓(rc � r0

i j) (3.4)

with spring constants ki j , equilibrium distance r0
i j , a cut-

off distance rc, i and j are the node index, and ✓(r) is a

Heaviside theta function taking value 1 if r > 0 and 0 oth-

erwise. In this model we made use of two different elastic

constants: a very stiff spring (kb) for consecutive beads,

represented in blue in Fig. 3.2; and a weaker spring knb

for not consecutive beads whose distance in the reference

(native) conformation lies below a fixed cutoff (in green).

The ENM used here is parametrised to reproduce the

conformational fluctuations of the reference all-atom model,

these being quantified by the root mean square fluctuations

(RMSF) of the all C↵ atoms of the system [24]. The residues
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in direct contact (H-bonding or hydrophobic contact) with

the substrate are modelled with all-atom detail; in order to

select the other binding site residues to be described at the

atomistic level, we sorted them by increasing distance of

their the center of mass from the closest ligand atom.

The water-CG protein interaction consists in a simple ex-

cluded volume, modelled via a Weeks-Chandler-Anderson

(WCA) potential [178]. The details about the procedure

followed to determine the ENM elastic constants and the

excluded volume interaction are provided in the Support-

ing Information, while the numerical values of the resulting

parameters are reported hereafter.

3.2.3 Simulation details

The reference model is given by the 2 ns equilibrated

PDB structure 1HEW in the NPT ensamble (the Parrinello-

Rahman barostat [179] with a time constant of 2.0 ps and

1 bar was used). Both fully atomistic and dual-resolution

models of HEWL are solvated in water and placed in a

cubic simulation box of 7.06 nm side. The force field em-

ployed is Amber99SB [77], whereas the water model is

TIP3P [146]. The inhibitor, which was always atomistic,

had GLYCAM forcefield parameters consistent with Am-

ber99SB [180]. The TI binding free energy calculation con-

sists of 3 different steps: �Gcompl , �Gr_o f f , �Glig:

I The protein-ligand complex free energy (DGcompl)

calculation uses 11 � values per �Grestr_on,c, 5 evenly

spaced � values per �GLJ,c (with separation 0.20) and

15 � values per �Gcoul,c, with 600 ps of simulation per

� in the fully atomistic case, and 4000 ps in the dual-

resolution case to improve the statistics.
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I The restraint removal free energy (DGr_off) calcula-

tion is analytical (details on Supporting Information).

I The ligand solvation free energy (DGlig) calculation

uses 5 evenly spaced � values per �Gcoul,` (with sep-

aration 0.20) and 16 � values per �GLJ,`, with 600 ps

of simulation of each �-value.

In the thermodynamic integration we employ the soft-

core potential of Ref. [148] with parameters ↵ = 0.5 and

p = 1.0 to avoid possible singularities in the Lennard-

Jones terms from atoms overlapping during the alchemi-

cal change. The temperature is kept constant at 298 K by

means of a Langevin thermostat with a friction constant

� = 15 ps�1. The integration step is 1 fs. The calculation

of electrostatic interaction is performed using the reaction

field method with a dielectric constant ✏ = 80 and a cut-

off of 1.2 nm. These parameters are a good compromise

between speed and accuracy, as verified in Ref. [140]. The

SETTLE [149] and RATTLE [150] algorithms for rigid water

and rigid bonds to hydrogen have been used. Each sys-

tem is prepared using fully atomistic minimisation with

steepest descent and 6 ns of equilibration in NVT (for both

ligand-free and ligand-bound systems). All simulations

(both fully atomistic and dual-resolution) are carried out

with the ESPResSo++ simulation package [129, 130], in

which we have implemented TI (except in case of annihila-

tion, for which all steps are performed in both ESPResSo++

and GROMACS [128]). Some preliminary fully atomistic

equilibration simulations use GROMACS. The error bars

shown are calculated using the Student t at 95% confidence

limit [151], via standard deviations obtained using block

averaging in which all trajectories are divided into four
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blocks of equal length.

In the dual-resolution model the spring constant be-

tween consecutive C↵ nodes along the backbone (kb) has

a stiff value of 5 · 104 kJ · mol�1 · nm�2, whilst all the other

ones (knb) have a value of 160 kJ · mol�1 · nm�2, until 1.2

nm as cutoff, parametrised by minimising the average

root mean square error in the C↵ RMSF. Moreover, a WCA

interaction is applied between C↵ nodes and all solvent

molecules center of mass. In the WCA potential, ✏ has a

value of 0.34 kJ ·mol�1 arbitrary chosen as the value for car-

bon in the atomistic forcefield, and �i = Rg,i · c where Rg,i

is the radius of gyration of a given residue i where c is the

same for all amino acids. The value of c is tuned to give the

correct bulk water density of reference for a protein-water

system. The c value found is 0.658. Further explanations

about c can be found in the Supporting Information.

3.3 Results and discussion

We performed the calculation of �Gb of lysozyme mod-

elled in dual-resolution, varying the number of atomistic

residues constituting the binding site and comparing the

results with a fully atomistic reference simulation. Recall

that the binding free energy calculation consists of three

steps: restraint removal, ligand �G, and ligand-complex

�G; of these, only the latter depends on protein resolution,

that is, only �Gcompl assumes different values for different

numbers of active site residues described at the all-atom

level.

As explained in the previous section, the contribution

coming from the restraints can be analytically computed
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at res DGCoul,c DGLJ,c DGRestr_on,c DGcompl
fully-at 145.2 ± 3.5 44.2 ± 5.2 3.6 ± 0.4 193.0 ± 9.1
aa-3 125.5 ± 7.0 50.4 ± 6.3 8.3 ± 1.1 184.2 ± 14.4
aa-4 141.4 ± 4.9 39.7 ± 9.4 7.2 ± 1.0 188.3 ± 15.3
aa-5 140.2 ± 2.8 48.7 ± 4.5 7.5 ± 1.2 196.4 ± 8.5
aa-6 147.0 ± 1.9 41.7 ± 5.4 5.1 ± 0.5 193.8 ± 7.8
aa-7 144.5 ± 0.8 38.4 ± 3.8 5.0 ± 0.2 187.9 ± 4.8
aa-8 148.0 ± 1.4 33.6 ± 1.9 6.4 ± 1.8 188.0 ± 5.1
aa-9 143.4 ± 4.7 38.1 ± 5.3 5.1 ± 0.3 186.6 ± 10.3
aa-10 145.9 ± 2.2 38.2 ± 1.0 4.4 ± 0.3 188.5 ± 3.5

Table 3.2: In this table are reported the resulting values of free energy of Complex Free Energy (4th column)
and its components (Coulomb, Lennard Jones and Restraints respectively in the first three columns) in
fully atomistic system and varying the number of atomistic residues. All the values are in kJ · mol�1 and
performed with Thermodynamic Integration. Moreover, all simulations are carried out in ESPResSo++. In
particular, for each value of �, the dual-resolution simulations with different number of atomistic residues
last 4 nsec; the atomistic simulation, instead, lasts 0.6 ns (600 ps).

and amounts to �Gr_o f f = �31.3 kJ · mol�1. Likewise, the

Coulomb and Lennard-Jones contributions to the ligand

free energy �Glig are the following:

�Gcoul,` = �142.8 ± 1.7 kJ · mol�1

�GLJ,` = �9.1 ± 6.3 kJ · mol�1

Hence:

�Glig = �151.9 ± 8.0 kJ · mol�1

The final step is the calculation of �Gcompl , whose results,

including the comparison between dual-resolution model

and fully atomistic reference, are shown in Tab. 3.2 and

illustrated in Fig. 3.3.

The first three columns of the table describe the Coulomb,

Lennard-Jones, Restraints contributions to free energy, re-

spectively, while the last one corresponds to the value of

the total ligand-protein complex free energy. All the values

are expressed in kJ · mol�1. In Fig. 3.3, the atomistic refer-
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Figure 3.3: (a) Coulomb, (b) Lennard-Jones, (c) restraint and (d) total free energies in the protein-ligand
complex, as a function of protein’s residues number included in atomistic detail in the multi-resolution
set-up. The heavy dashed black horizontal lines are the reference values from fully atomistic simulations,
and the lighter dotted black horizontal lines are the error bars for those values. These simulations use
decoupling, not annihilation. y-axes do not cover the same energy range.

ence is represented with a dash black line with its error bar.

In particular, panels (a), (b) and (c) show the three com-

ponents that contribute to the total complex free energy,

reported in panel (d). Looking at these values as a function

of the number of all-atom active site residues, we notice

that there are important deviations of the free energy from

the reference, especially in the case of 3 and 4 atomistic

residues. On the contrary, the total value of the binding

free energy agrees with the reference within the error bar
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in all cases.

Furthermore, we observe that the trend of free energy

values, in comparison to the reference, is essentially the

same: starting from 3 amino acids it approaches the refer-

ence until reaching 6, both in its components and in total.

In contrast, going from 6 to 8 atomistic residues the value

deviates from the reference, even though the total remains

close to it. Finally, from 8 to 10, �G converges again. Hence,

increasing the number of atomistic residues does not in-

troduce necessarily an improvement of the computed free

energy, at least as long as the various free energy compo-

nents are considered separately.

In order to gain further, quantitative insight into these

results, we computed the quadratic deviation from the

reference, �2, defined as:

�2
i = �

2
i�Coul + �

2
i�LJ + �

2
i�Restr =

= (�GCoul_i � �GCoul�at)2

+ (�GLJ_i � �GLJ�at)2

+ (�GRestr_i � �GRestr�at)2

(3.5)

where the index i = 3...10 runs over atomistic residues.

Fig. 3.4 reports �2 as a function of the number of active site

amino acids modelled with atomistic detail.

The plot shows that the binding free energy computed in

the dual-res model approaches the reference as the number

of atomistic active site residues increases, and most impor-

tantly this approach takes place for each component up 6

residues. Beyond this value, though, the trend stops and

the deviation becomes larger, peaking at 8 residues and

decreasing when further atomistic amino acids are added.
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aa-100

1
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4
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δ
Quadratic Deviation of Free Energy Components

decoupling

Figure 3.4: Square root of
quadratic deviation �2 vs the
number of atomistic residues
chosen. The plot shows that in
the case of 6 atomistic residues,
the value of quadratic deviation
is the lowest one and hence
it means that such a number
leads the best result of free
energy. Moreover the black line
shows the trend of FE values as
discussed in section 3.3.

These results highlight a non-monotonic dependence of the

free energy on the mapping, that is, the number of retained

atomistic residues. If, on the one hand, the overall value

of the binding free energy (Fig. 3.3 panel (d)) levels to the

reference with as few all-atom residues as 4, the separate

components oscillate and reach the plateau only for larger

numbers. The existence of a minimum in the standard

deviation of all three contributions pinpoints a particu-

lar number of atomistic active site residues for which the

accuracy of the computed free energy is the highest and

the economy of the high-resolution subpart the largest. In-

cluding more than 6 atomistic residues counterintuitively

worsens the result –when the various contributions are

looked at– and the previous accuracy is only recovered

when more residues are included. This behaviour suggests

that the total free energy undergoes an error cancellation

which hides the deviations of the separate terms.

A possible explanation for this nontrivial behaviour is

that when 6 active site residues are modelled with all-atom

accuracy (Fig. 3.5(b)) the ligand is stable in the catalytic
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(a) (b)

(c) (d)

Figure 3.5: VMD representation of lysozyme and ligand in different resolution: (a) three, (b) six, (c) eight,
(d) ten atomistic residues. The complete set can be found in Supporting information The ligand is always
atomistic and it is represented in Licorice. In green are represented the ENM beads. With the other colors are
represented, instead, the various atomistic residues which surround the ligand.

site, namely it is surrounded by a complete shell of atom-

istic residues. The addition or deletion of other residues

(Figs. 3.5(c) and 3.5(a) respectively) leads to a worsening

of �G: in the first case, the two added residues (in pink

and grey) are located behind the first shell of amino acids

(far away from the ligand) and start to form a second, in-

complete shell; in the second case, only three atomistic

amino acids take part in the direct interaction with the

ligand: therefore, the first layer is still incomplete and im-

portant interactions are missing; in order to improve the

free energy value one has to add further amino acids in

order to complete the second shell. We emphasise that the

impact on the deviation from the reference is inversely
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proportional to the distance of the added/removed amino

acid. Thus, the farther the atomistic amino acid is from the

ligand, the more negligible its effect is. In the Supporting

Information we provide detail about the other numbers of

all-atom residues not reported here. Finally, the values of

binding free energy (also for the case of annihilation whose

calculations are reported in the Supporting Information) are

summarised in Tab. 3.3 and illustrated in Fig. 3.6.

