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Abstract

We revisit the problem of consistent free propagation of higher-spin fields in nontrivial backgrounds, 
focusing on symmetric tensor(-spinor)s. The Fierz-Pauli equations for massive fields in flat space form an 
involutive system, whose algebraic consistency owes to certain gauge identities. The zero mass limit of the 
former leads directly to massless higher-spin equations in the transverse-traceless gauge, where both the 
field and the gauge parameter have their respective involutive systems and gauge identities. In nontrivial 
backgrounds, it is the preservation of these gauge identities and symmetries that ensures the correct number 
of propagating degrees of freedom. With this approach we find consistent sets of equations for massive 
and massless higher-spin bosons and fermions in certain gravitational/electromagnetic backgrounds. We 
also present the involutive system of partially massless fields, and give an explicit form of their gauge 
transformations. We consider the Lie superalgebra of the operators on symmetric tensor(-spinor)s in flat 
space, and show that in AdS space the algebra closes nonlinearly and requires a central extension.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The construction of consistent interacting theories of higher-spin fields is a difficult task. 
Generic interactions of massless fields are incompatible with gauge invariance, and this fact 
gives rise to various no-go theorems [1–5]. For massive fields, when interactions are turned 
on, the dynamical equations and constraints may either lose algebraic consistency [6] or start 
propagating unphysical/superluminal modes [7–10]. These pathologies show up even for a much 
simpler setup that we would like to consider in this article: the free propagation of higher-spin 
fields in nontrivial backgrounds (see [11] for a recent review).

In this article, we employ the metric-like formulation, where the degrees of freedom (DoF) 
of higher-spin particles are encoded in symmetric tensors and tensor-spinors. The flat-space 
2
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free Lagrangians and the equations of motion (EoM) are well known for massive and mass-
less metric-like fields [11]. In nontrivial backgrounds, however, consistent propagation is not at 
all automatic; one must ensure among other things that only the physical modes propagate and 
that their propagation remains causal. This is the weakest link of the Lagrangian formulation, for 
both massive [7–10] and massless fields [12], since the problems become manifest only at the 
EoM level. Moreover, the EoM’s often turn out to be surprisingly simple, but this simplicity is 
obscured at the Lagrangian level [13–16].

It is therefore desirable to study the propagation of higher-spin fields solely at the EoM 
level, without recourse to the Lagrangian formulation. This is where the involutive properties 
of higher-spin equations come into play (see Appendix A for an exposition of involutive sys-
tems). Devoid of a parent Lagrangian, the mutual compatibility of the dynamical equations and 
constraints/gauge-fixing conditions in a nontrivial background is no longer guaranteed. The good 
news is that this can be duly taken care of by the “gauge identities” of the involutive system. In 
fact, in the involutive approach, all the consistency issues are under full control, so that one may 
systematically deform the flat-space system of higher-spin equations. This “involutive deforma-
tion method” has already been employed for the free propagation of massive bosons in various 
backgrounds [17–19]. In this article, we would like to extend this approach to fermions as well 
as to gauge fields.

The organization of this article is as follows. The remaining of this section gives a brief ac-
count of the operator formalism−a handy computational tool to be used throughout the article. 
Section 2 deals with the Fierz-Paui system for massive bosons, and rederives its involutive defor-
mations in gravitational and electromagnetic backgrounds using the elegant operator formalism. 
The extension of this construction to massive fermions is presented in Section 3. Sections 4 and 5
respectively consider gauge bosons and fermions, where we first present the flat-space involutive 
systems in the transverse-traceless gauge, obtained in the zero mass limits of their massive coun-
terparts. Then we construct their respective deformations in gravitational and electromagnetic 
backgrounds−a task made challenging by “unfree” gauge symmetries [20], whose parameters 
themselves are governed by involutive systems. Section 6 analyzes the involutive systems of par-
tially massless bosons and fermions along with their gauge transformations. In Section 7, we 
show how the various operators acting on symmetric tensor(-spinor)s in AdS space form a non-
linear Lie superalgebra with a central charge. Some concluding remarks are made in Section 8, 
in particular about the possible rôle of mixed-symmetry fields. Three appendices provide brief 
accounts of involutive systems and deformations, and some technical details.

The operator formalism The operator formalism introduces auxiliary tangent-space variables 
ua and their derivatives: da ≡ ∂

∂ua , where fiber (world) indices are denoted by lower case Roman 
(Greek) letters. The vielbein eμ

a (x) and its inverse ea
μ(x) give the contracted auxiliary variables:

uμ ≡ eμ
a (x)ua, dμ ≡ ea

μ(x)da, (1.1)

which comprise a set of oscillators that satisfies the Heisenberg algebra:

[uμ,uν] = 0, [dμ, dν] = 0, [dμ,uν] = δν
μ. (1.2)

A symmetric rank-s tensor �μ1···μs (x) denotes a spin-s bosonic field, while a symmetric 
rank-n tensor-spinor �μ1···μn(x), with the spinor index kept implicit, denotes a fermionic field 
of spin s = n + 1

2 . They are represented respectively by the generating functions:

�(x,u) = 1 �μ ···μs (x)uμ1 · · · uμs , �(x,u) = 1 �μ ···μn(x)uμ1 · · · uμn. (1.3)

s! 1 n! 1

3
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Table 1
Operators in bosonic Fierz-Pauli system.

Operator Symbol Definition Weight (w) Derivative order (k)

Klein-Gordon g0 ∂2 − m2 0 2
Divergence g1 d ·∂ −1 1
Trace g2 d2 −2 0

The commutator of covariant derivatives acts on them in the following way:

[∇μ,∇ν]� = Rμνρσ (x)uρdσ �, (1.4)

[∇μ,∇ν]� = Rμνρσ (x)uρdσ � + 1
4Rμνρσ (x)γ ργ σ �, (1.5)

with γ μ ≡ e
μ
a (x)γ a , where γ a are the tangent-space gamma matrices. It is important to note that 

the vielbein postulate results in the following vanishing commutators:

[∇μ,uν] = 0, [∇μ,dν] = 0, [∇μ,γ ν] = 0. (1.6)

The index operator is: N ≡ u ·d = uμdμ, where a “dot” stands for the contraction of a pair of 
indices. For any operator Ô, there is a corresponding weight w of N , given by:

[N,Ô] = wÔ. (1.7)

The weight w is an intrinsic property, which counts the tensor rank of the operator.
The case of flat space is special, where the vielbein ê a

μ satisfies: ê a
μêνa = ημν . Then, it suffices 

to consider only world indices that can be lowered and raised by the Minkowski metric and its 
inverse. In the absence of any gauge connections, one is left only with partial derivatives ∂μ that 
are of commuting nature: [∂μ, ∂ν] = 0.

