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Abstract

This article derives and presents the Feynman rules for Quantum General Relativity
coupled to the Standard Model for any vertex valence and with general gauge parameter
(. The results are worked out with de Donder gauge fixing, for the metric decomposition
Guv = N +2h,,, and in four dimensions of spacetime. To this end we calculate the Feynman
rules for pure gravitation in the linearized and non-linearized case, for the corresponding
graviton ghosts and for the coupling to scalars, spinors, gauge bosons and gauge ghosts.

1 Introduction

The attempt to perturbatively quantize General Relativity (GR) is rather old: In fact, the
attempt to define the graviton field h,, with gravitational coupling constant sz as the fluctuation
around a fixed background metric v,,, i.e.

1
Py = — (G = V) = G = Y + 2Py, (1)

— oftentimes, and in particular in this article, chosen as the Minkowski metric v, = 7, —
goes back to M. Fierz, W. Pauli and L. Rosenfeld in the 1930s [1]. Then, R. Feynman [2]
and B. DeWitt [3| 4] B, 6] started to calculate the corresponding Feynman rules in the 1960s.
However, D. Boulware, S. Deser, P. van Nieuwenhuizen [7] and G. 't Hooft [8] and M. Veltman [9]
discovered serious problems due to the non-renormalizability of perturbative Quantum General
Relativity (QGR) in the 1970s. We refer to [I] for a historical treatment.

Despite its age, it is still very hard to find references properly displaying Feynman rules for
QGR, given via the Lagrange density

1 1 v 1 vV po—
LQGr = — <ﬁR + MgpudD“dD + 59“ 9”°X,, (apaoXV)> dvy, (2)

where R := ¢g"?R",,, is the Ricci scalar, dD* := ¢g*’T'},, is the de Donder gauge fixing, x €
r (M,H(TM)) and ¥ € T (M,H(T*M)) are the graviton ghost and graviton anti-ghost and
dVy := y/—Det (g)dt A dz A dy A dz is the Riemannian volume form. In fact the only ones
known to the author are [9, 10, 11l 12], which limit the analysis to linearized GR, display the
vertex Feynman rules only up to valence four, directly set the de Donder gauge fixing parameter
to ¢ := 1 and omit the ghost vertex Feynman rules completely. This article aims to fix this gap
by deriving the vertex Feynman rules and the propagators for gravitons, their ghosts and their
interactions with matter from the Standard Model. The analysis is carried out for any vertex-
valence, the de Donder gauge fixing with general gauge parameter ¢, the metric decomposition
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G = Nuv + #hy,, and four dimensions of spacetime. Furthermore, the vertex Feynman rules
are separated in their linear and purely non-linear contributions. Additionally an interpretation
is discussed that effectively changes the Einstein-Hilbert Lagrange density to be linear in the
graviton fields, without an artificial, and to some extend unmotivated, linearization. Moreover,
the gravitational interactions with matter from the Standard Model are classified into 13 different
types and their vertex Feynman rules are also calculated for any valence.

The results are Theorem stating the graviton vertex Feynman rules, Theorem .13 stating
the corresponding graviton propagator, Theorem [A.14] stating the graviton ghost vertex Feyn-
man rules and Theorem stating the corresponding graviton ghost propagator. Finally, the
graviton-matter vertex Feynman rules are worked out in Theorem [£.17 on the level of generic
graviton-matter interactions, as classified in Lemma[L.T1l The complete Feynman rules can then
be obtained by adding the corresponding matter contributions, as listed e.g. in [13].

2 Conventions and definitions

We start this article with our conventions, in particular the used sign choices. Furthermore,
we recall important definitions for perturbative Quantum General Relativity and the Standard
Model. This includes the Lagrange density with the metric decomposition, the gauge fixing,
(residual) gauge transformations and a comment on transversality in this setting. We refer to
[14] for a more fundamental introduction.

Convention 2.1 (Sign choices). We use the sign-convention (— + +), as classified by [15], i.e.:

1 0 0 0
1. Minkowski metric: N = 8 _01 _01 8
0O O 0 -1

7%

2. Riemann tensor: R’y = 0,106 — 0,16 + FﬁAri‘U — Flp/)\Ff;U
3. Einstein field equations: G, = T},

Furthermore we use the plus-signed Clifford relation, i.e. {Vim, Y} = 29mn Id, c.f. [I4] Remark
2.15].

Definition 2.2 (Spacetime). Let (M, g) be a Lorentzian manifold. (M, g) is called a spacetime
if it is smooth, connected, 4-dimensional and time-orientable.

Remark 2.3. We set the spacetime dimension directly to four, as the Feynman rules depend
crucially on it.

Definition 2.4 (Matter-compatible spacetime). Let (M, g) be a spacetime. We call (M, g) a
matter-compatible spacetime if it is diffeomorphic to the Minkowski spacetime (M, 7).

Remark 2.5. Matter-compatible spacetimes are defined such that any fields on corresponding
bundles can be interpreted as living on Minkowski spacetime (M,7) together with suitable
interactions with the graviton field h,, .

Definition 2.6 (Metric decomposition and graviton field). Let (M, g) be a matter-compatible
spacetime. We consider the metric decomposition

g,ul/ = np,l/ + %h“y ) (3)

where 7, is the background Minkowski metric, » := /k is the gravitational coupling constant
and hy, is the graviton field which can be interpreted as a (0, 2)-tensor field on the background



Minkowski spacetime (M, n), i.e. h €T <M, SymZ T*M).

Convention 2.7 (Lagrange density). We choose the following signs and prefactors for the
Lagrange density, where dVj := /—Det (g) dt A dz A dy A dz denotes the Riemannian volume
form:

1. Einstein-Hilbert Lagrange density: Lgr = — <#R) dV,, with R := ¢"?R";,,,
2. Gauge fixing Lagrange density: Lor = — (ﬁgwcﬂ?“cﬂ)”> dVy, with dD* := gF’ Tl

3. Ghost Lagrange density: Lahost = — <%g“”gp(’yu (8,)(90)(,,)) dVy, with x € T (M, I (TM))

The Lagrange density of Quantum General Relativity is then the sum of the three, i.e.

Lqocr = Lar + Lar + Lanost » (4)

c.f. [T4, Section 2.2]. We remark that the ghost Lagrange density is calculated via Faddeev-
Popov’s method [16], c.f. [14] Subsection 2.2.3].

Remark 2.8. The reason for the sign choices from Convention 2.7 are as follows: The minus sign
for the Einstein-Hilbert Lagrange density is due to the sign choice for the Minkowski metric, c.f.
Convention Il Then, the minus sign for the gauge fixing Lagrange density is such that ( =1
corresponds to the de Donder gauge fixing. Finally, the sign for the ghost Lagrange density is,
as usual, an arbitrary choice, and is chosen such that all Lagrange densities have the same sign.

