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In this paper, we investigate the correlation functions of the conformal field theory (CFT) with the TT̄
deformation on a torus in terms of the perturbative CFT approach, which is the extension of the previous
investigations on correlation functions defined on a plane. We systematically obtain the first-order
correction to the correlation functions of the CFTs with a TT̄ deformation in both operator formalism and
path integral language. As a consistency check, we compute the deformed partition function, namely, the
zero-point correlation function, up to the first order, which is consistent with results in the literature.
Moreover, we obtain a new recursion relation for correlation functions with multiple T’s and T̄’s inserted in
generic CFTs on a torus. Based on the recursion relations, we study some correlation functions of stress
tensors up to the first order under TT̄ deformation.
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I. INTRODUCTION

Recently, a class of exactly solvable deformation of
2D quantum field theories (QFTs) with rotational and
translational symmetries called TT̄ deformation [1–3]
attracted a lot of research interest. With a TT̄ deformation,
the deformed Lagrangian LðλÞ can be written as

∂LðλÞ
∂λ ¼ −

Z
d2zTT̄ðzÞ; ð1Þ

where the composite operator TT̄ðzÞ constructed from
stress tensor within the theory LðλÞ was first introduced
in Ref. [1]. Although such a kind of irrelevant deformation
is usually hard to handle, it still has numerous intriguing
properties. A remarkable property is integrability [2,4,5].
If the undeformed theory is integrable, there exists a set
infinite of commuting conserved charges or Korteweg–
de Vries (KdV) charges. After a TT̄ deformation, these
charges can be adjusted such that they still commute with
each other [2,4]. Hence, in this sense the deformed theory
is solvable. Furthermore, such deformation is well under

control by the fact that it is possible to compute many
quantities in the deformed theory especially when the
undeformed theory is a conformal field theory (CFT), such
as S-matrix, energy spectra, correlation functions, entan-
glement entropy, and so on [6–11]. The TT̄ deformation is a
special one among an infinite set of deformations con-
structed from bilinear combinations of KdV currents [2,4].
These deformations also preserve the integrability of the
undeformed theory. Besides TT̄ deformation, other defor-
mations in this set including the so-called JT̄ deformation
also receive much attention from both field theory and
holographic points of view [12–20]. In addition, the TT̄
deformation can also be understood from some other
perspectives and generalizations [21–38].
In particular, within λ < 0, the TT̄-deformed CFT is

suggested to be holographically dual to anti–de Sitter space
with a Dirichlet boundary condition imposed at a finite
radius [39,40]. On the boundary, the rotational and trans-
lational symmetries are still preserved, while the conformal
symmetry is broken by the deformation. It opens a novel
window to study holography without conformal symmetry.
Much interesting progress has been made along this
direction, such as holographic entanglement entropy, holo-
graphic complexity, etc. [8,15,20,41–53].
Correlation functions are fundamental observables in

QFTs, so it is of great importance to study the correlation
function in its own right. The correlation functions have
many important applications, e.g., quantum chaos, quan-
tum entanglement, and so on. One example is the four-point
functions which are related to the out of time order
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correlation function, a quantity that can be used to diagnose
the chaotic behavior in field theory with or without the TT̄
deformation [54–58]. To measure the quantum entangle-
ment, the computation of entanglement (or Rényi) entro-
pies involves the correlation functions [59]. In particular,
the Rényi entanglement entropy of the local excited states
has been extensively calculated in various situations
[60–66]. In the present work, we are interested in studying
the correlation functions in the TT̄ deformed CFT. In
particular, the TT̄ deformed partition function, namely, the
zero-point correlation function, on a torus could be com-
puted and was shown to be modular invariant [67,68].
Furthermore, the partition function with chemical poten-
tials for KdV charges turning on was also analyzed [69].
The correlation functions with a TT̄ deformation in the
deep UV theory were investigated in a nonperturbative way
by Cardy [11].
Meanwhile, one can also proceed with conformal pertur-

bation theory.Herewe have to emphasize thatwe focus on the
deformation region near the undeformed CFTs, where the
CFT Ward identity still holds and the effect of the renorm-
alization group flow of the operator with the irrelevant
deformation is not taken into account in the current setup.
The conformal symmetry can be regarded as an approximate
symmetry up to the lowest orders of the TT̄ deformation, and
the correlation functions can be also obtained near the original
theory. The total Lagrangian is expanded near the critical
point for small coupling constant λ:

L ¼ LCFT − λ

Z
d2zTT̄ðzÞ: ð2Þ

The first order of deformed correlation functions take the
following form:

λ

Z
T2

d2zhTT̄ðzÞϕ1ðz1Þ…ϕnðznÞi; ð3Þ

where the expectation value in the integrand is calculated
in the underformed CFTs by the Ward identity and the
integration domain is the torus T2. In the perturbative CFT
approach, the deformed two-point functions and three-point
functionswere considered inRefs. [42,70] up to the first order
in coupling constant. Subsequently, the present authors have
considered the four-point functions [58]. Also, we general-
ized this study to the case with a supersymmetric extension
[71]. Note that, in the previous studies, these theories were
defined on a plane. In the present work, we would like to
consider the theories defined on a torus which will be very
important to understand the boundary theory which is the
holographic dual to the Bañados-Teitelboim-Zanelli (BTZ)
black hole [72]. The other motivation to study the correlation
functions in the deformed theory on the torus is associated
with reading the information about multiple entanglement
entropy of the multi-interval, since the multi-interval Renyi

entropy1 can be related to the computation of a partition
function (i.e., zero-point function) on a torus or correlation
functions of twist operators on a torus [73–76]. To obtain the
deformed correlation functions, one has to calculate the
integrand in Eq. (3) by the Ward identity and do the integral
over the torus T2 with the help of a proper regularization
scheme. The Ward identity on a torus associated with the
energy-momentum tensor, e.g., T or T̄, has a different
structure compared with that on the plane [58,71]. In terms
of the perturbative approach, we obtain the correlation
functions with TT̄ deformation systematically by using both
operator formalism and path integral language following the
analysis in Refs. [77–79]. In addition, the correlation func-
tions in the CFTwith multiple T’s and T̄’s insertion also can
be obtained, for example, the case with a TT̄TT̄ insertion.
The plan of this paper is as follows. In Sec. II, we discuss

the Ward identity associated with single T and T̄ insertion
on a torus and apply it to study the first-order perturbation
of a partition function. Then we check the partition
functions in the deformed free bosonic and fermionic field
theories. In Sec. III, we obtained recursion relations for
multiple T’s and T̄’s inserted correlation functions in the
CFT and apply it to the first-order perturbation of the stress
tensor correlation functions under TT̄ deformation. In
Sec. IV, we offer the Ward identity on a torus by using
the path integral method. Conclusions and discussions are
given in the final section. In Appendixes, we list the
notations and some relevant techniques which are very
useful in our analysis.

II. TT̄ DEFORMATION

In this section, we will calculate the first-order TT̄
correction to the correlation functions Eq. (3) of the
CFTs on a torus. As examples, the results are applied to
the first-order corrections to the partition function in free
field theories with TT̄ deformation.

A. Correlation functions in the TT̄-deformed CFTs

To obtain the correlation functions of the CFTs with TT̄
deformation on a torus, the procedure is similar to the
case in which there is only a single T insertion [78,79],
where the correlation functions were derived in the
operator formalism. Interestingly, the same results were
also obtained in path integral language [77]. We start with
recalling the well-known result about the T inserted
correlation functions on a torus in CFTs [80]:

1For a concrete example in Ref. [73], one can conformally map
the n-sheeted conifold consisting of n planes connected along
the two intervals to another one consisting of n-open cylinders
connected in a certain way along the top and bottom edges of
these intervals, where the cylinders can be regarded as the large
size limit or high-temperature limit of the torus.
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hTðwÞXi − hTihXi ¼
X
i

ðhiðPðw − wiÞ þ 2η1Þ

þ ðζðw − wiÞ þ 2η1wiÞ∂wi
ÞhXi

þ 2πi∂τhXi; ð4Þ

where X ≡ ϕ1ðw1; w̄1Þ…ϕnðwn; w̄nÞ, a string of primary
operators, PðzÞ and ζðzÞ are the Weierstrass P function
and zeta function, respectively, η1 ¼ ζð1=2Þ, and τ is a
modular parameter of the torus.2 Although the prefactor
ðζðw − wiÞ þ 2η1wiÞ is not doubly periodic on coordinate
w, the correlation function hTðwÞXi is doubly periodic onw
by translation symmetry. In fact, Eq. (4) can be regarded as
a generalization of the Ward identity on a plane. As
w → wi, the usual operator product expansion (OPE) on
the plane is reproduced:

TðwÞϕiðwi; w̄iÞ ∼
hiϕiðwi; w̄iÞ
ðw − wiÞ2

þ ∂wi
ϕðwi; w̄iÞ
w − wi

; ð5Þ

where we used the expansion of functions PðwÞ ∼ 1=w2,
ζðwÞ ∼ 1=w in the neighborhood of point w ¼ 0.
In what follows, we will review how to derive Eq. (4)

in the operator formalism as in Ref. [78]. The partition
function on a torus is defined by the following trace over
the Hilbert space:

Z ¼ trðqL0−c=24q̄L̄0−c=24Þ; q ¼ e2πiτ: ð6Þ
The correlation functions of Xðfwi; w̄igÞ ¼ ϕ1ðw1; w̄1Þ…
ϕnðwn; w̄nÞ3 take the form

hXðfwigÞi ¼
1

Z
trðXðfwigÞqL0−c=24q̄L̄0−c=24Þ: ð7Þ

To obtain theT inserted correlation function hTðwÞXðfwigÞi,
we started with the coordinate z on a plane which is related
to standard coordinate w on a cylinder via the exponential
map4 z ¼ e2πiw. On the plane, one can expand the stress
tensor as