2. Massive bosonic fields

In this section, we study the Fierz-Paui system for totally-symmetric massive bosons in the 
operator formalism. We start with the free propagation in Minkowski background, where we 
properly identify all the gauge identities of the involutive system. Then, the involutive deforma-
tions in gravitational/electromagnetic backgrounds [17–19] are rederived, rather more elegantly, 
using the operator formalism. Despite having no new results, this section will be immensely 
useful for the sake of familiarity with the concepts and methodology.

2.1. Minkowski background

The Fierz-Pauli conditions for a symmetric bosonic field of mass m in flat space involve the 
Klein-Gordon, divergence and trace operators [11], comprising the set:

G = {g0, g1, g2} , (2.1)

where a subscript gives the negative weight (−w) corresponding to an operator. Table 1 summa-
rizes the various properties of these operators.

Let us now consider the commutators between two different operators:

c1 ≡ [g0, g1], c2 ≡ [g2, g0], c3 ≡ [g1, g2], (2.2)
4
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all of which vanish on account of the commutativity of partial derivatives. Moreover, these linear 
operators have associative property, so that the Jacobi identity holds:

[g0, c3] + [g1, c2] + [g2, c1] = 0. (2.3)

The Fierz-Pauli equations constitute an involutive system of differential equations [21]:

g0� = 0, g1� = 0, g2� = 0. (2.4)

From the point of view of an involutive system, the algebraic consistency of the system (2.4) is 
taken care of by the gauge identities [22] (see also Appendix A):

c1� = 0, c2� = 0, c3� = 0, (2.5)

which hold good because ci’s themselves vanish. For the involutive system (2.4), however, the 
gauge identities (2.5) are not irreducible. To see this, let us define the operator:

j3 ≡ g2c1 + g1c2 + g0c3. (2.6)

Then, the Jacobi identity (2.3) implies the following on-shell identity:

j3� = 0. (2.7)

In other words, given the system of equations (2.4), we have a gauge identity at reducibility order 
1. This exhausts the list of all possible gauge identities for our system.

The system (2.4)–(2.7) of involutive equations plus gauge identities is of the kind considered 
in Appendix A.2.1. To check its absolute compatibility and find the DoF count, let us first give 
the number of equations at order k in space-time derivatives. For a symmetric boson of rank/spin 
s, in D is space-time dimensions, it is given by:

tk = δ2
k

(
D + s − 1

s

)
+ δ1

k

(
D + s − 2

s − 1

)
+ δ0

k

(
D + s − 3

s − 2

)
, (2.8)

where a weight-w operator acting on a rank-s tensor gives 
(
D+s+w−1

s+w

)
number of equations. On 

the other hand, the number of O(k) gauge identities at reducibility order j is:

lk, j = δ3
kδ

0
j

(
D + s − 2

s − 1

)
+ δ2

kδ
0
j

(
D + s − 3

s − 2

)
+
(
δ1
kδ

0
j + δ3

kδ
1
j

)(D + s − 4

s − 3

)
. (2.9)

With the total number of field variables f = (
D+s−1

s

)
, one finds from Eq. (A.23) that c = 0, i.e., 

the bosonic Fierz-Pauli system is absolutely compatible. The physical DoF count per space-time 
point, computed from Eq. (A.24), turns out to be:

Db(s) = 2

(
D − 4 + s

s − 1

)
+
(

D − 4 + s

s

)
, (2.10)

which is indeed the correct number of propagating DoF’s of a massive spin-s boson [11].

2.2. Gravitational background

In order to describe the free propagation of a massive boson in a gravitational background, we 
would like to apply the involutive deformation method to the flat-space system of the previous 
section. As outlined in Appendix B, the zeroth-order deformations are obtained by replacing 
ordinary derivatives by covariant ones: ∂μ → ∇μ, while the first-order ones should be linear in 
5
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the background curvature tensor, and so on. The most generic deformations of the operators (2.1)
take the following form:

Klein-Gordon : ĝ0 = ∇2−M2+ α1Rμνρσ uμuρdνdσ + α2Rμνu
μdν + α3R +O

(
1

�2

)
,

Divergence : ĝ1 = d ·∇ +O
(

1
�2

)
,

Trace : ĝ2 = d2 +O
(

1
�2

)
,

(2.11)

where the deformed mass M2 and the dimensionless operators α1, α2, α3 have weight w = 0, and 
the mass scale � is larger than other scales in the theory. Note that the book-keeping parameter 
(see Appendix B) indicating the deformation order is implicit here. The deformations (2.11), of 
course, preserve the respective weights w of the operators. Because the deformations are smooth, 
M2 → m2 in the limit of zero curvature.

Now, we would like to calculate the commutators between two different operators. The tech-
nical steps of the explicit computations of the desired commutators: [ĝ0, ĝ1], [ĝ1, ĝ2] and [ĝ2, ĝ0]
are relegated to Appendix C.1. In order for having some deformed gauge identities in the first 
place, we should ensure that these commutators close within the given set of operators. Among 
other things, we have the following expression:

[ĝ1, ĝ0] = 2(α1 − 1)Wμνρσ ∇μuρdνdσ +
[
(α2 + 1) −

(
2N

D−2

)
(α1 − 1)

]
Sμν∇μdν + · · · ,

(2.12)

where Wμνρσ and Sμν ≡ Rμν − 1
D

gμνR are respectively the Weyl tensor and the traceless part 
of the Ricci tensor, and the ellipses stand for other kinds of terms whose explicit forms do not 
matter at his point. In particular, some of the latter terms involve the gradient of the Riemann 
tensor, which can be decomposed into irreducible Lorentz tensors:

⊗︸ ︷︷ ︸
Gradient of Riemann

= ︸ ︷︷ ︸
X

⊕ ︸ ︷︷ ︸
Y

⊕ ︸ ︷︷ ︸
Z

⊕ ︸︷︷︸
U

, (2.13)

where, with the convention that (anti)symmetrization of indices has unit normalization,

Xμνρ
αβ ≡ ∇(μWν

α
ρ)

β −
(

2
D+2

)
g(μν∇σ Wρ)

(α
σ

β),

Yμνρ ≡ ∇(μRνρ) −
(

2
D+2

)
g(μν∇ρ)R,

Zμνρ ≡ 2∇[ρRν]μ +
(

1
D−1

)
gμ[ρ∇ν]R + (μ ↔ ν) ,

Uμ ≡ ∇μR.