Remark 2.9. Given a spacetime (M, g) and the Lagrange density from Convention 27 gauge
transformations are diffeomorphisms of the spacetime and act infinitesimally on the graviton
field as follows:

hyw ~ by + 0, X, + 0, X, (5)

where X € I' (M, TM) is any vector field, c.f. [I14, Remark 2.23, Lemma 2.24 and Remark 2.25].
Given the de Donder gauge fixing dD* = 0, transversality for the graviton field is characterized
via the equation

- 5 1 -

Ui <pphw - §puhw)> =0, (6)
where p, is the momentum of the graviton field iLW and the tilde denotes Fourier transformation
to momentum space.

Lemma 2.10. Given the situation of Remark [2.9, every non-trivial gauge transformation is
transversal only on-shell.

Proof. We have

P (pp (puXu +puXu> — 3Pu <puXp +pru)> = X,.p* )

0

which holds for any non-zero vector field X € I' (M, TM) if and only if p, is lightlike. |

Remark 2.11. We conclude this section with the remark that contrary to the Yang-Mills Lagrange
density the Einstein-Hilbert Lagrange density is not invariant under gauge transformations, as
it is a tensor density of weight 1 and is thus not invariant under general diffeomorphisms

1To be precise, if the diffeomorphism is not an isometry, i.e. if X is not Killing.



3 Expansion of the Lagrange density

In order to calculate the Feynman rules for Quantum General Relativity, we need to decompose
the Lagrange density, Equation (), into powers of the gravitational coupling constant s, i.e.
calculate

[e.e]
Lacr = Y Loor : (8)
k=-1 O(5*)
The restricted Lagrange densities EQGR‘@(%IC) correspond to interactions of (k + 2) gravitons
or k gravitons with 2 graviton ghosts, and similarly for the corresponding matter Lagrange
densities, c.f. Lemma
Lemma 3.1 (Inverse metric as Neumann series in the graviton field). Given the metric decom-
position
Guv = N + %h/,l,l/ (9)

and assume || [|h]| .y 1= 2| MaXocmwn) [ < 1, where EW (h) denotes the set of eigenvalues
of h, the inverse metric is given via the Neumann series

g =3 () (1) (10)

k=0
where
= 0" hyy (11a)
(n)" = (11b)
and
(n)" = by et e N (11c)
k—t;;mes

Proof. We calculate

k=0

= 77“1/'71/[) + 77,ul/ ( 3 (_%)i <hl> Vp + %h,ul/ (i (_%)j (hj)yp (12)
i=1 7=0

= 06 — schy i(—%)i <hi>yp + 2<hyu i(_%)j (hj)yp

= 5Z7

as requested. Finally, we remark that the Neumann series

g =3 ()t ()" (13)

k=0

2The shift in k comes from the prefactor 1/5% in Lqgr and is convenient, such that the propagators are of
order 5" and three-valent vertices of order s', etc.



converges precisely for

h = <1, 14
5 [l = o] max. o (14
where EW (h) denotes the set of eigenvalues of h, as stated. |

Lemma 3.2 (Vielbein and inverse vielbein as series in the graviton field). Given the metric
decomposition
g,ul/ = np,l/ + %h“y (15)

and assume || [|h]| .y 1= 2| MaXocmwn) [ < 1, where EW (h) denotes the set of eigenvalues
of h, the vielbein and inverse vielbein are given via the series

e = gzk (i) (h’“)j , (16a)

with hy' == "™ hy, and

ol — i %'f(_k%) (hk)“ , (16b)
with hly := 0" 8k,
Proof. We recall the defining equations for vielbeins and inverse vielbeins,
Guw = Nmn€), €, (17)
and
Nmn = Juvehen (18)
c.f. [14] Definition 2.8]. Thus, we calculate

m_n
Guv = Nmn€,, €y

i=0 o

B PG 19
;j:o% ]<Z><J> <h j);w (19)
= 1

-2 ),

_77uu+%huy,



where we have used Vandermonde’s identity, and

where we have again used Vandermonde’s identity, the identity (;1) = (—1)k and Lemma B.11
Finally, the series for the vielbein and inverse vielbein field

G = nmnezleﬁ (21)
and
Thmn = Guveimey, (22)
converge precisely for
5l = Lo ol < 1. (23
where EW (h) denotes the set of eigenvalues of h, as stated. |

Proposition 3.3 (Ricci scalar for the Levi-Civita connection, quoted from [I4]). Using the
Levi-Clivita connection, the Ricci scalar is given wvia partial derivatives of the metric and its
inverse as follows:

R = g'*g"? (8;Lal/gpo - 8;Lapguo)
3

1 1
+ gupguagfw\ <(a,ugn)\) <al/gp0' - Zapguo> + (al/gpn) <Zaogu)\ - 58,uga>\> (24)

- (8;Lgpn) (al/ga)\)>



Proof. The claim is verified by the calculation

R= gyoR“apl/
= g”a (aul“’ja — &,FZU + FZHFSU - Fgmr;’ja>
1 1
= gyo <(8ﬂg“p) (&/gpo - 58[)91/0) - 5 (&/g,up) (aUgHP) + g,up (aﬂa’/gpo B aﬂapg”0)>
Up VO KA L 1 1 L
+9"g9 g (%gmx) §3u9po - Zapguo + (8,,ng) 1609% - 58“9“ (25)

= g'rg"? (a,uaugpa - a,uapguo)

1 3 1
+ g,upguog/i)\ ((augm) <al/gp0 - Zapguo> + (8l/gpli) (Zaag;v\ - §8uga)\>
- (a,ugpn) (81190)\)) )
where we have used (ang) Juo = —9"° (a,)gw), which results from
0=V Mg
= 0p0,, + I'ps0p — 17,64
= (9,)6% + 1, =T, (26)
= 0,0,
= 0p (909"
= (0p9ue) 97 + guo (0p9"7) -
|

Corollary 3.4. Given the situation of Proposition [3.3, the grade-m part in the gravitational
coupling constant s of the Ricci scalar R is given via

R =0, (27a)
(’)(%0)

R = %77“’)77'/0 (8Mal/hp0 - auaphua) (27b)
(’)(%1)

and form > 1

R — (=™ % (hl)“p (hﬂ’)” (800 hpo — 0uBphue)
O(™) i+j=m—1
+ (_%)m Z (hi>ﬂp <hj)ua <hk>ﬁ)‘ <(auh,ﬁ)\) <6,,th — iﬁphw> (27C)
itj+hk=m—2

3 1
T (Bhy) (Zaafm _ 5@%) — (Buh) (8Vhox)> .

