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Abstract

In this paper, we investigate the correlation functions of the conformal field
theory (CFT) with the T T̄ deformation on torus in terms of perturbative CFT
approach, which is the extension of the previous investigations on correlation
functions defined on a plane. We systematically obtain the first order correction
to the correlation functions of the CFTs with T T̄ deformation in both opera-
tor formalism and path integral language, and later generalize it to the higher
order perturbations which are involved in the multiple T and T̄ insertion. As
consistenty checks, we compute the deformed partition function, namely zero-
point correlation function, up-to leading order and check the results in the free
field theories as examples. Further, we also get the second order formula of the
partition function which is consistent with previous result in literature.
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1 Introduction

Recently a class of exactly solvable deformation of 2D QFTs with rotational and trans-

lational symmetries called T T̄ deformation [1–3] attracts a lot of research interest. With

T T̄ deformation, the deformed Lagrangian L(λ) can be written as

∂L(λ)
∂λ

= −
∫

d2zT T̄ (z), (1)

where the composite operator T T̄ (z) constructed from stress tensor within the theory

L(λ) was first introduced in [1]. Although such kind of irrelevant deformation is usually

hard to handle, it still has numerous intriguing properties. A remarkable property is

integrability [2, 4, 5]. If the un-deformed theory is integrable, there exists a set infinite

of commuting conserved charges or KdV charges. After T T̄ deformation, these charges

can be adjusted such that they still commute with each other [2,4]. Hence in some sense

the deformed theory is solvable. Furthermore, such deformation is well under control by

the fact that it is possible to compute many quantities in the deformed theory especially

when the un-deformed theory is a CFT, such as S-matrix, energy spectrum, correlation

functions, entanglement entropy and so on [6–11]. The T T̄ deformation is a special one

among a infinite set of deformations constructed from bilinear combinations of KdV

currents [2, 4]. These deformations also preserve the integrability of the un-deformed

theory. Besides T T̄ deformation, other deformations in this set including the so-called

JT̄ deformation also receive much attention from both field theory and holographic

points of view [12–20]. In addition, the T T̄ deformation can also be understood from

some other perspectives and generalizations [21–37].

In particular, within λ < 0, the T T̄ -deformed CFT is suggested to be holographically

dual to AdS space with Dirichlet boundary condition imposed at finite radius [38, 39].

On the boundary, the rotational and translational symmetries are still preserved, while

the conformal symmetry is broken by the deformation. It opens a novel window to study

holography without conformal symmetry. Many interesting progresses have been done

along this direction, such as holographic entanglement entropy, holographic complexity

etc. [8, 15, 20, 40–49].

Correlation functions are fundamental observables in QFTs, so it is of great im-

portance to study the correlation functions in its own right. The correlation functions
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have many important applications, e.g. quantum chaos, quantum entanglement, and

so on. One example is the four-point functions which are related to out of time order

correlator (OTOC), a quantity that can be used to diagnose the chaotic behavior in

field theory with/without the T T̄ deformation [50–53]. To measure the quantum entan-

glement, the computation of entanglement (or Rényi) entropies involves the correlation

functions [54–57]. In the present work we are interested in studying the correlation

functions in the T T̄ deformed CFT. In particular, the T T̄ deformed partition function,

namely zero-point correlation function, on torus could be computed and was shown to

be modular invariant [58,59]. Furthermore the partition function with chemical poten-

tials for KdV charges turning on was also analyzed [60]. The correlation functions with

T T̄ deformation in the deep UV theory were investigated in a non-perturbtive way by

J. Cardy [11].

Meanwhile, one can also proceed with conformal perturbation theory. Here we have

to emphasize that we focus on the deformation region nearby the un-deformed CFTs,

where the CFT Ward identity still holds and the effect of the renormalization group

flow of the operator with the irrelevant deformation is not taken into account in the

current setup. The conformal symmetry can be regarded as an approximate symmetry

up to the lowest orders of the T T̄ deformation and the correlation functions can be also

obtained nearby the original theory. The total Lagrangian is expanded near the critical

point for small coupling constant λ

L = LCFT − λ

∫

d2zT T̄ (z). (2)

The first order of deformed correlation functions take the following form

λ

∫

T 2

d2z〈T T̄ (z)φ1(z1)...φn(zn)〉, (3)

where the expectation value in the integrand is calculated in the underformed CFTs by

Ward identity, and the integration domain is the torus T 2. In the perturbative CFTs

approach, the deformed two-point functions and three-point functions were consider

in [41,61] up to the first order in coupling constant. Subsequently, the present authors

have considered the four-point functions [51]. Also we generalized this study to the case

with supersymmetric extension [62]. Note that in the previous studies, these theories
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were defined on plane. In the present work, we would like to consider the theories de-

fined on torus which will be very important to understand the boundary theory which

is the holographic dual to the BTZ black hole [63]. The other motivation to study the

correlation functions in the deformed theory on the torus is associated with reading

the information about multiple entanglement entropy of the multi-interval [64–66]. To

obtain the deformed correlation functions, one has to calculate the integrand in eq.(3)

by Ward identity and do the integral over the torus T 2 with the help of a proper regu-

larization scheme. The Ward identity on torus associated with the energy momentum

tensor, e.g. T or T̄ , has different structure compared with that on the plane [51] [62].

In terms of perturbative approach, we obtain the correlation functions with T T̄ de-

formation systematically by using both operator formalism and path integral language

following the analysis in [67–69]. Further, the correlation functions with multiple T and

T̄ insertion can be also obtained, for example, the case with a T T̄T T̄ insertion, which

is associated with the second order correction to the correlation functions. With these

results in hand, as applications, we also obtained the deformed partition function up

to second order, which is in good agreement with the results offered by [58] where the

partition function is directly obtained by the counting of the known deformed spectrum.

The plan of this paper is as follows. In section 2, we discuss the Ward identity

associated with T and T̄ insertion on torus and apply it to study the first order per-

turbation of partition function. Then we check the partition functions in the deformed

free bosonic and fermionic field theories. In section 3, we compute the generic Ward

identity associated with multi-T and T̄ insertion, and apply it to the second order per-

turbation of the partition function with T T̄ deformation. In section 4, we offer the

Ward identity on torus by using path integral method. Conclusions and discussions are

given in the final section. In appendices, we would like to list some relevant techniques

and notations which are very useful in our analysis.