(2.14)

For an arbitrary-spin field in D ≥ 4, it is clear from Eq. (2.12) that the two terms on the right 
hand side must vanish for a gauge identity to hold good; this demands:

α1 = 1, α2 = −1. (2.15)

Then, the explicit form of Eq. (2.12) reduces to:
6
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[ĝ1, ĝ0] = [M2, d ·∇] − R [α3, d ·∇] +
[
α3 − 2(N−1)(N+D−2)

(D−1)(D+2)

]
d ·U + 2

(
u2d·U+u·U)

(D−1)(D+2)
d2

+ Xμνρ
αβuαuβdμdνdρ

+ Zμνρ

[
2
3uρdμdν + 1

3(D−2)
uρNdμdν + 4D−7

3(D2−4)
uμuνdρd2

]
− Yμνρ

[
uμdνdρ − 1

D−2

(
uμuνdρd2 + u2dμdνdρ − 2uμNdνdρ

)]
+O

(
1

�2

)
.

The last two lines in the above equation impose the following constraints:

Xμνρ
αβ = 0, Yμνρ = 0, Zμνρ = 0. (2.16)

Without constraining the gravitational background any further, we can also choose:

α3 = 2(N−1)(N+D−2)
(D−1)(D+2)

. (2.17)

Finally, in order to deal with the commutator [M2, d ·∇], let us assume that the deformed mass 
M2 is a quadratic polynomial in the index operator N :

M2 = m2 + μ2
(
N2 + βN + γ

)
, (2.18)

where β and γ are some numerical constants, and μ is some constant mass parameter that van-
ishes in the limit of zero curvature. The justification of such an assumption can only be given a 
posteriori, when we consider the massless case. Then, we have:

[M2, d ·∇] = P(N)d ·∇, P (N) ≡ −μ2 (2N + β + 1) . (2.19)

With the choices and constraints (2.15)–(2.19), the commutator (2.12) reduces to:

[ĝ1, ĝ0] = 2
(D−1)(D+2)

[
R (2N + D − 2) ĝ1 +

(
u2d ·U + u·U

)
ĝ2

]
+ P(N)ĝ1 +O

(
1

�2

)
.

(2.20)

Similarly, in view of the choices (2.15) and (2.17)–(2.18), we have the following result:

[ĝ2, ĝ0] = 4
(D−1)(D+2)

R (2N + D − 1) ĝ2 + Q(N)ĝ2 +O
(

1
�2

)
, (2.21)

where Q(N) ≡ −2μ2 (2N + β + 2). The third and last commutator take the simple form:

[ĝ1, ĝ2] = O
(

1
�2

)
. (2.22)

Given the relations (2.20)–(2.22), we now identify the deformed counterparts of the commu-
tators appearing in Eq. (2.2). They are:

ĉ1 ≡ [ĝ0, ĝ1] + 2
(D−1)(D+2)

[
R (2N + D − 2) ĝ1 + (

u2d ·U + u·U) ĝ2
]+ P(N)ĝ1,

ĉ2 ≡ [ĝ2, ĝ0] − 4
(D−1)(D+2)

R (2N + D − 1) ĝ2 − Q(N)ĝ2, (2.23)

ĉ3 ≡ [ĝ1, ĝ2].
Finally, we identify the deformed version of the operator j3 of Eq. (2.6) with:

ĵ3 ≡ ĝ2ĉ1 + ĝ1ĉ2 + ĝ0ĉ3. (2.24)

On account of the Jacobi identity among the deformed operators 
{
ĝ0, ĝ1, ĝ2

}
, we can use the 

definitions (2.23) to express ĵ3 in the following form:
7
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ĵ3 = Ô3 ĝ0 + Ô2 ĝ1 + Ô1 ĝ2, (2.25)

where Ôi is an operator of weight −i, whose explicit expression is given in Eq. (C.8).
Now we are ready to present our deformed involutive system with all the gauge identities. Of 

course, the system of equations is given by:

ĝ0� = 0, ĝ1� = 0, ĝ2� = 0. (2.26)

The gauge identities at reducibility order 0 can be written in the following form:

ĉ1� = 0, ĉ2� = 0, ĉ3� = 0, (2.27)

provided that the ĉi’s, given by Eqs. (2.23), vanish identically. This happens when the O
(

1
�2

)
terms in the commutators (2.20)–(2.22) are zero. Without explicit knowledge of similar terms in 
the operators 

{
ĝ0, ĝ1, ĝ2

}
, the latter condition can be ensured by taking1:

� → ∞. (2.28)

On account of the relation (2.25), we also have the following on-shell identity:

ĵ3� = 0, (2.29)

which is the desired gauge identity at reducibility order 1. This completes our involutive defor-
mation analysis of a free massive boson in a gravitational background.

To summarize, the consistent dynamical equation for a free massive boson reads:(
∇2−M2+ Rμνρσ uμuρdνdσ − Rμνu

μdν + 2(N−1)(N+D−2)
(D−1)(D+2)

R
)

� = 0, (2.30)

where the deformed mass is of the type (2.18). The constraint equations are given by:

d ·∇� = 0, d2� = 0. (2.31)

The involutive nature of this system hinges upon the constraints (2.16) on the background. This 
result essentially captures those already found in [17,18], and is valid for arbitrary spin in D ≥ 4. 
Below we consider some important special cases.

Lower spins The constraints (2.16) on the gravitational background are necessary when the 
bosonic field has spin s ≥ 3. Because dμdνdρ� = 0 for a spin-2 field, the quantity Xμνρ

αβ does 
not need to vanish in order for the commutator (2.12) to close. The constraints on the gravitational 
background therefore boil down to:

For s = 2 : Yμνρ = 0, Zμνρ = 0. (2.32)

Among others, these conditions admit manifolds with a covariantly constant Ricci tensor (Ricci 
symmetric spaces) reported in [17], and in particular Einstein manifolds [23,24]. No restriction 
on the gravitational background is imposed for s = 1 and s = 0.

1 Alternatively, when O
(

1
�2

)
terms are judiciously included in the equations (2.26), similar contributions should be 

absent in the commutators (2.20)–(2.22) modulo additional on-shell vanishing terms. This may pose additional con-
straints on the gravitational background. We would not consider this possibility.
8
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3D manifolds The Weyl tensor vanishes identically in D = 3, and so does the tensor Xμνρ
αβ . 

Therefore, the necessary constraints on the gravitational background again take the form:

For s ≥ 2 : Yμνρ = 0, Zμνρ = 0. (2.33)

The constraint on Zμνρ is tantamount to the vanishing of the Cotton tensor. In other words, it is 
necessary that the 3D manifold be conformally flat.