Ligand Complex Binding
annihilation

atom, espp �1275.3 ± 11.2 1315.2 ± 16.3 8.6 ± 27.5
atom, grom �1259.0 ± 5.9 1314.8 ± 13.2 24.5 ± 19.1

decoupling
atom, espp �151.9 ± 8.0 193.0 ± 9.1 9.8 ± 17.1
aa-3, espp �151.9 ± 8.0 184.2 ± 14.4 1.0 ± 22.4
aa-4, espp �151.9 ± 8.0 188.3 ± 15.3 5.1 ± 23.3
aa-5, espp �151.9 ± 8.0 196.4 ± 8.5 13.2 ± 16.5
aa-6, espp �151.9 ± 8.0 193.8 ± 7.8 10.6 ± 15.8
aa-7, espp �151.9 ± 8.0 187.9 ± 4.8 4.7 ± 12.8
aa-8, espp �151.9 ± 8.0 188.0 ± 5.1 4.8 ± 13.1
aa-9, espp �151.9 ± 8.0 186.6 ± 10.3 3.4 ± 18.3
aa-10, espp �151.9 ± 8.0 188.5 ± 3.5 5.3 ± 11.5

Table 3.3: Representation of Free
Energies values computed in
ESPResSo++ and GROMACS
(respectively espp and grom us-
ing a short notation on the
table) in case of annihilation
and decoupling. The table is
divided in three column: from
left to right are represented the
ligand, protein-ligand complex
and binding FE. The latter is
the algebraic sum of �Gcompl ,
�Gr_of f and �Glig. The results
are in kJ · mol�1.
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Figure 3.6: Binding free ener-
gies as a function of protein’s
residues included in atomistic
detail in the multi-resolution
set-up or fully atomistic set-up.
The heavy dashed black hori-
zontal lines and black point are
the reference values from fully
atomistic simulations obtained
in ESPResSo++ with decoupling,
and the lighter dotted black hor-
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for those values. In red are rep-
resented binding free energies
values in ESPResSo++ and GRO-
MACS in case of annihilation. In
blue is represented the binding
FE value in dual resolution sim-
ulation changing the number of
atomistic residues.
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3.4 Conclusions

In this work we have shown how the dual resolution

model employed, constituted by an all-atom subregion cou-

pled to an elastic network model remainder, can be used to

calculate the binding free energy of an enzyme-substrate

complex with atomistic accuracy. Furthermore, and most

importantly, we have highlighted the impact that different

choices of the model resolution can have. Specifically, we

have computed the total value of the binding free energy

as well as that of its various energetic components, and

quantitatively inspected how these change when different

selections are performed for the subgroup of amino acids,

ranging from 3 to 10 in total, to be modelled at the fully

atomistic level.

At first sight, one can appreciate that the binding free

energy value rapidly converges to the atomistic reference

when as few as 4 amino acids constituting the active site

are described all-atom. This comforting result, however,

unveils a greater complexity when the different terms con-

stituting the free energy are looked at separately. These

show an oscillating behaviour as the number of all-atom

residues in the active site is increased, with a decreasing

difference from the reference followed by a sudden jump

to larger values, which dampens upon further addition of

atomistic amino acids. The rationale in this behaviour is

identified in the structure of the active site, which is con-

stituted by a first shell of the six residues exposed to the

solvent and closest to the ligand; when further amino acids

beyond these are modelled with atomistic resolution, they

interact with the substrate affecting the binding free energy

components and shifting them away from the reference,
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with a steadily lowering impact as the model’s resolution

is increased - as one can expect. Surprisingly, very little if

no signal of this behaviour is observed in the value of the

binding free energy as a whole, rather it becomes visible

only upon inspection of its separate contributions.

The results of this work thus highlight the importance

of mapping in the construction of multi-scale and multi-

resolution models, as a higher degree of detail does not

necessarily correlate with a higher accuracy of the quan-

tities of interest. The implications of these observations

should serve as a warning and a guide in the realisation

of coarse-grained models concurrently employing various

levels of detail for different regions of the same system,

whose range of application spans from fundamental un-

derstating of a molecule’s properties to real-life pharma-

ceutical applications.

3.5 Supporting Information

3.5.1 Thermodynamic Cycle for binding free

energy

In order to compute the binding free energy �Gbind [154–

156], we use a thermodynamic cycle which connects the

protein-bound and protein-unbound ligand states through

several intermediate ones as shown in the Fig. 3.1.

Starting from the top-right corner we have the complex,

with the ligand and protein fully interacting as in a normal

MD simulation. The first step is adding a set of restraints

between ligand and protein (giving �Grestr_on) in order

to avoid the problem of the ligand leaving the binding
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pocket when interactions are being removed. The presence

of restraints is indicated in the cycle scheme in the figure

by a red circle, which represents the fact that the ligand is

being confined to a certain volume. The set of restraints

described by Boresch is used for this work [156]. These

are quite useful as they restrain position and orientation

of the compound relative to the protein, and they have an

analytical solution for their removal.

The next step is decoupling the ligand from the system

in order to get to the bottom-right corner of the cycle. This

involves running a number of separate simulations at dif-

ferent � values, first decoupling coulombic interactions

(�Gcoul,c) and then Lennard-Jones (�GLJ,c).

Going up from the bottom-left corner of the cycles, the

first step (�Grestr_o f f ) is carried out analytically without

need to run more simulations. At this point the ligand

has come back to interact with the solvent, which means

one needs to turn on charges (�Gcoul,`) and Van der Waals

(�GLJ,`) parameters again, in order to obtain �Gint_water (or

�Gligand). Finally, at the top-left corner of the cycle, one

sums up all the steps done so far to obtain the quantity

�Gbind .

3.5.2 Annihilation and Binding Free Energy

The calculation of free energy can be done in two dif-

ferent ways: decoupling and annihilation. The difference be-

tween the two is the following: decoupling a molecular

interaction refers to turning off that interaction between

the molecule and its environment, whereas annihilation of

a molecular interaction refers to turning off that interaction

entirely.
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We focus on the results of free energy in case of anni-

hilation. This has two advantages: the first one is that it

allows one to validate the implementation of protein free

energy in ESPResSo++ [129, 130] doing a comparison with

GROMACS [128]: this is feasible only in the case of annihi-

lation in fully atomistic system because GROMACS cannot

perform decoupling and dual resolution simulations.

The second advantage is that the simulation with an-

nihilation allows us to give a further confirmation that

the value of binding free energy in case of decoupling is

correct, thereby proving the consistency between the two.

By definition, in annihilation there are three components

(ligand-ligand, ligand-water and ligand-protein) unlike de-

coupling which has two components (ligand-water and

ligand-protein): hence, the values of complex and ligand

free energy will be different each other, but the values of

the resulting �Gbind in both cases agree each other within

the error bar, as reported in the main text.

Without going into the simulation details (look in the

apposite section of the article) we can see the results of

binding free energy calculation by using Thermodynamic

Integration (TI) [133].

A. Results of Binding free energy calculation

Recall that �Gbind consists in the algebraic sum of three

terms: �Gcomplex , �Gligand and �Grestr_o f f . Let us focus, first

of all, to the calculation of the latter because it is carried

out analytically without needing to run simulations [156]:
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�
�Grestr_o f f

kT
= ln

"
8⇡2V0

r2
0 sin✓A,0sin✓B,0

(Kr K✓AK✓BK�AK�BK�C )
1
2

(2⇡kT)3

#

(3.6)

where: k is the ideal gas constant; T is the temperature in

Kelvin; V0 is the volume corresponding to the one molar

standard state (1660 Å3); r0 is the reference distance for the

restraints; ✓A,✓B are the reference angles for the restraints;

Kx is the force constant for the distance (r0), two angles

(✓A,✓B) and three dihedrals (�A, �B, �C) restraints we ap-

plied.

In our case we have that:

k = 8.31
J

mol · K
= 1.987

cal
mol · K

T = 298K

V0 = 1660Å3

r0 = 0.31nm = 3.1Å

kx = 4184
K J

mol · nm2 = 41.84
K J

mol · Å2

✓A = 120o

k✓A = 41.84
K J

mol · rad2

✓B = 90o

k✓B = 41.84
K J

mol · rad2

k�A = k�B = k�C = 41.84
K J

mol · rad2

Therefore the contribution to the binding free energy

coming from the restraints amounts to:

�Grestr_o f f = �31.3 k J · mol�1 (3.7)

The results of the �Gcomplex and �Gligand terms and the

alchemical changes, comparing ESPResSo++ and GRO-
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Complex FE - Annihilation
�Gcoul,c �GLJ,c �GRestr_on,c �Gcomplex

grom 1254.2 ± 8.0 57.3 ± 4.9 3.3 ± 0.3 1314.8 ± 13.2
espp 1250.7 ± 5.6 60.8 ± 10.4 3.6 ± 0.4 1315.1 ± 16.4

Table 3.4: Resulting values of
free energy of Complex Free En-
ergy (4th column) and its compo-
nents (Coulomb, Lennard Jones
and Restraints in the first three
columns) in fully atomistic sys-
tem in case of annihilation. All
values are in kJ · mol�1 and per-
formed with Thermodynamic In-
tegration. All simulations are
carried out in GROMACS and
ESPResSo++ (grom and espp in
the table). For each value of
�, the fully atomistic simula-
tions lasts 1 ns by using both
MD package program simula-
tion. These results show that,
within the error bars, both codes
provide the same results.

Ligand FE - Annihilation
�Gcoul,` �GLJ,` �Gligand

grom 1238.8 ± 2.3 20.2 ± 3.6 1259.0 ± 5.9
espp 1250.1 ± 6.2 25.2 ± 5.0 1275.3 ± 11.2

Table 3.5: Resulting values of
Ligand Free Energy (3rd column)
and its components (Coulomb,
Lennard Jones in the first two
columns) in fully atomistic sys-
tem in case of annihilation. All
the values are in kJ · mol�1

and performed with Thermody-
namic Integration. All simula-
tions are carried out in GRO-
MACS and ESPResSo++ (grom
and espp in the table). For each
value of �, the fully atomistic
simulations lasts 1 ns by using
both MD package program sim-
ulations.

MACS are shown respectively in Tab. 3.4 and Tab. 3.5 and

illustrated in the Fig. 3.7.

The resulting Binding Free Energy is shown in the Tab.

3.6: we take up the final values of Complex and Ligand FE,

in order to compute �Gbind . These results are illustrated in

the Fig. 3.8.

These plots show how GROMACS and ESPResSo++ pro-

duce the same Binding FE results both in the components

(Fig. 3.7) and in the total (Fig. 3.8).

As reported in the main article, comparing the results

of the Binding FE values both in annihilation and decou-
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Figure 3.7: Comparison of the Thermodynamic Integration (TI) free energy derivative curves computed
with ESPResSo++ and GROMACS for all atom protein. (a) Coulomb, (b) Lennard-Jones and (c) restraint free
energies curves for the protein-ligand complex, and (d) Coulomb and (e) Lennard-Jones free energies curves
for the ligand. These simulations use annihilation.

Table 3.6: Representation of Free
Energies values computed in
ESPResSo++ and GROMACS
(espp and grom respectively in
the table) in case of annihilation.
The table is divided in three col-
umn: from left to right are repre-
sented the ligand, protein-ligand
complex and binding FE. These
results are in kJ · mol�1.

Binding FE - Annihilation
�Gligand �Gcomplex �Gbinding

grom �1259.0 ± 5.9 1314.8 ± 13.1 24.5 ± 19.1
espp �1275.3 ± 11.2 1315.2 ± 16.3 8.6 ± 27.5

pling, we notice that there is a consistency between these

two method of treating interactions (Fig. 3.6). Therefore

we chose to work with decoupling instead of annihilation,

but we choose the first one because this process is more

intuitive with respect its annihilation turning off the inter-

actions within it. Moreover, the ligand is always treated

atomistically, therefore it is not involved in the change of

free energy varying the protein resolution.



3.5 Supporting Information 95

0 Gromacs ESPResSo++1290

1300

1310

1320

1330

1340

1350

1360

Δ
G

 C
om

pl
ex

  /
 k

J 
m

ol
-1

ΔG Complex, annihilation 
Gromacs vs Espresso++

(a)

0 Gromacs ESPResSo++1240

1250

1260

1270

1280

1290

1300

1310

Δ
G

Li
ga

nd
  /

 k
J 

m
ol

-1

ΔG Ligand, annihilation 
Gromacs vs Espresso++

(b)

0 Gromacs ESPResSo++-20

-10

0

10

20

30

40

50

Δ
G

 B
in

di
ng

  /
 k

J 
m

ol
-1

ΔG Binding, annihilation 
Gromacs vs Espresso++

(c)

Figure 3.8: Comparison of the Thermodynamic Integration (TI) free energy values computed with
ESPResSo++ and GROMACS for all atom protein. (a) protein-ligand complex, (b) Ligand and (c) Binding
free energy values (with error bars). These simulations use annihilation. The plots show that the results
obtained via ESPResSo++ and GROMACS are comparable within the error bars.

3.5.3 Parametrization of the dual-resolution

model

Our protein is treated in dual-fixed-resolution, in par-

ticular the binding site of lysozyme is modelled in atom-

istic high level of resolution, whereas the rest of protein is

treated in Coarse Grained and specifically in ENM [36].

In order to construct a good dual resolution model, the

system needs a parametrization. The latter was already

performed in [24]. Here we describe the key elements of

the model parametrization, namely the elastic constant be-

tween consecutive ENM nodes and not consecutive ones,
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and the parameters ✏ and � of Week-Chandler-Anderson

(WCA) [178]. In particular, the latter was found in the case

of 8 atomistic residues, therefore in this section we must

confirm that it is still good changing the protein resolu-

tion.

A. Determination of elastic constants between beads

First, we do a distinction between the value of elastic

constants between consecutive C↵ beads along the protein

backbone (kb) and not consecutive ones (knb) until the cut-

off set to 1.2 nm. In particular, we take as kb, the stiff value

of 5 · 104 kJ · mol�1 · nm�2. The global fluctuations are in-

dependent of this value. All other spring constants have a

value knb = 160 kJ · mol�1 · nm�2, parametrised by minimis-

ing the average root mean square error in C↵ rmsf and the

S2 order parameter calculated from ENM relative to fully

atomistic simulations [24].