TplðzÞ ¼
X
n∈Z

Ln

znþ2
: ð8Þ

Now consider the quantity trðTplðzÞXðfzigÞqL0−c=24Þ,5 using
Eq. (8), which equals

trðTplðzÞXplðfzigÞqL0−c=24Þ ¼ 1

z2
trðL0XplqL0−c=24Þ

þ
X
n≠0

1

znþ2
trðLnXplqL0−c=24Þ;

ð9Þ

where XplðfzigÞ are primary operators defined on the plane.
The first termcanbeconverted to the derivativewith respect to
the modular parameter τ:

trðL0XplqL0−c=24Þ ¼ 1

2πi
∂
∂τ trðXplqL0−c=24Þ

þ c
24

trðXplqL0−c=24Þ; ð10Þ

while the second term equals6

trðLnXplqL0−c=24Þ ¼ q−ntrðLnqL0−c=24XplÞ

¼ 1

qn − 1
trðqL0−c=24½Xpl; Ln�Þ: ð12Þ

Note that the commutator on the rhs can be further expressed
as a contour integral:

½Ln; XplðfzigÞ� ¼
1

2πi

I
γ
dz0z

nþ1
0 Tðz0ÞXplðfzigÞ: ð13Þ

Here the contour γ encircles the operators located at zi,
i ¼ 1;…; n. Then Eq. (9) is

trðTplðzÞXplðfzigÞqL0−c=24Þ ¼ 1

z2
1

2πi
∂
∂τ trðXplqL0−c=24Þ þ c

24z2
trðXplqL0−c=24Þ

þ 1

2πi

I
γ
dz0

z0
z2

�
−

1

2πi
ζðw0 − wÞ þ 1

πi
η1ðw0 − wÞ − 1

2

�
trðTplðz0ÞXplqL0−c=24Þ; ð14Þ

5For simplicity, we suppressed the antiholomorphic factor q̄L̄0−c=24 inside the trace.
6A useful relation is

qL0Lnq−L0 ¼ q−nLn: ð11Þ

4We will refer to coordinate w as the standard coordinate on a torus.

3We will suppress the antiholomorphic coordinate w̄i dependence in X for simplicity hereafter.

2For our conventions, please refer to Appendix A.
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where the following formula [78] is used:

X
n≠0

1

1 − qn

�
z0
z

�
n
¼ −

1

2πi
ζðw0 − wÞ þ 1

πi
η1ðw0 − wÞ − 1

2
ð15Þ

with z0 ¼ ei2πw0 and z ¼ e2πiw. Note that the contour γ does not encircle z.
Next, we transform all the quantities above on a plane to coordinate w on a torus by an exponential map. For a stress

tensor on torus TðwÞ, one has

z2TplðzÞ ¼
1

ð2πiÞ2 TðwÞ þ
c
24

; ð16Þ

and the primary fields XplðfzigÞ transform accordingly to XðfwigÞ on a torus. It follows that Eq. (14) can be written as

trðTðwÞXðfwigÞqL0−c=12Þ

¼ 2πi
∂
∂τ trðXðfwigÞqL0−c=24Þ þ 1

2πi

I
γ0
dw0ð−ζðw0 − wÞ þ 2η1ðw0 − wÞ − πiÞtrðTðw0ÞXðfwigÞqL0−c=24Þ; ð17Þ

where the contour on torus γ0 transformed from γ on a plane encloses wi and not w. It can be shown that the above equation
is also valid when X contains a component of the stress tensor T. The second term on the rhs can be further evaluated by
substituting into the OPE

Tðw0ÞϕiðwiÞ ∼
hiϕiðwiÞ
ðw0 − wiÞ2

þ ∂iϕiðwiÞ
w0 − wi

; ð18Þ

which leads to

1

2πi

I
γ0
dw0ð−ζðw0 − wÞ þ 2η1ðw0 − wÞ − πiÞtrðTðw0ÞXðfwigÞqL0−c=24Þ

¼
X
i

hitrðqL0−c=24XÞð−ζ0ðwi − wÞ þ 2η1Þ þ ð−ζðwi − wÞ þ 2η1wiÞ∂wi
trðXqL0−c=24Þ; ð19Þ

where in the last step the translation symmetry is used (
P

i ∂wi
hXi ¼ 0). Finally, we obtain

trðTðwÞXqL0−c=12Þ − 2πi
∂
∂τ trðXq

L0−c=24Þ
¼

X
i

hið−ζ0ðwi − wÞ þ 2η1ÞtrðqL0−c=24XÞ þ
X
i

ð−ζðwi − wÞ þ 2η1wiÞ∂wi
trðXqL0−c=24Þ: ð20Þ

After dividing both sides of Eq. (20) by Z, the result Eq. (4) is produced.
Based on the derivation above, we can next consider a TT̄ insertion, which can be done by replacing X in Eq. (17) with

T̄ðv̄ÞX. Since OPE T with T̄ is regular, only the OPE Tϕi will contribute to the contour integral. Following the same line as
Eqs. (18)–(20), the TT̄ inserted correlation function is given by

trðTðwÞT̄ðv̄ÞXqL0−c=12Þ ¼ 2πi
∂
∂τ trðT̄ðv̄ÞXq

L0−c=24Þ þ
X
i

hið−ζ0ðwi − wÞ þ 2η1ÞtrðqL0−c=24T̄ðv̄ÞXÞ

þ
X
i

ð−ζðwi − wÞ þ 2η1wi − 2η1w − πiÞ∂itrðT̄ðv̄ÞXqL0−c=24Þ; ð21Þ

where we have implicitly included the factor q̄L̄0−c=24 inside the trace. Equivalently,
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hTðwÞT̄ðv̄ÞXi ¼ 2πi∂τhT̄ðv̄ÞXi þ 2πið∂τ lnZÞhT̄ðv̄ÞXi þ
X
i

hið−ζ0ðwi − wÞ þ 2η1ÞhT̄ðv̄ÞXi

þ
X
i

ð−ζðwi − wÞ þ 2η1wi − 2η1w − πiÞ∂wi
hT̄ðv̄ÞXi: ð22Þ

Consider the term in the last line ð−2η1w − πiÞPi ∂wi

hT̄ðv̄ÞXi; using translation symmetry, one has

X
i

∂wi
hT̄ðv̄ÞXi ¼ −∂vhT̄ðv̄ÞXi: ð23Þ

Substituting the antiholomorphic counterpart of Eq. (4) into
the rhs, one can see that ∂vhT̄ðv̄ÞXi is analytic on a torus
except at the contact points v ∼ wi. Explicitly, using

7

∂vP̄ðv̄ − w̄iÞ ∼ ∂v
1

ðv̄ − w̄iÞ2
¼ −∂v∂ v̄

1

v̄ − w̄i

¼ −π∂ v̄δ
ð2Þðv − wiÞ;

∂vζ̄ðv̄ − w̄iÞ ∼ ∂v
1

v̄ − w̄i
¼ πδð2Þðv − wiÞ; ð24Þ

one can get

∂vhT̄ðv̄ÞXi ¼ π
X
i

ð−hi∂ v̄δ
ð2Þðv − wiÞ

þ δð2Þðv − wiÞ∂w̄i
ÞhXi; ð25Þ

which means the last two terms in the last line of Eq. (22)
are contact terms vanishing on a torus except at contact
points. Following the prescription in Ref. [81], when
computing the integral in the first-order perturbation of
TT̄ deformed correlation functions, we excise these sin-
gular points v ¼ wi from the integral domain

λ

Z
T2−

P
i
DðwiÞ

d2vhTðvÞT̄ðv̄ÞXi; ð26Þ

where DðwiÞ is a small disk centered at v ¼ wi. Therefore,
in this prescription the term ð−2η1w − πiÞPi ∂wi

hT̄ðv̄ÞXi
in the last line of Eq. (22) makes no contribution to the first-
order TT̄ deformed correlation functions.
It is interesting to apply Eq. (22) to the case where X is

the identity operator:

hTðwÞT̄ðv̄Þi ¼ 2πi∂τhT̄ðv̄Þi þ 2πi∂τ lnZhT̄ðv̄Þi

¼ −ð2πiÞ2 1
Z
∂τ∂ τ̄Z; ð27Þ

where we have used hT̄ðv̄Þi ¼ −2πi∂ τ̄ lnZ. The above
result indicates that the expectation value of the hTT̄i

operator on a torus does not depend on the position w, v,
which is reasonable due to the translation invariance. This
can be seen more explicitly from Eq. (34) below, that only
zero modes of a stress tensor contribute to hTðwÞT̄ðv̄Þi and
coordinate-dependent terms vanish. The same phenomenon
also presents in the cylinder case [1].
Actually, Eq. (27) can be derived in a more direct way.