2.3. Electromagnetic background

Let us assume that the massive boson possesses minimal coupling to the electromagnetic (EM) 
background field with an electric charge q . The zeroth-order deformations are obtained by the 
substitution: ∂μ → Dμ, where the covariant derivatives have commutators: [Dμ, Dν] = iqFμν , 
with Fμν being the background field strength. In this case, the most generic parity-preserving 
deformations of the operators (2.1) can be written as:

Klein-Gordon : ḡ0 = D2 − M̄2 + iqαFμνu
μdν +O

(
1

�̄2

)
,

Divergence : ḡ1 = d ·D +O
(

1
�̄2

)
,

Trace : ḡ2 = d2 +O
(

1
�̄2

)
,

(2.34)

where the deformed mass M̄2 and the dimensionless operator α have weight zero, and the scale 
�̄ is larger than other mass scales in the theory. Here, the charge q plays the rôle of the parameter 
that keeps track of the deformation order (see Appendix B). The deformations (2.1), of course, 
preserve the respective weights w of the operators. Because the deformations are smooth, M̄2 →
m2 in the limit of vanishing field strength.

Let us calculate the commutators between two different operators in (2.34). They involve the 
gradient of the EM field strength, which can be decomposed as:

⊗︸ ︷︷ ︸
Gradient of F

= ︸ ︷︷ ︸
A

⊕ ︸︷︷︸
V

, (2.35)

where the Young diagram does not contribute because of the Bianchi identity, and the other 
irreducible Lorentz tensors are defined as:

Aμν
ρ ≡ ∂(μFν)

ρ −
(

1
D−1

)[
ημνV

ρ − δ
ρ

(μ
Vν)

]
, Vν ≡ ∂μFμν. (2.36)

The commutators we are interested in ought to close within the given set of operators (2.34), so 
that some deformed gauge identities to exist. We obtain (see Appendix C.2):

[ḡ1, ḡ0] = iq (α − 2)FμνDμdν − iqαAμνρuρdμdν + iq
(

αN+(α−1)(D−1)
D−1

)
d ·V

− iqα
(

1
D−1

)
u·V d2 − iq[α,d ·D]Fμνu

μdν + [M̄2, d ·D] +O
(

1
�̄2

)
.

(2.37)

On the right hand side of Eq. (2.37), the first term must vanish, which sets:

α = 2, (2.38)

for a Fμν �= 0. On the other hand, the second and third terms require that for any bosonic field of 
spin s > 1, the irreducible Lorentz tensors A and V vanish:
9
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Aμνρ = 0, Vμ = 0, (2.39)

which is tantamount to the requirement of a constant EM background: Fμν = constant. The 
remaining problematic term is the commutator [M̄2, d ·D], which can be managed by assuming 
again that M̄2 is a polynomial function of the index operator N . This gives:

[M̄2, d ·D] = P̄ (N)d ·D, [M̄2, d2] = Q̄(N)d2, (2.40)

where P̄ (N) and Q̄(N) are polynomials in N of the same order. With the choices and con-
straints (2.38)–(2.40), the commutator (2.37) and the other two can be written as:

[ḡ1, ḡ0] = P̄ (N)ḡ1 +O
(

1
�̄2

)
, [ḡ2, ḡ0] = Q̄(N)ḡ2 +O

(
1

�̄2

)
, [ḡ1, ḡ2] = O

(
1

�̄2

)
.

(2.41)

In view of Eqs. (2.41), we can identify the deformed counterparts of the commutators appear-
ing in Eq. (2.2) as the following:

c̄1 ≡ [ḡ0, ḡ1] + P̄ (N)ḡ1, c̄2 ≡ [ḡ2, ḡ0] − Q̄(N)ḡ2, c̄3 ≡ [ḡ1, ḡ2]. (2.42)

Next, we identify the deformed counterpart of the operator j3 of Eq. (2.6); it is:

j̄3 ≡ ḡ2c̄1 + ḡ1c̄2 + ḡ0c̄3. (2.43)

Thanks to the Jacobi identity among the deformed operators {ḡ0, ḡ1, ḡ2}, we can use the defini-
tions (2.42) to express j̄3 in the following form:

j̄3 = c̄3 ḡ0 + [
c̄2 + ḡ2P̄ (N) + Q̄(N)ḡ2

]
ḡ1 + [

c̄1 − P̄ (N)ḡ1 − ḡ1Q̄(N)
]
ḡ2. (2.44)

Let us now present the deformed involutive system of equations; it is:

ḡ0� = 0, ḡ1� = 0, ḡ2� = 0. (2.45)

Assuming that the c̄i’s defined in Eqs. (2.42) vanish identically, we also have the following gauge 
identities at reducibility order zero:

c̄1� = 0, c̄2� = 0, c̄3� = 0, (2.46)

which holds if the O
(

1
�̄2

)
terms in Eqs. (2.41) vanish. Lacking the explicit knowledge of similar 

terms in the deformed operators {ḡ0, ḡ1, ḡ2}, the latter condition is guaranteed if

�̄ → ∞. (2.47)

We also have a desired gauge identity at reducibility order 1; it reads:

j̄3� = 0, (2.48)

and holds as an on-shell identity given the relation (2.44). This completes our analysis of the 
involutive deformation of a free massive boson in an EM background.

The consistent of dynamical equations and constraints for a free massive boson read:(
D2 − M̄2 + 2iqFμνu

μdν
)

� = 0, d ·D� = 0, d2� = 0, (2.49)

where the deformed mass M̄2 is assumed to be a polynomial in the index operator N , such that 
in the limit of vanishing field strength: M̄2 → m2. The consistency of this system relies on the 
10



R. Rahman Nuclear Physics B 964 (2021) 115325
Table 2
Operators in fermionic Fierz-Pauli system.

Operator Symbol Definition Weight (w) Derivative order (k)

Dirac f0 /∂ − m 0 1
Divergence g1 d ·∂ −1 1
Gamma-Trace f1 /d −1 0

constraints (2.39) on background field strength, which mean: Fμν = constant. Already found 
in [17], this result holds for an arbitrary-spin2 boson.

3. Massive fermionic fields

This section analyzes the Fierz-Paui system for totally-symmetric massive fermions in the 
operator formalism. The starting point is the free propagation in Minkowski background, where 
we identify all the gauge identities of the involutive system. Then we derive the involutive defor-
mations in gravitational and EM backgrounds.

We use the metric convention (−, +, · · · , +). The γ -matrices satisfy: {γ a, γ b} = +2ηab, and 
γ a † = ηaaγ a . Totally antisymmetric products of γ -matrices, γ a1···ap ≡ γ [a1γ a2 · · ·γ ap], have 
unit weight. A “slash” denotes a contraction with a γ -matrix, e.g., /∂ = γ a∂a .

3.1. Minkowski background

The Fierz-Pauli conditions describing a symmetric fermionic field of mass m involve the 
Dirac, divergence and gamma-trace operators [11]. These operators form the set:

F = {f0, g1, f1} , (3.1)

where again a subscript gives the negative weight (−w) corresponding to an operator. Table 2
summarizes the various properties of these operators.