B. Determination of WCA parameters e and s

When the ENM is employed in multi-resolution simula-

tions, an excluded volume interaction between ENM nodes

and solvent molecules is required, in order to prevent from

penetrating the protein and solvating the atomistic binding

site from the interior. Thus, a WCA interaction is applied

between C↵ nodes and all the solvent molecules.

In its formulation, WCA needs two parameters: ✏ and

�. The former has a value of 0.34 kJ · mol�1, arbitrarily

chosen as the value for carbon in the atomistic forcefield,

whilst �i = Rg,i · c, where Rg,i is the radius of gyration of

a given residue i out of the twenty possible amino acids
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aa-8 density / molecules nm�3

fully at 100.2
0.59 99.5
0.61 99.8
0.63 99.9
0.65 100.1
0.67 100.4
0.69 100.5
0.71 100.7

Table 3.7: Density found in the
case of 8 atomistic residues for
different value of c and compari-
son with the atomistic reference.
Each dual resolution simulation
varying c lasts 1 ns.

and c is the same for all amino acids. The latter is not

known a priori, because its value has to be tuned to give the

correct bulk water density for a protein-water system (i.e.

the water density far from the protein) from fully atomistic

simulation.

In order to find the proper value of c we started with the

8 atomistic residues protein launching different dual reso-

lution simulations of 1 ns, varying its value. After finding

the correct c such that the density between atomistic and

dual-res system are comparable, we checked that such a

value is still good launching, this time, 1 ns simulations

with different numbers of atomistic residues keeping c

fixed.

Tab. 3.7 and Fig. 3.9 show the bulk water density in the

fully atomistic reference system and in case of 8 amino

acids modelled atomistically for different values of c. In

particular Fig. 3.9 also shows a linear interpolation between

points in order to get c as precise as possible. The resulting

value of c is 0.658.

Tab. 3.8 shows that such a value is still valid when chang-

ing the number of amino acids of protein active site, be-

cause the relative error is no longer than 0.7%. We thus

employed c = 0.658 in all considered cases.
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Figure 3.9: Bulk water density in
the case of 8 atomistic residues
for different value of c. The atom-
istic reference value is 100.2 and
it represented with the red line,
whereas the linear interpolation
of points is called g(x) in the leg-
end and it is shown with a blue
line.
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Table 3.8: Bulk water’s aver-
age density (in molecules ·nm�3)
and percentage relative error in
dual-resolution simulation with
different atomistic residues from
3 to 10, keeping c = 0.658. Each
simulation lasts 1 ns.

# at residues average density relative error
3 100.3 0.1 %
4 100.1 0.1 %
5 100.1 0.1 %
6 100.1 0.1 %
7 100.0 0.2 %
8 100.2 0.0 %
9 100.0 0.2 %

10 100.9 0.7 %

In Fig. 3.10 we report the VMD [181] representation of

all the considered cases changing the number of atomistic

residues of active site from 3 to 10 (recall that in the article

are reported only the most important cases namely three,

six, eight and ten atomistic residues).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.10: Representation of lysozyme and ligand in different resolution: (a) three, (b) four, (c) five, (d) six,
(e) seven, (f) eight (g) nine, (h) ten atomistic residues. The ligand is always atomistic and it is represented in
Licorice. In green are represented the ENM beads. With the other colors are represented, instead, the various
atomistic residues which surround the ligand.





Free energy landscapes cal-

culation in 1BBA investi-

gated through an improve-

ment version of the ENM. 4
I n the previous chapter a dual resolution model has

been employed to compute the binding free energy

of lysozyme with a substrate. In this model the solvent

is treated atomistically, as well as the binding site. To

describe the coarse-graineded part an Elastic Network

Model (ENM) has been employed, in which each residue

is mapped onto a bead whose position corresponds at the

C↵ atom in the atomistic description. These beads are con-

nected by identical harmonic springs.

In the first part of this chapter we employ the same

dual-resolution model for the calculation of free energy

landscapes in terms of collective variables appropriate to

describe the reference system of a small protein Bovine

Pancreatic Polypeptide (PDB code 1BBA). The choice of the

atomistic and the coarse-grained part is carried out by

using PiSQRD [182, 183], a tool that allows one to divide a

protein into rigid subdomains according to the fraction of

internal motion.

At difference with the previously discussed model, how-

ever, we employ different elastic constants between beads

in the ENM. Specifically, the strength of the effective bonded
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Figure 4.1: Configuration of the
atomistic gA peptide in CG
DMPC lipid and water, after
10ns AA-CG MD simulation.
Adapted from Ref. [187]

interactions between C↵ atoms is based on their distance

distribution in the all-atom representation, allowing a sys-

tematic way to establish a precise parametrization of each

harmonic spring.

4.1 Introduction

From a simulation point of view, biomolecular systems

are among the most challenging because of their hetero-

geneity and the wide range of length and time scales they

encompass [184–186]. Simulating such systems therefore

often lead to two important requirements:

I large systems and long simulation times;

I accurate and often computationally expensive mod-

els that contain sufficient physical and chemical de-

tail to describe a given phenomenon, usually compu-

tationally expensive.

A promising way of mitigating the computational over-

head is to employ a concurrent multi-resolution approach.

This involves identifying those parts of the system where

the physical and chemical details play a pivotal role in the

phenomenon of interest and describing them using a suffi-

ciently high-resolution model while using a less detailed,

computationally more efficient model for the remainder of

the system.

In most concurrent multiple resolution simulation ap-

proaches employed, each system component is treated

using only one level of resolution: for example an atom-

istic protein in a coarse-grained solvent or embedded in a

coarse-grained membrane [187–189] as shown in Fig. 4.1.

However, when the goal is to construct a model which



4.1 Introduction 103

includes only the minimum possible number degrees of

freedom, one has to be able to place boundaries between

resolutions at any arbitrary place within the system. Some-

times, this procedure is made simpler thanks to intrinsic

properties of the system, e.g. in the case of enzymes.

In its simplest form, the latter can be seen as being com-

posed of two parts: an active site, at which the ligand bind-

ing and catalytic reaction occur, and the remainder of the

enzyme, which supports the active site and provides the

thermal fluctuations necessary for its function. Moreover,

the aqueous solvent plays an essential role in enzymatic

function [190, 191]. An accurate model of ligand-binding,

therefore, requires at minimum an atomistic level of detail

in the description of the ligand, binding site, and neigh-

bouring water molecules. The rest of the protein and the

water sufficiently far away from the binding site can be

modelled at a more coarse-grained level [36, 169].

The definition of a clear boundary between resolutions,

in other cases, such as the test protein used here (Bovine

Pancreatic Polypeptide), is not trivial. Therefore, there is no

way to identify the block division intuitively. In this respect,

the PiSQRD [182, 183] is a useful tool whose purpose is

to find groups of amino acids that can be treated as rigid

blocks and defining, consequently, the boundaries between

these regions.

The coarse-grained part is treated as an Elastic Network

Model (ENM) in which each residue is mapped onto its C↵

in all-atom representation. In the original formulation, the

beads are connected by a unique elastic constant. Here, a

further refinement is introduced, in that elastic constants

between beads are employed, according to their distance
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distribution.

Here, we investigate this dual-resolution model of a

biomolecule trying to identify the best possible strategy

to face this issue. This validation paves the way to a new

generalized ENM model.

4.2 Methodology

Pancreatic Polypeptides (PPs) are single-chain peptides

of 36 amino acids. They were discovered as a contaminant

in the purification of insulin and then isolated and purified

from chicken pancreas (aPP) and bovine pancreas (bPP)

in the mid ’70s [192, 193]. Subsequently they have been

purified from a variety of species [194–197]. All PPs except

possibly anglerfish possess 36 amino acids with human,

bovine, ovine, porcine, and canine species differing by 1-4

amino acids. They appear to play an important role in the

physiological feedback inhibition that regulated pancreatic

secretion after a protein meal [198].

The system under investigation in the present work is

the Bovine Pancreatic Polypeptide [199] (bPP, PDB code 1BBA)

in aqueous solution in two different cases: with salt in

physiological concentration or pure water. The choice of

studying this protein arises from two main reasons:

I its dynamics is not trivial providing a realistic, non-

trivial test case of a system in which the protein di-

vision in all-atom (AA) and coarse-grained (CG) is

complicated to identify;

I its size is tiny (only 582 atoms), allowing fast simula-

tions.
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In this model, the first challenge is to find the boundaries

between the atomistic and coarse-grained part.

The model employed is not adaptive, that is, the res-

olution of a given residue is fixed (both atomistic and

coarse-grained) and does not change during the simulation.

Specifically, the coarse-grained model used to describe the

low-resolution part of the protein is a classical Elastic Net-

work Model. First, two values of elastic constants have

been employed: one for consecutive C↵ carbons along the

backbone, and one for the other bonds. Afterwards, as

further refinement, a specific value of elastic constant has

been applied between beads according to their distance

distribution.

Water molecules and ions are described in atomistic de-

tails inside the simulation box. The interaction with the

high-resolution part of the protein takes place through

the standard all-atom force field; on the other hand, an

excluded volume interaction between ENM nodes, sol-

vent molecules and ions is required in order to prevent

the solvent from penetrating the protein. Hereafter, we

provide a detailed description of the model. At first, we

describe the PiSQRD tool, which is employed here with the

purpose of dividing the protein in rigid domains and, con-

sequently, finding the boundaries between atomistic and

ENM part. Then, we outline the dual-resolution model and

its coupling to the atomistic part. Afterwards, we focus on

the strategy allowing us to find different elastic constants,

based on the distance distribution between C↵ beads. In the

fourth part, we illustrate the methodology adopted to com-

pare atomistic and dual-resolution simulation, and finally,

we report information about the simulation setup.



106 4 1BBA in Dual Resolution

4.2.1 Finding boundaries between atomistic

and CG part

A possible strategy to find boundaries between the atom-

istic and the coarse-grained part consists in the identifi-

cation of domains, in the protein structure, which move

approximately as rigid bodies. For our purposes, we use

the description of the molecule in terms of quasi-rigid do-

mains as illustrated in Ref. [183]. In particular, the criterion

to subdivide the protein into domains can be stated as

follows: we are interested in assigning the amino acids

of the protein to a given number Q of domains; the op-

timal partition is the one maximizing, over all possible

assignments, the rigid roto-translation contribution of the

domain (called MSFk in the following), or equivalently, the

partition which minimizes the internal fluctuation inside

the domain (called MSF? in the following).

In order to prove the previous statement, let us start

assuming that for each attempt of partitioning the amino

acids, we consider the instantaneous displacement vector,

vq(t) of a putative domain. It turns out that the coordinates

rq(t) in a given trajectory frame are:

rq(t) = r0
q + vq(t) (4.1)

where r0
q is the reference structure, and q is the label of a

presumed domain.

The instantaneous displacement vector, vq(t) can be sep-

arated in two contributions: vrb
q (t), corresponding to a rigid

roto-translation of the qth domain, and �vq, which de-

scribes the fluctuations internal to the domain:
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vq(t) = vrb
q (t) + �vq (4.2)

Furthermore, the rigid-body component vrb
q (t) can be

decomposed in a translation vector tq(t) and a rotation

parametrized by the matrix R and the vector wq(t) as fol-

lows:

vrb
q (t) = tq(t) +R

⇥
wq(t)

⇤
(r0

q � Rq) (4.3)

where Rq are the coordinates of the q-th domain’s centre

of mass.

The matrix R can be calculated by means of the Kabsch

algorithm [200], which finds the optimal rotation of the

sets of points minimizing the Root Mean Square Deviation

(RMSD) between them.

The extremality conditions that are imposed to find tq(t)
and wq(t) guarantee the orthogonality between the rigid-

body displacement vrb
q (t) and the internal fluctuation term,

namely �vq. The latter property allows one to decompose

the total mean square fluctuation of the molecule in two

contributions:

MSF ⌘
Q’

q=1

D��Rq � R0
q
��2E = Q’

q=1

D��vq
��2E =

=

Q’
q=1

D��vrb
q
��2 + ���vq

��2E =MSFk +MSF?
(4.4)

where:

MSFk =
Q’

q=1

D��vrb
q
��2E

MSF? =
Q’

q=1

D���vq
��2E

(4.5)
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This method is completely general since no assump-

tion is made on the contiguity in space or sequence of the

residues of the domains. In principle, any possible assign-

ment of the residues to the domains is tried for a given Q,

and the optimal choice is performed on the basis just men-

tioned. This algorithm is an open-source software called

PiSQRD (Protein Structure Quasi-Rigid Domain Decomposi-

tion).

A block, or domain, is a sequence of residues along the

protein with the property of being quasi-rigid according

to the definition explained before. Therefore, after parti-

tioning the structure, one can easily identify the interfaces

between two different domains. Each boundary has an

exact position along the backbone, placed intuitively, be-

tween two consecutive protein residues n and n + 1. It can

be denoted with Bn,n+1 with n 2 [1, N � 1] where N is the

total number of protein residues.

Increasing the number of imposed domains, one can

visualize the position of all edges for each considered case.

Then, we focus on the frequency Fwith which each one

appears:

F
⇥
B1,2

⇤
= f1 2 é

F
⇥
B2,3

⇤
= f2 2 é
...