2 T T̄ -deformation

In this section we will calculate the first order T T̄ correction to the correlation functions

of the CFTs on torus. As examples, the results are applied to the first order corrections

to the partition function in free field theories with T T̄ deformation.
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2.1 Correlation functions in the T T̄ -deformed CFTs

To obtain the correlation functions of the CFTs with T T̄ insertion on torus, the pro-

cedure is similar with the case in which there is only a single T -insertion as examined

in [68, 69], where the correlation functions were derived in the operator formalism. In-

terestingly, the same results were also obtained in path integral language [67]. Let

us recall the well-known result about the T inserted correlation functions on torus in

CFTs [70]

〈T (w)X〉 − 〈T 〉〈X〉
=
∑

i

(

hi(P (w − wi) + 2η1) + (ζ(w − wi) + 2η1wi)∂wi

)

〈X〉+ 2πi∂τ 〈X〉, (4)

where X ≡ φ1(w1, w̄1)...φn(wn, w̄n), a string of primary operators, P (z), ζ(z) are the

Weierstrass P -function and zeta function respectively, η1 = ζ(1/2), and τ is modular

parameter of the torus (For our conventions, please refer to appendix A). Note that

though the prefactor (ζ(w − wi) + 2η1wi) is not doubly periodic on coordinate w, the

correlation function 〈T (w)X〉 is doubly periodic on w by translation symmetry. In fact,

eq.(4) can be regarded as a generalization of Ward identity on plane. As w → wi, the

usual OPE on the plane is reproduced

T (w)φi(wi, w̄i) ∼
hiφi(wi, w̄i)

(w − wi)2
+
∂wi

φ(wi, w̄i)

w − wi
, (5)

where we used the expansion of functions P (w) ∼ 1/w2, ζ(w) ∼ 1/w in the neighbor-

hood of point w = 0.

In what follows we will review how to derived eq.(4) in operator formalism as in [68].

At first, the partition function on torus is defined by the following trace over the Hilbert

space

Z = tr(qL0−c/24q̄L̄0−c/24), q = e2πiτ . (6)

Then the correlation functions of X({wi, w̄i}) = φ1(w1, w̄1)...φn(wn, w̄n) (We will sup-

press the anti-holomorphic coordinates w̄i dependence in X for simplicity hereafter)

takes the form

〈X({wi})〉 =
1

Z
tr(X({wi})qL0−c/24q̄L̄0−c/24). (7)

To obtain the T inserted correlator 〈T (w)X({wi})〉, we started with the coordinate z

on plane which is related to standard coordinate w on cylinder via the exponential map
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z = e2πiw. With plane coordinate z, one can expand the stress tensor as

Tpl(z) =
∑

n∈Z

Ln

zn+2
. (8)

Now consider the quantity tr(Tpl(z)X({zi})qL0−c/24),3 using (8), which equals

tr(Tpl(z)Xpl({zi})qL0−c/24) =
1

z2
tr(L0Xplq

L0−c/24) +
∑

n 6=0

1

zn+2
tr(LnXplq

L0−c/24), (9)

whereXpl({zi}) are primary operators defined on plane. The first term can be converted

to the derivative with respect to the modular parameter τ

tr(L0Xplq
L0−c/24) =

1

2πi

∂

∂τ
tr(Xplq

L0−c/24) +
c

24
tr(Xplq

L0−c/24), (10)

while the second term equals 4

tr(LnXplq
L0−c/24) = q−ntr(Lnq

L0−c/24Xpl) =
1

qn − 1
tr(qL0−c/24[Xpl, Ln]). (12)

Note the commutator on the RHS can be further expressed as a contour integral

[Ln, Xpl({zi})] =
1

2πi

∮

γ

dz0z
n+1
0 T (z0)Xpl({zi}). (13)

Here the contour γ encircles the operators located at zi, i = 1, ..., n. Then eq.(9) is

tr(Tpl(z)Xpl({zi})qL0−c/24)

=
1

z2
1

2πi

∂

∂τ
tr(Xplq

L0−c/24) +
c

24z2
tr(Xplq

L0−c/24)

+
1

2πi

∮

γ

dz0
z0
z2

(

− 1

2πi
ζ(w0 − w) +

1

πi
η1(w0 − w)− 1

2

)

tr(Tpl(z0)Xplq
L0−c/24),

(14)

where the following formula [68] is used

∑

n 6=0

1

1− qn

(z0
z

)n

= − 1

2πi
ζ(w0 − w) +

1

πi
η1(w0 − w)− 1

2
(15)

with z0 = ei2πw0 , z = e2πiw. Note the contour γ does not encircle z.

3For simplicity we suppressed the anti-holomorphic factor q̄L̄0−c/24 inside the trace.
4An useful relation

qL0Lnq
−L0 = q−nLn. (11)
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Next we transform all the quantities above on plane to coordinate w on torus by

exponential map. For stress tensor on torus T (w), one has

z2Tpl(z) =
1

(2πi)2
T (w) +

c

24
, (16)

and the primary fields Xpl({zi}) transform accordingly to X({wi}) on torus. It follows

that eq.(14) can be written as

tr(T (w)X({wi})qL0−c/12)

=2πi
∂

∂τ
tr(X({wi})qL0−c/24)

+
1

2πi

∮

γ′

dw0

(

− ζ(w0 − w) + 2η1(w0 − w)− πi
)

tr(T (w0)X({wi})qL0−c/24),

(17)

where the contour on torus γ′ transformed from γ on plane encloses wi not w. It can be

shown that the above equation is also valid when X contains component of the stress

tensor T . The second term on the RHS can be further evaluated by substituting into

the OPE

T (w0)φi(wi) ∼
hiφi(wi)

(w0 − wi)2
+
∂iφi(wi)

w0 − wi
, (18)

which leads to

1

2πi

∮

γ′

dw0

(

− ζ(w0 − w) + 2η1(w0 − w)− πi
)

tr(T (w0)X({wi})qL0−c/24)

=
∑

i

hitr(q
L0−c/24X)

(

− ζ ′(wi − w) + 2η1

)

+
(

− ζ(wi − w) + 2η1wi

)

∂wi
tr(XqL0−c/24).

(19)

where in the last step the translation symmetry is used (
∑

i ∂wi
〈X〉 = 0). Finally we

obtain

tr(T (w)XqL0−c/12)− 2πi
∂

∂τ
tr(XqL0−c/24)

=
∑

i

hi

(

− ζ ′(wi − w) + 2η1

)

tr(qL0−c/24X) +
∑

i

(

− ζ(wi − w) + 2η1wi

)

∂wi
tr(XqL0−c/24).

(20)

After dividing both side of eq.(20) by Z, the result eq.(4) is produced.

Based on the derivation above, we can next consider T T̄ insertion, which can be done

by replacing X in eq.(17) with T̄ (v̄)X . Since OPE T with T̄ is regular, only the OPE

Tφi will contribute to the contour integral. Following the same line as eq.(18)-eq.(20),
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the T T̄ inserted correlation function is given by

tr(T (w)T̄ (v̄)XqL0−c/12)

=2πi
∂

∂τ
tr(T̄ (v̄)XqL0−c/24)

+
∑

i

hi

(

− ζ ′(wi − w) + 2η1

)

tr(qL0−c/24T̄ (v̄)X)

+
∑

i

(

− ζ(wi − w) + 2η1wi − 2η1w − πi
)

∂itr(T̄ (v̄)Xq
L0−c/24).