We will be interested in the graded commutators between two different operators: [f0, g1], 
[g1, f1] and {f1, f0}. The first two commutators vanish, while the last one is given by:

{f1, f0} = 2g1 − 2mf1, (3.2)

which closes within the given set F . Let us now define the following operators:

h1 ≡ [f0, g1], h2 ≡ [g1, f1], h′
1 ≡ {f1, f0} − 2g1 + 2mf1, (3.3)

j2 ≡ f1h1 − (f0 + 2m)h2 + g1h
′
1. (3.4)

Because the operators {f0, g1, f1} are linear, we have the graded Jacobi identity:

{f1, [f0, g1]} − {f0, [g1, f1]} + [g1, {f1, f0}] = 0, (3.5)

which enables us to rewrite the operator j2, defined in Eq. (3.4), as:

j2 = h2f0 + h′
1g1 − h1f1. (3.6)

2 For s = 1, because dμdν� = 0, the constraint that necessarily follows from Eq. (2.37) is: Vμ = 0, i.e., the EM 
background satisfies the source-free Maxwell equations. For s = 0, on the other hand, there is no constraint on the 
background field strength.
11
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The Fierz-Pauli equations comprise an involutive system of differential equations [21]:

f0� = 0, g1� = 0, f1� = 0. (3.7)

The mutual compatibility of the equations (3.7) is encoded in the gauge identities:

h1� = 0, h2� = 0, h′
1� = 0, (3.8)

which follow directly from the graded commutators of the operators in F . Moreover, because of 
the relation (3.6), we have the following on-shell identity:

j2� = 0, (3.9)

which is a gauge identity at reducibility order 1, implying that the gauge identities (3.8) are not 
irreducible. This completes the list of all possible gauge identities of our system.

Note that the system (3.7)–(3.9) of involutive equations and gauge identities is of the type 
considered in Appendix A.2.1. In order to check its absolute compatibility and count the DoF’s, 
we first give the number of equations at order k in space-time derivatives:

tk =
[
δ1
k

(
D + n − 1

n

)
+ δ1

k

(
D + n − 2

n − 1

)
+ δ0

k

(
D + n − 2

n − 1

)]
2[D]/2, (3.10)

where n is the rank of the symmetric fermion, and D is the space-time dimensionality. We also 
have the count of O(k) gauge identities at reducibility order j , given by:

lk, j =
[
δ2
k δ

0
j

(
D + n − 2

n − 1

)
+ δ1

kδ
0
j

(
D + n − 2

n − 1

)
+
(
δ1
kδ

0
j + δ2

kδ
1
j

)(D + n − 3

n − 2

)]
2[D]/2.

(3.11)

Given the total number of field variables f = (
D+n−1

n

)
2[D]/2, we find from Eq. (A.23) that c = 0, 

i.e., the fermionic Fierz-Pauli system is absolutely compatible. The count of physical DoF’s per 
space-time point is given by Eq. (A.24):

Df (n) =
(

D + n − 3

n

)
2[D−2]/2, (3.12)

which is the number of propagating DoF’s of a massive spin-
(
n + 1

2

)
fermion [11].

3.2. Gravitational background

The free propagation of a massive fermion in a gravitational background can be analyzed by 
applying the involutive deformation method to the flat-space system we just described. In accor-
dance with Appendix B, the substitution of ordinary derivatives by covariant ones, ∂μ → ∇μ, 
gives the zeroth-order deformations, while linear terms in the background curvature comprise 
the first-order ones, etc. The deformations of the operators (3.1) ought to preserve the respective 
weights w; they can be written as:

Dirac : f̂0 = /∇ − M +O
( 1

�

)
,

Divergence : ĝ1 = d ·∇ +O
( 1

�

)
,

Gamma-Trace : f̂1 = /d +O
(

1
2

)
,

(3.13)
�

12
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where the deformed mass M has weight w = 0, and � is some mass scale larger than other 
scales in the theory. The deformations (3.13) are assumed to be smooth, so that in the limit of 
zero curvature: M → m. Here, the book-keeping parameter indicating the deformation order (see 
Appendix B) is implicit.

We will now compute the graded commutators between two different operators in (3.13). The 
details of the computations are given in Appendix C.1. We must ensure that these commutators 
close within the given set of operators, so that some deformed versions of the gauge identities 
exist at all. An explicit computation leads us to the following result:

[f̂0, ĝ1] = Wμνρσ γ μuρdνdσ +
(

1
D−2

)[
/uSμνd

μdν − ( 2N+D−2
2

)
Sμνγ

μdν
]− [M,d ·∇]

+
(

1
D−2

)[
Sμνγ

μuν /d − Sμνu
μdν

]
/d + 1

D(D−1)
R
[
/u /d − ( 2N+D−1

2

)]
/d +O

( 1
�

)
.

(3.14)

From the first line of Eq. (3.14) it is clear that, for an arbitrary-spin field, the gravitational back-
ground is required to fulfill the following conditions:

Wμνρσ = 0, Sμν = 0. (3.15)

In other words, the background manifold must be a conformally flat as well as an Einstein one. 
This is tantamount to the requirement of a maximally symmetric space, for which Eqs. (C.2)
apply. We also need to deal with the commutator [M, d ·∇]. In order to do so, let us assume that 
the deformed mass M is a linear function of the index operator N :

M = m + μ(N + δ) , (3.16)

where δ is a numerical constant, and μ a constant mass parameter that vanishes in the zero 
curvature limit. Again, the justification of such an assumption is postponed until we consider the 
massless case. The constraints (3.15) and the choice (3.16) reduce the commutator (3.14) to a 
desired form. In an AdS space of radius L, one obtains:

[f̂0, ĝ1] = μĝ1 − 1
L2

[
/u /d − ( 2N+D−1

2

)]
f̂1 +O

( 1
�

)
. (3.17)

The other graded commutators, on the other hand, are simpler to compute. They read:

[ĝ1, f̂1] = O
( 1

�

)
, {f̂1, f̂0} = 2ĝ1 − (2M + μ) f̂1 +O

( 1
�

)
. (3.18)

With the graded commutation relations (3.17)–(3.18), we can now identify the deformed coun-
terparts of the operators (3.3); they are given by:

ĥ1 ≡ [f̂0, ĝ1] − μĝ1 + 1
L2

[
/u /d − ( 2N+D−1

2

)]
f̂1,

ĥ′
1 ≡ {f̂1, f̂0} − 2ĝ1 + (2M + μ) f̂1, (3.19)

ĥ2 ≡ [ĝ1, f̂1].
We also identify the deformed counterpart of the operator j2 in Eq. (3.4) with:

ĵ2 ≡ f̂1ĥ1 −
(
f̂0 + 2(M + μ)

)
ĥ2 + ĝ1ĥ

′
1. (3.20)

The graded Jacobi identity involving the operators 
{
f̂0, ĝ1, f̂1

}
, however, gives:

ĵ2 = ĥ2f̂0 + ĥ′
1ĝ1 −

[
ĥ1 − 1

2

(
{f̂1, /u /d − N} − (D − 1)f̂1

)]
f̂1. (3.21)
L

13
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At this stage, we are ready to present the deformed involutive system along with all the gauge 
identities. The dynamical equations and constraints read:

f̂0� = 0, ĝ1� = 0, f̂1� = 0, (3.22)

while the gauge identities at reducibility order 0 are:

ĥ1� = 0, ĥ2� = 0, ĥ′
1� = 0, (3.23)

which follow from the graded commutators (3.17)–(3.18) provided that the O
( 1

�

)
-terms appear-

ing therein vanish. The latter conditions can be ensured by taking:

� → ∞. (3.24)

Furthermore, the relation (3.21) gives rise to the following on-shell identity:

ĵ2� = 0, (3.25)

which is the desired gauge identity at reducibility order 1. This completes our analysis.
To summarize, the involutive system of equations for a massive fermion reads:(

/∇ − M
)
� = 0, d ·∇� = 0, /d � = 0, (3.26)

where the deformed mass M is assumed to be of the form (3.16). For a fermion of arbitrary spin, 
this system is consistent in D ≥ 3 when the gravitational background is a maximally symmetric 
space. The constraints are weaker for lower-spin fields. In particular, as already noted in [25,26], 
a spin- 3

2 massive fermion can be consistently described in an Einstein space (Sμν = 0). This can 
easily be seen from Eq. (3.14) given that in this case dμdν� = 0. No such constraints on the 
gravitational background appear for s = 1

2 .

3.3. Electromagnetic background

We assume that the massive fermion has a nonzero electric charge q , which defines its minimal 
coupling to the EM background. As usual, the zeroth-order deformations are obtained by the 
substitution: ∂μ → Dμ. So, the deformations of the operators (3.1) are:

Dirac : f̄0 = /D − m +A,

Divergence : ḡ1 = d ·D +B,

Gamma-Trace : f̄1 = /d + C,

(3.27)

where A, B and C contain all the higher-order deformations that are assumed to be smooth and 
parity preserving. Note that the deformation order is controlled by the charge q .

Given the formal expressions (3.27), one can write down the graded commutators between 
two different operators. They read:

[f̄0, ḡ1] = iqFμνγ
μdν + (

/∂B − d ·∂A)+ ([γ μ,B] − [dμ,A])Dμ + [A,B], (3.28)

[ḡ1, f̄1] = [B, /d] − d ·∂ C − [dμ,C]Dμ + [B,C], (3.29)

{f̄1, f̄0} = 2ḡ1 − 2mf̄1 + {/d,A} − 2B + 2mC + {C,A}. (3.30)

These commutators ought to close within the set of operators (3.27). The Fμνγ
μdν -term in 

Eq. (3.28) requires that the non-minimal couplings be present, i.e., the terms A, and B cannot 
both be zero because otherwise the commutator [f̄0, ḡ1] does not close.
14
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It is difficult to find the general solution for A, B and C for generic spin. In order to proceed, 
we will therefore make some simplifying assumptions. First, let us assume that

C = 0. (3.31)

In other words, the γ -trace operator does not undergo any deformation at order one or higher. 
This can be justified by noting that all the known consistent models of charged massive higher-
spin fields enjoy this property [13–16]. Moreover, such deformations may not show up even in a 
gravitational background, as we just saw. Next, we spell out the non-minimal deformation of the 
Dirac operator (see Appendix C.2):

A = iq
(
a+F+

μν + a−F−
μν

)
uμdν + iq

(
a0Fρσ γ ρσ + · · · )+O

(
q2
)

, (3.32)

where F±
μν ≡ Fμν ± 1

2γ μνρσFρσ , the a± and a0 are operators of weight w = 0 and mass dimen-
sion −1, and the ellipses stand for terms containing derivatives of the field strength. Similarly, 
we can write down the non-minimal deformation of the divergence:

B = iq
(
b0Fμνγ

μdν + · · · )+O
(
q2
)

, (3.33)

with b0 being a weight-0 operator of dimension −1, and the ellipses containing derivatives of the 
field strength. Given Eqs. (3.31)–(3.33), one can compute the graded commutators up to O(q), 
as in Appendix C.2. For spin s ≥ 3

2 , the cancellation of the offending O(q) terms obstructing the 
closure of the commutators (C.35) and (C.39) requires that:

1 − m(a+ − a− + 2b0) = 0,

a− − b0 = 0, (3.34)

(D − 4)a+ − (D − 2)a− + 4a0 + 2b0 = 0,

which can be solved, with the introduction of a single free parameter ε, as:

a± = 1
2 (1 ± ε)m−1, a0 = − (

D−4
4

)
εm−1, b0 = 1

2 (1 − ε)m−1. (3.35)

Moreover, the irreducible Lorentz tensors Aμν and Vμ (see Eq. (2.36)) must vanish, i.e.,

Fμν = constant. (3.36)

With these choices and constraints, the graded commutators (3.28)–(3.30) reduce to:

[f̄0, ḡ1] = (iq/m)Fμν

[−γ μdνf̄0 + 1
2ε
(
γ μνḡ1 + 2γ μDν f̄1 − γ μν /Df̄1

)]+O
(
q2
)

,

[ḡ1, f̄1] = (iq/m) (1 − ε)Fμνγ
μdνf̄1 +O

(
q2
)

,

{f̄1, f̄0} = 2ḡ1 − 2mf̄1 + (iq/m)Fμν

[
2uμdν + 1

2εγ μν
]
f̄1 +O

(
q2
)

.

(3.37)

We are now ready to identify the deformations of the operators {h1, h2, h′
1} given in Eq. (3.3). 

Up to O
(
q2
)

correction terms, they are:

h̄1 ≡ [f̄0, ḡ1] + (iq/m)Fμν

[
γ μdνf̄0 − 1

2ε
(
γ μνḡ1 + 2γ μDν f̄1 − γ μν /Df̄1

)]
,

h̄2 ≡ [ḡ1, f̄1] − (iq/m) (1 − ε)Fμνγ
μdνf̄1, (3.38)

h̄′
1 ≡ {f̄1, f̄0} − 2ḡ1 + 2mf̄1 − (iq/m)Fμν

[
2uμdν + 1

2εγ μν
]
f̄1.