Proof. This follows directly from Proposition B.3] together with Lemma [B.11 |



Proposition 3.5 (Metric expression for the de Donder gauge fixing). Given the square of the
de Donder gauge fizing,
dD? := g, dD"dD" (28)

with dD" := gP"T'hy, this can be rewritten into

1
dD? = g g" g™ ((&/gou) (0x950) = (Bu9op) (Dpgin) + 1 (Ougvo) (apgm)> : (29)
Proof. The claim is verified by the calculation
dD?* = g,,dD"dD"

1 4
—g"g Ogﬁ)\ (augau + 8ag;w - 8ugu0) (8ﬁgAp + a)\gpn - 8,;9,4)\)

T4
= 19975 ((09) () + () (039) = (Do) (Dr0)
= Or) Orrg) + Or) Or0) — Org) @po)
~ (O400) (9n20) = (Ouc) (929) + (D) (Dp02) )
= #7975 ((Outon) (Ouany) — (0o Gr) + § Outi) (0103))
|

Corollary 3.6. Given the situation of Proposition [33, the grade-m part in the gravitational
coupling constant s of the square of the de Donder gauge fizing dD? is given via

dD? =0 (31a)

O(™)

form <2 and for m > 1 via

m D\ 1P A\ Vo KA
R S OO
O(m) i+jt+k=m—2 (31b)
1
< (@) @utiag) = (O} (Oh) + 5 (Ouur) (By1) )
Proof. This follows directly from Proposition together with Lemma [B.11 |

Proposition 3.7 (Determinant of the metric as a series in the graviton field). Given the metric
decomposition
g,ul/ = np,l/ + %h“y ) (32)

the negative of the determinant of the metric, — Det (g), is given via
—Det(g)=1+a+b+c+d (33)

with
a = xTr(nh)

— 14
=n"hy,



1
1= »? <§ Tr (nh)” — = Tr <(nh)2)>
X (34b)
= 5’ (577“ n’7 — 77’“’?7””) hywhipo ,
1 1 1
= (6 (T ( 77h ~5 Tr (nh) Tr ((nh)2> + 3 Tr ((nh)3>>
1 ) (34c)
= %3 _,,Tul/npon)n—_ nuunm— )\0_|_ nm- pl/ Ao h,ul/hpoh)\fr
6 2 3
and
A=t (o (e (gm)” — T (T (o) T ((0h)?) + 5 T (o) T (1))
24 4 3
1 A\ 1 s
+3 (Tr ((nh) >> ~1 Tr ((nh) >>
(34d)
1 1 1
— A = pv po AT o wv, po, Ao, 9T - Ao, OT
=x <2477777777 477777777 +377777777

1 1% 1 174
+on" nen’T — YAk n”’n’”) Py po e Pogs -

Proof. Given a 4 x 4-matrix M € Matc (4 x 4), from Newton’s identities we get the relation

Tr (M) 1 0
1 2
Det (M) = 1 Det

1

= (Tr (M)* — 6 Tr (M)? Tt (M2> +8Tr (M) Tr (M3>

w3 (M) - o (7))

Next, using the metric decomposition g = n + sh, we obtairl

~ Det (g) = — Det (5 + »h)
= — Det (1) Det <5 + %n71h> (36)
= Det (6 + xnh) ,

where we have used Det (7) = —1 and ~! = 5. Setting M := & + snh, using the linearity and

cyclicity of the trace and the fact that Tr () = 4, we get

Tr (6 + snh) = 4 + 5Tt (1) (37)
<5+%nh2):4+2%Tr nh)+%2Tr( ) (38)
Tr (5 + senh)?) = 44 32 Te (gh) + 352 T (4h)7) + 56 T ((nh)?) (39)
( (6 + senh) 4) — 4+ 43¢ Tr (h) + 652 Tt <(17h)2> 4P Ty <(nh)3) 4T <(17h)4> . (40)

31n accordance with index-notation we set & to be the unit matrix.



Combining these results, we obtain
2 (1 2 1 2
—Det (g) =1+ »Tr(nh) + s §Tr(77h) - §Tr <(77h) )

8 (% T h)? = T ) T (1)) + 5T <("h)3>>

3
1 1 1 (41)
bt (24 Te (gh)* — & To (k) T (h) + L 1o (o) T ((0)?)
22 1 4
iy (m)?) = (@) .
8 4
which, when restricting to the powers in the coupling constant, yields the claimed result. |

Corollary 3.8. Given the situation of Proposition [3.7, the grade-m part in the gravitational
coupling constant » of the square-root of the negative of the determinant of the metric, — Det (g),
1S glven via
k k-l q ! t u
O(3cm) i+j+k+l=m p=0 ¢=0 r=0 s=0 t=0 u=0 v=0
1>7>k>1>0

OO OO
() ) oo () ) oo () (e

az—l—]—f—k p—l—2q—2s—t— ubp-l—q r4+s—t+2u— 2vcr+t—uav

N

s

— Det (g)

(42)
with
a:=xTr(nh
x V(n ) (43a)
=" hu
b:= 52 Tr (1))
(nh) (43b)
= 50 0 By o
3 3
€= Tr< h )
(nh) (430)
= 3T B P
and
=T h)4
(tnm)*) 15
=50 By hpo hoar by -
Proof. We use Equation (33)),
—Det(g)=1+a+b+c+d, (44)

and plug it into the Taylor series of the square-root around x = OE

vE= Z()x—l (45)

“Here we need the assumption || ||h||
values of h, to assure convergence.

|7¢| maxqcpwn) | < 1, where EW (h) denotes the set of eigen-

max

10



to obtain

\/—Det(g):z<?> (a+b+c+d) . (46)
=0

Applying the binomial theorem iteratively three times, we get

o (2 l . ) ) )
=> G)(gaﬁwb+c+dy
im0 j=0 \'/ NJ
AVAAYZA W k
= Z Z ) a b’ " (c+d)
— £ 1) \J/) \k
i=0 j=0 k=0
© i J ko1 G\ (kN i s
= Z Z Z 2 . alIpikcklgh,
— < 1) \Jg/) \k/ \
i=0 j=0 k=0 1=0
Observe, that from Equations (33]) and (34]) we have the relations
— Det (g9) =a (48a)
O(5)
—Det (g) =b (48b)
(’)(%2)
— Det (g9) =c (48c¢)
(’)(%3)
and
—Det (g) =d, (48d)
(’)(%4)

and thus the restriction to the grade-m part in the gravitational coupling constant ¢ is given
via the integer solutions to

m=i—j+2j —2k+3k— 30 +4l
—i+j+k+1

SRO010[0 e

OGemy  itjthtl=m
iZj>k>1>0

withe >35>k >1, ie.