(21)

Here we have implicitly included the factor q̄L̄0−c/24 inside the trace. Equivalently,

eq.(21) can be expressed as

〈T (w)T̄ (v̄)X〉
=2πi∂τ 〈T̄ (v̄)X〉+ 2πi(∂τ lnZ)〈T̄ (v̄)X〉
+
∑

i

hi

(

− ζ ′(wi − w) + 2η1

)

〈T̄ (v̄)X〉

+
∑

i

(

− ζ(wi − w) + 2η1wi − 2η1w − πi
)

∂wi
〈T̄ (v̄)X〉,

(22)

where the last two terms being proportional to
∑

i ∂wi
〈T̄ (v̄)X〉 can be computed as

follows. Using translation symmetry, one has

∑

i

∂wi
〈T̄ (v̄)X〉 = −∂v〈T̄ (v̄)X〉. (23)

Substituting the anti-holomorphic counterpart of eq.(4) into the RHS, then one can see

that ∂v〈T̄ (v̄)X〉 is analytic on torus except at the contact points v ∼ wi. Explicitly,

using 5

∂vP̄ (v̄ − w̄i) ∼ ∂v
1

(v̄ − w̄i)2
= −∂v∂v̄

1

v̄ − w̄i
= −π∂v̄δ(2)(v − wi),

∂v ζ̄(v̄ − w̄i) ∼ ∂v
1

v̄ − w̄i

= πδ(2)(v − wi),

(24)

one can get

∂v〈T̄ (v̄)X〉 = π
∑

i

(

− hi∂v̄δ
(2)(v − wi) + δ(2)(v − wi)∂w̄i

)

〈X〉, (25)

which means the last two terms in the last line of eq.(22) are contact terms vanishing

on torus except at contact points. Following the prescription in [72], when computing

5The convention for delta function here is ∂z̄
1
z = πδ(2)(z), δ(2)(z) = δ(x)δ(y) where z = x+ iy.
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the integral in the first order perturbation of T T̄ deformed correlation functions, we

excise these singular points v = wi from the integral domain

λ

∫

T 2−
∑

i D(wi)

d2v〈T (v)T̄ (v̄)X〉, (26)

where D(wi) is a small disk centered at v = wi. Therefore the last two terms in the

last line of eq.(22) make no contribution to the first order T T̄ deformed correlation

functions.

It is interesting to apply the T T̄ inserted formula to the case without primary

operator φi, i.e., X is identity operator, which is

〈T (w)T̄ (v̄)〉 = 2πi∂τ 〈T̄ (v̄)〉+ 2πi∂τ lnZ〈T̄ (v̄)〉 = −(2πi)2
1

Z
∂τ∂τ̄Z, (27)

where we have used 〈T̄ (v̄)〉 = −2πi∂τ̄ lnZ. The above result indicates the expectation

value of operator 〈T T̄ 〉 on torus does not dependent on the position w, v, this is rea-

sonable since the holomorphic and anti-holomorphic stress does not effect each other in

CFTs. Note the same phenomenon also presents in the cylinder case [1].

Without operators φi, eq.(27) can be derived in a more direct way. To see this we

start with the trace of a single insertion of stress tensor on plane

tr(Tpl(z)q
L0−

c
24 ) = z−2

∑

n

z−ntr(qL0−
c
24Ln) = z−2tr(qL0−

c
24L0), (28)

where we used eq.(11) such that the terms with n 6= 0 vanish. Next transform that to

torus by the map (16)

tr([
1

(2πi)2
T (w) +

c

24
]qL0−

c
24 ) = tr(qL0−

c
24L0) =

1

2πi

∂

∂τ
tr(qL0−

c
24 ) + tr(

c

24
qL0−

c
24 ). (29)

The expectation value of T is then obtained

tr(T (w)qL0−
c
24 ) = 2πi

∂

∂τ
tr(qL0−

c
24 ), or 〈T (w)〉 = 2πi

∂

∂τ
lnZ. (30)

Now consider T (z1)T̄ (z̄2) insertion, which is

tr(qL0 q̄L̄0T (z1)T̄ (z̄2)) =z
−2
1 z̄−2

2

∑

n,m

tr(qL0 q̄L̄0LnL̄m)z
−n
1 z̄−m

2 . (31)

Noting [Ln, L̄n] = 0 and using eq.(11), one has

tr(qL0 q̄L̄0LnL̄m) = q−ntr(q̄L̄0Lnq
L0L̄m) = q−ntr(qL0 q̄L̄0LnL̄m), (32)
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thus

tr(qL0 q̄L̄0LnL̄m) = δm0δn0tr(q
L0 q̄L̄0L0L̄0), (33)

which indicates only the term with n = m = 0 will contribute to the summation in

eq.(31). Further making transformation to torus and using eq.(30), we finally obtain

〈T (w1)T̄ (w̄2)〉 = −(2πi)2
1

Z
∂τ∂τ̄Z, (34)

which reproduced eq.(27).

It is interesting to note that the expectation value 〈T T̄ 〉 is related to the first order

perturbation of partition function under T T̄ deformation. The deformed partition

function is

Z ′ =

∫

Dφe−S+λ
∫
d2zT T̄ (z)

=Z(1 + λ

∫

d2z〈T T̄ 〉(z)) + λ2
∫ ∫

d2u1d
2u2〈T T̄ (u1)T T̄ (u2)〉+ ...).

(35)

with the un-deformed partition function Z =
∫

Dφe−S. After performing integral and

using eq.(27), the first order perturbation of partition function is

λZ

∫

d2z〈T T̄ 〉(z) = λ(2π)2τ2∂τ∂τ̄Z. (36)

which is in good agreement with the result in [58], where the partition function with

T T̄ deformation is computed by using the deformed spectrum and also the modular

properties of partition function is investigated in [58]. In section 3 we will compute the

second order perturbation where the 〈T T̄ (u1)T T̄ (u2)〉 is obtained. Before doing that,

we would like to apply the first order results to free field examples as consistent checks.

2.2 Free field theories

Now we apply the formula eq.(27) to free field theories, and show that eq.(27) is con-

sistent with the results obtained by Wick contraction.

Let us first consider the free boson on torus. The corresponding un-deformed par-

tition function is

Z(τ) =
1√

τ2|η(τ)|2
, (37)

10



where η(τ) is the Dedekind η function. The two-point function of scalar fields is well-

known, which takes the form [70]

〈φ(z1, z̄1)φ(z2, z̄2)〉 = − log
∣

∣

∣

ϑ1(z12/2w1)

η(τ)

∣

∣

∣

2

+ 2π
(Imz12)

2

τ2
. (38)

Here the last term is non-holomorphic and comes from the zero mode. Performing

derivatives on above two-point function gives

〈∂1φ(z1, z̄1)∂2φ(z2, z̄2)〉 = −P (z12)−
η

w1

+
π

τ2
, (39)

〈∂1φ(z1, z̄1)∂̄2φ(z2, z̄2)〉 = − π

τ2
. (40)

The holomorphic and anti-holomorphic stress tensor for boson are T = −1
2
(∂φ)2,

T̄ = −1
2
(∂̄φ)2 respectively. The expectation value can be calculated by point-splitting

method

〈Tzz〉 = −1

2
lim

z1→z2

(

〈∂1φ(z1, z̄1)∂2φ(z2, z̄2)〉+
1

z212

)