We also identify the deformed counterpart of the operator j2 in Eq. (3.4); it is:
15



R. Rahman Nuclear Physics B 964 (2021) 115325
j̄2 ≡ f̄1h̄1 − (
f̄0 + 2m

)
h̄2 + ḡ1h̄

′
1. (3.39)

Thanks to the graded Jacobi identity involving the operators 
{
f̄0, ḡ1, f̄1

}
, one can use the defini-

tions (3.38) to rewrite j̄2 in the following form:

j̄2 = Ō2 f̄0 + Ō ′
1 ḡ1 − Ō1 f̄1 +O

(
q2
)

, (3.40)

where the explicit expressions of the operators Ō2, Ō ′
1 and Ō1 are given in Eqs. (C.40).

Our deformed involutive system consists of the dynamical equations and constraints:

f̄0� = 0, ḡ1� = 0, f̄1� = 0. (3.41)

The required gauge identities are valid up to O(q). At reducibility order 0, they read:

h̄1� = O
(
q2
)

, h̄2� = O
(
q2
)

, h̄′
1� = O

(
q2
)

, (3.42)

thanks to the graded commutators (3.37). At reducibility order 1, the gauge identity is:

j̄2� = O
(
q2
)

, (3.43)

which is an on-shell identity that follows from the relation (3.40).
Therefore, a free massive fermion of spin s ≥ 3

2 in an EM background is described, up to 
O(q), by the following one-parameter family of an involutive system of equations:

{
/D−m+(iq/m)

[(
Fμν + 1

2εγμνρσ Fρσ
)
uμdν −(D−4

4

)
εFμνγ

μν
]+O

(
q2
)}

� = 0, (3.44){
d ·D + 1

2 (iq/m)(1 − ε)Fμνγ
μdν +O

(
q2
)}

� = 0, /d � = 0, (3.45)

given that the background is a constant one: Fμν = constant. In principle, one can proceed order 
by order in the parameter q to find the higher-order deformations. However, it is not clear at all 
whether a consistent deformation up to all order exists for arbitrary spin. The only known exam-
ple of an all-order solution is for s = 3

2 in D = 4 [16], to which3 our O(q)-results (3.44)–(3.45)
agree, with the parameter choice of ε = 1.

4. Massless bosonic fields

In this section, we consider the zero mass limit of the involutive system of a higher-spin mas-
sive boson. As we will see, in the massless limit the flat-space involutive system (2.4) acquires a 
gauge symmetry, whose gauge parameter itself is governed by the same kind of involutive system. 
In other words, we obtain the description of a higher-spin gauge boson in the transverse-traceless 
gauge. Given the discussion of Appendix A.2.2, we then confirm that the involutive system of a 
gauge boson describes the correct number of physical DoF’s. Armed with this formulation, we 
then study the consistent free propagation of massless bosons in nontrivial backgrounds.

3 It has the Dirac equation: 
[
/D − m + m

(
B+

μν − Bμ
ρBρν + 1

4 ημνTrB2
)

uμdν
]
� = 0, plus constraints: (

d ·D + 1 mBμ
ρBρνγ μdν

)
� = 0, and /d � = 0, where Bμν = (iq/m2)Fμν + 1 TrB2Bμν − 1 Tr(BB̃)B̃μν .
2 4 4
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4.1. Minkowski background

For the massive spin-s boson � of Eqs. (2.4), let us consider the following transformation:

δ� = g−1λ, λ = 1
(s−1)! λμ1···μs−1(x)uμ1 · · ·uμs−1 , (4.1)

where we have introduced the symmetrized gradient operator g−1, defined as:

Symmetrized Gradient: g−1 ≡ u·∂, with [N,g−1] = g−1. (4.2)

We take note of the following commutation relations for the symmetrized gradient:

[g0, g−1] = 0, [g1, g−1] = g0 + m2, [g2, g−1] = 2g1, (4.3)

to find that the left-hand sides of the involutive equations (2.4) transform as:

δ(g0�) = g−1(g0λ),

δ(g1�) = g−1(g1λ) + (g0 + m2)λ, (4.4)

δ(g2�) = g−1(g2λ) + 2g1λ.

We would like to see when, if at all, transformations of the type (4.1) may become a symmetry 
of the Fierz-Pauli involutive system (2.4). With this end in view, let us first impose that λ itself 
be governed by the following involutive set of equations:

g0λ = 0, g1λ = 0, g2λ = 0. (4.5)

Then, the right-hand sides of Eqs. (4.4) vanish if:

m2λ = 0. (4.6)

Therefore, a nontrivial gauge symmetry emerges in the massless limit: m2 → 0.
In other words, the involutive system of a massless boson enjoys a gauge symmetry (4.1), 

where the gauge parameter satisfies Eqs. (4.5) with zero mass. The Klein-Gordon operator re-
duces in this case to the d’Alembertian operator, denoted as:

d’Alembertian: g
0

≡ ∂2 = lim
m2→0

g0, with [N,g
0
] = 0. (4.7)

The operators relevant for the massless case are the massless cousins of (2.1) and the sym-
metrized gradient, which we collect in the following set:

G = {g
0
, g1, g2, g−1}. (4.8)

Notice that the massless counterparts of the commutators (4.3) are:

[g
0
, g−1] = 0, [g1, g−1] = g

0
, [g2, g−1] = 2g1, (4.9)

which close completely within the set G\ {g−1}. This fact plays a crucial rôle in the existence 
of transverse-traceless gauge symmetry. It is the closure of the commutators (4.9) that ensures 
gauge invariance, which in turn controls the DoF count, as we will now see.

In order to make the DoF count, let us note that the gauge field � and the gauge parameter λ
are both governed by the same set of involutive equations, which is:

g
0

[
�

λ

]
= 0, g1

[
�

λ

]
= 0, g2

[
�

λ

]
= 0. (4.10)
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It is easy to see from Section 2.1 that the zero mass limit does not hurt the involutive structure 
of the Fierz-Pauli system (2.4). Neither does it alter the DoF count (2.10). In this case, however, 
the aforementioned count is a naive one because of the emergence of gauge symmetry. This 
is precisely the circumstances under which the analysis of Appendix A.2.2 may apply. From 
formula (A.29), it is easy to write down the number of physical DoF for a spin-s gauge field; it 
is simply the difference between the DoF count of a massive spin-s boson and that of a massive 
spin-(s − 1) boson:

D
(0)
b (s) = Db(s) −Db(s − 1). (4.11)

Then, it follows directly from the DoF count formula (2.10) that

D
(0)
b (s) = 2

(
D − 5 + s

s − 1

)
+
(

D − 5 + s

s

)
, (4.12)

which is the correct number of propagating DoF’s for a massless spin-s boson [11].