F
⇥
BN�1,N

⇤
= fN 2 é

The higher its frequency, the higher the probability that

the boundary under examination between two different

blocks is physically meaningful - as opposed to those

boundaries which strongly depend on the number of do-
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Figure 4.2: Visualization of the
Bovine Pancreatic Polypeptide
in dual-resolution. The residues
included in atomistic detail are
shown in red, blue, cyan and
white (O, N, C and H atoms).
The grey spheres are ENM
nodes, the stiff backbone springs
are shown as dark blue lines,
and all others (weaker) springs
are shown in green.

mains Q and the local fluctuations of the system. It is pos-

sible to establish the most probable protein block division,

considering only the high frequencies, assigning for each

domain the high- or low-resolution, as shown in Section

4.3.

4.2.2 Dual-resolution model

In this work, we study the solvent treated with all-atom

detail in two different cases: pure water and saline solution

in physiological concentration. The protein, on the other

hand, has a fixed (i.e., position- and time-independent)

dual-resolution. The residues whose index is included in

the range [11, 28] along the protein backbone are modelled

in coarse-grained, while the remainder with atomistic reso-

lution. This division has been obtained employing PiSQRD

and the consequent boundaries frequency histogram, as

shown in the section 4.3 (the theoretical part is illustrated

in the Sec. 4.2.1).

To describe the lower-resolution part, first we employ

the original ENM model [24, 36] in which each residue

is mapped onto a bead whose position corresponds to

the C↵ atom. These beads are connected by two different

harmonic springs, as shown in Fig. 4.2.

The potential energy is given by:

E =
’

i

’
j

ki j

⇣
ri j � r0

i j

⌘2
✓(rc � r0

i j) (4.6)

with spring constants ki j , equilibrium distance r0
i j , a cut-

off distance rc, i and j are the node index, and ✓(r) is a

Heaviside theta function taking value 1 if r > 0 and 0 oth-
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erwise. In this model we made use of two different elastic

constants: a very stiff spring (kb) for consecutive beads,

represented in blue in Fig. 4.2, and a weaker spring knb

for not consecutive beads whose distance in the reference

(native) conformation lies below a fixed cutoff (in green).

The ENM used here, and specifically the value of elastic

constant for non consecutive C↵ beads, is parameterized to

reproduce the conformational fluctuations of the reference

all-atom model, these being quantified by the root mean

square fluctuations (RMSF) of the all C↵ carbons of the

system [24].

The water-CG protein and ions-CG protein interactions

consist in a simple excluded volume, modelled via a Weeks-

Chandler-Anderson (WCA) potential [178]. Hereafter, we

propose a refinement of the ENM in which a different

elastic constant between beads is employed.

4.2.3 Different elastic constants in ENM

In the previous section, we have described the original

formulation of the ENM [24, 36] and its application to a

small protein test case. In the following, we propose an

extension of this model parametrizing the spring constants

on the basis of the distance distribution between the C↵

beads involved in the coarse-grained part.

We are dealing with an elastic model whose beads are

connected by harmonic springs; therefore in order to jus-

tify the harmonic behaviour, we study the C↵ distances

distribution in the fully-atomistic simulation: in particular,

the only requirement is that the latter converges quickly at

a Gaussian-like shape. This means that, taking into account
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Figure 4.3: Distance distribution between the C↵ carbons 14 and 17 of 1BBA in case of: (a) division of the
entire atomistic trajectory in N shorter sub-trajectories of 10 ns each; (b) time evolution of the all-atom
trajectory. In this particular example, we can notice that there is a perfect curves overlapping whose shape is
a Gaussian-like.

two atoms A and B, two conditions have to be fulfilled:

I Divide the entire atomistic trajectory in N shorter

sub-trajectories with the same length: for each of one,

the distance distribution of A and B must present the

same Gaussian curve (Fig. 4.3(a));

I consider the time evolution of the trajectory (increas-

ing step by step its length until its entirety is reached):

for each step, the distance distribution of A and B

must show, once again, the same Gaussian curve (Fig.

4.3(b)).

Assuming that such distribution between the atoms A

and B presents a harmonic behaviour, as shown in Fig. 4.3,

it turns out that it can be fitted with a harmonic potential:

U =
1
2

K (d � d0)2 (4.7)

where K is the elastic constant between A and B, while d0
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is their equilibrium distance.

Moreover, we can assume that the probability distribu-

tion calculated before is simply a Boltzmann distribution.

Thus, the probability is given by:

P(r) / e��U (4.8)

where � is the reciprocal of the thermodynamic tempera-

ture of a system:

� =
1

KBT
(4.9)

with KB corresponding at the Boltzmann constant and T is

the temperature.

Substituting the Eq. 4.7 into the Eq. 4.8, it turns out that:

P(r) / e�
�
2 K(d�d0)2 (4.10)

The Eq. 4.10 shows that the probability distribution is a

Gaussian, whose generic form is the following:

G(x) / e�
1

2�2 (x�x0)2 (4.11)

where �2 and x0 are, respectively, the variance and the

mean value of the Gaussian.

Hence, comparing the Eqs. 4.10 and 4.11, it is possible to

obtain the value of the elastic constant K :

K =
1
� · �2 (4.12)

In the Eq. 4.12 � is known, and it is constant since the

temperature is given; whereas � is extracted by the Gaus-
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Figure 4.4: Distance distribution
between the C↵ carbons 14 and
17 of 1BBA (in black line) fitted
(schematically) with a Gaussian
(red line). The value of the elas-
tic constant K is given by the Eq.
4.12. The � value is a constant
since the temperature is known.
On the other hand, � is extracted
by the Gaussian fit.

Figure 4.5: Visualization of the
two collective variables chosen
to describe the system. Specifi-
cally, the distance between the
first and last C↵ carbons is
shown with a red arrow. On the
other hand, the degree of unfold-
ing of the protein in terms of
RMSD of the C↵ atoms 2 [29, 33]
is schematically drawn with a
green circle.

sian fit for each distance distribution that we take in ac-

count. Therefore, the value of the elastic constant in each

case depends solely on the � value obtained by the specific

Gaussian fit.

Fig. 4.4, showing the distance distribution between C↵

atoms 14 and 17 of 1BBA, illustrates schematically how to

compute the value of elastic constant K .

4.2.4 Free energy landscapes

In order to compare the all-atom simulations and the

dual-resolution ones, we choose two collective variables

that describe the system under examination and, after-

wards, analyze the result in terms of free energy landscapes.

The procedure is shown in the following.

The first collective variable chosen for our purpose is the

distance analysis of the two protein terminals, expressed

in terms of distance between the first and last C↵ carbons

(red arrow of Fig. 4.5).
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Moreover, another useful variable is the analysis of the

unfolding degree of the ↵-helix analysis, described by

means of the Root Mean Square Deviation (RMSD) of its

last C↵ carbons, calculated with respect to the native con-

formation which that presents a completely folded ↵-helix

(green circle in Fig. 4.5). In particular, the C↵ atoms taken in

account correspond to the protein residue indices included

between 29 and 33. The higher the RMSD, the higher the

degree of unfolding the protein, namely the ↵-helix is the

more unfolded.

After choosing the collective variables that describe our

system, the analysis is undertaken by plotting the density

of points (x and y) in terms of 2D-histogram, which defines a

probability P(x, y). A further step can be done, calculating

the free energy defined, here, as follows:

F (x, y) = � ln (P (x, y)) (4.13)

In general, a 2D histogram is represented as a heat map

in which the colours of each surface is not random. In

particular, the higher the probability, the more intense the

colour: usually, it goes from red (P=0) to blue (P=1). Like-

wise, when constructing the heat-map of free energies, the

latter range between 0 (P=1 and blue region) to infinity

(P=0 and red colour) according to the Eq. 4.13.

The representation of the free energy in terms of a heat

map has the advantage of emphasizing – applying the

Eq. 4.13 directly – small probability variations. Indeed,

it is possible to notice that two regions having a similar

points frequency (namely normalized probabilities close

each other) present, on the other hand, wide free energy
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∞

Figure 4.6: Comparison between the (a) heat-map treated in terms of point probability and (b) free energy,
defined in the Eq. 4.13. The latter emphasizes small probability variation in terms of colour range scale. On
the X- and Y-axis are reported the two collective variables chosen. Since, in this specific case, the free energy
values range between 0 and 7.2, in red is shown, for simplicity, also the case in which it is 1 corresponding
thus at probability equals to 0. Moreover, figure (b) will be used later in the result section.

Figure 4.7: All-atom represen-
tation of Bovine Pancreatic
Polypeptide (1BBA) after 1 ns
equlibration in NPT ensamble,
in terms of secondary structure.
In particular, the ↵-helix is
shown in purple color, while the
�-turn are shown in cyan.

variations. In the Fig. 4.6(a) is reported an example of heat-

map in terms of probability ranging between 0 and 0.1 The

application of the Eq. 4.13, on the other hand, highlights

much more details in terms of colour shades, as reported

in Fig. 4.6(b).

4.2.5 Simulation details

The reference model is given by the 1 ns equilibrated

PDB structure 1BBA in the NPT ensemble (the Parrinello-

Rahman barostat [179] with a time constant of 2.0 ps and

1 bar was used) as shown Fig. 4.7. Both fully atomistic

and dual-resolution models of 1BBA are solvated in water

and placed in a cubic simulation box of 7.27 nm side. The

force field employed is Amber99SB [77], whereas the water

model is TIP3P [146]. The temperature is kept constant

at 300 K by means of the velocity-rescale thermostat [83].
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The integration step is 1 fs. The calculation of electrostatic

interaction is performed using the reaction field method

[201, 202] with a dielectric constant ✏ = 80 and a cutoff of

1.2 nm. These parameters are a good compromise between

speed and accuracy, as verified in Ref. [140]. The SETTLE

[149] and RATTLE [150] algorithms for rigid water and

rigid bonds to hydrogen have been used. Each system

is prepared using fully atomistic minimization with the

steepest descent and 1 ns of equilibration in NVT.

All-atom simulations, as well as fully atomistic equilibra-

tion ones, have been performed with the GROMACS sim-

ulation package[128]. On the other hand, dual-resolution-

simulations have been carried out with the ESPResSo++

simulation package [129, 130]. The original tool has been

employed for the first time in Fogarty et.al. work [24] and

it is available upon request, included minor changes in the

code for simulating a system that employs different elastic

constants for each couple of bead in the ENM.

In the original formulation of the dual-resolution model

the spring constant between consecutive C↵ nodes along

the backbone (kb) has a stiff value of 5 ·104 kJ ·mol�1 ·nm�2,

whilst all the other ones (knb) have a value of 120 kJ ·mol�1 ·
nm�2, until 1.2 nm as cutoff, parametrised by minimising

the average root mean square error in the C↵ RMSF.

On the other hand, considering the revised version of the

dual-resolution model based on the distance distribution,

the spring constant between consecutive C↵ nodes along

the backbone (kb) has a stiff value of 5 · 104 kJ ·mol�1 ·nm�2.

All the other constants have a different value according to

the resulting Gaussian fit: their wide range is between 100

and 5000 kJ · mol�1 · nm�2, until 1.2 nm as cutoff.
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In both dual-resolution models aforementioned, a WCA

interaction is applied between C↵ nodes and all solvent

(including ions) molecules centre of mass. In the WCA

potential, ✏ has a value of 0.34 kJ · mol�1 arbitrarily chosen

as the value for carbon in the atomistic forcefield, and

�i = Rg,i · c where Rg,i is the radius of gyration of a given

residue i, where c is the same for all amino acids. The

value of c is tuned to give the correct bulk water density

of reference for a protein-water system. The c value found

is 1.15 for all cases. The procedure employed to compute

such a value is the same as the one of the Supporting

Information in Chapter 3.

We perform six different simulations because, on the

one hand the solvent is pure water or with salt; on the

other hand, the protein is treated in three different repre-

sentations: all-atom, dual-resolution with a unique elastic

constant in the CG-part, dual-resolution with different elas-

tic constants between beads in the low-resolution part. The

results are shown in the next section.

4.3 Results and discussion

As first, we performed the 1BBA division in blocks by

means of the PiSQRD tool, increasing the number of im-

posed domains Q from 2 to 7. In this respect, the Fig.

4.8 shows with different colours the protein divided into

blocks. On the other hand, the Fig. 4.9 illustrates the fre-

quency within which each boundary appears increasing

the number of Q; here we can also notice that some bound-

aries are present more often than other ones and therefore

the probability that they exist is higher.
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Figure 4.8: Representation of
Bovine Pancreatic Polypeptide
in (a) two, (b) three, (c) four, (d)
five, (e) six, (f) seven blocks, by
means of PiSQRD tool. In par-
ticular, each color represents a
different domain.

a b c

d e f

The interfaces with higher frequencies are: B10,11, B11,12,

B27,28, B28,29 and B31,32, (indicated with the blue arrrow in

Fig. 4.9), where B stands for “boundary”, while the sub-

scripts n and n+ 1 correspond at the residue index numbers.

According with it, the protein under examination can be

divided in four blocks:

I 1st block: 1-10

I 2nd block: 11-28

I 3rd block: 29-31

I 4th block: 32-36

Finally, each one requires the assignment: atomistic or

coarse-grained. Since we expect that the ↵-helix fluctuates

less than the remainder (and in particular the terminal part

of the protein), as confirmed in the Ref. [199], a coarse-

grained treatment of the 3rd block (which includes the

most of ↵-helix residues) is preferable. One the other hand,

1st, 2nd and 4th block have been modelled with atomistic

resolution.
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Figure 4.9: Frequency histogram
for each boundary in 1BBA. The
higher the bar is, the higher the
probability is that the boundary
under examination exists. On
the x-axis are reported all each
boundary Bn,n+1, while on the
y-axis is shows the correspond-
ing frequency. Moreover, with
the blue arrows are reported the
higher frequencies.