= η − π

2τ2
, (41)

where eq.(39) is used. Note this result is consistent with eq.(30). 6

Using Wick contraction and eq.(40), we can further compute the expectation value

of T T̄ operator

〈T (z1)T̄ (z2)〉 =
1

4
〈: (∂φ(z1z̄1))2 :: (∂̄φ(z2, z̄2))2 :〉

=
1

2
(〈∂1φ(z1, z̄1)∂̄2φ(z2, z̄2)〉)2 + 〈Tzz〉〈Tz̄z̄〉

=ηη̄ − πη̄

2τ2
− πη

2τ2
+

3π2

4τ 22
,

(43)

which is equal to eq.(27) as

〈T T̄ 〉 = 4π2 1

Z
∂τ∂τ̄Z = ηη̄ − πη̄

2τ2
− πη

2τ2
+

3π2

4τ 22
. (44)

Note that the result for 〈T T̄ 〉 is more complicated than 〈TT 〉 (see for example [72]),

this is because in the latter case, the two holomorphic stress tensor T can interaction

with each other while not for T and T̄ .

6which can be verified with the help of the identity for Dedekind η function

∂τη

η
=

i

2π
η. (42)
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Next we will go on to the first order correction to the partition function of free

fermions. There are four kinds of spin structures denoted as ν = (1, 2, 3, 4) for free

fermions. The two-point function for fermion with spin struction ν is [70] 7

〈ψ(z)∗ψ(w)〉ν = Pν(z − w), ν = 2, 3, 4. (46)

The partition function Zν is product of holomorphic and antiholomorphic part

Zν = Z ′
νZ̄

′
ν , Z ′

ν(τ) =
(ϑν(τ)

η(τ)

)1/2

. (47)

The holomorphic stress tensor is given by

T =
1

2
(∂ψ∗ψ − ψ∗∂ψ). (48)

and similar for the anti-holomorphic part. By subtracting the divergent part, the

expectation value is

〈T 〉ν =− 1

2
lim
z−w

(1

2
(ψ(z)∂wψ(w)− ∂zψ(z)ψ(w))−

1

(z − w)2

)

=
1

4

ϑ′′ν
ϑν

− 1

12

ϑ′′′1
ϑ′1
,

(49)

which can be shown to be consistent with eq.(30) on account of the identity η = −1
6

ϑ′′′

1

ϑ′

1

and eq.(42)

〈T 〉ν = 2πi∂τ lnZ
′
ν = iπ

(∂τϑν
ϑν

− iη

2π

)

=
1

4

ϑ′′ν
ϑν

− 1

12

ϑ′′′1
ϑ′1
. (50)

Using wick theorem

〈TzzTw̄w̄〉ν = 〈T 〉ν〈T̄ 〉ν = 2πi∂τ lnZ
′
ν × (−2πi)∂τ̄ ln Z̄

′
ν = 4π2 1

Zν
∂τ∂τ̄Zν , (51)

which indicates that eq.(27) is valid for free fermions.

7Here the function Pν(z) is defined by [71]

Pν(v) =
√

P (v)− eν−1 =
ϑν(v)∂zϑ1(0)

2w1ϑν(0)ϑ1(v)
, ν = 2, 3, 4. (45)

12



3 Higher order deformations

In this section we would like to calculate the correlation functions with higher order

T T̄ insertion, which follows closely to the multi-T insertion studied in [68]. At first, let

us review how to obtain the correlation functions with multiple T operators. we will

take TT insertion as an example in the following.

We begin by replacing X in eq.(17) with T (v)X , which is

tr(T (w)T (v)XqL0−c/12)

=2πi
∂

∂τ
tr(T (v)XqL0−c/24)

+
1

2πi

∮

γ′

dw0

(

− ζ(w0 − w) + 2η1(w0 − w)− πi
)

tr(T (w0)T (v)Xq
L0−c/24),

(52)

where the contour γ′ encloses wi as well as v. To perform the contour integral the

following OPE beside eq.(18) is needed

T (w)T (v) ∼ c/2

(w − v)4
+

2T (v)

(w − v)2
+

∂T (v)

(w − v)
. (53)

After computing the integral and using translation symmetry we obtain TT inserted

correlation functions [68]

tr(T (w)T (v)XqL0−c/12)

=2πi
∂

∂τ
tr(T (v)XqL0−c/24) +

c

12
P ′′(v − w)tr(XqL0−c/24)

+ 2
(

P (w − v) + 2η1

)

tr(T (v)XqL0−c/24)

+
(

ζ(w − v) + 2η1v
)

∂vtr(T (v)Xq
L0−c/24)

+
∑

i

hi

(

P (w − wi) + 2η1

)

tr(qL0−c/24T (v)X)

+
∑

i

(

ζ(w − wi) + 2η1wi

)

∂wi
tr(T (v)XqL0−c/24).

(54)

With eq.(54) in hand, it is straightforward to write down the following expression for

13



multiple-T case

tr(T (w)T (v1)...T (vn)Xq
L0−c/12)

=2πi
∂

∂τ
tr(T (v1)...T (vn)Xq

L0−c/24)

+
∑

j

c

12
P ′′(v − w)tr(T (v1)...T̂ (vj)...T (vn)Xq

L0−c/24)

+ 2
(

P (w − vj) + 2η1

)

tr(T (v1)...T (vn)Xq
L0−c/24)

+
∑

j

(

ζ(w − vj) + 2η1vj

)

∂vj tr(T (v1)...T (vn)Xq
L0−c/24)

+
∑

i

hi

(

P (w − wi) + 2η1

)

tr(qL0−c/24T (v1)...T (vn)X)

+
∑

i

(

ζ(w − wi) + 2η1wi

)

∂wi
tr(T (v1)...T (vn)Xq

L0−c/24),

(55)

which is a recursion relation for multiple-T correlation functions [68]. Next we will

consider the cases where multiple-T and T̄ are presented. For example, adding one T̄

to eq.(56), one can obtain

tr(T (w)T (u)T̄ (v̄)XqL0−c/12)

=2πi
∂

∂τ
tr(T (u)T̄ (v̄)XqL0−c/24)

+
1

2πi

∮

γ′

dw0

(

− ζ(w0 − w) + 2η1(w0 − w)− πi
)

tr(T (w0)T (u)T̄ (v̄)Xq
L0−c/24),

(56)

where the contour encloses u, v, wi, however the OPE T (w)T̄ (v̄) has no singular term

again, thus the contour integral around v makes no contribution. This implies the

computation of contour integral in the last line is similar with multiple-T cases. Finally,

14



we obtain a recursion relation for multiple-T and T̄ inserted correlation functions

tr(T (w)[T (u1)...T (un)T̄ (v1)...T̄ (vm)]Xq
L0−c/12)

=2πi
∂

∂τ
tr(T (u1)...T (un)T̄ (v1)...T̄ (vm)Xq

L0−c/24)

=
∑

i

hi

(

− ζ ′(wi − w) + 2η1

)

tr(T (u1)...T (un)T̄ (v1)...T̄ (vm)Xq
L0−c/24)

+
∑

i

(

− ζ(wi − w) + 2η1wi − 2η1w − πi
)

∂wi
tr(T (u1)...T (un)T̄ (v1)...T̄ (vm)e

L0−c/24)

+
c

12

∑

j

P ′′(uj − w)tr(T (u1)...T̂ (uj)...T (un)T̄ (v1)...T̄ (vm)Xq
L0−c/24)

+
∑

j

2
(

P (w − uj) + 2η1

)

tr(T (u1)...T (un)T̄ (v1)...T̄ (vm)Xq
L0−c/24)

+
∑

j

(

ζ(w − uj) + 2η1uj − 2η1w − πi
)

∂ui
tr(T (u1)...T (un)T̄ (v1)...T̄ (vm)Xq

L0−c/24).