—Det (g)

Finally, using the relations from Equations (34]) and (@3])

a=a, (51a)
1 1

b=-a>-= 1b
50 2[1, (51b)
1 1 1

CcC = 603 — 5&6 + gC (51C)



and
L, Lo
d=—a——a’b+ cac+ -b"— -0, (51d)
we obtain, using again the Binomial theorem iteratively seven times,

=558 s (O OO0)

p=0 g¢=0 r=0 s=0 t=0 u=0 v=0

() o () on () ) o () ()

al+_] +k—p—I—2q—2s—t—u bp+qfr+sft+2uf2v chrtfuav ’

and thus finally

— Det (g)

T aSyyysy
0, <z> gi><><z> (&) -

i2j>k>120
HOG0)
AVIAVIAN:
) () o () () s
2 6
ai+j+kfp7lf2qf2sft7ubp+q r4+s—t+2u—2v r+t uav,

o
i
o
]
|
o
n
|
o
~+
H
ﬁ
I
o
<
H

N——— /?
=

as claimed. [ |

4 Feynman rules

Having prepared all ingredients to decompose the Lagrange density into

L= f: c , (54)

n==110(x")
we are now able to compute the Feynman rules. First we introduce the notation and then we

present the Feynman rules.

Definition 4.1. We denote the graviton n-point vertex Feynman rule with ingoing momenta
{p]",--- ,pg"} and gauge parameter ¢ via grvillpnn (p7", -, P C)E It is defined as follows:

o -
Q5,lnljll/1|“'|ﬂnyn (p‘lﬂ’... o )::i l_I_~L Z | Locr

: (55)
=1 6h/>‘LZVZ

0(-)

where the prefactor i is a convention from the path integral, 6/ Sﬁum denotes the symmetrized
functional derivative with respect to the Fourier transformed graviton field iLMM together with
the additional agreement, represented by the bar §/d-, that the corresponding momentum is also
labelled by the particle number 1, i.e.

5 - 1, (op s 2w
—— (pehpr) o= ok (305 + 80287 (56)
mz
5The vertical bars in pivi| -+ |pnvn are added solely for better readability.

12



and .# denotes the Fourier transform. Furthermore, we denote the graviton propagator Feyn-
man rule with momentum p?, gauge parameter ( and regulator for Landau singularities € via
Bruivilpsrs (P75 C e)ﬁ It is defined such that the following equation holdsﬁ

v v o o L INY% INZPY
mulm\ﬂylz (pa; C; 0) 652 2|“3 ’ (p » P ’C) - 5 (6,5?5”? + 5:“? 5513) ’ (57)

where the tuple pu;v; is treated as one index, which excludes the a priori possible term 7),,,,, 73"
on the right-hand side. Moreover, we denote the graviton ghost n-point vertex Feynman rule
with ingoing momenta {p{'} via gprlezlluaval-lunvn (p‘fl)E where particle 1 is the graviton ghost,

particle 2 is the graviton anti-ghost and the rest are gravitons. It is defined as follows:

§ 6 14 O
5%/71 Sipg i=3 gﬁum

¢ﬁ1|p2”u3l’3|"'|/’l‘nl/n (pzln) — Z | Loar : (58)

0()

where, additionally to the above mentioned setting, 6/ 5§p1 and 6/ 5§p2 denotes the functional
derivative with respect to the Fourier transformed graviton ghost field Xx,, and the Fourier trans-
formed graviton anti-ghost field ?m, respectively, together with the action on the corresponding
momenta as described above. Additionally, we denote the graviton ghost propagator Feynman
rule with momentum p” and regulator for Landau singularities € via p, |, (p7; ) Tt is defined
such that the following equation holds

Porips (75€) €217 (p7) = 323 . (59)

Finally, we denote the graviton-matter n-point vertex Feynman rule of type j from Lemma [4.1T]
with ingoing momenta {p‘fl, . ,pzn} via ji)JTZ"'THO"'t'”“lVl|""“n”" (p‘lﬁ’ . ,pzn) where we count
only graviton particles, as the matter-contributions are condensed into the tensors ;7" whose
Feynman rule contributions can be found e.g. in [13]. They are defined as follows:

K...T||o...t|||p1ve |- v, o1 o e
o lo-..thprvil-|pnrm (p1 e 7pnn) —

. 6
o = HSB 7 | iLqcr-sm , (60)

where we use again the above mentioned setting.

Remark 4.2. Being defined on flat Minkowski spacetime (M, 7), the indices of all Feynman rules
are raised and lowered via the Minkowski metric 7.

Convention 4.3. We consider all momenta { Pt pg"} incoming.

Remark 4.4. When considering the action integral with asymptotically vanishing fields, in par-
ticular asymptotically vanishing graviton fields h,, (which correspond to asymptotically flat
spacetimes), then it is possible to rewrite the Einstein-Hilbert Lagrange density and all gravi-
tational matter couplings to the Standard Model to be linear on the level of individual fields by

6 Again, the vertical bar in u1v1|usrs is added solely for better readability.

"The momenta p* and p32 in the expression (’552"2‘“3"3 (p?,—p7; ) are set to p” and —p7, respectively, using
momentum conservation.

8 Again, the vertical bars in p1|pz2||psvs| - - - |pnvn are added solely for better readability.

9 Again, the vertical bar in p1|p2 is added solely for better readability.

10 Again, we use momentum conservation to set pJ' := p° and pj2 := —p” in the expression 6‘2‘2"2‘“3”3 (7).
'L Again, the vertical bars in k... 7|jo...t||uiv1| - - - |tnvn are added solely for better readability.

13



partial integration. The Fourier transformed counterpart on the level of Feynman rules is the
statement to replace one of the quadratic momenta p;* by

n
Pl — Zp;” . (61)
j=1
i#]
This is the author’s suggestion instead of simply deleting the nonlinear contribution in the

Einstein-Hilbert Lagrange density, as it effectively also allows for a linear quantum graviton
field operator hy, .