1: AA 2: CG

3: AA

4: AA

Figure 4.10: Schematic represen-
tation of 1BBA divided in 4
blocks. The 1st, 3rd and 4th blocks
are labelled as all-atom (AA),
while the 2nd one is labelled as
coarse-grained (CG). The assign-
ment is not random: preliminary
considerations about the struc-
ture are needed.

The pictorial representation of the block division is re-

ported in Fig. 4.10, while the dual-resolution representation

is reported on Fig. 4.2. The simulation analysis in terms of

free energy landscapes is shown in Fig. 4.11.

The X- and Y- axes report the distance between the 1st

and last C↵ carbon and the RMSD of C↵ atoms 2 [29, 33]
residues indexes, respectively. The minima are coloured

in blue, while in red we have the barriers corresponding

to high value of free energies. All plots are constructed in

such a way that the absolute minimum is zero in both cases

allowing the best comparison among them.

First of all, starting from the all-atom simulation (Figs. a

and d), it is possible to notice that the presence or absence

of salt in water (with a 100 mM salt concentration) leads to

completely different free-energy landscapes. In particular,

in case of pure water (Fig. a), the presence of a tiny blue

region means that the protein is trapped in one minimum

corresponding at one unique configuration: stuck termi-

nals (distance 1st-last C↵ atoms between 0.5 and 1 Å) and



120 4 1BBA in Dual Resolution

all-atom     Dual Res, only one Knb  Dual Res, different Knb  
Pu

re
 W

at
er

Sa
lin

e 
W

at
er

/ A
ng

st
ro

m

a b c

d e f

Figure 4.11: Free energy landscapes in six different cases after simulating for 500 ns, according to the presence
or absence of salt in water, and the model used: all-atom or dual-resolution. On the x-axis is reported the
distance 1st-last C↵, while on the y-axis is reported the RMSD from 29 to 33 C-alpha. Moreover, the FE value
is shown with different colours in the unit of KT . All plots are shifted such that, for each one, the absolute
minimum corresponds at 0 KT .

unfolded ↵-helix (RMSD of C↵ indexes 2 [29, 33] about 7

Å). Contrarily, ion atoms presence in water (Fig. d), leads to

a greater variability corresponding to the vast blue region.

Indeed, the fluctuation of the two 1BBA terminals is very

wide (distance 1st-last C↵ between 0.5 and 3 Å); the ↵-helix,

on the other hand, does not lose its structure for the most

of simulation time (RMSD of C↵ indexes 2 [29, 33] between

1 and 4 Å).

Looking at the analysis of free energy landscapes in case

of the original formulation of the dual-resolution model

(Figs. b and e), we can observe that, in case of pure wa-
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ter (Fig. b), the blue region is wider with respect to the

all-atom reference simulation, assuming diverse configura-

tions not present in the reference all-atom simulation (Fig.

a). However, the ↵-helix still retains an unfolded confor-

mation (RMSD values between 6 and 10 Å), even though

the two protein terminals are not stuck (the end-to-end

distance is between 0.5 and 2.5 Å). In presence of salt (Fig.

e), it is shown the same variability encountered in the ref-

erence all-atom simulation (Fig. d). However, the minima

position is shifted towards higher RMSD values that lead

to a higher probability of having an unfolded ↵-helix.

The analysis of the new version of the Dual-resolution

model, by using different elastic constants between CG-

beads (Figs. c and f) shows that in case of pure water (Fig. c)

the FE landscape is analogous to Fig. b. Therefore the same

considerations apply here: the ↵-helix keeps the unfolded

conformation but the two terminals are not stuck, showing

a variability not present in the all-atom reference (Fig. a).

In presence of salt (Fig. f), it is possible to notice that the

range of RMSD values explored by the two variables is

more consistent with the reference all-atom simulation (Fig.

d), although the minima positions are a little shifted.

Therefore, the results of the FE landscapes shows that

the dual-resolution model works better in the case of water

with salt, especially when using the new version with dif-

ferent elastic constants between CG-beads. In the case of

pure water, the dual-resolution model explores more min-

ima than the all-atom one. However, the overall “shape” of

the free energy landscape is preserved: indeed it is possible

to notice similar outlines in between all-atom simulation

and dual-resolution one results.
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4.4 Conclusions

In this work we have shown how the dual resolution

model employed, constituted by an all-atom sub-region

coupled to an elastic network remainder, can be used to

catch the overall conformational variability of a small non-

globular protein. However, it is not always easy to find

a priori (as instead happens, for instance, for a ligand-

enzyme system) the boundaries between the coarse-grained

part and the full-atomistic one. In this respect, the block

division in quasi-rigid domains is a useful tool capable of

catching the fraction of internal motion after dividing the

system in Q imposed domain.

Moreover, the coarse-grained part treated in Elastic Net-

work Model has been refined by using different elastic

constants between CG-beads, on the basis of the distance

distribution between the corresponding C↵’s in the atom-

istic simulation. This new strategy has led to an improve-

ment in terms of FE-landscapes in comparison with the

all-atom simulation. The FE profiles have been constructed

after choosing two collective variables that well describe

the system: the end-to-end distance and the degree of un-

folding of the ↵-helix. Specifically, the all-atom simulation

shows that the presence or the absence of salt in water

leads to different dynamical properties: in the former case,

the protein is fixed in one configuration consisting of un-

folded ↵-helix and stuck terminals; in the latter case, on the

contrary, there is more variability. However, the presence

of salt stabilizes the ↵-helical structure in 1BBA.

At first sight, both dual-resolution models do not re-

produce exactly the FE landscape in case of pure water

showing a wider variability. On the other hand, the latter
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is well reproduced in case of water with salt, especially

when using the refined version of the model.

This is in line with what we expected since the protein

used for our test is very small and very little modular from

a dynamical point of view: it essentially fluctuates around

its reference structure with wider terminals movements.

Indeed, our model reproduces such fluctuations, as shown

in the resulting free energy landscapes. However, the study

of this system has had two prominent outcomes, that is:

I the validation of the usage of quasi-rigid domain di-

vision applied in the definition of the dual-resolution

model;

I the validation of a dual resolution model with elastic

constants between CG-beads.

The consequence of these observations provide useful

practical and conceptual tools for the construction of more

accurate dual-resolution models of larger proteins than the

one studied here.





Simulating Adenylate

Kinase through a Variable-

Resolution model 5
This chapter is a draft of research paper that will be
submitted in 2020.

T he previous two chapters illustrate the dual-resolution

model applied to the problem of ligand-binding in

enzymes – specifically to the computation of binding free

energy –, and to a small protein to investigate its dynam-

ical properties in terms of FE landscapes. In this model,

the more coarse-grained part is described as an ENM, in

which each residue is mapped onto a bead whose position

corresponds to the C↵ atom in the atomistic description.

Specifically, in the last chapter it was shown that a refine-

ment of the ENM, considering different elastic constants for

each couple of beads based on their distance distribution

in the all-atom representation, can improve the accuracy

of the model.

Here, we propose a novel multi-resolution scheme dubbed

coarse-grained anisotropic network model for variable res-

olution simulations, or CANVAS. Its name is due to the

fact that it allows to smoothly couple virtually any desired

degrees of coarse-graining within the same model.



126 5 Simulating 4AKE through a Variable-Resolution model

The model is here introduced, described in detail, and

validated on a relatively small yet conformationally quite

variable protein, adenylate kinase, a phosphotransferase

enzyme that controls the energy balance in cells by cat-

alyzing the interconversion of adenine nucleotides. The

purpose of this work is to characterise the model’s perfor-

mance, advantages, and limits, and to identify possible

modifications to improve its accuracy based on these pre-

liminary results.

5.1 Introduction

Simulating bio-molecular systems is a particularly chal-

lenging task because of their structural and conformational

heterogeneity, and the wide range of time and length scales

they encompass. All-atom models provide the most accu-

rate results compatibly with the limitations implicit in the

parametrisation of the currently available force fields, start-

ing from the fact that they provide a classical approxima-

tion to interaction of intrinsically quantum nature (e.g. Van

der Waals dispersion interactions). However, the usage of

a fully-atomistic representation usually containing all nec-

essary physical and chemical detail characterising a given

phenomenon is usually computationally expensive.

A promising way of mitigating the computational over-

head is to employ a concurrent multi-resolution approach.

This requires to identify the parts of the system where

the physical and chemical details play a crucial role in the

phenomenon of interest and describing them using a high-

resolution model (all-atom) while using a less detailed,

computationally more efficient model for the remainder of
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the system.

In their simplest form, concurrent multi-resolution ap-

proaches employ, for each system component, a single level

of resolution: one of the most known examples is simu-

lating an atomistic protein in a coarse-grained solvent or

embedded in a coarse-grained membrane [187–189]. On

the other hand, when the purpose is to create a model apt

to include the minimum number of degrees of freedom,

one has to be able to place boundaries between resolutions

within the system under examination.

One of the most known examples is the quantum me-

chanic/molecular mechanic (QM/MM) method [109–112].

It allows a connection between ab initio resolution and

classical all-atom models. In particular, in a small domain

forces acting on atoms are obtained through quantum cal-

culations, while in the rest classical atomistic force fields

are employed. Such a scheme is widely used in studying

enzymatic chemical reactions [113, 114].

Another class of multi-resolution schemes focuses on

the connection between atomistic and CG models simul-

taneously [115–118]. In practice, this idea lies in a smooth

spatial interpolation on the atomistic and CG force field: a

very popular technique is the Adaptive Resolution Scheme

(AdResS) [115].

Here, we propose a novel multi-resolution approach

which allows one to model at an atomistic resolution only

the precise subset of degrees of freedom really necessary

for the study of a given phenomenon, even when this leads

to a boundary between resolutions which falls within a

biomolecule. Furthermore, the model hereafter described

allows one to set the level of resolution of the coarse-
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grained subdomain(s) in a quasi-continuous range, span-

ning from the all-atom level to a degree of coarsening

higher than one bead per amino acid. We emphasize that

this property is the novelty of the method: in particular,

one has an extremely high freedom in the choice of the

level of coarse-graining. Furthemore, the interaction net-

work on the basis of the model chosen has an automatic

construction.

In the CANVAS model, the lower-resolution part is de-

scribed with a new approach that of substantially differs

from that Neri et.al. (who developed in 2005 a model in

which an atomistically detailed active site was incorpo-

rated into a coarse-grained Gō model) [160] or from the

ENM presented by Tirion in 1996 [36] and employed in Ref.

[24] and in the chapters 3 and 4. In particular, two aspects

assume particular prominence:

I Each bead has average properties depending on the

atoms it represents: specifically, they correspond to

the parameters used for the non-bonded interactions.

I Among coarse-grained beads, as well as between

atomistic and coarse-grained beads, bonded interac-

tions are placed which preserve the overall structure

of the molecule; however, at odds with conventional

ENM’s, these bonds are not established based on the

distance between particles in the reference structure,

rather a different criterion, relying on a Voronoi-like

subdivision of the system, is employed. Therefore,

we also point out that the dependence on a cutoff is

also missing is this model.

The model is then validated by comparison with refer-

ence atomistic simulations to the realistic case of a protein,
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Figure 5.1: Structure of Adeny-
late Kinase: LID, NMP, and
CORE. Adapted from Ref. [205]

Adenylate Kinase (PBD code 4AKE) [203], which features

a substantial degree of structural variability as well as

conformational transitions. It is also known as ADK or

myokinase and it is a phosphotransferase enzyme that

catalyzes the interconversion of adenine nucleotides (ATP,

ADP, and AMP)⇤. A network of adenylate kinase isoforms

are distributed throughout intracellular compartments,

interstitial space and body fluids to regulate energetic

and metabolic signaling circuits, securing efficient cell en-

ergy economy, signal communication and stress response

[204].

This novel multi-resolution approach, not only will lead

to greater computational efficiency via a reduction in the

number of degrees of freedom simulated; it will also al-

low the simulation of large biomolecular systems where

the detailed atomistic structure is not known everywhere.

Specifically, a lower accuracy in the structure is sufficient

since the interactions are mediated on bigger regions of the

protein independently on the precise position of the atoms

within a Voronoi cell (with advantages for those proteins

without experimental structure, for which one has to resort

to homology modeling).

5.2 Methodology

In order to validate the novel multi-resolution scheme

we have chosen the protein Adenylate Kinase in aqueous
⇤ Phosphotransferases are a category of enzymes that catalyze phos-

phorylation reactions, that is the attachment of a phosphoryl group
to a molecule. The general form of the reactions they catalyze is:

A-P + B ↵ B-P + A

where P is a phosphate group and A and B are the donating and
accepting molecules, respectively.
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solution [203]. The latter has three domains, called CORE,

LID and NMP and two distinct binding sites as shown in

Fig. 5.1.

The LID and NMP domains are colored green and yel-

low, respectively. The CORE domain is colored in gray and

the P-loop is colored in orange. Specifically, ATP, that is

complexed with Mg2+, is bound between the CORE and

LID domains, in the so called ATP binding site, while AMP

is sandwiched between CORE and NMP, in the AMP bind-

ing site. ATP and AMP ligands are represented as ball and

stick.