(57)

If we replace T (w) with T̄ (w) in the first line, then the anti-holomorphic counterpart

formula of eq.(57) can also be derived which is expressed in terms of anti-holomorphic

quantities.

As mentioned in the last section, we will apply formula eq.(57) as well as its anti-

holomorphic counterpart to study the second order perturbation of the T T̄ deformed

partition function, which involves the integral

∫ ∫

d2u1d
2u2〈T T̄ (u1)T T̄ (u2)〉. (58)

Here the expectation value in the integrand has two T and two T̄ insertion. To evaluated

eq.(58), at first step, let us compute the three point function 〈T̄ (v̄1)T (u2)T (u1)〉 which
can be calculated by using the recursion relation eq.(57) with the order of operator as

〈T (u2)[T̄ (v̄1)T (u2)]〉, or equivalently, using the holomorphic counterpart of eq.(57) to

compute 〈T̄ (v̄1)[T (u1)T (u2)]〉. We have checked that the two different ways lead to the

15



same results. Let us do it in the second way 8

〈T̄ (v̄1)T (u2)T (u1)〉
=− 2πi∂τ̄ 〈T (u2)T (u1)〉 − 2πi〈T (u2)T (u1)〉∂τ̄ lnZ

=
8iπ3∂2τ∂τ̄Z

Z
+ 2(P (u1 − u2) + 2η)(4π2)

∂τ∂τ̄Z

Z

+
c

12
P ′′(u1 − u2)(−2πi)∂τ̄ lnZ.

(60)

One can note that the RHS does not dependent on v̄1.

Next consider 〈T̄ (v̄1)T̄ (v̄2)T (u2)T (u1)〉 which can be expressed in terms of eq.(59)

and eq.(60) by using the recursion relation

〈T̄ (v̄1)T̄ (v̄2)T (u2)T (u1)〉
=− 2πi∂τ̄ 〈T (u2)T (u1)T̄ (v̄1)〉 − 2πi〈T (u2)T (u1)T̄ (v̄1)〉∂τ̄ lnZ
+

c

12
P̄ ′′(v̄12)〈T (u1)T (u2)〉+ 2(−ζ̄ ′(v̄12) + 2η̄)〈T (u2)T (u1)T̄ (v̄1)〉

+ (−ζ̄(v̄12) + 2η̄v̄12 + πi)∂v̄1〈T (u2)T (u1)T̄ (v̄1)〉,

(61)

where v̄12 = v̄1 − v̄2. Note the last term equals zero since 〈T (u2)T (u1)T̄ (v̄1)〉 is in-

dependent of v̄1. Using (59) and (60), the above equation can be further expressed

as

〈T̄ (v̄1)T̄ (v̄2)T (u2)T (u1)〉

=
16π4

Z
∂2τ∂

2
τ̄Z + (2πi)2

c

12
(P ′′(u12)∂

2
τ̄ lnZ + P̄ ′′(v̄12)∂

2
τ lnZ)

+ 2(2πi)3
1

Z
((P (u12) + 2η)∂τ∂

2
τ̄Z − (P̄ (v̄12) + 2η̄)∂2τ∂τ̄Z)

+ (2πi)2
c

12
(P ′′(u12)(∂τ̄ lnZ)

2 + P̄ ′′(v̄12)(∂τ lnZ)
2)

c

12
4πi(P̄ ′′(v̄12)(P (u12) + 2η)∂τ lnZ − P ′′(u12)(P̄ (v̄12) + 2η̄)∂τ̄ lnZ)

+
( c

12

)2

P̄ ′′(v̄12)P
′′(u12) + 4(2π)2(P̄ (v̄12) + 2η̄)(P (u12) + 2η)

1

Z
∂τ∂τ̄Z.

(62)

Let v1 = u1, v2 = u2 in eq.(62), we obtain the integrand in eq.(58), and the integrals

needed to calculate are
∫ ∫

d2u1d
2u2P

′′(u12) =

∫ ∫

d2u1d
2u2P

′′(u1) = 0, (63)

8We used (see the appendix C)

〈T (u2)T (u1)〉
=(2πi)2∂2

τ lnZ + (2πi∂τ lnZ)2 +
c

12
P ′′(u1 − u2) + 2(P (u1 − u2) + 2η)(2πi)∂τ lnZ

(59)
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∫ ∫

d2u1d
2u2P̄

′′(ū12) = 0, (64)

∫ ∫

d2u1d
2u2(P (u12) + 2η) = πτ2, (65)

∫ ∫

d2u1d
2u2(P̄ (ū12) + 2η̄) = πτ2, (66)

∫ ∫

d2u1d
2u2P̄

′′(ū12)(P (u12) + 2η) = 0, (67)

∫ ∫

d2u1d
2u2P

′′(u12)(P̄ (ū12) + 2η̄) = 0, (68)

∫ ∫

d2u1d
2u2P̄

′′(ū12)P
′′(u12) = 0, (69)

∫ ∫

d2u1d
2u2(P̄ (ū12) + 2η̄)(P (u12) + 2η) = 0. (70)

In computing these integrals, following the prescription for regularization in [72], we

have removed the singular points out the integration domain. Here we only listed the

results, for the detailed discussions please refer to appendix B. After putting together

the integrals, we obtain

∫ ∫

d2u1d
2u2〈T T̄ (u1)T T̄ (u2)〉 =

16π4

Z
(τ 22 ∂

2
τ∂

2
τ̄Z − iτ2(∂τ∂

2
τ̄Z − ∂2τ∂τ̄Z)), (71)

which is equal to the second order partition function computed in [58].

4 Deformed correlation functions in path integral

formalism

In this section we will derive the correlation functions with T T̄ insertion following the

line of [67] where the TT insertion was obtained in path integral formalism.