To see this, we start with the trace of a single insertion of a
stress tensor on a plane:

trðTplðzÞqL0−ðc=24ÞÞ ¼ z−2
X
n

z−ntrðqL0−ðc=24ÞLnÞ

¼ z−2trðqL0−ðc=24ÞL0Þ; ð28Þ

where we used Eq. (11) such that the terms with n ≠ 0
vanish. Next, transform that to a torus by the map (16):

tr

��
1

ð2πiÞ2 TðwÞ þ
c
24

�
qL0−ðc=24Þ

�

¼ trðqL0−ðc=24ÞL0Þ

¼ 1

2πi
∂
∂τ trðq

L0−ðc=24ÞÞ þ tr

�
c
24

qL0−ðc=24Þ
�
: ð29Þ

The expectation value of T is then obtained:

trðTðwÞqL0−ðc=24ÞÞ ¼ 2πi
∂
∂τ trðq

L0−ðc=24ÞÞ or

hTðwÞi ¼ 2πi
∂
∂τ lnZ: ð30Þ

Now consider Tðz1ÞT̄ðz̄2Þ insertion, which is

trðqL0 q̄L̄0Tðz1ÞT̄ðz̄2ÞÞ ¼ z−21 z̄−22
X
n;m

trðqL0 q̄L̄0LnL̄mÞz−n1 z̄−m2 :

ð31Þ

Noting ½Ln; L̄n� ¼ 0 and using Eq. (11), one has

trðqL0 q̄L̄0LnL̄mÞ ¼ q−ntrðq̄L̄0LnqL0L̄mÞ
¼ q−ntrðqL0 q̄L̄0LnL̄mÞ; ð32Þ

and thus

trðqL0 q̄L̄0LnL̄mÞ ¼ δm0δn0trðqL0 q̄L̄0L0L̄0Þ; ð33Þ
7The convention for delta function here is ∂ z̄

1
z ¼ πδð2ÞðzÞ,

δð2ÞðzÞ ¼ δðxÞδðyÞ, where z ¼ xþ iy.
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which indicates that only the term with n ¼ m ¼ 0 will
contribute to the summation in Eq. (31). Further making a
transformation to a torus and using Eq. (30), we finally
obtain

hTðw1ÞT̄ðw̄2Þi ¼ −ð2πiÞ2 1
Z
∂τ∂ τ̄Z; ð34Þ

which is the same as Eq. (27).
It is interesting to note that the expectation value hTT̄i

is related to the first-order perturbation of the partition
function under TT̄ deformation. The deformed partition
function is

Z0 ¼
Z

Dϕe−Sþλ
R

d2zTT̄ðzÞ ¼ Z

�
1þ λ

Z
d2zhTT̄iðzÞ

�
…

ð35Þ

with the CFT partition function Z ¼ R
Dϕe−S. By sub-

stituting Eq. (27), the first-order perturbation of the
partition function is

λZ
Z

d2zhTT̄iðzÞ ¼ λð2πÞ2τ2∂τ∂ τ̄Z; ð36Þ

which is in good agreement with the result in Ref. [67],
where the partition function with TT̄ deformation was
computed by using the deformed spectrum.

B. Free field theories

Now we apply Eq. (27) to free field theories and show
that Eq. (27) is consistent with the results obtained by Wick
contraction.
Let us first consider the free boson on a torus. The CFT

partition function is

ZðτÞ ¼ 1ffiffiffiffi
τ2

p jηðτÞj2 ; ð37Þ

where ηðτÞ is the Dedekind η function. The two-point
function of scalar fields is well known, which takes the
form8 [80]

hϕðz1; z̄1Þϕðz2; z̄2Þi ¼ − log

����ϑ1ðz12=2w1Þ
ηðτÞ

����
2

þ 2π
ðImz12Þ2

τ2
:

ð38Þ

Here the last term is nonholomorphic and comes from the
zero mode. Performing derivatives on the above two-point
function gives

h∂1ϕðz1; z̄1Þ∂2ϕðz2; z̄2Þi ¼ −Pðz12Þ −
η

w1

þ π

τ2
; ð39Þ

h∂1ϕðz1; z̄1Þ∂̄2ϕðz2; z̄2Þi ¼ −
π

τ2
: ð40Þ

The holomorphic and antiholomorphic stress tensors
for a boson are T ¼ − 1

2
ð∂ϕÞ2 and T̄ ¼ − 1

2
ð∂̄ϕÞ2, respec-

tively. The expectation value can be calculated by point
splitting

hTzzi ¼ −
1

2
lim
z1→z2

�
h∂1ϕðz1; z̄1Þ∂2ϕðz2; z̄2Þi þ

1

z212

�

¼ η −
π

2τ2
; ð41Þ

where Eq. (39) is used. Note that this result is consistent
with Eq. (30).9

Using Wick contraction and Eq. (40), we can further
compute the expectation value

hTðz1ÞT̄ðz2Þi ¼
1

4
h∶ð∂ϕðz1z̄1ÞÞ2∶∶ð∂̄ϕðz2; z̄2ÞÞ2∶i

¼ 1

2
ðh∂1ϕðz1; z̄1Þ∂̄2ϕðz2; z̄2ÞiÞ2 þ hTzzihTz̄ z̄i

¼ ηη̄ −
πη̄

2τ2
−

πη

2τ2
þ 3π2

4τ22
; ð43Þ

which is equal to Eq. (27) as

hTT̄i ¼ 4π2
1

Z
∂τ∂ τ̄Z ¼ ηη̄ −

πη̄

2τ2
−

πη

2τ2
þ 3π2

4τ22
: ð44Þ

Note that hTT̄i is more complicated than hTTi [81], since,
in the latter case, the two holomorphic stress tensors T have
a more complicated OPE than that of T and T̄.
Next, we go on to study the free fermion case. The two-

point functions for a fermion with different spin structure
(denoted by ν) are10 [80]

hψðzÞ�ψðwÞiν ¼ Pνðz − wÞ; ν ¼ 2; 3; 4: ð46Þ

8Note that the coordinate zi in ϕðzi; z̄iÞ is the standard
coordinate on a torus.

9This can be verified with the help of the identity for Dedekind
η function

∂τη

η
¼ i

2π
η: ð42Þ

10Here the function PνðzÞ is defined by [82]

PνðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðvÞ − eν−1

p
¼ ϑνðvÞ∂zϑ1ð0Þ

2w1ϑνð0Þϑ1ðvÞ
; ν ¼ 2; 3; 4:

ð45Þ
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The partition function Zν is a product of holomorphic and
antiholomorphic parts:

Zν ¼ Z0
νZ̄0

ν; Z0
νðτÞ ¼

�
ϑνðτÞ
ηðτÞ

�
1=2

: ð47Þ

The holomorphic stress tensor is given by

T ¼ 1

2
ð∂ψ�ψ − ψ�∂ψÞ: ð48Þ

And similarly for the antiholomorphic part. By subtracting
the divergent part, the expectation value is

hTiν ¼ −
1

2
lim
z−w

�
1

2
ðψ�ðzÞ∂wψðwÞ − ∂zψ

�ðzÞψðwÞÞ

−
1

ðz − wÞ2
�

¼ 1

4

ϑ00ν
ϑν

−
1

12

ϑ1
000

ϑ1
0 ; ð49Þ

which can be shown to be consistent with Eq. (30) on
account of the identity η ¼ − 1

6
ϑ1

000
ϑ1

0 and Eq. (42):

hTiν ¼ 2πi∂τ lnZ0
ν ¼ iπ

�∂τϑν
ϑν

−
iη
2π

�
¼ 1

4

ϑ00ν
ϑν

−
1

12

ϑ1
000

ϑ1
0 :

ð50Þ

Using the Wick theorem,

hTzzTw̄ w̄iν ¼ hTiνhT̄iν
¼ 2πi∂τ lnZ0

ν × ð−2πiÞ∂ τ̄ ln Z̄0
ν

¼ 4π2
1

Zν
∂τ∂ τ̄Zν; ð51Þ

which indicates that Eq. (27) is valid for free fermions.

III. CORRELATION FUNCTIONS
OF THE STRESS TENSOR

In this section, we will study the correlation functions of
the stress tensor under TT̄ deformed theory up to the first
order. This analysis involves multiple T’s and T̄’s corre-
lation functions in CFTs, which is closely related to the
multiple T’s correlation functions studied in Ref. [78]. We
begin with reviewing how to obtain the correlation func-
tions with multiple T’s insertion and then extend to
correlation functions with T’s and T̄’s insertions. For
simplicity, we will take the TT inserted correlation function
as an example in the following.
We begin with replacing X in Eq. (17) with TðvÞX,

which is

trðTðwÞTðvÞXqL0−c=12Þ ¼ 2πi
∂
∂τ trðTðvÞXq

L0−c=24Þ

þ 1

2πi

I
γ0
dw0ð−ζðw0 − wÞ þ 2η1ðw0 − wÞ − πiÞtrðTðw0ÞTðvÞXqL0−c=24Þ; ð52Þ

where the contour γ0 encloseswi as well as v. To perform the contour integral, the following OPE besides Eq. (18) is needed:

TðwÞTðvÞ ∼ c=2
ðw − vÞ4 þ

2TðvÞ
ðw − vÞ2 þ

∂TðvÞ
ðw − vÞ : ð53Þ

After computing the integral and using translation symmetry, we obtain TT inserted correlation functions [78]:

trðTðwÞTðvÞXqL0−c=12Þ ¼ 2πi
∂
∂τ trðTðvÞXq

L0−c=24Þ þ c
12

P00ðv − wÞtrðXqL0−c=24Þ
þ 2ðPðw − vÞ þ 2η1ÞtrðTðvÞXqL0−c=24Þ þ ðζðw − vÞ þ 2η1vÞ∂vtrðTðvÞXqL0−c=24Þ
þ
X
i

hi½ðPðw − wiÞ þ 2η1Þ þ ðζðw − wiÞ þ 2η1wiÞ∂wi
�trðTðvÞXqL0−c=24Þ: ð54Þ

With Eq. (54) in hand, we readily write down the expression for the multiple T’s case:
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trðTðwÞTðv1Þ…TðvnÞXqL0−c=12Þ