4.1 Preparations for gravitons and their ghosts

In this subsection we prepare all necessary objects for the graviton and graviton ghost Feynman
rules.
Lemma 4.5. Introducing the notation

n _
)
grav|lpnvn — |7 <Tr h)" ) : 62
L Héh - ((nh)™) (62)
i=1 Hili
we obtain
Vil | pnvn 1 Hs(1)Vs |‘;u's n)Vs(n
SV 1] p — o Z Z hs¥s() (n)¥s(n) (63a)
WiV SESY
with
_ n
%1111\“'\%% — 52“ H favatt | (63b)
a=1

Furthermore, introducing the notation

sy llpaval-lpnvn _ F (R 64
: [I5— ) @) (69
1= Vi
we obtain
0y =", (65a)
1 Viks(1)Vs Hs(n)Vs(n
splliaval-lpmvn o Z Z b sy Vs )| s (n) Vs (n) (65b)
iV sESy
with
n
R L | S I (65¢)
a=0
Moreover, introducing the notation
n _
o m o )
(ﬁ;)ﬁullluml |nv, (szH’ L. ’pnn) — H T y <8p ((hn),uu)) ’ (66)
i=1 Yuiv;

14



we obtain
(54)2" =0 (672)
and forn >0
(57)/n)NV|||H1V1|'“|HnVn (T, p5") =

p
1 I s )y Vsl sy Vs(ny [, Ts(1) Ts(n) (67b)
= > (o) (o 7))
WiV SESy,
with

n n
(b vl e ey s (S g | S8, T | (67¢)
m=1 a=0

Finally, introducing the notation

syppyllielimn ) = — | 7 (8 9o (K™ ) ; 68
( n)po (pl DPn ) 21_11 5huiy1 P (( ) ) ( )
we obtain
(96)0, =0 (69a)
and forn >0
(5Z)ﬁglllmml---lunvn (T, ,p5") =
1 :U'V”'/J's Vs |"";U's n)Vs(n Os(1) Ts(n) (69b)
S Z Z (h/n)pa W Vs )| sy Vs(n) <ps(1) ey )
WiV SESy,
with
(bg)ﬁgllluwllmlun% (pcln’ e ,PZ”) =
n n o n (69C)
e Z pzn Z P2 55055n+1 Hﬁuauaﬂ
mi1=1 mo=1 a=0
Proof. This follows from directly from the definition. |
Corollary 4.6. Given the situation of Lemma[{., we have
n o =
H _~5 F | g — (_1)"5#\\\#1”1|---|unvn 7 (70)
=1 6hlu'zl’z O(%n)
_ r — (2 rlluvi|-|pnvn
1= 14 O(%n)
I5—)7 |« B ( ) (Bl ipmeen (72)
=1 0Py, O n
79 -
v v Vil |UnVn o n
57| @9") = (=" (o), TR (73)
=1 HiVi O@em)
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S n v V1| |HWnVn o (oF
I5—]7 | @09") = ()" () ) (74)
i=1 Opiv; 00
i 5 r l ~ r v V1| |UnVn o (o2
HW 4 <(9oep> - <Z>nﬂﬁ6u (ﬁ/n)g lvalln (pll"" ’pnn) (75)
=1 " "HiVi O(»™)
and

-1 N 14 Vi |UnVn o (o2
_ ( n2>55~”’“ () limb-imen ey (76)

i=1 5huwi O(3")

Proof. This follows directly from Lemmata B.1], and |

Lemma 4.7. Introducing the notation

1% ag 5
Tie (p7") = Sﬁ—ﬁ (TCuwp) (77)
H1v1
with
Puyp = gpaffw (7 )
1 8
=9 (augl/p + Ovgpu — pg;ﬂ/)
we obtain
ohg 60) = 5 (oh (B0 B030) 0t (B3 + 300
(79)
1L < L.
—pp (B3 + 3 551)> .
Proof. This follows from directly from
~ % ~ ~ ~
Fuup = 5 (puhup + puhpu - pphuu) . (80)
|
Lemma 4.8. Introducing the notation
)
gﬁlélvll'"\ﬂnvn (p‘lﬂ’ ... ,pgn) = H = Z | R , (81)
=1 Hili O(n)
we obtain
Ro=0, (82a)
R () = ¢ (D10 — PR ) (82b)
and forn > 2
vl punvn o n 1 Hs(1)Vs |‘;u's n)Vs(n Ts Ts(n
grprvil-linve (2L ) — = S5 el <ps(1(;>’... ’Ps(f@))) (82c)
WitV SESy,
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with

i i+j
vi|-|pnvn (01 In) — n 5 Tiaiad oY T
o 1l (pl RN 4 ) = (—x) Z 6£i+1 Hnﬂ at1 Oy, H??Hb b1
i+j:n—1 a=0 b=1
n V23
(puop op" — D) 6%)
i+j
i an ~ g Va1 sV S0 FHbVb+1
(=) Z V1+1 H N 5ui5w+j+1 1—[77
i+j+k=n—2 b=i
i+j+k
NG A SHeVe+1 82d
x 5u¢+]‘51/i+j+k+1 H n ( )
c=i+j

~ o~ 1 ~ o~
1< n— Un— n n SVn n n SVn
<(p;m 5N 15 1) <pyég 50 - préﬁ 50 >

~ ~ 3 1

(5 <pgggngin)> |

Proof. This follows directly from Corollaries [3.4] and Furthermore, we remark the global
minus sign due to the Fourier transform and the omission of Kronecker symbols, if possible. W

Lemma 4.9. Introducing the notation

n _
1)
@le’l|"'|ﬂnyn (p(;l’ e ’pgn) = H —_— y CD2 ) (83)
=1 6h“iyl O(5m)
we obtain
® =0, (84a)
aD;lulq (pcln) =0 (84b)
and for n > 2
cee nVn MS VS ‘ IMS n VS n US O-S n
@ﬁluﬂ |nv (p‘;l’... ,pn — Z Z [ W7s@) (m)7s(n) (pS(S),'“ ,ps(,(b))> (84C)
/»lfz<_>l’z SESn
with
)
b (pf o pln) = = ()" Y 9, H e
i+j+k=n—2 =
i+j . i+j+k
1% “HclVc
X 6#% Vitj+1 Hn b Nz-H VZ+J+’€+1 H K " (84d)
c=i+j

(e (i)~ (o) ()

4 <pﬂ0 15ﬂn 15Vn 1 n(gun(gvn >

1
4
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Proof. This follows directly from Corollaries and Furthermore, we remark the global
minus sign due to the Fourier transform and the omission of Kronecker symbols, if possible. W

Lemma 4.10. Introducing the notation

n
1)
‘n%“’l\“'wn% = H 5}4L— y — Det (g) ’ (85)
i=1 Yuiv; O(5™)
we obtain
sl lunvn — . > > ol OPs sy vy (86a)
n
2 WitrVi SESy
with

el < S S50y

i+j+k+l=m p=0 ¢=0 r=0 s=0 t=0 u=0 v=0

OOOCIEIOOOOE

) () con(2) () o () (o om

X
a a+b a+2b+c
% H fjfava H oMb [PV H fevete et eVerze pllet2ele
a=1 b=a+1 c=a-+2b+1
a+2b+3c+d
X H ﬁud”d+dﬁ“d+dyd+2dﬁ“d+2d”d+3dﬁud-{»ded
d=a+2b+3c+1
and
a=i+j+k—-p—I01—29—2s—t—u
b=p+qg—r+s—t+2u—2w
b (86¢)
ci=r+t—u
d:=v.
Proof. This follows directly from Corollaries B.8 and |

4.2 Preparations for for gravitons and matter

In this subsection we prepare all necessary objects for the graviton-matter Feynman rules. As
will be discussed in detail in the following three Subsubsections, the gravitational interactions
with matter from the Standard Model can be classified into the following 13 Lagrange densities,
henceforth refered to as matter-model Lagrange densities of type j. We calculate only the grav-
itational interactions for the matter-model Lagrange densities and refer for the corresponding
matter contributions to [13] in order to keep this article at a reasonable length.