We start with the definition of stress tensor, assuming there is a Lagrangian de-

scription for the theory

Tµν = − 2√
g

∂S

∂gµν
, (72)

where S is the action of the theory, then the expectation value of stress tensor is given

by

〈Tµν〉 =
2

Z
√
g

δ

δgµν
Z (73)
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with partition function

Z =

∫

Dφe−S. (74)

More generally the correlation functions is defined by

〈X〉 = 1

Z

∫

dφXe−S, X = φ1...φN . (75)

The Ward identity corresponding to three types of local symmetries: reparametriza-

tion, local rotation and Weyl scaling in CFT can be given by [67]

1

2

∫

d2x
√
geaν(Pξ)

νµ〈T a
µ (x)X〉

=−
N
∑

k=1

(

ξµ(xk)∂
k
µ +

dk
2
∇ρξ

ρ + isk

(1

2
ǫρσ∇ρξσ + ωνξ

ν
))

〈X〉

+
c

48π

∫

d2x
√
gR∇ρξ

ρ〈X〉.

(76)

where eaµ is the zweibein field coupled with CFT and ων is the spin connection. The

vector fields ξµ parameterize the transformation of zweibein: eµa → eµa−ξν∂νeµa+∂νξµeνa.
sk, dk are the spin and dimension of the field φk. R is the scalar curvature of the surface,

which is equal to zero for torus. And

(Pξ)νµ = G νµ
ρσ ∇ρξσ, G νµ

ρσ = δνρδ
µ
σ + δµρ δ

ν
σ − gµνgρσ. (77)

Note that eq.(76) contains correlation function with a single stress tensor inserted. In

order to obtain double stress tensors insertion, one can further vary eq.(76) with respect

to metric. The resulting expression is

1

4
(G µλ

ρσ ∇λξ
ν +G νλ

ρσ ∇λξ
µ +G µν

ρσ ξλ∇λ)〈Tµν(w)X〉

+
1

4

∫

d2z(
√
g(Pξ)µν)〈Tµν(z)Tρσ(w)X〉

=− 1

2

∑

k

(

ξµ(xk)∂
k
µ +

dk
2
∇αξ

α + isk

(1

2
ǫαβ∇αξβ + ωνξ

ν
))

〈Tρσ(w)X〉

+
c

96π
(−2∇(ρ∇σ)∇λξ

λ + 2gρσ∇2∇λξ
λ +∇λ(Rξ

λ)gρσ)〈X〉

+
c

96π

∫

d2z
√
gR∇λξ

λ〈Tρσ(w)X〉.

(78)

If we let ρ = σ = z and ξ z̄ = 0 in above equation, the correlation function with

TT insertion can be obtained as presented in [67]. Similarly, the T T̄ insertion can be

18



obtained by setting ρ = σ = z̄ and ξ z̄ = 0, as what will be shown in the following.

Setting ρ = σ = z̄ in eq.(78), we obtain

(∇w̄ξ
ν〈Tw̄ν(w)X〉+∇w̄ξ

µ〈Tµw̄(w)X〉+ ξλ∇λ〈Tw̄w̄(w)X〉)

+
1

2

∫

d2z(
√
g(Pξ)zz)〈Tzz(z)Tw̄w̄(w)X〉

+
1

2

∫

d2z(
√
g(Pξ)w̄w̄)〈Tz̄z̄(z)Tw̄w̄(w)X〉

=−
∑

k

(

ξµ(xk)∂
k
µ +

dk
2
∇αξ

α + isk

(1

2
ǫαβ∇αξβ + ωνξ

ν
))

〈Tw̄w̄(w)X〉

+
c

24π
(−∇w̄∇w̄∇λξ

λ)〈X〉+ c

48π

∫

d2z
√
gR∇λξ

λ〈Tw̄w̄(w)X〉.

(79)

Setting ξ z̄ = 0 in above equation leads to

1

2

∫

d2z
√
g(Pξ)zz〈Tzz(z)Tw̄w̄(w)X〉+ ξw∇w〈Tw̄w̄(w)X〉)

=−
∑

k

(

hk∇wk
ξwk + ξwk(∂wk

+ iskωwk
)
)

〈Tw̄w̄(w)X〉

+
c

24π
(−∇w̄∇w̄∇wξ

w)〈X〉+ c

48π

∫

d2z
√
gR∇zξ

z〈Tw̄w̄(w)X〉,

(80)

where hk =
1
2
(d+s) and we omitted the term 〈Tz̄z...〉 = 0. To extract the 〈Tzz(z)Tw̄w̄(w)X〉

outside the integral on the RHS of eq.(80), the Green function Gz
vv for operator ∇z on

Riemann surface with genus g is employed [67]

∇zGz
vv(z, v) =

1√
g
δ(2)(z − v)−

3g−3
∑

j=1

gzz̄ηzz̄,j(z, z̄)h
j

vv (v), (81)

where h j
vv (v) are holomorphic quadratic differentials on the Riemann surface, and ηzz̄,i

are Beltrami differentials dual to holomorphic quadratic differentials, i.e.,
∫

d2z
√
ggzz̄h j

zz η
z
z̄,i =

δji . Let ξ
z(z) = Gz

vv(z, v), then eq.(80) can be written as

〈Tvv(v)Tw̄w̄(w)X〉 −
∑

j

h j
vv (v)

∫

d2z
√
ggzz̄(z)ηzz̄,j(z)〈Tzz(z)Tw̄w̄(w)X〉

=−Gw
vv(w, v)∇w〈Tw̄w̄(w)X〉)

−
∑

k

(

hk∇wk
Gwk

vv(wk, v) +Gwk
vv(wk, v)(∂wk

+ iskωwk
)
)

〈Tw̄w̄(w)X〉

− c

24π
(∇w̄∇w̄∇wG

w
vv(w, v))〈X〉+ c

48π

∫

d2z
√
gR∇zG

z
vv〈Tw̄w̄(w)X〉,

(82)
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where the last term on LHS is called Teichmuller term. All the formulae derived so far

are valid for general Riemann surface. Here we are interested in the case g = 1, i.e.,

the torus, in which case the metric are flat (R = 0), yj = −τ , and the corresponding

Beltrami differential and quadratic differential for torus are

ηzz̄ =
i

Imτ
, hzz = −i. (83)

The explicit expressions for Gz
vv(z, v) on torus is

Gz
ww(z, w) =

1

2π

ϑ′1(z − w)

ϑ1(z − w)
+ i

Im(z − w)

Imτ
. (84)

With these parameters in hand, let us first consider the Teichmuller term which can be

computed explicitly similar to [67]

hjzz(z)

∫

d2v
√
ggvv̄(v)ηvv̄,j(v)〈Tvv(v)Tw̄w̄(w)X〉

=

∮

dz〈Tzz(z)Tw̄w̄(w)X〉+ 2i

∫

d2z
√
g
Imz

Imτ
∂z̄〈Tzz(z)Tw̄w̄(w)X〉,

(85)

where the last term can be evaluated by substituting eq.(82). The derivative in the

last term does not vanish, since the correlator can be non-analytical in z as Tzz(z)

approaches other operators. As for the first term, it turns out to be 9

∮

dz〈Tzz(z)Tw̄w̄(w)X〉 = i∂τ 〈Tw̄w̄(w)X〉+ i∂τ lnZ〈Tw̄w̄(w)X〉. (88)

Finally the Teichmuller term is

hjzz(z)

∫

d2v
√
ggvv̄(v)ηvv̄,j(v)〈Tvv(v)Tw̄w̄(w)X〉

=i∂τ 〈Tw̄w̄(w)X〉+ i∂τ lnZ〈Tw̄w̄(w)X〉+
(

i
Imw

Imτ

)

∂w〈Tw̄w̄(w)X〉

+
1

2

∑

k

hk
1

Imτ
〈Tw̄w̄(w)X〉+ i

∑

k

Imwk

Imτ
∂wk

〈Tw̄w̄(w)X〉.