¼ 2πi
∂
∂τ trðTðv1Þ…TðvnÞXqL0−c=24Þ þ

X
j

c
12

P00ðv − wÞtrðTðv1Þ…T̂ðvjÞ…TðvnÞXqL0−c=24Þ

þ 2ðPðw − vjÞ þ 2η1ÞtrðTðv1Þ…TðvnÞXqL0−c=24Þ þ
X
j

ðζðw − vjÞ þ 2η1vjÞ∂vj trðTðv1Þ…TðvnÞXqL0−c=24Þ

þ
X
i

hiðPðw − wiÞ þ 2η1ÞtrðTðv1Þ…TðvnÞXqL0−c=24Þ þ
X
i

ðζðw − wiÞ þ 2η1wiÞ∂wi
trðTðv1Þ…TðvnÞXqL0−c=24Þ;

ð55Þ

where a hat on T means the corresponding stress tensor is absent. This is the recursion relation for multiple T’s correlation
functions [78]. Next, wewill consider the correlation functions with multiple T’s and T̄’s insertion. For example, adding one
T̄ to Eq. (52), one can obtain

trðTðwÞTðuÞT̄ðv̄ÞXqL0−c=12Þ ¼ 2πi
∂
∂τ trðTðuÞT̄ðv̄ÞXq

L0−c=24Þ

þ 1

2πi

I
γ0
dw0ð−ζðw0 − wÞ þ 2η1ðw0 − wÞ − πiÞtrðTðw0ÞTðuÞT̄ðv̄ÞXqL0−c=24Þ; ð56Þ

where the contour encloses u, v, and wi. Again, the contour integral around v makes no contribution. Finally, we obtain
recursion relations for multiple T’s and T̄’s inserted correlation functions:

trðTðwÞ½Tðu1Þ…TðunÞT̄ðv1Þ…T̄ðvmÞ�XqL0−c=12Þ

¼ 2πi
∂
∂τ trðTðu1Þ…TðunÞT̄ðv1Þ…T̄ðvmÞXqL0−c=24Þ

¼
X
i

hið−ζ0ðwi − wÞ þ 2η1ÞtrðTðu1Þ…TðunÞT̄ðv1Þ…T̄ðvmÞXqL0−c=24Þ

þ
X
i

ð−ζðwi − wÞ þ 2η1wi − 2η1w − πiÞ∂wi
trðTðu1Þ…TðunÞT̄ðv1Þ…T̄ðvmÞeL0−c=24Þ

þ c
12

X
j

P00ðuj − wÞtrðTðu1Þ…T̂ðujÞ…TðunÞT̄ðv1Þ…T̄ðvmÞXqL0−c=24Þ

þ
X
j

2ðPðw − ujÞ þ 2η1ÞtrðTðu1Þ…TðunÞT̄ðv1Þ…T̄ðvmÞXqL0−c=24Þ

þ
X
j

ðζðw − ujÞ þ 2η1uj − 2η1w − πiÞ∂ui trðTðu1Þ…TðunÞT̄ðv1Þ…T̄ðvmÞXqL0−c=24Þ: ð57Þ

If we replace TðwÞwith T̄ðwÞ in the first line, then the antiholomorphic counterpart formula of Eq. (57) can also be derived
which is expressed in terms of antiholomorphic quantities.
Let us apply Eq. (57) to evaluate three-point function11 hT̄ðv̄1ÞTðu2ÞTðu1Þi:

hT̄ðv̄1ÞTðu2ÞTðu1Þi ¼ −2πi∂ τ̄hTðu2ÞTðu1Þi − 2πihTðu2ÞTðu1Þi∂ τ̄ lnZ

¼ 8iπ3∂2
τ∂ τ̄Z

Z
þ 2ðPðu1 − u2Þ þ 2ηÞð4π2Þ ∂τ∂ τ̄Z

Z
þ c
12

P00ðu1 − u2Þð−2πiÞ∂ τ̄ lnZ; ð59Þ

11We used the following:

hTðu2ÞTðu1Þi ¼ ð2πiÞ2∂2
τ lnZ þ ð2πi∂τ lnZÞ2 þ

c
12

P00ðu1 − u2Þ þ 2ðPðu1 − u2Þ þ 2ηÞð2πiÞ∂τ lnZ: ð58Þ

One can refer to Appendix C for details.
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where the last line does not depend on v̄1. With the help of Eq. (59), we can obtain the four-point function
hT̄ðv̄1ÞT̄ðv̄2ÞTðu2ÞTðu1Þi:

hT̄ðv̄1ÞT̄ðv̄2ÞTðu2ÞTðu1Þi ¼ −2πi∂ τ̄hTðu2ÞTðu1ÞT̄ðv̄1Þi − 2πihTðu2ÞTðu1ÞT̄ðv̄1Þi∂ τ̄ lnZ

þ c
12

P̄00ðv̄12ÞhTðu1ÞTðu2Þi þ 2ð−ζ̄0ðv̄12Þ þ 2η̄ÞhTðu2ÞTðu1ÞT̄ðv̄1Þi
þ ð−ζ̄ðv̄12Þ þ 2η̄v̄12 þ πiÞ∂ v̄1hTðu2ÞTðu1ÞT̄ðv̄1Þi; ð60Þ

where v̄12 ¼ v̄1 − v̄2. Note that the last term equals zero, since hTðu2ÞTðu1ÞT̄ðv̄1Þi is independent of v̄1. Finally, Eq. (60)
can be expressed as

hT̄ðv̄1ÞT̄ðv̄2ÞTðu2ÞTðu1Þi ¼
16π4

Z
∂2
τ∂2

τ̄Z þ ð2πiÞ2 c
12

ðP00ðu12Þ∂2
τ̄ lnZ þ P̄00ðv̄12Þ∂2

τ lnZÞ

þ 2ð2πiÞ3 1
Z
ððPðu12Þ þ 2ηÞ∂τ∂2

τ̄Z − ðP̄ðv̄12Þ þ 2η̄Þ∂2
τ∂ τ̄ZÞ

þ ð2πiÞ2 c
12

ðP00ðu12Þð∂ τ̄ lnZÞ2 þ P̄00ðv̄12Þð∂τ lnZÞ2Þ

þ c
12

4πiðP̄00ðv̄12ÞðPðu12Þ þ 2ηÞ∂τ lnZ − P00ðu12ÞðP̄ðv̄12Þ þ 2η̄Þ∂ τ̄ lnZÞ

þ
�
c
12

�
2

P̄00ðv̄12ÞP00ðu12Þ þ 4ð2πÞ2ðP̄ðv̄12Þ þ 2η̄ÞðPðu12Þ þ 2ηÞ 1
Z
∂τ∂ τ̄Z: ð61Þ

To obtain the first-order deformed correlation function, one has to do the integral Eq. (3) on the torus. To illustrate how to
construct the first-order correction from the correlation functions in CFTs, we take Eqs. (59) and (61) as two examples.
First, from Eq. (59), we can compute the deformed one-point function hTiλ up to the first order:

hTðu1Þiλ ¼
R
DϕTðu1Þe−S0þλ

R
d2uTT̄ðuÞ

R
Dϕe−S0þλ

R
d2uTT̄ðuÞ

¼ hTi − λhTi
Z

d2uhTT̄ðuÞi þ λ

Z
d2uhTT̄ðuÞTðu1Þi þ � � � : ð62Þ

Here S0 is the action of the CFT, and the correlation function h…i is evaluated in the undeformed theory. The integral in the
second term comes from the correction of the partition function, which is considered in the previous section. This term is
vanishing on a plane. The integrand in the last term can be obtained by setting v1 ¼ u1 in Eq. (59). Finally, by performing
the integral explicitly, we obtain12

hTiλ − hTi ¼ λ

�ð2πiÞ3τ2∂2
τ∂ τ̄Z

Z
− ð2πÞ3 ∂τ∂ τ̄Z

Z
þ ð2πiÞ ∂τZ

Z
ð2πÞ2τ2∂τ∂ τ̄Z

Z

�
: ð63Þ

In computing these integrals, following the prescription for regularization in Ref. [81], we have removed the singular points
out of the integration domain.
Second, one can consider the two-point function hTT̄iλ up to the first order as follows:

hTðu2ÞT̄ðv̄2Þiλ ¼ hTT̄i − λhTT̄i
Z

d2uhTT̄ðuÞi þ λ

Z
d2uhTT̄ðuÞTðu2ÞT̄ðv̄2Þi…; ð64Þ

where only the last term is unknown. The integrand in the last term can be obtained by substituting Eq. (61) with v1 ¼ u1. It
turns out that the last term is

12Please refer to Appendix B for details.
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Z
d2uhTT̄ðuÞTðu2ÞT̄ðv̄2Þi ¼

16π4

Z
ðτ2∂2

τ∂2
τ̄Z − ið∂τ∂2

τ̄Z − ∂2
τ∂ τ̄ZÞÞ; ð65Þ

where the detailed calculation is presented in Appendix B.
In addition, we can also calculate the correlation hTTiλ up to the first order:

hTðu1ÞTðu2Þiλ ¼ hTðu1ÞTðu2Þi − λhTðu1ÞTðu2Þi
Z

d2uhTT̄ðuÞi þ λ

Z
d2uhTT̄ðuÞTðu1ÞTðu2Þi; ð66Þ

where the integral in the last line is more involved than (65) and the computation details are presented in Appendix D. The
final result turns out to be

Z
d2uhTT̄ðuÞTðu1ÞTðu2Þi ¼ 2πi

�
3ð2πÞ3∂2

τ∂ τ̄Z
2Z

−
ð2πiÞ3τ2∂3

τ∂ τ̄Z
Z

�
þ cτ2

12
P00ðu1 − u2ÞhTT̄i

þ 16iπ4∂2
τ∂ τ̄Z

Z
þ ð16π2Þ∂τ∂ τ̄Z

Z
ðPu1;u2 þ 2ηπÞ

þ 2ðPðu1 − u2Þ þ 2ηÞ
�
−
ð2πiÞ3τ2∂2

τ∂ τ̄Z
Z

þ ð2πÞ3 ∂τ∂ τ̄Z
Z

�

þ ð8π2Þ ∂τ∂ τ̄Z
Z

ð−2iηη0 − Pu1;u2 þ 2iτ̄η2 − 2πηÞ; ð67Þ

where Pa;b is defined and calculated in Eq. (D26).