The model employed in this work is not adaptive, that

is, the resolution of a given amino acid is fixed (fully-

atomistic or coarse-grained), and it does not change during

the simulation. This means that the level of detail does

not change during the simulation. Specifically, the coarse-

grained model used to describe the low-resolution part

of the protein consists of beads and springs. The selected

sites (e.g. C↵ carbons or other heavy atoms) have averaged

properties depending on the group of atoms they repre-

sent and they are connected by harmonic bonds. Contrarily

with the case of the ENM, in which each residue is usually

mapped onto its C↵ in the proposed model the mapping

is not uniform, rather it depends on the neighbourhood of

the atom selected as CG bead, as illustrated in Sec. 5.2.2.

Water molecules are modelled in atomistic details in-

side the simulation box. The interaction with the high-

resolution part of the protein takes place through the stan-

dard all-atom force field. In the coarse-grained part we

emphasise that bonded interaction connect CG sites, while

standard non-bonded interactions (Coulomb and Van der
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Waals) with appropriate values take place between solvent

and CG beads. A more detailed description can be found

in “Properties of the Model” in Sec. 5.2.2.

Hereafter, we provide a detailed description of the model

illustrating, first, the Voronoi Tessellation on which the

protein division in the low-resolution part is based, and

second the actual model including the non-bonded and

the bonded-interactions. Finally, we provide details about

the simulation setup.

5.2.1 Voronoi Tessellation

One of the key aspects of this model is the block division

in the coarse-grained part of the bio-molecule under exam-

ination. The method chosen is known as Voronoi Tessellation

or Voronoi Diagram.

Generalities

In general, in mathematics, a Voronoi diagram is a parti-

tion of a plane into regions close to each of a given set of

objects. In the simplest case, these objects are just finitely

many points in the plane (called seeds, sites, or generators).

Let us consider an example in two dimensions: after choos-

ing a square region S, we define Pk special points (seeds)

with k 2 é as reported in Fig. 5.2(a). It turns out that, for

each seed, there is a corresponding region consisting of all

points (x 2 S) closer to that seed than to any other. These

regions are called Voronoi cells Rk (Fig. 5.2(b)).

The Voronoi diagram is named after the Russian mathe-

matician Georgy Voronoy and is also called a Voronoi tes-

sellation, a Voronoi decomposition, a Voronoi partition, or
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a Dirichlet tessellation (after Peter Gustav Lejeune Dirich-

let). Voronoi cells are also known as Thiessen polygons

[206–208]. Voronoi diagrams have practical and theoretical

applications in many fields, mainly in science and technol-

ogy, but also in visual art [209, 210].

Formal definition

Mathematically, a Voronoi cell can be defined as follows:

Rk = {x 2 S | d(x, Pk)  d(x, Pj) for all j , k} (5.1)

where d(x, Pk) is the distance between the generic point x

and the special point Pk .

Eq. 5.1 is always valid, because no conditions are given

on the region S and on the distance d. In our example of

Fig. 5.2(b), S is a square in 2D, whereas d is the Euclidean

distance, employed in the CANVAS model described in Sec.

5.2.2, defined as:

` = d [(a1, a2), (b1, b2)] =
q
(a1 � b1)2 + (a2 � b2)2 (5.2)

For the sake of completeness, another metric that can

be used (but not adopted in our model) is the Manhattan

distance as reported in Fig. 5.2(c). The result is that the

corresponding Voronoi diagram looks different:

L2 = d [(a1, a2), (b1, b2)] =| a1 � b1 | + | a2 � b2 | (5.3)

Moreover, according to Eq. 5.1, a Voronoi diagram can

be intepreted as a list of Voronoi cells Rk .
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(a) (b)

(c)

Figure 5.2: (a) Square region
with 20 seeds (represented by
black points) chosen randomly
inside the figure. (b) Division of
square region in 20 blocks with
the euclidean distance as metric.
Each of them is shown with a
different colour according to the
general rules of Voronoi Tessella-
tion. Adapted from Wikipedia.
(c) Division of Square region
in 20 blocks with the Manhat-
tan distance as metric. Adapted
from Wikipedia.

5.2.2 The CANVAS model

In this work, the solvent is treated with all-atom de-

tail, while the protein has a fixed (i.e. position- and time-

independent) Variable-Resolution.

Model construction

Since we are dealing with a multiple/variable-resolution

approach, we identify the region of the system where the

chemical details play a crucial role, such that no simpli-

fication of the description is feasible: thus, it requires a

high-resolution description; the remainder on the other

hand, allows a lower resolution treatment.

In our approach, the high-resolution part is modelled

fully atomistically, where the classical bonded and non-

bonded interaction between atoms are employed.
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To describe the lower resolution part, on the other hand,

we identify the atoms that survive (red circles in Fig. 5.3(a)),

that is, those atoms that will be treated as CG beads. Ac-

cording to Voronoi Tessellation rules, the decimated atoms

are mapped onto the closest (in terms of euclidean distance

` defined in Eq. 5.2) survived atom (Fig. 5.3(b)), and the

coarse-grained region of the protein is divided into blocks,

each one represented by the reference atom chosen (Fig.

5.3(c)). Then, the CG beads are connected by harmonic

springs as schematically reported in Fig. 5.3(d).

Figure 5.3: (a) Schematic all-
atom representation of a generic
protein. The green circles show
the generic atoms, while the
red ones are the atoms the sur-
vive in the white area. The
cyan region, on the other hand,
keeps the fully-atomistic rep-
resentation; (b) schematic rep-
resentation of the protein di-
vided in fully-atomistic (cyan
colour background) and coarse-
grained with only the atoms
that survive (red circles). (c)
Division of the coarse-grained
part of protein according with
Voronoi Tessellation. Each sur-
vived atom is representative of
a region that encloses the clos-
est not-survived atoms mapped
by it. (d) Addition of har-
monic springs schematically rep-
resented with green arrows be-
tween survived atoms that be-
long to adjacent regions.
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The potential energy is given by:

E =
’

i

’
j

ki j

⇣
ri j � r0

i j

⌘2
· ✓

�
adj, tetrahedral

�
(5.4)

with spring constants ki j equilibrium distance r0
i j ; i and

j are the node index, and ✓ is a Heaviside theta func-

tion taking value 1 if i and j belong to adjacent region of
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Figure 5.4: (a) shows a CG net-
work: it is unstable as the ro-
tational movement around the
axis A3-A4 (in green) allows the
other atoms (red circles labelled
with the letter Ai) to move freely
(black arrows); (b) the CG net-
work is fixed adding a further
spring between the atoms A2
and A3. The figure shows three
tetrahedrons and each bead sat-
isfies the tetrahedral condition.

Voronoi Tessellation or they satisfy the tetrahedral condition

described below, 0 otherwise.

Indeed, the insertion of harmonic springs between beads

belonging to adjacent regions is not sufficient to keep the

coarse-grained network stable; in fact, the system can col-

lapse: the reason stems from the fact that the only adjacency

criterion can lead the system to having null modes, that is

movements with no energy cost, that make it unstable. For

instance, in Fig. 5.4(a) the rotational movement around the

axis A3-A4 allows the other atoms to move freely; in order

to fix the network it is necessary to introduce a further

bond between A2 and A5, as shown in Fig. 5.4(b).

Therefore, to avoid artifacts in the entire system with

the consequent breakdown in the long run, further springs

must be added to fix all CG beads: this can be carried out by

requiring that each one occupies the vertex of a tetrahedron

whose size is given by the harmonic bonds. Each bead has

to be connected, at least, to three other particles, these in

turn being connected to one another. Fig. 5.4(b) graphically

illustrates the concept.

In this model we made use only one elastic constant kb

represented in green as shown in Fig. 5.5.

How to choose the survived atoms

The method does not constrain in any way the choice of

the survived atoms: indeed, it may be performed in several

ways; two natural choices are the following:

I keep only the C↵ and/or other heavy atoms of the

residues modelled in a lower resolution.

I compute the internal deformation in each group of
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Figure 5.5: Visualization of
Adenylate Kinase used in this
work in Variable Resolution. The
residues included in atomistic
detail are shown in red, blue,
cyan and white (O, N, C and H
atoms). The pink spheres are the
CG beads: the different radius
size is due to the variable model
used in coarse-grained part.
Finally, the springs between
beads belonging at adjacent
Voronoi cells are shown in green.
The radius of each bead is given
by the radius of gyration of the
entire block at which it belongs

atoms such that it is as low as possible. In other

words, given a set of survived atoms, partition the

system in Voronoi blocks according to these atoms,

compute the fraction of internal motion (e.g. as in

Ref. [106]), and perform a search for the subset of

survived atoms which minimise the latter.

The mapping C↵ 7! entire residue is the most common

choice when coarse-graining proteins. Here we validate

our approach in analogy with that mapping, by using the

C↵ atoms as representatives of the CG beads (that do not

necessarily correspond to separate residues); however, we

emphasise that the CANVAS model puts no restraints on

the selection of survived atoms, neither by number nor by

type. This strategy guarantees the highest level of freedom

and system-specificity in the construction of a multiple-

resolution model.
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Fully-AT

Fully-AT

Figure 5.6: Visualization of a
generic Voronoi cell in a protein:
the red circle is the representa-
tive survived atom in the CG
representation, while the green
circles correspond at the not-
survived atoms mapped, origi-
nally present in that domain in
all-atom representation.

Properties of the Model

The atoms that survive in the coarse-grained part have

average properties of the atoms they represent.

Specifically, for each Voronoi cell, as shown in Fig. 5.6,

the reference CG bead has the following properties:

I The charge Qblock that it assumes is the algebraic sum

of the charges qi of the atoms it represents.

I The dimension of the block �block is twice the gyra-

tion radius Rg

I ✏block is the geometric average of the ✏i of the atoms

it represents.

Mathematically, it turns out that:

Qblock =

N’
i=1

qi (5.5)

✏block =

N÷
i=1

✏
1
N

i (5.6)

�block = 2 · Rg (5.7)

In the Eq. 5.7, Rg is gyration radius of the group of atoms

under examination, and it is defined as:

R2
g =

1
N

·
N’

i=1

|ri � rcom |2 (5.8)

where, ri are the coordinates of each atom inside the block,

whereas rcom are the coordinates of the center of the mass

of the atoms mapped in the all-atom representation, i.e.

rcom =
1
N
Õ

i ri.

Moreover, depending on the number and which atoms
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survive, the size of each block is different: bigger and

smaller domains are possible (Fig. 5.2(b) and Fig. 5.3(c)).

The bigger the block is, the more coarse-grained the region

is and, thus, more atoms are mapped onto a single bead.

The extreme case occurs when the region consists of only

one atom. In such a case, the survived atom is not a CG

bead, but it conserves its own atomistic properties: specifi-

cally, the Eqs. 5.5 and 5.6 are still valid. On the other hand,

The Eq. 5.7, is not fulfilled anymore: in this specific case,

we take in account the real value of � from non-bonded

parameters of the force field used.

Furthermore, since the atoms representative of the CG

beads are not necessarily C↵ atoms, if two of them have a

covalent bond in the all-atom representation, the latter re-

places the aforementioned harmonic spring with constant

kb. In the same way, we also keep bending and torsion

potential with their original values of angle and energy

only if, respectively, the triplet and quadruplet of atoms in

the all-atom representation are maintained in the coarse-

grained model.

The parametrization of this model thus enables a quasi-

continuous modulation of the resolution of a protein or

part of it, in that the detail of the representation can be

gradually reduced from the all-atom level to a very coarse

one, possibly lower than a few amino acids per bead.

The water-CG protein interactions consist of a simple

Coulomb and Van der Waals from the standard force-field

parameters. WCA potential, usually used in other works

[24] to avoid solvent penetrating in the CG network is

unnecessary here, since each bead has a different �block

representing twice the radius of gyration of the entire block;
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Figure 5.7: Fully atomistic rep-
resentation of Adenylate Kinase
(4AKE) after 125 ns equilibration
in NPT ensemble in terms of sec-
ondary structure.

thus the water molecules cannot go through the network.

5.2.3 Simulation details

The reference model is given by the 125 ns equilibrated

PDB structure 4AKE in NPT ensemble (the Parrinello-

Rahamn barostat[179] with a time constant of 2.0 ps a 1

bar was used). The conformation of the molecule after

equilibration is reported in Fig. 5.7.

Both fully atomistic and CANVAS models of 4AKE, af-

ter the aforementioned equilibration, are solvated in wa-

ter and placed in a cubic box of 9.41 nm side. The force

field employed is Amber99SB-ildn [77], whereas the water

model is TIP3P [146]. The temperature is kept constant at

300 K by means of the Velocity Rescale Thermostat [83].

The integration step is 1 fs. We performed two tests using

different methods to calculate electrostatic interactions:

I the reaction field method [201, 202] with a dielectric

constant ✏ = 80 and a cutoff equals to 2.5 ·�max = 1.79

nm both for fully-at and Variable Resolution. Since

each block has a different value of �block (as reported

in Sec. 5.2.2 and in particular in the Eq. 5.7), �max is

the maximum of them;

I the Particle Mesh Ewald method [79] with fourth-order

(cubic) interpolation and this Fourier spacing of 0.16.

The cutoff is given by 2.5 · �max = 1.79 nm, as for the

reaction-field method.

All simulations (atomistic and in CANVAS) are 500 ns

long and were performed in GROMACS 2019 [211]. More-

over, the SETTLE [149] and RATTLE [150] algorithms for

rigid water and rigid bonds to hydrogen have been used.
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(a)

(b)
Figure 5.8: Fully atomistic rep-
resentation of 4AKE in terms of
primary structure. (a) shows the
open conformation of the pro-
tein, while (b) the closed one.