(89)

9In this section, in order to compare our results to that of [67], we follow the convention in that
paper, where the stress tensor on torus is related to previous section upto a factor 2π, and the stress
tensor on plane Tpl is the same with previous definition, thus eq.(16) become

w′2Tpl(w
′) =

2π

(2πi)2
T (w) +

c

24
, w′ = e2πiw. (86)

Here Tpl(w
′) =

∑

Ln/w
′n+2, T (w) = (−2π)

∑

e−2πiwn(Lcy)n, with (Lcy)n = Ln − δn,0c/24, then
∮

dw〈Tww(w)Tv̄v̄(v)X〉 = −2π〈(Lcy)0Tv̄v̄(v)X〉 = − 1

Z
q
∂

∂q
tr(q(Lcy)0Tv̄v̄(v)X)

=i∂τ 〈Tv̄v̄(v)X〉+ i∂τ lnZ〈Tv̄v̄(v)X〉.
(87)
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Combine with the remaining terms in eq.(82) which can be computed straightfor-

wardly, the T T̄ inserted correlation function is given by

〈Tzz(z)Tw̄w̄(w)X〉
=i∂τ 〈Tw̄w̄(w)X〉+ i∂τ lnZ〈Tw̄w̄(w)X〉

−
∑

k

(

hk(
1

2π
(ξ′(wk − z)− 2η1)) + (

1

2π
(ξ(wk − z)− 2η1(wk − z)))∂wk

)

〈Tw̄w̄(w)X〉

−
( 1

2π
(ξ(w − z)− 2η1(w − z))

)

∂w〈Tw̄w̄(w)X〉 − c

48π
∂w̄∂wδ(w − z)〈X〉

(90)

where the term ∂w〈Tw̄w̄(w)X〉 in last line does not vanish since 〈Tw̄w̄(w)X〉 is not ana-
lytic in w as Tw̄w̄ goes to X , as mentioned before. In fact, ∂w〈Tw̄w̄(w)X〉 is proportional
to delta functions such as δ(2)(w − wk) (which can be seen by substituting the expres-

sion of one T̄ inserted function 〈Tw̄w̄X〉). Therefore the terms in the last line of eq.(90)

are contact terms. In addition, the term
∑

k z∂wk
〈Tw̄w̄(w)X〉 is also contact term (see

eq.(23)). As discussed around eq.(26), when we consider the first order of T T̄ deformed

correlation functions, the contact points is dropped out from the integral. Upon ignor-

ing the contact terms eq.(90) is consistent with the result in section 2. Therefore the

operator formalism and path integral method are consistent with each other when we

consider the first order T T̄ deformed correlation functions.

5 Conclusions and discussions

Motivated by studying the quantum chaos and the entanglement of multiple partite sub-

system, one has to know the correlation functions on torus with the T T̄ deformation. In

this work, to study the correlation functions of the CFTs on torus with T T̄ deformation,

we apply the Ward identity on torus and do a proper regularization procedure to figure

out the correlation functions with T T̄ deformation in terms of perturbative field theory

approach. It can be regarded as a direct generalization of previous studies [51] [62] on

correlation functions in the T T̄ deformed bosonic and supersymmetric CFTs defined

on plane. It is well known that the the correlation functions on plane with T and T̄

can be obtained straightforwardly by using the Ward identity, while the Ward iden-

tity on the torus is very complicated and Ward identity associated with the T and T̄

is unknown in the literature. In this work, we obtained the T T̄ deformed correlation
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functions perturbatively in both operator formalism and in path integral language. As

a consistent check, the first order correction to the partition function agrees with that

obtained by different approach [58] in literature. We explicitly calculate the first order

correction to partition function in the free field theories and we confirm the validity by

comparing with the results obtained by Wick contraction. Moreover, the higher order

correction to the correlation functions have been obtained systematically. As a check,

the resulting second order correction to the partition function is consistent with the

results in [58] obtained by the counting the full deformed energy spectrum.

Since resulting correlation functions are applicable for generic CFTs with the defor-

mation, they are useful to study the holographic aspects of the dual boundary CFTs

with finite size, finite temperature effects. In addition, it is interesting to investigate

the correlation functions of the supersymmetric theories on the torus, as we did in [62].
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Appendices

A Conventions

In our convention the torus denoted as T 2 is defined by the identification of complex

number w ∼ w + 2w1 + 2w2 with 2w1 = 1, 2w2 = τ .

In the following we collect some formulae regarding elliptic functions which are

useful in this work. The Weierstrass P -function is defined by [71]

P (z) =
1

z2
+

∑

n,m6=0

( 1

(z − ω)2
− 1

ω2

)

, ω = 2w1 + 2w1. (91)

The Weierstrass P -function is an elliptic function (doubly periodic on complex plane)

with periods 2w1 and 2w2. P (z) is even and has only one second order pole at z = 0
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on torus. The Laurent series expansion in the neighborhood of z = 0 can be expressed

as

P (z) =
1

z2
+ c2z

2 + c4z
4 + ... (92)

where c2n are constants.

The Weierstrass ζ(z) function is defined by

P (z) =
1

z
+

∑

n,m6=0

( 1

z − ω
+

1

ω
+

z

w2

)

, ω = 2w1 + 2w1, (93)

which is related with P (z) as

P (z) = −ζ ′(z). (94)

Note ζ(z) is odd and has a simple pole at z = 0 around which the Laurent expansion

takes the form

ζ(z) =
1

z
− c2

3
z3 − c4

5
z5 + ... (95)

Since an elliptic function can not have only one simple pole on torus, ζ(z) is not doubly

periodic. Instead, ζ(z) satisfies the quasi-doubly periodic conditions

ζ(z + 2w1,2) = ζ(z) + 2ζ(w1,2) (96)

with ζ(w1) equals the Dedekind η function (also denoting η1 ≡ ζ(w1)) and ζ(w2) ≡ η′.