IV. DEFORMED CORRELATION FUNCTIONS IN PATH INTEGRAL FORMALISM

In this section, wewill derive the correlation functions with TT̄ insertion in a CFT defined on a torus, following the line of
Ref. [77], where the TT insertion was obtained in the path integral formalism. We start with the definition of stress tensor,
assuming there is a Lagrangian description for the theory:

Tμν ¼ −
2ffiffiffi
g

p ∂S
∂gμν ; ð68Þ

where S is the CFT action, and then the expectation value of stress tensor is given by

hTμνi ¼
2

Z
ffiffiffi
g

p δ

δgμν
Z; Z ¼

Z
Dϕe−S: ð69Þ

The correlation functions are defined by

hXi ¼ 1

Z

Z
dϕXe−S; X ¼ ϕ1…ϕN: ð70Þ

The Ward identity corresponding to three types of local symmetries—reparametrization, local rotation, and Weyl scaling in
the CFT—can be written as [77]

1

2

Z
d2x

ffiffiffi
g

p
eaνðPξÞνμhTa

μðxÞXi ¼ −
XN
k¼1

�
ξμðxkÞ∂k

μ þ
dk
2
∇ρξ

ρ þ isk

�
1

2
ϵρσ∇ρξσ þ ωνξ

ν

��
hXi þ c

48π

Z
d2x

ffiffiffi
g

p
R∇ρξ

ρhXi;

ð71Þ

where eaμ is the zweibein field coupled with the CFT and ων is the spin connection. The vector fields ξμ parameterize the
transformation of zweibein: eμa → eμa − ξν∂νe

μ
a þ ∂νξ

μeνa. sk and dk are the spin and dimension of the field ϕk, respectively.
R is the scalar curvature of the surface, which is equal to zero for a torus. And
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ðPξÞνμ ¼ Gρσ
νμ∇ρξσ; Gρσ

νμ ¼ δνρδ
μ
σ þ δμρδνσ − gμνgρσ: ð72Þ

In order to obtain double stress tensor insertions, one can further vary Eq. (71) with respect to the metric. The resulting
expression is

1

4
ðGρσ

μλ∇λξ
ν þ Gρσ

νλ∇λξ
μ þ Gρσ

μνξλ∇λÞhTμνðwÞXi þ
1

4

Z
d2zð ffiffiffi

g
p ðPξÞμνÞhTμνðzÞTρσðwÞXi

¼ −
1

2

X
k

�
ξμðxkÞ∂k

μ þ
dk
2
∇αξ

α þ isk

�
1

2
ϵαβ∇αξβ þ ωνξ

ν

��
hTρσðwÞXi

þ c
96π

ð−2∇ðρ∇σÞ∇λξ
λ þ 2gρσ∇2∇λξ

λ þ∇λðRξλÞgρσÞhXi þ
c

96π

Z
d2z

ffiffiffi
g

p
R∇λξ

λhTρσðwÞXi: ð73Þ

By setting ρ ¼ σ ¼ z and ξz̄ ¼ 0 in Eq. (73), the correlation functions with TT insertion can be obtained as presented in
Ref. [77]. Similarly, the TT̄ insertion can be obtained by setting ρ ¼ σ ¼ z̄ and ξz̄ ¼ 0. Then Eq. (73) turns out to be

1

2

Z
d2z

ffiffiffi
g

p ðPξÞzzhTzzðzÞTw̄ w̄ðwÞXi þ ξw∇whTw̄ w̄ðwÞXi

¼ −
X
k

ðhk∇wk
ξwk þ ξwkð∂wk

þ iskωwk
ÞÞhTw̄ w̄ðwÞXi þ

c
24π

ð−∇w̄∇w̄∇wξ
wÞhXi þ c

48π

Z
d2z

ffiffiffi
g

p
R∇zξ

zhTw̄ w̄ðwÞXi;

ð74Þ

where hk ¼ 1
2
ðdk þ skÞ and we omitted the term hTz̄z…i. To extract the hTzzðzÞTw̄ w̄ðwÞXi outside the integral on the rhs of

Eq. (74), the Green function Gz
vv for operator ∇z on a Riemann surface with genus g is employed [77]:

∇zGz
vvðz; vÞ ¼

1ffiffiffi
g

p δð2Þðz − vÞ −
X3g−3
j¼1

gzz̄ηzz̄;jðz; z̄ÞhvvjðvÞ; ð75Þ

where hvvjðvÞ are holomorphic quadratic differentials on the Riemann surface and ηzz̄;i are Beltrami differentials dual to
holomorphic quadratic differentials, i.e.,

R
d2z

ffiffiffi
g

p
gzz̄hzzjηzz̄;i ¼ δji . Let ξzðzÞ ¼ Gz

vvðz; vÞ, and then Eq. (74) can be
written as

hTvvðvÞTw̄ w̄ðwÞXi −
X
j

hvvjðvÞ
Z

d2z
ffiffiffi
g

p
gzz̄ðzÞηzz̄;jðzÞhTzzðzÞTw̄ w̄ðwÞXi

¼ −Gw
vvðw; vÞ∇whTw̄ w̄ðwÞXi −

X
k

ðhk∇wk
Gwk

vvðwk; vÞ þ Gwk
vvðwk; vÞð∂wk

þ iskωwk
ÞÞhTw̄ w̄ðwÞXi

−
c

24π
ð∇w̄∇w̄∇wGw

vvðw; vÞÞhXi þ
c

48π

Z
d2z

ffiffiffi
g

p
R∇zGz

vvhTw̄ w̄ðwÞXi; ð76Þ

where the last term on the lhs is called the Teichmuller term. All the formulas derived so far are valid for a general Riemann
surface. Here we are interested in the case g ¼ 1, i.e., the torus, in which case the metric is flat (R ¼ 0), yj ¼ −τ, and the
corresponding Beltrami differential and quadratic differential for the torus are, respectively,

ηzz̄ ¼
i

Imτ
; hzz ¼ −i: ð77Þ

The explicit expression for Gz
vvðz; vÞ on a torus is

Gz
wwðz; wÞ ¼

1

2π

ϑ01ðz − wÞ
ϑ1ðz − wÞ þ i

Imðz − wÞ
Imτ

: ð78Þ

With these parameters in hand, the Teichmuller term can be computed explicitly as
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hjzzðzÞ
Z

d2v
ffiffiffi
g

p
gvv̄ðvÞηvv̄;jðvÞhTvvðvÞTw̄ w̄ðwÞXi ¼

I
dzhTzzðzÞTw̄ w̄ðwÞXi þ 2i

Z
d2z

ffiffiffi
g

p Imz
Imτ

∂ z̄hTzzðzÞTw̄ w̄ðwÞXi;

ð79Þ

where the last term can be evaluated by substituting Eq. (76). The derivative in the last term does not vanish, since the
correlation function can be nonanalytical in z as TzzðzÞ approaches other operators. As for the first term, it turns out to be13

I
dzhTzzðzÞTw̄ w̄ðwÞXi ¼ i∂τhTw̄ w̄ðwÞXi þ i∂τ lnZhTw̄ w̄ðwÞXi: ð82Þ

Finally, the Teichmuller term is

hjzzðzÞ
Z

d2v
ffiffiffi
g

p
gvv̄ðvÞηvv̄;jðvÞhTvvðvÞTw̄ w̄ðwÞXi ¼ i∂τhTw̄ w̄ðwÞXi þ i∂τ lnZhTw̄ w̄ðwÞXi þ

�
i
Imw
Imτ

�
∂whTw̄ w̄ðwÞXi

þ 1

2

X
k

hk
1

Imτ
hTw̄ w̄ðwÞXi þ i

X
k

Imwk

Imτ
∂wk

hTw̄ w̄ðwÞXi: ð83Þ

Combining with the remaining terms in Eq. (76) which can be computed straightforwardly, the TT̄ inserted correlation
function is given by

hTzzðzÞTw̄ w̄ðwÞXi ¼ i∂τhTw̄ w̄ðwÞXi þ i∂τ lnZhTw̄ w̄ðwÞXi −
X
k

�
hk

�
1

2π
ðξ0ðwk − zÞ − 2η1Þ

�

þ
�
1

2π
ðξðwk − zÞ − 2η1ðwk − zÞÞ

�
∂wk

�
hTw̄ w̄ðwÞXi

−
�
1

2π
ðξðw − zÞ − 2η1ðw − zÞÞ

�
∂whTw̄ w̄ðwÞXi −

c
48π

∂w̄∂wδðw − zÞhXi; ð84Þ

where the term ∂whTw̄ w̄ðwÞXi in the last line does not
vanish, since hTw̄ w̄ðwÞXi is not analytic in w as Tw̄ w̄ goes to
X, as mentioned before. In fact, ∂whTw̄ w̄ðwÞXi is propor-
tional to delta functions such as δð2Þðw − wkÞ (which can be
seen by substituting the expression of one T̄ inserted

function hTw̄ w̄Xi). Therefore, the terms in the last line
of Eq. (84) are contact terms. In addition, the termP

k z∂wk
hTw̄ w̄ðwÞXi is also a contact term [see Eq. (23)].

As discussed around Eq. (26), when we consider the first
order of TT̄ deformed correlation functions, the contact
point is dropped out from the integral. Upon ignoring the
contact terms, Eq. (84) is consistent with the result in
Sec. II. Therefore, the operator formalism and path integral
method are consistent with each other when we consider
the first-order TT̄ deformed correlation functions.