Lemma 4.11. Consider Quantum General Relativity coupled to the Standard Model (QGR-
SM). Then the interaction Lagrange densities between gravitons and matter particles are of the
following 13 types

1Loar-sm =11 dVy, (87)

12WWe remark that the tensors ;T are not related to Hilbert stress-energy tensors. Rather they represent the
graviton-free matter contribution.
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2Locr-sm = (QW ,w) dvy, (88)
sLoer-sm = (guvgwg ,Wpa) dvy, (89)
Locr-sm = (9 " (8u9) 4 upo) dvy, (90)
Laansu = (" (0:0,9") 5T, ) Yy, (91)
6L Qcrsm = ( WPTV()‘TT) dvy, (92)
Locr-sm = (gwgparuw pUT) dvy, (93)
sLocr-sm = (QW 0 N R N )de (94)
oLac-sui= (9" (029" ) TgT,y ) AVy, (95)
10 0cR-sM = (60010To> dvy, (96)
1L Qer-sm = (60 opr) dvy, (97)
12£QGR-5Mm = < R (8[)63) Torst> dvy, (98)
and
13£QGR-sM = (600 re?tel T, 13To7"st> dvg. (99)

Proof. A direct computation shows, that the scalar particles form the Standard Model are of
type 1 and 2. Furthermore, the spinor particles from the Standard Model are of type 10,
11, 12 and 13. Moreover, the bosonic gauge boson particles from the Standard Model are of
type 1, 2, 3, 6, 7, and 8. Finally, the gauge ghosts are of type 1, 2, 3, 4, 5, 7 and 9, which
includes their interaction with graviton ghosts. This is discussed in detail in the following four
Subsubsections. |

4.2.1 Gravitons and scalar particles

Scalar particles from the Standard Model are described by either real or complex scalar fields
¢ € T'(M,K) with K € {R, C}. Their Lagrange density is given via type 1 and 2 from
Lemma [.1T] with

Gy
Ti=) ol (100)
iel
which represents the mass and interaction terms for the interaction set I, with particle mass
ap := —mg and coupling constants a; for ¢ # 2, and
) T
2T,ul/ “= AR(¢) (a,ugb) (81/¢) ) (101)
which represents the kinetic term, with corresponding prefactor ag := 1/2 and ac := 1. We

remark that the Higgs and Goldstone bosons and the first part of their interactions with gauge
bosons could be included in this framework by replacing the scalar field ¢ via a vector of scalar
fields ® := ((;51, e gbj), the interaction terms via powers of ®'® and the partial derivative Oy by
the corresponding covariant one 9, +igAf,T*, where igA € T' (M, T*M ®g g) is the corresponding
connection form (geometrically) and sum of gauge bosons (physically), c.f. Subsubsection E.2.3]
for the second part coming from the gauge fixing.

BThe gauge ghosts are discussed in Subsubsection [£.2.41
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4.2.2 Gravitons and spinor particles

Spinor particles from the Standard Model are described by spinor fields ¢ € T'(M,¥M) and
their dual spinor fields ¢ € T <M XM ) They, are defined via

¥ =" (7)), (102)

and depend on the metric via the inverse vielbein €% with fixed curved index 0 and flat index
0, i.e. the contraction of the vielbein with the normalized time vector field d¢. Notice also the
placement of 7,, as only 7y is hermitian, whereas the other Dirac matrices v1, v and ~3 are
antihermitian. We remark that if the spacetime (M, g) is globally hyperbolic, it is possible to
choose charts in which €% = §, as it is done implicitly in e.g. [I0], however it should be noted
that the theory is then no longer invariant under general diffeomorphisms, but only the subgroup
preserving global hyperbolicity. As we do not want to restrict our analysis to such charts and
gravitational gauge transformations, it is convenient to set

o = (00" . (103)
Then their Lagrange density is described via type 10, 11, 12 and 13 from Lemma E.IT] with
10TO = _m¢gow7 (104)
which represents the mass term with particle mass my,
llTopr = EO’YT (8p¢) s (105)
which represents the first part of the kinetic term,

i—
12Torst = _Zwo (fYTUst) ¢ ) (106)

which represents the second part of the kinetic term, with o := 5 [vs,7], and

i
13Torst = _Z¢o (77“0-825) T;Z)
=91,

orst »

(107)

which represents the third part of the kinetic term. We remark that leptons and quarks and
their interactions with gauge bosons could be included in this framework by replacing the spinor
field ¢ via a vector of spinor fields W := (11,...,9;) and the partial derivative 0, by the
corresponding covariant one d,, + igA;T*“, where igA € T’ (M, T*M ®g g) is the corresponding
connection form (geometrically) and sum of gauge bosons (physically). Furthermore we remark
that the interaction between leptons and quarks and the Higgs and Goldstone bosons could be
included in this framework by adding the following term of type 10

wlo == Y gy 090, (108)
{obo}er

which represents the Yukawa interaction terms for the interaction set I with corresponding
coupling constants « {6500}
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4.2.3 Gravitons and gauge bosons

Gauge bosons from the Standard Model with Lie group G, called gauge group, and corresponding
Lie algebra g are described via connection forms igd € T’ M T*M ®gr g). Their Lagrange
density is described via type 3, 7 and 8 from Lemma [£.1T1] Wlt

3Tuupa = 4 2F§ngO' 5(6 Aa) (aﬁAg) ) (109)

which represent the kinetic term and the self interaction terms together with the first part of
the Lorenz gauge fixing term with coupling constant g and gauge fixing parameter &

e = —% (0,A3) A2, (110)

1%
which represents the second part of the Lorenz gauge fixing term, and

1
shin = 2—5AZ 3 (111)

which represents the third part of the Lorenz gauge fixing term We remark that the second
part of the interactions of gauge bosons with the Higgs and Goldstone bosons, c.f. Subsubsec-
tion L 2.1] for the first part, could be included in this framework by adding the following terms
of type 1 and 6

T = (Emi)? %", (112)
which represents the third part of the gauge fixing term for the W* and Z bosons, where &,

is the corresponding gauge fixing parameter, m, the corresponding mass, s € {4+, —, 2z} and —s
indicates a sign flip,

T = (Ems) 6° (9u457) (113)
which represents the fourth part of the gauge fixing term for the W and Z bosons, and

= (§sms) 9°AL (114)

which represents the fifth part of the gauge fixing term for the W* and Z bosons.