Each system is prepared, starting from the already equili-

brated structure, using fully atomistic minimisation with

the steepest descent and 50 ns of equilibration in NVT.

In the Variable Resolution model, the spring constant be-

tween atoms in which at least a CG bead is involved has a

stiff value of 5 · 104 kJ · mol�1· nm�2. Moreover, The inter-

action parameters for the CG part have been set through

Eqs. 5.5-5.7.

5.3 Result and Discussion

The aim of this section is to compare results from the

atomistic and multiscale simulations for the validation of

the model.

5.3.1 All-atom simulation

First, we performed the all-atom simulation of 4AKE in

explicit water employing Reaction-Field (RF) and Particle

Mesh Ewald (PME) electrostatic. In both cases, the simula-

tion time is 500 ns, and it shows clearly two main protein

conformations: the open one, as reported in Fig. 5.8(a), and

the closed one shown in Fig. 5.8(b)⇤. Intuitively, the for-

mer structure has the protein arms distant from other; on

the other hand, in the closed conformation, the two arms

adhere: specifically, the protein residue indexes 30-70 and

125-150 get close, while the remainder residues making up

the protein residues maintain approximately their position

in both conformations described above.

⇤ For simplicity we call such conformation “closed”; however one
has to be careful to name it that, since the real, crystallized closed
conformation is a bit different (and we do not see it in our unbiased
simulations)
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Figure 5.9: RMSD of all 4AKE C↵ in case the electrostatic used is (a) reaction field and (b) Particle Mesh
Ewald (PME). The simulation time is 500 ns. On the x-axis is reported the time evolution, while on the y-axis
is represented the corresponding RMSD values. The presence of two different states, one corresponding at
about 3 Å and the second one close to 6 Å are indicative of opened and closed structures, respectively.

The evolution of the two structures mentioned above can

be visualised and quantified by calculating the Root Mean

Square Deviation (RMSD) of the all protein C↵ atoms with

respect to the reference frame (reported in Fig. 5.7). Since

the latter presents an open conformation, higher RMSD

values are indicative of closer structures. The resulting

plots are shown in Fig. 5.9; in particular, (a) corresponds to

the simulation employing the reaction-field electrostatic,

while (b) shows the same calculation when using the PME

method.

As expected, two states are well visible in both plots:

one corresponding to 3 Å, and the second one around 6

Å. Specifically, by looking at Fig. 5.9(a), corresponding to

reaction-field method, the closed conformation (the state

with higher RMSD values) appears for few nanoseconds

after 80 ns, and subsequently after 200 ns, remaining as

such until the end of the simulation. Contrarily, when using

PME (Fig. 5.9(b)), the open conformation persists for 350

ns, until the closed one takes hold in the last part of the
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simulation.

In support of the previous analysis, Fig. 5.10 shows the

Root Mean Square Fluctuation (RMSF) for each C↵ when

using reaction-field (black line) and PME (red line) (Look

the Appendix for further details about RMSD and RMSF).

Figure 5.10: Root Mean Square
Fluctuation (RMSF) for each C↵

of 4AKE in case of Reaction-
Field (black line) and PME (red
line). The x-axis corresponds at
the C↵ indexes (from 1 to 214).
The highest value of RMSF is
in correspondence of the two
protein arms (indexes 30-70 and
125-150), as expected, because
they move more with respect the
remainder of protein. The two
plots are comparable since the
fluctuation of all C↵ are close
each other.
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Also the RMSF is computed with respect to the same

reference frame: we can notice that the atoms constituting

the protein arms (indexes 30-70 and 125-150, left and right

protein arm, respectively) have wider fluctuations with

respect to the remainder, namely the hinge. Hence, their

relative orientation determines the open-closed conforma-

tion.

5.3.2 CANVAS simulations

As the all-atom simulations show that the two protein

arms present more fluctuations with respect to the remain-

der of the protein, they are treated in high-resolution de-

tail, while the hinge atoms are modelled in low-resolution.
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Figure 5.11: RMSD of multiscale resolution of 4AKE C↵ (in the coarse-grained part, CG beads in the same
position of C↵ in all-atom simulation are taken in account) in case the electrostatic used is (a) reaction field
and (b) PME. The simulation time is 500 ns. On the x-axis is reported the time evolution, while on the y-axis
is represented the corresponding RMSD values. Only one state present corresponding at about 3-4 Å is
indicative of the opened structure persistent for the entire simulation.

As explained in the Sec. 5.2.2, the coarse-grained part is

described by keeping only the C↵ atom of each residue.

Moreover, the values of Q, � and ✏ for each bead are dif-

ferent depending on the number and type of the atoms it

maps. We remind, also, that each bead is connected to its

neighbours with harmonic springs.

We performed the CANVAS simulation of 4AKE (as

shown in shown in Fig. 5.5) in explicit water employing

Reaction-Field (RF) and Particle Mesh Ewald (PME) elec-

trostatics. In both cases it presents only one main protein

conformation (corresponding at 3 Å), namely the opened

one as illustrated in Fig. 5.11. This first result is in contrast

with the fully-atomistic simulation that shows two main

structures.

To gain further insight in this feature, we looked into

the fluctuations of each protein C↵ in the all-atom part and

each bead in the coarse-grained one (whose position is

the same of the corresponding C↵ atoms in all-atom repre-
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sentation), as displayed in Fig. 5.12. Specifically, the green

area is useful to distinguish the fully-atomistic part and

the coarse-grained one. Indeed, the RMSF values included

in the green region correspond to the CG bead fluctuations,

while the white ones show the fluctuations of C↵ in the

all-atom representation.

Figure 5.12: Root Mean Square
Fluctuation (RMSF) for each C↵

and the corresponding CG bead
in the Coarse-Grained part, in
case of Reaction-Field (black
line) and PME (red line). The
x-axis shows the C↵ and CG
beads indexes (from 1 to 214).
In particular, the green area cor-
responds at CG beads indexes.
The highest value of RMSF is
in correspondence of the two
protein arms (indexes 30-70 and
125-150), as expected because
they move more in respect of the
remainder of protein and they
are modelled atomistically. The
two plots are comparable since
the fluctuation of all C↵ (or CG
beads) are close to each other.
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We can notice that two aspects assume particular promi-

nence:

I the C↵ carbons that constitute the arms (white area)

fluctuate more than the remainder in analogy with

fully-atomistic simulation (Fig. 5.10), although only

the open conformation is present;

I the RMSF from reaction-field and PME in CANVAS

are much more similar among them than in the atom-

istic case (Fig. 5.10), probably as a consequence of the

fact that here the system visits only one conformation

(while the amount of time it was found in one or the

other conformation was different in the two atomistic

simulations).
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Thus, in order to validate this model, we provide here-

after a comparison with the fully-atomistic simulation anal-

ysis.

5.3.3 Comparison

Since the Variable Resolution model has been constructed

such that each CG bead is localised in the same position

of the corresponding C↵ in the all-atom representation, we

can compare the RMSD of RMSF results for both all-atom

and CANVAS model.

Starting with the analysis of RMSD plots, the fully atom-

istic simulation shows that the protein assumes the opened

and the closed conformation; on the other hand, the CAN-

VAS simulation reproduces only the opened structure. This

is the first signal that the coarse-grained model is too rigid

since it does not allow the protein to fluctuate sufficiently.

This intuition is further confirmed by the analysis of the

RMSF plots, overlapping the Figs. 5.10 and 5.12. The re-

sult is, therefore, provided in Fig. 5.13: first, In the fully-

atomistic part (white area) the fluctuations of the 4AKE

arms C↵ carbons are lower in the CANVAS simulations,

because the two arms never get stick. Second, by looking

at the region highlighted in green it is possible to notice

that also the CG bead fluctuations are lower than the corre-

sponding C↵ ones in all-atom simulation.

Since we have observed that in CANVAS simulations

only the open conformation appears, we expected the

above mentioned RMSF result showing, in general, lower

value with respect to that from the atomistic simulation.

Therefore, we have performed, in addition, a comparison
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Figure 5.13: Root Mean Square
Fluctuation (RMSF) for each
C↵ and the corresponding CG
bead in the Coarse-Grained part,
in case of Reaction-Field (red
and blue lines) and PME (black
and magenta lines). In particu-
lar, the plot displays a compari-
son between fully-atomistic and
variable-resolution simulations.
The x-axis shows the C↵ and CG
beads indexes (from 1 to 214).
In particular, the green area cor-
responds at CG beads indexes.
The highest value of RMSF is in
correspondence of the two pro-
tein arms (indexes 30-70 and 125-
150), as expected because they
move more in respect of the re-
mainder of protein and they are
modelled atomistically. We can
notice that the RMSF values in
the variable-resolution simula-
tion are much lower than the cor-
responding fully-atomistic one.
This means that the CG network
is too much rigid.
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between the RMSF from CANVAS and the RMSF from the

portions of the atomistic trajectories that are in the open

state. The plot is shown in Fig. 5.14. It is possible to notice

that the fluctuations in the CANVAS model are just slightly

lower with respect to the fully-atomistic simulations, thus

the open structure is well reproduced.

Therefore, summing up all results in terms of RMSD and

RMSF calculations, the following properties are relevant:

I variable resolution simulation does not allow the

closed conformation;

I the RMSD average value (⇡ 3 � 4 Å) for the open

conformation is the same both in the fully-atomistic

simulation and in the variable resolution one, point-

ing out that the model reproduce well enough such

structure (Fig. 5.14);
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Figure 5.14: Root Mean Square
Fluctuation (RMSF) for each C↵

and the corresponding CG bead
in the Coarse-Grained part, in
case of Reaction-Field (red and
blue lines) and PME (black and
magenta lines). In particular, the
plot displays a comparison be-
tween variable-resolution simu-
lations and fully-atomistic ones
in case the protein is only in
the open state. The x-axis shows
the C↵ and CG beads indexes
(from 1 to 214). In particular,
the green area corresponds at
CG beads indexes. The high-
est value of RMSF is in corre-
spondence of the two protein
arms (indexes 30-70 and 125-
150), as expected because they
move more in respect of the
remainder of protein and they
are modelled atomistically. We
can notice that the RMSF val-
ues in the variable-resolution
simulation are slightly lower
than the corresponding fully-
atomistic one. This means that,
despite the CG network is rigid
and requires refinements, the
protein open structure is repro-
duced well enough by the CAN-
VAS model.

I the RMSF plot shows that the C↵ (and CG beads)

fluctuation trend is the same both in CANVAS and

all-atom simulations, but it shifted towards lower

values (as shown in Fig. 5.13) in the former case, em-

phasising that the strength of the bonded interac-

tions acting between CG particles to maintain the

molecule’s structure has proven to be too high.

The presented variable resolution model requires further

refinements; a possible solution to the rigidity problem is

provided in the conclusive part of the text.
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5.4 Conclusions

In this work, we have illustrated a new multi-scale reso-

lution scheme, dubbed CANVAS or coarse-grained aniso-

tropic network model for variable resolution simulations.

The term “variable” stems from the fact that such model

allows complete freedom in coupling any desired level of

coarse-graining, and to move smoothly between them.

In this scheme, each survived atom in the coarse-grained

part has its own properties averaged on the atoms it repre-

sents, and these can differ even for the same kind of atoms

representing the same kind of residues. In fact, the number

and type of atoms mapping onto a given CG site depend

on its local environment, which in turn depends on the

molecule’s structure and the distribution of retained atoms

in it.

In this first application of this model, we have studied

the conformational properties of the protein Adenylate Ki-

nase [203] treating the two arms atomistically, while the

remainder is coarse-grained. In particular, the latter has

been obtained retaining only the C↵ atoms of the corre-

sponding residues. The fully-atomistic simulation and its

analysis in terms of RMSD and RMSF shows that the pro-

tein assumes two main conformations: the first one has

the two arms close to each other (closed structure). In con-

trast, the second one presents the two arms distant from

each other, as in the reference conformation here employed

(opened structure).

The variable resolution simulation, on the contrary, has

shown that the model requires further refinements, since it

explores only the open conformation; furthermore, even
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Figure 5.15: Schematic represen-
tation of 4AKE in Variable res-
olution: the two arms and the
hinge are treated atomistically
and coloured with the transpar-
ent yellow circles; the remainder
is modelled in coarse-grained
(red circle).

though the RMSF profile of the CANVAS simulations fol-

lows rather accurately that of the reference, all-atom simu-

lations, the absolute values are systematically too low. This

points only towards an excessive rigidity of the structural

bonds in the CG part, whose stiffness substantially damp-

ens also the dynamics in the high-resolution domains.

However, the model defined here can be refined by ap-

plying the following rules:

I The coarse-grained network requires flexibility: it

can be reached by using different elastic constant

between CG beads according to their distance and/or

treating both the arms and the hinge atomistically

as shown schematically in Fig. 5.15. In particular,

the atomistic hinge should allow the protein higher

movements.

I Retaining the C↵ as representatives of the CG beads

(that do not necessarily correspond to separate resi-

dues) could be suboptimal: as proposed in Ref. [106]

we can choose the mapping so as to minimises the

fraction of internal motion: in this case, the survived

atoms in the CG part are not necessarily C↵ carbons.

The results obtained in the first tests are pointing in the

direction of the validity of this new approach. Nevertheless,

only further simulations and analysis after refining the

model will confirm it.