V. CONCLUSIONS AND DISCUSSIONS

Motivated by studying quantum chaos, the quantum
entanglement of the local excited states in TT̄ field theories,
one has to know the correlation functions on a torus with
the TT̄ deformation. In this work, to construct the corre-
lation functions of the CFTs on a torus with a TT̄
deformation, we apply the Ward identity on a torus and
do a proper regularization procedure to figure out the
correlation functions with TT̄ deformation in terms of
the perturbative field theory approach. It can be regarded
as a direct generalization of previous studies [58,71] on
correlation functions in the TT̄ deformed bosonic and

13In this section, in order to compare our results to that of [77],
we follow the convention in that paper, where the stress tensor on
a torus is related to the previous section up to a factor 2π, and the
stress tensor on plane Tpl is the same as the previous definition;
thus, Eq. (16) becomes

w02Tplðw0Þ ¼ 2π

ð2πiÞ2 TðwÞ þ
c
24

; w0 ¼ e2πiw: ð80Þ

Here Tplðw0Þ¼PLn=w0nþ2 and TðwÞ ¼ ð−2πÞP e−2πiwnðLcyÞn,
with ðLcyÞn ¼ Ln − δn;0c=24; then

I
dwhTwwðwÞTv̄ v̄ðvÞXi ¼ −2πhðLcyÞ0Tv̄ v̄ðvÞXi

¼ −
1

Z
q
∂
∂q trðq

ðLcyÞ0Tv̄ v̄ðvÞXÞ

¼ i∂τhTv̄ v̄ðvÞXi þ i∂τ lnZhTv̄ v̄ðvÞXi:
ð81Þ
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supersymmetric CFTs defined on a plane. It is well known
that the correlation functions on a plane with T and T̄ can
be obtained straightforwardly by using the Ward identity,
while the Ward identity on the torus is very complicated
and the Ward identity associated with the T and T̄ is
unknown in the literature. In this work, we obtained the TT̄
deformed correlation functions perturbatively in both
operator formalism and in path integral language. As a
consistency check, the first-order correction to the parti-
tion function agrees with that obtained by a different
approach [67] in the literature. We explicitly calculate the
first-order correction to the partition function in the free
field theories, and we confirm the validity by comparing
with the results obtained by Wick contraction. Moreover,
we obtain new recursion relations of the correlation
functions of the multiple T’s and T̄’s insertion in generic
CFTs on a torus, with which we also figure out some
closed form of the first-order TT̄ corrections to the
correlation functions of stress tensors.
Since the resulting correlation functions are applicable

for generic CFTs with the deformation, they are useful to
study the holographic aspects of the dual boundary CFTs
with finite size, finite-temperature effects.14 The correlation
functions of the boundary stress tensor studied in this work
might be computed in the gravity side, for example, by
varying the classical gravity action with respect to the
boundary metric in the cutoff geometry as studied in
Ref. [53]. Furthermore, the holographic entanglement
entropy of a single interval in a CFT defined on a circle
and at a finite temperature above the Hawking-Page
temperature has been computed from the corresponding
geodesics [85] in the BTZ black hole background. The
result [85] agrees with a universal formula for the entan-
glement entropy of an interval in a finite-temperature
CFT on a line [86]. As for the deformed CFT, one can
apply the correlation functions obtained in this work to
calculate the entanglement entropy in the deformed theory
perturbatively and test the holographic entanglement
entropy of the corresponding interval in the BTZ back-
ground with a cutoff. In addition, many other interesting
quantities, such as Rényi entropies [60], information metric
[87], and so on, can be computed by correlator functions of
certain operators. Then one question that can be asked is
how these quantities behave under a TT̄ deformation on a
torus, which amounts to investigating the related deformed
correlation functions. We hope to address these problems in
the future. Also, it is interesting to investigate the corre-
lation functions of the supersymmetric theories on the
torus, as we did in Ref. [71].
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APPENDIX A: CONVENTIONS

In our convention, the torus denoted as T2 is defined by
the identification of complex number w ∼ wþ 2w1 þ 2w2

with 2w1 ¼ 1 and 2w2 ¼ τ.
In the following, we collect some formulas regarding

elliptic functions which are useful in this work. The
Weierstrass P function is defined by [82]

PðzÞ ¼ 1

z2
þ

X
n;m≠0

�
1

ðz − ωn;mÞ2
−

1

ω2
n;m

�
;

ωn;m ¼ 2w1nþ 2w2m: ðA1Þ

The Weierstrass P function is an elliptic function (doubly
periodic on a complex plane) with periods 2w1 and 2w2.
PðzÞ is even and has only one second-order pole at z ¼ 0
on a torus. The Laurent series expansion in the neighbor-
hood of z ¼ 0 can be expressed as

PðzÞ ¼ 1

z2
þ c2z2 þ c4z4 þ � � � ; ðA2Þ

where c2n are constants.
The Weierstrass ζðzÞ function is defined by

ζðzÞ ¼ 1

z
þ

X
n;m≠0

�
1

z − ωn;m
þ 1

ωn;m
þ z
ω2
n;m

�
;

ωn;m ¼ 2w1nþ 2w2m; ðA3Þ

which is related to PðzÞ as

PðzÞ ¼ −ζ0ðzÞ: ðA4Þ

Note that ζðzÞ is odd and has a simple pole at z ¼ 0 around
which the Laurent expansion takes the form

ζðzÞ ¼ 1

z
−
c2
3
z3 −

c4
5
z5 þ � � � : ðA5Þ

Since an elliptic function cannot have only one simple pole
on a torus, ζðzÞ is not doubly periodic. Instead, ζðzÞ
satisfies the quasidoubly periodic conditions

ζðzþ 2w1;2Þ ¼ ζðzÞ þ 2ζðw1;2Þ ðA6Þ

14For a specific example, the investigation of the CFT on a
circle and finite temperature will involve a generalization of the
uniformization map used in Refs. [83,84] to the case of branched
covers of a torus.
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with ζðw1Þ equal to the Dedekind η function [also denoting
η1 ≡ ζðw1Þ] and ζðw2Þ≡ η0. These quantities satisfy the
following identity:

ηw2 − η0w1 ¼
πi
2
: ðA7Þ

From the ζðzÞ function, the σðzÞ function is defined as

ζðzÞ ¼ ∂z ln σðzÞ: ðA8Þ

The σðzÞ function has the following properties:

σðzþ 2w1Þ ¼ −e2ηðzþw1ÞσðzÞ;
σðzþ 2w2Þ ¼ −e2η0ðzþw2ÞσðzÞ: ðA9Þ

APPENDIX B: USEFUL INTEGRALS

In this section, the Stoke’s theorem in 2D is frequently
used, and it is

Z
M
dz ∧ dz̄ð∂zFz þ ∂ z̄Fz̄Þ ¼

I
∂M

ðFzdz̄ − Fz̄dzÞ ðB1Þ

with dz ∧ dz̄ ¼ −2idx ∧ dy ¼ −2id2z. The area of torus
T2 is

R
T2 d2z ¼ τ2, where the torus is the parallelogram

on a plane enclosed by OABC with O∶z0, A∶z0 þ 2w1,
B∶z0 þ 2w1 þ 2w2, and C∶z0 þ 2w2.
In the following, we will evaluate the integrals in

Eq. (63) which involve the integrals of Pðx − yÞ and
P00ðx − yÞ over a torus with coordinates x. Note that both
of the functions are singular at x ¼ y. To deal with this
singularity in the integral, we follow the prescription in
Ref. [81] (see also [88]), where we cut the singular point
out of the integration domain; more precisely, we perform
the integral as follows:

Z
T2−DðyÞ

d2zPðz − yÞ ¼ −
Z

d2z∂zζðz − yÞ ¼ −
i
2

I
∂T2

dz̄ζðz − yÞ

¼ −
i
2

�Z
A

O
−
Z

B

C

�
dz̄ζðz − yÞ − i

2

�Z
B

A
−
Z

C

O

�
dz̄ζðz − yÞ

¼ −
i
2

Z
2w1

0

dz̄ðζðz − yÞ − ζðz − yþ 2w2ÞÞ −
i
2

Z
2w2

0

dz̄ðζðz − yþ 2w1Þ − ζðz − yÞÞ

¼ −iw̄1ð−2η0Þ − iw̄22η ¼ π − 4ηImw2 ¼ π − 2ητ2; ðB2Þ

whereDðyÞ is an infinitesimal small disk around the singular point. In the last step, Eq. (A7) is used to eliminate η0. One has
to be careful when evaluating this integral; since the boundary of the integration domain is ∂T2 − ∂DðyÞ, we must compute
the contour integral along the small circle ∂DðyÞ. Actually, one can check that the integral above along the contour ∂DðyÞ is
zero, making no contribution to the final answer.15 So we do not write it explicitly out in Eq. (B2). In a similar manner, we
can handle the integral

R
d2zP00ðz − yÞ which turns out to be zero. Note that the two integrals are exactly equal to the results

obtained by using the formalism in Ref. [81].
Next we turn to the integral, similar to Eq. (B2)16:

Z
T2−Dð0Þ−DðaÞ

d2uPðu − aÞP̄ðūÞ ¼
Z

d2uð−ζ0ðu − aÞP̄ðūÞÞ ¼
Z

d2u∂uð−ζðu − aÞP̄ðūÞÞ ¼ i
2

I
dūð−ζðu − aÞP̄ðūÞÞ

¼ i
2

Z
z0þ2w1

z0

dū½−ζðu − aÞP̄ðūÞ þ ζðu − aþ 2w2ÞP̄ðūþ 2w̄2Þ�

þ i
2

Z
z0þ2w2

z0

dū½−ζðu − aþ 2w1ÞP̄ðūþ 2w̄1Þ þ ζðu − aÞP̄ðūÞ� ¼ 2iðηη̄0 − η0η̄Þ; ðB4Þ

15Interestingly, it can be checked that, in all the integrals considered in this work, if zi is a singular point of the integrand, the path
integrals along ∂DðziÞ vanish. Thus, we will not mention the integrals along this kind of path hereafter.