4.2.4 Gravitons and gauge ghosts

Gauge ghosts and gauge anti-ghosts from the Standard Model, accompanying their correspond-
ing gauge bosons igA € T'(M,T*M ®g g), are fermionic scalar particles ¢ € T’ (M,H (g)) and

11Be aware of the minus sign coming from the square of Fi, =ig (@LA?, — A} — gfabCAﬁAl;) Furthermore
we remark that this obviously also includes abelian theories, such as electrodynamics, by setting g to be abelian,
which automatically eliminates the non-abelian terms in the following equations, since then we have f®*¢ = 0.

5Be aware of the minus sign due to the action of the Christoffel symbols on forms and the additional factor of
2 due to the binomial theorem.

1The author suggests to consider also the following simpler gauge fixing Lagrange density for Yang-Mills
theories instead of the one due to Lorenz: Lym.gr2 = 2 2=9""g"7 (0, AY) (0,A5)dVy. It has the drawback of
losing the geometrical interpretation of setting the divergence of the connection form covariantly constant (and
also breaking gravitational gauge invariance similar to the de Donder gauge fixing Lagrange density — which
is fine due to the graviton-ghost-gauge-boson-gauge-ghost interaction), but preserves the known Ward identities
[17 18] [19] 20} [21], because the Lagrange densities of type 6, 7 and 8 are not present (with the rest unaltered)
and thus the original arguments already include the gravitational case in this setting.
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cel (M,H(g*l)jh Their Lagrange density is described via type 2, 3, 4, 5, 7 and 9 from
Lemma [T wit

T = (9,0,¢%) +ig e (aﬂ;) ¢ +igf™ee A (9,c°) | (115)
which represent the kinetic term and the interaction with its gauge boson,

Ly =" (Ouxp) (OvAL) +TXp (0,05 A%) +¢* (0,00 x,p) AL+ (Oux,p) (04AL)

tec., (116)
Ty pe i=TXp (05A%) + 22" (Dux)p) A +Txp (0,A7) + .., (117)
5L,y = C'XpAg +g.c.\ (118)
Toor =T, (05A9) +2° (0rx,) A2 + g.c. (119)
and
oL,y =1C"xpAg +g.c.\ (120)

which represent the interaction terms with its gauge boson and the graviton ghost and graviton
anti-ghost y € T’ (M,H (TM)) and Y € I’ (M,H (T*ZM))7 where g.c. means ghost conjugate, i.e.

the simultaneous replacement
—=a Qa
cLLle (121)
Xp Xp

with the rest unaltered[' We remark that the interaction of gauge ghosts with the Higgs and
Goldstone bosons could be included in this framework by adding the following terms of type 1

T = (&syms,) ¢°1T72¢% (122)

which represents the coupling of the W*, A and Z ghosts to the Higgs and Goldstone bosons,
where &, is the corresponding gauge fixing parameter, mg, the corresponding mass and s; €
{+,—,a,z}.

4.3 Feynman rules for gravitons and their ghosts

Having done all preparations in Subsection B we now list the corresponding Feynman rules
for gravitons and their ghosts.
Theorem 4.12. Given the metric decomposition gu, = N + »huw, and assume || ||h]| .. =

|| max,crw(n) [ < 1, where EW (h) denotes the set of eigenvalues of h, the graviton n-point
vertex Feynman rule for perturbative Quantum General Relativity reads:

1V | 1Z 01 On . _ V1] 1% 01 (oF
@ravillunvn (p7', -+, p3;C) = L~ || pnvn (p7',-- ,p5")

+mulu1\---\unun( o1 Un) (123a)
n pl ’ ?pn 9

where we have denoted the linearized n-point vertex Feynman rule by £, and the purely non-linear
one by N,,. Explicitly, they read (where l,, and n, denote their unsymmetrized companions):

|t n SN 1o Vs(1) | sy Vs(n) (| (1) Ts(n)
251u1| |y, (p‘;l’... ,pz ; ) = 2_n Z Z [ ps(l) o ’ps(n) (124&)

W4V SESy,

"The ghost Lagrange densities are calculated with Faddeev-Popov’s method [I6], c.f. [T4]. Furthermore, con-
tinuing Footnote [I4] we remark that due to gravitational couplings even abelian gauge theories need gauge ghosts.

18We remark that the simpler gauge fixing Lagrange density for Yang-Mills theories, proposed by the author in
Footnote [I6] leads also to simpler gauge ghost Feynman rules in the sense that the types 6, 8 and 9 above would
not be present (with the rest unaltered) in this simpler setting.
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with

G (pft) =0 (124b)
and forn > 1
bl (p7t i () =
. (_%)n—Q i o i+j
2 Z Z 5“ 551+1 H et 5;111' 5gi+j+1 H e
mi+ma=n | i+j+k=m1—2 =0 b=i
i+j+k
s SA >licVe
x ZHJ’ Vitjt+k+1 H 77” o
c=i+j
1 mi1—15gHmy—1 tVmq —1 my SHmy §¥Vmy L my SHmy §Vmq
(1) i) i)
mi— 15“7"1 15”’“1 1 3 m15“m1 5”m1 1 mlgﬂml S’/ml
+ v K 4 0' - 517“0 [ by
j=kk-=l ¢ | s t wu (124(;)
x{ D 220>
i+j+k+l=mz p=0 q=0 r=0 s=0 t=0 u=0 v=0
i2j>k>120
% IN(INTEN =K\ (E=1\/q\[I\[s\ [t [u
1)\J/) \k/ \U P q r)\s/\t/)\u/\v
j—k k—l l t
<(3) cr(5) e (-3) (5) cor(3) (B) e
2 6 3 4 3 8
a a+b
% Hﬁﬂava H TR
a=1 b=a+1
a+2b+c
X H ﬁﬂ/cVc+cﬁﬂc+cyc+2cﬁﬂc+2¢:”c
c=a+2b+1
a+2b+3c+d
% H fHavi+d i taVitad jid2aVd+sd it 3aVd
d=a+2b+3c+1
and
a=1+j+k—p—I01—2q—2s—t—u
b=p+qg—r+s—t+2u—2v
pra (124d)
ci=r+t—u
d:=v.
Furthermore, we have:
V1| |UnVn 01 1 Hs Vs |‘;u's n)Vs(n Os Os(n
e (1, () = ST o (i ) (1350)

Wi SESy,
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with

) = 2. (ot = p2ir) (125b)
and forn > 1
ugwl\-“\un% (p‘fl,--- ’pzn;g) _
i T

2 Z Z uo Vz+1 H fftavatt SZZ H fHeve1
b=t

mi+me=n | i+j=mi—1

((pu R A i A ) }

j—k k-l q 1 t u

AP HHBHHHHI

i+j+k+l=mgo p=0 q=0 r=0 s=0 t=0 u=0 v=0
i>j>k>1>0

OOBECICINO0G o
() () e (Y G e () (e

S

a a+b
« Hﬁ HaVa H R V6 Vo+b

a=1 b=a+1

a+2b+c
X H ﬁﬂcVc+cﬁﬂc+c”c+2cﬁﬂc+2cyc

c=a+2b+1

a+2b+3c+d

SHAVd+d g Hd+dVd+2d S Hd+2dVd+3d Sd+3dVd

% H ffavatdpiaraVitad gl advasd it

d=a+2b+3c+1
and

a=i+j+k—p—1—-2¢g—2s—t—u
b=p+qg—r+s—t+2u—2vw
ci=r+t—u

d:=v.