Appendix A: RMSD and RMSF

The RMSD (root mean square deviation) and RMSF (root

mean square fluctuation) are commonly used to measure
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the spatial variations of biomolecules in a molecular dy-

namics (MD) simulation. Their definition is similar, espe-

cially in terms of formula, but there is a substantial differ-

ence between the two.

The RMSD of certain atoms in a molecule in respect of a

reference structure, r0, is calculated as:

RMSD(t) =

vut
1
N

·
N’

i=1

(ri � r0)2 (5.9)

where N is the total number of chosen atoms, ri is the

coordinate of the atom i. Usually, the starting configuration

is taken as reference.

The RMSF is a measure of the deviation between the

position of particle i and some reference position r0:

RMSFi =

vut
1
T
·

N’
i=1

(ri � r0)2 (5.10)

where T is the time over which one wants to average,

whereas r0 is the reference position of particle i. Usually,

the starting configuration (or the time-averaged position

one) is taken as reference.

The two previous equations have a similar expression,

but they report two different analysis: the RMSF is aver-

aged over the total time T giving the fluctuation value for

each particle. On the other hand, for the RMSD, the average

is taken over the particles, giving time-specific values.
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T he field of multi-scale modeling and simulation has

enjoyed significant success in soft matter research

within the past decade [113–118], also thanks to the boost

impressed by the necessity to overcome the expensive cost

of studying many phenomena in a single, highly detailed

resolution.

Several methodologies have been developed in the last

few years, and some of them have been the main object of

this work. In section 6.1, we present a summary of the main

results: particular prominence has the chapter 5 because

it introduces a novel multi-scale approach: therefore, the

latter can be considered as this thesis flagship.

In section 6.2 we provide an outlook and describe ongo-

ing works and possible directions for future research about

multiple-resolution simulations and their applications.

6.1 Summary

The introductory part of this thesis, chapter 1, provided

an overview of relevant molecular simulation methodolo-

gies focusing on multiscale/multiple resolution simulation
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schemes. On the other hand, the chapters 2-5 reported the

results of the original scientific work.

2 – AdResS in amino acid sidechain analogues

In chapter 2, we have computed the solvation free energy

of amino acid side chains analogoues solvated in water by

using the combination of the force-based AdResS approach

and the Thermodynamic Integration (TI). We have studied

very small system, where the all-atom simulation is still

feasible. This allowed us to validate the AdResS approach

via comparison to fully-atomistic reference values. These

calculations have highlighted three prominent results:

I the strength of this approach, in that it enables ac-

curate control of the atomistic region density and

a smooth transition between atomistic and coarse-

grained regions, with no perturbation of the struc-

tural and thermodynamic properties of the solute

and its solvation shell;

I the speed-up obtained via the AdResS approach: we

have observed that the method provides a substantial

reduction in simulation time with respect to fully

atomistic.

I accurate solvation free energies by using the force-

based adaptive resolution simulation scheme in com-

bination with the Thermodynamic Integration.

3 – Ligand-protein interactions in Dual Resolution

In chapter 3, we have shown how the dual resolution

model of a protein, constituted by an all-atom subdomain

coupled to an elastic network model remainder, can be
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used to calculate the binding free energy of an enzyme-

substrate complex with accuracy comparable to that of a

fully-atomistic setup. Particular attention has been paid to

the impact of the mapping, i.e. the selection of atomistic

and coarse-grained residues, on the binding free energy

value: in fact, the active site is modeled with various num-

bers of amino acids treated atomistically.

Specifically, we have computed the total value of the

binding free energy as well as that of its various ener-

getic components and quantitatively inspected their de-

pendence on the number of amino acids that are modeled

at the fully atomistic level, ranging from 3 to 10, and on

the location of these subgroups in the binding pocket.

It has been shown that, in spite of small variations of

the total binding free energy with respect to the active

site resolution, the separate contributions coming from

different energetic terms (such as electrostatic and van der

Waals interactions) manifest a stronger dependence on the

mapping, thus suggesting the existence of an optimal level

of intermediate resolution.

The results of this work thus have highlighted the im-

portance of mapping in the construction of multi-scale and

multi-resolution models, as a higher (but still intermediate)

degree of detail does not necessarily correlate with a higher

accuracy of the quantities of interest.

4 – 1BBA in Dual Resolution

In chapter 4 we have employed, once again, the dual-

resolution scheme proposed in chapter 3 in which the

lower-resolution part of the system is described by an

Elastic Network Model. This model has been used in this
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work focusing on the overall dynamic properties of a small

non-globular protein known as Bovine Pancreatic Polypep-

tide (PDB code 1BBA). Particular attention has been paid

on two aspects: first, the choice of the atomistic and the

coarse-grained part, carried out by dividing the protein

into quasi-rigid domains through the PiSQRD tool; second,

and more importantly, the refinement of the Elastic Net-

work Model employed for treating the lower-resolution

part of the system. Specifically, we have used different elas-

tic constants to connect the coarse-grained beads after a

specific parametrization based on their distance distribu-

tion, with the purpose of improving the results obtained

employing the original version of the ENM (only one elas-

tic constant between CG beads), in terms of free energy

landscapes, in comparison with all-atom simulation. In-

deed, when using only one elastic constant, the value used

is parametrized by minimazing the average root mean

square error in C↵ rmsf, therefore it is global parameter

averaged on the entire system; on the other hand, when em-

ploying the refined version of ENM, each spring value is

specific and it is based on the distance distribution of each

couple C↵ involved, thus leading to a greater accuracy.

The results of this work have emphasized, first, that the

presence or the absence of salt in water leads to different dy-

namical properties: in the former case, the protein is fixed

in one main conformation consisting of unfolded ↵-helix

and stuck terminals; in the latter case, the protein presents

more conformational variability. Furthermore, two impor-

tant outcomes has been achieved:

I we have validated the usage of quasi-rigid domain

subdivision in the context of dual-resolution models
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with the purpose of dividing a biomolecule in CG

and all-atom regions when the definition of a clear

boundary between resolutions is not trivial;

I we have also validated the dual-resolution model

with different elastic constant between CG beads. In

this context, the free energy profiles are better re-

produced with respect to the original formulation of

ENM especially in case of water with salt.

5 – Introduction of a Variable Resolution model

In chapter 5 we have illustrated a new multi-scale reso-

lution methodology dubbed CANVAS or coarse-grained

anisotropic network model for variable resolution simula-

tions. The term “variable” stems from the fact that CAN-

VAS allows complete freedom in coupling any desired

level of coarse-graining, and to move smoothly between

them.

The lower resolution part is described with a new ap-

proach different from the Elastic Network Model or other

works: each survived atom in the coarse-grained part has

its own properties averaged on the group of atoms it repre-

sents –organised in domains defined by a Voronoi partition–

, and these can differ even for the same kind of atoms rep-

resenting the same kind of residues. In fact, the number

and type of atoms mapping onto a given CG site depend

on its local environment, which in turn depends on the

molecule’s structure and the distribution of retained atoms

in it.

The common thread with the ENM is the employment of

harmonic springs connecting the beads; however, at odds

with the customary approach of ENM’s, these bonds are
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not placed among CG sites based on their distance, rather

on the adjacency of the Voronoi domains.

In this work, we have performed fully-atomistic and

variable-resolution simulations of Adenylate Kinase (PDB

code 4AKE) comparing the results and, thus, the model

performance. This first test has emphasised intriguing out-

comes:

I The fully-atomistic simulation and its analysis in

terms of RMSD and RMSF shows that the protein

assumes two main conformations: the first one has

the two protein arms close to each other (closed struc-

ture). In contrast, the second one presents the two

arms distant from each other, as in the reference con-

formation here employed (opened structure) (see Fig.

5.8).

I The CANVAS simulation has shown that only the

opened conformation is reproduced. Moreover, even

though the RMSF profile follows rather accurately

that of the reference, all-atom simulations, the abso-

lute values are systematically too low. This points

toward an excessive rigidity of the structural bonds

in the CG part.

However, this novel multi-scale model, in spite of the

necessity of further refinements displays encouraging re-

sults in the perspective of its application to larger systems

than the ones examined here.

6.2 Outlook

The main object of this thesis are the multiple-resolution

simulation of biomolecules. Each method is different in
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some aspects with consequent pros and cons. However,

the thread common to all multi-scale methods is that the

region of the system playing a crucial role is treated at a

high-resolution level, while the remainder is represented

by a coarse-grained model.

In this thesis, we have presented different multiscale

schemes. In particular, three models have been analyzed in

detail: Force-based Adaptive Resolution Scheme (AdResS), the

Dual-Resolution Model, and the Variable Resolution one.

The AdResS methodology is a consolidated method pro-

posed in 2005 by Praprotnik et al. [20, 115]. It allows to sim-

ulate a system where two different models (all-atom and

coarse-grained, for instance) are concurrently employed in

different sub-regions of the simulation domain. The par-

ticles are, moreover, allowed to diffuse from one region

to the other freely. Specifically, between the atomistic do-

main (AT) and the coarse-grained one (CG), a hybrid (or

transition) region (HY) is employed in which the coupling

between different levels of resolution occurs. At the time,

nearly 15 years after the first publication, all the physi-

cal bases of the method were fully established. However,

most works have focused on the study of structural and

dynamic properties, as well as basic thermodynamic quan-

tities such as density, pressure, chemical potential, and

compressibility. Only recently, the AdResS setup has been

used to compute free energies, as proposed in Ref. [28] (this

was discussed in Chapter 2 of this thesis). The long-term

goal of this approach is the calculation of free energies in

large, complex systems where fully-atomistic simulations

are still largely unfeasible in practice. This includes, for ex-

ample, ligand binding processes in high-molecular-weight
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proteins, ligand intercalation in DNA, or small molecule-

surface interactions. In such systems, the AdResS approach

can be used to simulate at an atomistic level only the sol-

vent molecules directly surrounding the region of interest,

thus reducing the number of atomistic degrees of freedom

in the system and consequently the associated computa-

tional cost.

In the Dual-Resolution methodology, at difference with

AdResS, the resolution is fixed, i.e. position- and time-

independent. The high-resolution level is treated with all-

atom detail, while to describe the lower-resolution part the

classical Elastic Network Model is employed. The latter

has been introduced, for the first time, by Monique Tirion

in 1996 [36] as a simplified approximation of the potential

energy function a biomolecule near equilibrium. Its recent

coupling with an atomistic level of detail in the framework

of multi resolution schemes is providing encouraging re-

sults [24]: indeed, in chapter 3, we have proved that this

strategy can be used for the calculation of binding free

energy of an enzyme-substrate complex with atomistic ac-

curacy. Moving away from ENMs, future refinements of

this multiple-resolution description could include a coarse-

grained model capable of of capturing anharmonic fluctu-

ations.

This scheme is continuously evolving: in chapter 4 we

have presented a refined version of the ENM, in which

a different elastic constant connects the beads based on

their distance distribution. The employment of such modi-

fication could be further improved, since the first test has

shown promising results.

Finally, the Variable-resolution methodology is a new



multi-scale approach: the difference with the dual-resolution

methodology lies in two new and pivotal aspects:

I The resolution can be modulated in a quasi-continuous

way from atomistic to more coarse-grained according

with the size of the Voronoi partition (itself depen-

dent on the number and distribution of the retained

CG sites).

I The potential parametrization does not require refer-

ence simulations, but only the all-atom structure of

the protein.

To describe the lower resolution part, we have used a

new approach (presented in chapter 5) based on beads

and spring. While this method has shown some interesting

results, it is still in the testing phase and requires further re-

finements. Specifically, we have noticed that in the variable

resolution model the protein does not present the same

conformational changes observed in fully-atomistic simu-

lation. However, the fluctuation of each C↵ both in all-atom

reference simulation and in variable resolution one is the

same albeit with lower values in the latter: this property

is a signal of CG network rigidity. Therefore, the starting

point is to focus on finding the optimal coarse-grained

parametrization which involves the characterization of the

elastic spring connecting CG beads (in analogy with the

refined version of the ENM shown in chapter 4), and the

best choice of the survived atom.





Der Unterschied zwischen Vergangenheit, Gegenwart und

Zukunft ist nur eine Illusion, wenn auch eine hartnäckige.

The distinction between past, present and future is only a

stubbornly persistent illusion.

A. EINSTEIN

We trust that time is linear. That it proceeds eternally,

uniformly. Into infinity. But the distinction between past,

present and future is nothing but an illusion. Yesterday, to-

day and tomorrow are not consecutive, they are connected

in a never-ending circle. Everything is connected.



Non ci abbracciamo oggi per abbracciarci piú forte

domani.

Let’s remain distant today so we can hug with more

warmth and run faster tomorrow.

G. CONTE
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been my strength. I wish her the same to fight against her

evil for another hundred years. Grazie Mamma.

Probably, I owe the biggest thanks to me. My Ph.D. path

was very tortuous, riddled with difficulties: Aoife and Raf-

faello left the MPIP after a few months. Their physical

presence would have been of fundamental importance for

everything. I leave the rest to the imagination.

I changed a lot in these four years; I am not the same as

the guy I left my homeland. Now I am thirty, though. As

the journalist Massimo Gramellini writes in his best book

“Fai Bei Sogni”:

«Thirty years. It is the age of the first evaluations. I know

how you feel. You have the feeling of having lived along

an inclined plane that has led you here. As if you were the

product of choices that were not influenced by you, but by

those around you».

I can only agree with him. Now, it is time to make choices.

The right ones. But, despite everyone and everything, I can

only say three words:

I DID IT.
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