These quantities satisfy the following identity

ηw2 − η′w1 =
πi

2
. (97)

B Useful integrals

In this section, the Stoke’s theorem in 2D is frequently used and it is

∫

M

dz ∧ dz̄(∂zF z + ∂z̄F
z̄) =

∮

∂M

(F zdz̄ − F z̄dz) (98)

with dz ∧ dz̄ = −2idx ∧ dy = −2id2z. The area of torus T 2 is
∫

T 2 d
2z = τ2, where

the torus is the parallelogram on plane enclosed by OABC with O : z0, A : z0 + 2w1,

B : z0 + 2w1 + 2w2, C : z0 + 2w2.
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Since P (z) is doubly periodic and the translation does not change the integral, the
∫

T 2 d
2zP (z − y)(=

∫

T 2 d
2zP (z)) is

∫

T 2

d2zP (z − y) = −
∫

d2z∂zζ(z − y) = − i

2

∮

∂T 2

dz̄ζ(z − y)

=− i

2

(

∫ A

O

−
∫ B

C

)

dz̄ζ(z − y)− i

2

(

∫ B

A

−
∫ C

O

)

dz̄ζ(z − y)

=− i

2

∫ 2w1

0

dz̄(ζ(z − y)− ζ(z − y + 2w2))

− i

2

∫ 2w2

0

dz̄(ζ(z − y + 2w1)− ζ(z − y))

=− iw̄1(−2η′)− iw̄22η = π − 4ηImw2 = π − 2ητ2,

(99)

where in the last step eq.(97) is used to eliminate η′. One has to be careful to valuate this

integral, since there is a singular point at z = y in the integrand. In fact, following the

prescription for the regularization [72] (see also [73]), we choose the domain of integral

on the torus excluding the singular point as T 2−D(y), where D(y) denotes a small disk

centered at the point z = y and the corresponding boundary is ∂T 2 − ∂D(y). Further,

one can check that the integral above along the contour ∂D(y) makes no contribution

to the final answer. By the same reason, we can handle the integral (103),(105) and

(106) below in the similar manners.

From eq.(99), we obtain

∫

d2z(P (z) + 2η) = π, (100)

whose complex conjugate is

∫

d2z(P̄ (z) + 2η̄) = π. (101)

This integral is exactly equal to the one obtained by using the different method in [72].
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Next we turn to the integral 10

∫

d2uP (u)P̄ (ū) =

∫

d2u(−ζ ′(u)P̄ (ū))

=

∫

d2u∂u(−ζ(u)P̄ (ū)) =
i

2

∮

dū(−ζ(u)P̄ (ū))

=
i

2

∫ z0+2w1

z0

dū[−ζ(u)P̄ (ū) + ζ(u+ 2w2)P̄ (ū+ 2w̄2)]

+
i

2

∫ z0+2w2

z0

dū[−ζ(u+ 2w1)P̄ (ū+ 2w̄1) + ζ(u)P̄ (ū)]

=
i

2
2η′

∫ z0+2w1

z0

dūP̄ (ū) +
i

2
(−2η)

∫ z0+2w2

z0

dūP̄ (ū)

=− i

2
2η′2η̄ +

i

2
(2η)2η̄′ = 2i(ηη̄′ − η′η̄),

(103)

where we used eq.(96), P (u) = −ζ ′(u) and the fact P (u) being doubly periodic function.

It follows that

∫

d2z(P (z) + 2η)(P̄ (z) + 2η̄) = 2i(ηη̄′ − η′η̄) + 2π(η + η̄) + 4ηη̄τ2 = 0, (104)

where eq.(97) is used in the last step.

Next consider the integrals

∫

d2zP ′′(z) = − i

2

∮

dz̄P ′(z) = 0. (105)

In the last step, we used the fact that P ′(z) is an elliptic function (doubly periodic),

the integral along OABC cancelled to zero. By the same reason, one has

∫

d2zP ′′(z)P̄ (z̄) =

∫

d2zP ′′(z)P̄ ′(z̄) =

∫

d2zP ′′(z)P̄ ′′(z̄) = 0, (106)

where for example we can write P ′′(z)P̄ (z̄) = ∂z(P
′(z)P̄ (z̄)) inside the integral.

10In the first step we used the integration by parts, and one may worry about that we omit the term

∫

d2uζ(u)∂uP̄ (ū) =

∫

d2uζ(u)∂ūδ(u) = −
∫

d2z∂ūζ(u)δ(u) =

∫

d2z(δ(u))2. (102)

However, this will not cause problem, since the domain of integral does not include the small disk
around the singular point u = 0, this term will not appear.
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C Details of 〈T (u1)T (u2)T̄ (v̄1)〉
In this section we will compute three-point function 〈T (u1)T (u2)T̄ (v̄1)〉. We begin with

introducing several useful formulae obtained by taking derivatives on eq.(15)

(2πi)2
∑

n 6=0

n

1− qn

(z1
z2

)n

=P (w1 − w2) + 2η1,

(2πi)3
∑

n 6=0

n2

1− qn

(z1
z2

)n

=P ′(w1 − w2),

(2πi)4
∑

n 6=0

n3

1− qn

(z1
z2

)n

=P ′′(w1 − w2)

(107)

with z1,2 = e2πiw1,2 . We can evaluate the following trace

tr(qL0−c/24Tpl(z1)Tpl(z2)) =
∑

n,m

z−n−2
1 z−m−2

2 tr(qL0−c/24LnLm), (108)

where for the term with n = m = 0, tr(qL0−c/24L0L0) can be expressed as derivatives of

partition function Z = tr(qL0−c/24) with respect to τ . While for the remaining terms,

using eq.(11), we get

tr(qL0−c/24LnLm) = q−ntr(qL0−c/24LmLn), (109)

which leads to

tr(qL0−c/24LmLn) =
1

q−n − 1
tr(qL0−c/24[Ln, Lm]). (110)

With the help of Virosoro algebra and eq.(11), we obtain

tr(qL0−c/24LmLn)

=
1

q−n − 1
tr
(

qL0−c/24
(

(n−m)Ln+m +
c

12
n(n2 − 1)δm+n,0

))

=
δm+n,0

q−n − 1
tr
(

qL0−c/24
(

2nL0 +
c

12
n(n2 − 1)

))

.

(111)

Substituting into eq.(108), then the summation in eq.(108) can be obtained via eq.(107).

With transforming the stress tensor on plane into cylinder, we finally obtain 〈T (u1)T (u2)〉
in eq.(59).

To calculate the three-point function 〈T (u1)T (u2)T̄ (v̄1)〉, one can start with

tr(qL0−c/24Tpl(z1)Tpl(z2)T̄pl(ȳ1)) =
∑

n,m

z−n−2
1 z−m−2

2 ȳ−r−2
1 tr(qL0−c/24LnLmL̄r), (112)
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where the only non-vanishing trace in the summation is tr(qL0−c/24L0L0L̄0) and

tr(qL0−c/24LmLnL̄0) =
δm+n,0

q−n − 1
tr
(

qL0−c/24
(

2nL0 +
c

12
n(n2 − 1)

)

L̄0

)

. (113)

Following the steps deriving 〈T (u1)T (u2)〉, we will finally obtain the same express as pre-

sented in eq.(60). Similarly, the deriving of four-point function 〈T (u1)T (u2)T̄ (v̄1)T̄ (v̄2)〉
in eq.(62) can be proceeded.
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