(125d)

Proof. This follows from the combination of Lemma 4.8 Lemma [£.9] and Lemma .10l since we
have

1v1| v 01 Tn . —
6% | Wn " (pl : 7pnn7 ) -

3

i 1
— <§9{%1V1| |bmVm (p‘1717 .. 7p‘77n7rL) +
1

m=

1
Zg@%”ﬂ""ﬂml/m (p‘171’ .. 7p%ﬂ)>

VA

(126)

Mnmen7m|"'|MnVn
X snTL*??’L

together with the decomposition of the Ricci scalar in its linear and non-linear components in
the graviton field. [}
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Theorem 4.13. Given the situation of Theorem [{.13, the graviton propagator Feynman rule
for perturbative Quantum General Relativity reads:

2i - N 5 ~ - -
mmmluzuz (pa§ G 6) = _m (77M1u277u1u2 F Nprve Mg — 77M1V177u21/2)
¢ (127)
_7 (ﬁ,ulﬂmepl/Q + "7/#11/21)1/11)#2 + ﬁu1ﬂ2p,u1pu2 + ﬁu1u2pu1p,u2)

Proof. To calculate the graviton propagator, we first calculate (using momentum conservation,
i.e. setting p]' := p? and p5? := —p?)

' 1
BHIRE (7 7 ¢) = i <1 — —) (pHrp"r i 4 phepaqiav)

¢
i 1 ~ - - ~
— g (1 — Z) (pﬂlpuznmuz +pﬂ1pV277V1ﬂ2 +pV1pu277ﬂ1V2 +p”1p”277“1“2)
(128)
i 1
— 1= = ( 2 =p1vy ~M2V2>
(2 e
_{_é ( 277#1;1277111112 +p2ﬁu1V2ﬁV1u2)
and then invert it to obtain the propagator, i.e. such tha@
o o o sz NN
SV (07, 75 Q) Bpsualusws (P73 G:0) = 5 (813003 + 341973 ) (129)
holds, and we obtain Equation (I27]). [

Theorem 4.14. Furthermore, given the situation of Theorem [{.13, the graviton ghost n-point
vertex Feynman rule for perturbative Quantum General Relativity reads:

1 p1lp2llps3)vs3) || ks(n) Vs(n)
pilpallpsvs|-|pnvn (o) — 1 o1
Q:n1| 2llusvs]--| (P1 ) = 5 Z Z n (p1 ) (130&)
Wiy SESn—2
5(i):=s(i—2)+2

with
pilp2llpavs|-lpnvn (,,01) _
cnl I ||pnvn (pl )

(—5)" 2 - oo Lo (130b)
72 Z 6;%65;1“ Hnﬂa a+1 pﬂmlpl’n+1 H nﬂb b+1
a=0

mi1+mao=n b=m;

where particle 1 is the graviton ghost, particle 2 is the anti-graviton ghost and the other particles
are gravitons.

Proof. This follows directly from Lemma |

Theorem 4.15. Moreover, given the situation of Theorem [{.12, the graviton ghost propagator
Feynman rule for perturbative Quantum General Relativity reads:

2i
2 ~
€] = ———— 131
pp1|p2 (p ’ > p2 i 16770102 ( )

19Where we treat the tuples of indices u;v; as one index, i.e. exclude the a priori possible term 7#1*17,,,, on
the right hand side.
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Proof. This follows directly from Theorem [A14], as we have (using momentum conservation, i.e.
setting p7* := p” and p3? := —p7)
ag i =
@51 (p7) = Spire? (132)
and then invert it to obtain the propagator, i.e. such that
Q:gl‘m (pa) ppz\pg (pza 0) = 53; (133)
holds, and we obtain Equation (I3T]). [

Remark 4.16. The 1-point graviton vertex Feynman rule
Qi’flyl (p{ln) 2 (p;lnprfl _p2nu1u1) (134)

from Theorem [4.12] vanishes if momentum conservation is assumed and can thus be ignored.

4.4 Feynman rules for gravitons and matter

Having done all preparations in Subsection d.2] we now list the corresponding Feynman rules
for the interactions of gravitons with matter from the Standard Model. To this end we state
the Feynman rules for the interactions according to the classification in Lemma A.11] and refer
for the corresponding matter contributions to [I3] in order to keep this article at a reasonable
length.

Theorem 4.17. Finally, given the situation of Theorem [{.12 and the matter-model Lagrange
densities from Lemma [{.11] the graviton-matter n-point vertex Feynman rule for perturbative
Quantum General Relativity coupled to the matter-model Lagrange density of type j reads:

| U Un o1 Hs(1)Vs 1)| |)u's (n)Vs(n) Ts(1) Ts(n)
gl (pf1 gy = Z 3l (p() ...,ps(n)) (135)

WiV sES,
with
1mZ1V1""|MnVn (1T> = 1T051V1|"'|Mnl/n ) (136)
mvillpnvn () — § : ~pyma pAvllpava e g vmg
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Proof. This follows directly from Corollary with Lemmata [£7] and [Z.10 [

5 Conclusion

We derived and presented the Feynman rules for Quantum General Relativity and the gravita-
tional couplings to the Standard Model. The results are Theorem stating the graviton ver-
tex Feynman rules, Theorem 13 stating the corresponding graviton propagator, Theorem .14l
stating the graviton ghost vertex Feynman rules and Theorem stating the corresponding
graviton ghost propagator. Finally, the graviton-matter vertex Feynman rules are worked out in
Theorem [£.17] on the level of generic graviton-matter interactions, as classified in Lemma 171
The complete Feynman rules can then be obtained by adding the corresponding matter contri-
butions, as listed e.g. in [I3]. The gravitational Ward identities will be checked in future work,
as will be the possibility to derive a corresponding Corolla polynomial [22 23] 24} 25] 26], 27],
which would create the corresponding gravity, gravity-ghost and gravity-matter amplitudes from
scalar ¢3-theory.
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