16In the second step, we used the integration by parts. One may worry that we omit the term

Z
d2uζðu − aÞ∂uP̄ðūÞ ¼

Z
d2uζðu − aÞ∂ ūδ

ð2ÞðuÞ ¼ −
Z

d2δð2ÞðuÞ∂ ūζðu − aÞ ¼
Z

d2uδð2ÞðuÞδð2Þðu − aÞ; ðB3Þ

which is divergent as a ¼ 0. However, this will not cause a problem; since the domain of integral does not include the small disk around
the singular points u ¼ a and u ¼ 0, this term will not appear.
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where we used Eq. (A6), PðuÞ ¼ −ζ0ðuÞ, and the fact that
PðuÞ is a doubly periodic function. It follows that

Z
d2zðPðz − aÞ þ 2ηÞðP̄ðzÞ þ 2η̄Þ

¼ 2iðηη̄0 − η0η̄Þ þ 2πðηþ η̄Þ − 4ηη̄τ2 ¼ 0; ðB5Þ

where Eq. (A7) is used in the last step.
By the same reason, one has

Z
d2zP00ðz − aÞP̄ðz̄Þ ¼

Z
d2zP00ðz − aÞP̄0ðz̄Þ

¼
Z

d2zP00ðz − aÞP̄00ðz̄Þ ¼ 0; ðB6Þ

where, for example, we can write P00ðzÞP̄ðz̄Þ ¼
∂zðP0ðzÞP̄ðz̄ÞÞ inside the integral. Note here that the
integral domain is T2 −Dð0Þ −DðaÞ as mentioned before.

APPENDIX C: DETAILS ON hTðu1ÞTðu2ÞT̄ðv̄1Þi
In this section, we will compute three-point function

hTðu1ÞTðu2ÞT̄ðv̄1Þi. We begin with introducing several
useful formulas obtained by taking derivatives on Eq. (15):

ð2πiÞ2
X
n≠0

n
1 − qn

�
z1
z2

�
n
¼ Pðw1 − w2Þ þ 2η1;

ð2πiÞ3
X
n≠0

n2

1 − qn

�
z1
z2

�
n
¼ P0ðw1 − w2Þ;

ð2πiÞ4
X
n≠0

n3

1 − qn

�
z1
z2

�
n
¼ P00ðw1 − w2Þ ðC1Þ

with z1;2 ¼ e2πiw1;2 . We can now evaluate the following
trace:

trðqL0−c=24Tplðz1ÞTplðz2ÞÞ
¼

X
n;m

z−n−21 z−m−2
2 trðqL0−c=24LnLmÞ; ðC2Þ

where, for the term with n ¼ m ¼ 0, trðqL0−c=24L0L0Þ
can be expressed as derivatives of partition function Z ¼
trðqL0−c=24Þ with respect to τ, while for the remaining
terms, using Eq. (11), we get

trðqL0−c=24LnLmÞ ¼ q−ntrðqL0−c=24LmLnÞ; ðC3Þ

which leads to

trðqL0−c=24LmLnÞ ¼
1

q−n − 1
trðqL0−c=24½Ln; Lm�Þ: ðC4Þ

With the help of Virosoro algebra and Eq. (11), we obtain

trðqL0−c=24LmLnÞ

¼ 1

q−n − 1
tr

�
qL0−c=24

�
ðn −mÞLnþm

þ c
12

nðn2 − 1Þδmþn;0

��

¼ δmþn;0

q−n − 1
tr

�
qL0−c=24

�
2nL0 þ

c
12

nðn2 − 1Þ
��

:

ðC5Þ

Substituting into Eq. (C2), then the summation in Eq. (C2)
can be obtained via Eq. (C1). With transforming the stress
tensor on a plane into a cylinder, we finally obtain
hTðu1ÞTðu2Þi in Eq. (58).
To calculate the three-point function hTðu1ÞTðu2ÞT̄ðv̄1Þi,

one can start with

trðqL0−c=24Tplðz1ÞTplðz2ÞT̄plðȳ1ÞÞ
¼

X
n;m

z−n−21 z−m−2
2 ȳ−r−21 trðqL0−c=24LnLmL̄rÞ; ðC6Þ

where the only nonvanishing trace in the summation is
trðqL0−c=24L0L0L̄0Þ and

trðqL0−c=24LmLnL̄0Þ ¼
δmþn;0

q−n − 1
tr

�
qL0−c=24

�
2nL0 þ

c
12

nðn2 − 1Þ
�
L̄0

�
: ðC7Þ

Following the steps deriving hTðu1ÞTðu2Þi, we will finally obtain the same expression as presented in Eq. (59). Similarly, the
deriving of four-point function hTðu1ÞTðu2ÞT̄ðv̄1ÞT̄ðv̄2Þi in Eq. (61) can proceed.

APPENDIX D: DETAILS ON hTTiλ
In this section, we will compute the last integral in Eq. (66). From the recursion relation for T, T̄ inserted correlation

functions in Sec. III, the four-point function interested here takes the form
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hTðwÞTðu1ÞTðu2ÞT̄ðv̄1Þi ¼ 2πi∂τhTðu1ÞTðu2ÞT̄ðv̄1Þi þ hTihTðu1ÞTðu2ÞT̄ðv̄1Þi þ
c
12

ðP00ðw − u1Þ þ P00ðw − u2ÞÞhTT̄i
þ 2ðPðw − u1Þ þ 2ηÞhTðu1ÞTðu2ÞT̄ðv̄1Þi þ 2ðPðw − u2Þ þ 2ηÞhTðu1ÞTðu2ÞT̄ðv̄1Þi
þ ðζðw − u1Þ þ 2ηu1Þ∂u1hTðu1ÞTðu2ÞT̄ðv̄1Þi þ ðζðw − u2Þ þ 2ηu2Þ∂u2hTðu1ÞTðu2ÞT̄ðv̄1Þi:

ðD1Þ

Letting u1 ¼ v1 and integrating u1 over a torus, we obtain the last integral in Eq. (66):

Z
d2u1hTðwÞTðu1ÞTðu2ÞT̄ðū1Þi

¼
Z

d2u1½2πi∂τhTT̄ðu1ÞTðu2Þi þ hTihTT̄ðu1ÞTðu2Þi þ
c
12

ðP00ðw − u1Þ þ P00ðw − u2ÞÞhTT̄i

þ 2ðPðw − u1Þ þ 2ηÞhTT̄ðu1ÞTðu2Þi þ 2ðPðw − u2Þ þ 2ηÞhTT̄ðu1ÞTðu2Þi
þ ðζðw − u1Þ þ 2ηu1Þ∂u1hTT̄ðu1ÞTðu2Þi þ ðζðw − u2Þ þ 2ηu2Þ∂u2hTT̄ðu1ÞTðu2Þi� ðD2Þ

with the function which has already computed in Eq. (59):

hTT̄ðu1ÞTðu2Þi ¼
8iπ3∂2

τ∂ τ̄Z
Z

þ 2ðPðu1 − u2Þ þ 2ηÞð4π2Þ ∂τ∂ τ̄Z
Z

þ c
12

P00ðu1 − u2Þð−2πiÞ∂ τ̄ lnZ: ðD3Þ

Now we would like to compute each term in the rhs of Eq. (D2). Note that the last term of Eq. (D2) vanishes,
since

R
d2u1P0ðu1 − u2Þ ¼ 0 ¼ R

d2u1P000ðu1 − u2Þ.
The first term of Eq. (D2) is

2πi
Z

d2u1∂τhTT̄ðu1ÞTðu2Þi ¼ 2πi∂τ

Z
d2u1hTT̄ðu1ÞTðu2Þi

¼ 2πi∂τ

�
−
ð2πiÞ3τ2∂2

τ∂ τ̄Z
Z

þ ð2πÞ3 ∂τ∂ τ̄Z
Z

�
: ðD4Þ

The second term of Eq. (D2) is

Z
d2u1hTihTT̄ðu1ÞTðu2Þi ¼

�
−
ð2πiÞ3τ2∂2

τ∂ τ̄Z
Z

þ ð2πÞ3 ∂τ∂ τ̄Z
Z

�
hTi: ðD5Þ

The third term of Eq. (D2) is

Z
d2u1

c
12

ðP00ðw − u1Þ þ P00ðw − u2ÞÞhTT̄i ¼
c
12

P00ðw − u2Þτ2hTT̄i: ðD6Þ

The fourth term of Eq. (D2) is

Z
d2u12ðPðw − u1Þ þ 2ηÞhTT̄ðu1ÞTðu2Þi

¼
Z

d2u12ðPðw − u1Þ þ 2ηÞ ×
�
8iπ3∂2

τ∂ τ̄Z
Z

þ 2ðPðu1 − u2Þ þ 2ηÞð4π2Þ ∂τ∂ τ̄Z
Z

þ c
12

P00ðu1 − u2Þð−2πiÞ∂ τ̄ lnZ

�

¼ 2π
8iπ3∂2

τ∂ τ̄Z
Z

þ ð4π2Þ ∂τ∂ τ̄Z
Z

ð4Pw;u2 þ 16η2τ2 þ 8ηðπ − 2ητ2ÞÞ þ
c
6
ð−2πiÞP00

w;u2∂ τ̄ lnZ

¼ 16iπ4∂2
τ∂ τ̄Z

Z
þ ð4π2Þ ∂τ∂ τ̄Z

Z
ð4Pw;u2 þ 8ηπÞ þ c

6
P00
w;u2ð−2πiÞ∂ τ̄ lnZ; ðD7Þ

where we introduce the notation Pw;u2 ¼
R
d2u1Pðu1 − wÞPðu1 − u2Þ and P00

w;u2 ¼
R
d2u1Pðu1 − wÞP00ðu1 − u2Þ, which

are computed below in Eqs. (D26) and (D27), respectively.
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The fifth term of Eq. (D2) is

Z
d2u12ðPðw − u2Þ þ 2ηÞhTT̄ðu1ÞTðu2Þi ¼ 2ðPðw − u2Þ þ 2ηÞ

�
−
ð2πiÞ3τ2∂2

τ∂ τ̄Z
Z

þ ð2πÞ3 ∂τ∂ τ̄Z
Z

�
: ðD8Þ

The sixth term of Eq. (D2) is

Z
d2u1ðζðw − u1Þ þ 2ηu1Þ∂u1hTT̄ðu1ÞTðu2Þi

¼
Z

d2u1ðζðw − u1Þ þ 2ηu1Þ∂u1

�
2Pðu1 − u2Þð4π2Þ

∂τ∂ τ̄Z
Z

þ c
12

P00ðu1 − u2Þð−2πiÞ∂ τ̄ lnZ

�
; ðD9Þ

which can be computed as follows. First, consider the following integral:

Z
d2u1ζðw − u1Þ∂u1Pðu1 − u2Þ

¼
Z

d2u1½∂u1ðζðw − u1ÞPðu1 − u2ÞÞ − Pðu1 − u2Þ∂u1ζðw − u1Þ�

¼
Z

d2u1½∂u1ðζðw − u1ÞPðu1 − u2ÞÞ� − Pw;u2 ; ðD10Þ

where the second term is defined and computed in Eq. (D26) as mentioned before, while the first term is17

Z
d2u1∂u1ðζðw − u1ÞPðu1 − u2ÞÞ ¼ −

i
2

I
∂T2

dū1ζðu1 − wÞPðu1 − u2Þ

¼ −
i
2
ð−2η0Þ

Z
2w1

0

dū1Pðu1 − u2Þ −
i
2
2η

Z
2w2

0

dū1Pðu1 − u2Þ

¼ −2iηη0 þ 2i
τ̄

τ
ηη0: ðD15Þ

Similarly, we can compute the remaining integrals in Eq. (D9), which are

17In the last step, the following integral is along the real axis since 2w1 ¼ 1, so dū1 ¼ du1:

Z
1

0

du1Pðu1 − u2Þ ¼ −
Z

1

0

du1∂u1ζðu1 − u2Þ ¼ −2η: ðD11Þ

To evaluate the second term in the last line of Eq. (D15), we parametrized the integral path as (notice 2w2 ¼ τ ¼ τ1 þ iτ2)

du1 ¼
�
1þ i

τ2
τ1

�
dt; dū1 ¼

�
1 − i

τ2
τ1

�
dt; t ∈ ð0; τ1�; ðD12Þ

and

Pðu1 − u2Þ ¼ P

��
1þ i

τ2
τ1

�
t − u2

�
¼ −∂u1ζðu1 − u2Þ ¼ −

dt
du1

∂tζ

��
1þ i

τ2
τ1

�
t − u2

�
: ðD13Þ

Then

Z
2w2

0

dū1Pðu1 − u2Þ ¼ −
dt
du1

�
1 − i

τ2
τ1

�Z
τ1

0

dt∂tζ

��
1þ i

τ2
τ1

�
t − u2

�
¼ −

dt
du1

�
1 − i

τ2
τ1

�
ζ

��
1þ i

τ2
τ1

�
t − u2

�����
τ1

0

¼ −2η0τ̄
τ

:

ðD14Þ
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Z
d2u1u1∂u1Pðu1 − u2Þ ¼

Z
d2u1½∂u1ðu1Pðu1 − u2ÞÞ − Pðu1 − u2Þ�

¼ iτη − iη0
τ̄

τ
− ðπ − 2ητ2Þ ¼ iτ̄η − iη0

τ̄

τ
− π ðD16Þ

and

Z
d2u1ðζðw − u1Þ þ 2ηu1Þ∂u1P

00ðu1 − u2Þ ¼ −
Z

d2u1Pðw − u1ÞP00ðu1 − u2Þ ¼ −P00
w;u2 : ðD17Þ

Therefore, Eq. (D9) is

Z
d2u1ðζðw − u1Þ þ 2ηu1Þ∂u1hTT̄ðu1ÞTðu2Þi

¼
Z

d2u1ðζðw − u1Þ þ 2ηu1Þ∂u1

�
2Pðu1 − u2Þð4π2Þ

∂τ∂ τ̄Z
Z

þ c
12

P00ðu1 − u2Þð−2πiÞ∂ τ̄ lnZ

�

¼ 2ð4π2Þ ∂τ∂ τ̄Z
Z

�
−2iηη0 þ 2i

τ̄

τ
ηη0 − Pw;u2 þ 2η

�
iτ̄η − iη0

τ̄

τ
− π

��
þ c
12

ð2πiÞP00
w;u2∂ τ̄ lnZ

¼ 2ð4π2Þ ∂τ∂ τ̄Z
Z

ð−2iηη0 − Pw;u2 þ 2iτ̄η2 − 2πηÞ þ c
12

ð2πiÞP00
w;u2∂ τ̄ lnZ: ðD18Þ

Finally, collecting all terms together, Eq. (D2) equals

Z
d2u1hTðwÞTðu1ÞTðu2ÞT̄ðū1Þi ¼ 2πi

�
3ð2πÞ3∂2

τ∂ τ̄Z
2Z

−
ð2πiÞ3τ2∂3

τ∂ τ̄Z
Z

�
þ cτ2

12
P00ðw − u2ÞhTT̄i

þ 16iπ4∂2
τ∂ τ̄Z

Z
þ ð16π2Þ∂τ∂ τ̄Z

Z
ðPw;u2 þ 2ηπÞ

þ 2ðPðw − u2Þ þ 2ηÞ
�
−
ð2πiÞ3τ2∂2

τ∂ τ̄Z
Z

þ ð2πÞ3 ∂τ∂ τ̄Z
Z

�

þ ð8π2Þ ∂τ∂ τ̄Z
Z

ð−2iηη0 − Pw;u2 þ 2iτ̄η2 − 2πηÞ: ðD19Þ

1. Computation of Pa;b and P00
a;b

In the following, we will calculate the integrals

Pa;b ≡
Z

d2zPðz − aÞPðz − bÞ; P00
a;b ≡

Z
d2zPðz − aÞP00ðz − bÞ: ðD20Þ

First, consider Pw;u2, of which the integrand is elliptic; thus, it can be expressed in terms of the ζ function and its derivatives,
according to the position and order of the poles [82]. More precisely, since Pðz − aÞPðz − bÞ has order 2 poles at z ¼ a
and z ¼ b, respectively, we can write

Pðz − aÞPðz − bÞ ¼ a0 þ a1ζðz − aÞ þ b1ζðz − bÞ − a2ζ0ðz − aÞ − b2ζ0ðz − bÞ ðD21Þ

with ai and bi constants which can be determined by comparing the coefficients of the poles in both sides and so on. It turns
out that these constants are

a2 ¼ b2 ¼ Pða − bÞ; a1 ¼ −b1 ¼ P0ða − bÞ; ðD22Þ

and
a0 ¼ PðaÞPðbÞ þ P0ða − bÞðζðaÞ − ζðbÞÞ − Pða − bÞðPðaÞ þ PðbÞÞ: ðD23Þ
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To evaluate the integral of the rhs of Eq. (D21), we integrate each term separately. For the second and third terms which take
the form ζðz − aÞ − ζðz − bÞ, we have to consider the following integral:

BðaÞ≡
Z

d2zζðz − aÞ ¼
Z

d2zðln σðz − aÞÞ0 ¼ i
2

I
dz̄ ln σðz − aÞ

¼ i
2

Z
2w1

0

dz̄ðln σðz − aÞ − ln σðz − aþ 2w2ÞÞ þ
i
2

Z
2w2

0

dz̄ðln σðz − aþ 2w1Þ − ln σðz − aÞÞ

¼ i
2

Z
2w1

0

dz̄ð−1Þðπiþ 2η0ðz − aþ w2ÞÞ þ
i
2

Z
2w2

0

dz̄ðπiþ 2ηðz − a − w1ÞÞ; ðD24Þ

and then

BðaÞ − BðbÞ ¼ iða − bÞðη0 − ητ̄Þ ¼ ða − bÞðπ − 2ητ2Þ: ðD25Þ

Finally, we obtain

Pa;b ¼
Z

d2zPðz − aÞPðz − bÞ ¼ a0τ2 þ a1ða − bÞðπ − 2ητ2Þ þ 2a2ðπ − 2ητ2Þ: ðD26Þ

Next, consider P00
a;b whose integrand Pðz − aÞP00ðz − bÞ is also elliptic. Following the same steps as above, first we express

the integrand in terms of the ζ function and its derivatives, which can be achieved by taking the derivative on Eq. (D21) with
respect to b twice. Then we integrate the resulting expression, which turns out to be

P00
a;b ¼

Z
d2zPðz − aÞP00ðz − bÞ ¼ a000τ2 þ a001ða − bÞðπ − 2ητ2Þ − a01ðπ − 2ητ2Þ; ðD27Þ

where the prime on ai denotes the derivatives with respect to b. Note that the rhs of Eq. (D27) can also be obtained by
directly taking the derivative on the rhs of Eq. (D26) twice with respect to b twice.
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