4.2. Gravitational background

In a gravitational background, we would like to find the deformed counterparts of the oper-
ators (4.8). The massless limits of the deformed operators in Eqs. (2.30)–(2.31), augmented by 
the deformed symmetrized gradient ĝ−1 give following set:

Ĝ = {ĝ
0
, ĝ1, ĝ2, ĝ−1}. (4.13)

This includes the deformed d’Alembertian operator:

ĝ
0
= ∇2 − M2

0 + Rμνρσ uμuρdνdσ − Rμνu
μdν + 2(N−1)(N+D−2)

(D−1)(D+2)
R, (4.14)

where, we recall from the mass ansatz (2.18) that,

M2
0 = μ2

(
N2 + βN + γ

)
, (4.15)

with μ being a constant mass parameter that vanishes in the zero curvature limit, and β and γ
numerical constants. We also have the deformed divergence and trace operators:

ĝ1 = d ·∇, ĝ2 = d2. (4.16)

Last but not the least, we have the deformed symmetrized gradient. To write this, let us recall 
from Eq. (2.28) that we choose to stay in a parametric regime where the suppression scale �
of higher-dimensional operators is taken to infinity. This allows us to drop all the possible non-
minimal terms to ĝ−1, and instead identify it as a zeroth order deformation:

ĝ−1 = u·∇. (4.17)

The involutive system of a spin-s massless boson � is given simply by the massless limits of 
Eqs. (2.30)–(2.31), i.e., through the deformed operators (4.14)–(4.16), as:

ĝ
0
� = 0, ĝ1� = 0, ĝ2� = 0. (4.18)

The spin-(s − 1) gauge parameter λ, on the other hand, is governed by a similar system:

ĝ
′
λ = 0, ĝ1λ = 0, ĝ2λ = 0. (4.19)
0
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In order not to ruin the involutive structure of Eqs. (4.19), the deformed d’Alembertian ĝ′
0

acting 
on the gauge parameter may differ from ĝ

0
only in the mass-like term:

ĝ
′
0
= ĝ

0
+ M2

0 − M ′2
0 , (4.20)

where M ′2
0 is some quadratic polynomial in N , in accordance with the ansatz (2.18).

We now consider gauge transformations of the form: δ� = ĝ−1λ, and find the variations of 
the left-hand sides of Eqs. (4.18); they are given by:

δ(ĝ
0
�) = [ĝ

0
, ĝ−1]λ + ĝ−1(ĝ0

λ) = [ĝ
0
, ĝ−1]λ + ĝ−1

(
M ′2

0 − M2
0

)
λ,

δ(ĝ1�) = [ĝ1, ĝ−1]λ + ĝ−1(ĝ1λ) = [ĝ1, ĝ−1]λ,

δ(ĝ2�) = [ĝ2, ĝ−1]λ + ĝ−1(ĝ2λ) = [ĝ2, ĝ−1]λ,

(4.21)

where the right-hand sides are obtained by making use of Eqs. (4.19)–(4.20). In order to see how 
gauge invariance can be restored in a gravitational background, we therefore need the commuta-
tors of ĝ−1 with the other three operators in (4.13). The commutators with ĝ1 and ĝ2 are rather 
easy to compute; they can be written as:

[ĝ1, ĝ−1] = ĝ
′
0
+X0, [ĝ2, ĝ−1] = 2ĝ1, (4.22)

where the weight-0 operator X0 is explicitly given in Eq. (C.9). In view of Eqs. (4.19), the 
necessary and sufficient conditions for the vanishing of δ(ĝ1�) and δ(ĝ2�), i.e., for the gauge 
invariance of the transverse-traceless conditions amount to:

X0λ = 0. (4.23)

Now, using the decomposition formula (C.1), it is possible to write:

X0 = −2Wμνρσuμuρdνdσ +
(

2
D−2

)
Sμν

[
(2N + D)uμdν − u2dμdν − uμuνd2

]
+ · · · ,

(4.24)

where the ellipses contain neither of the irreducible tensors Wμνρσ and Sμν . By inspection, it is 
clear that in order for Eq. (4.23) to hold, for arbitrary spin s > 2, the gravitational background is 
required to be conformally flat as well as Einsteinian:

Wμνρσ = 0, Sμν = 0. (4.25)

In other words, the background must be a maximally symmetric space.4 Then, one can make use 
of Eq. (C.2) to find the following simple expression:

X0L
2 = −u2ĝ2 + M ′2

0 L2 − (2N + D)(N + D − 2)/(1 + 1
2D). (4.26)

In order for Eq. (4.23) to be fulfilled, the following identification must be made:

M ′2
0 L2 = (2N + D)(N + D − 2)/(1 + 1

2D), (4.27)

which gives a justification to the mass ansatz (2.18). The constraints (4.25) and the parameter 
choice (4.27) ensure the gauge invariance of the transverse-traceless conditions.

4 Fulfilled automatically by any maximally symmetric space, the constraints (2.16) are indeed weaker.
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Next, we consider the gauge symmetry of the dynamical equation, for which we need the com-
mutator [ĝ

0
, ĝ−1]. This can be computed easily by taking the hermitian conjugate5 of Eq. (2.20)

in the limit � → ∞ and m2 → 0. Thus, we obtain:

[ĝ
0
, ĝ−1] = −ĝ−1

[
μ2 (2N + β + 1) + 1

L2 D(2N + D − 2)/(1 + 1
2D)

]
, (4.28)

given the constraint of maximally symmetric background. Now, let us take the first equation 
of (4.21), and plug the expressions (4.15), (4.27) and (4.28) in it to write:

δ(ĝ
0
�) = − 1

L2 ĝ−1

(
δ2N

2 + δ1N + δ0

)
λ, (4.29)

where the numerical coefficients δ2, δ1 and δ0 are given by:

δ2 = μ2L2 − 4
D+2 , δ1 = (β + 2)μ2L2 − 2(D−4)

D−2 , δ0 = (β + γ + 1)μ2L2. (4.30)

Each of these coefficients must be zero since otherwise the right-hand side of Eq. (4.29) does not 
vanish. This leads to a unique solution for the parameters μ2, β and γ , which can be reexpressed 
through a solution for the mass-like term, as:

M2
0L2 = (N − 1)(2N + D − 6)/(1 + 1

2D). (4.31)

This again justifies the mass ansatz (2.18). For the massive case−as long as the involutive struc-
ture of the system is concerned−any arbitrary polynomial in the index operator N would qualify 
as the deformed mass. Only in the massless limit does one see why this ought to be a quadratic 
polynomial in N . Given the constraints (4.25), and the expressions (4.27) and (4.31), the de-
formed d’Alembertians (4.14) and (4.20) reduce to:

ĝ
0
= ∇2 −m2

0, m2
0L

2 ≡ (N − 2)(N + D − 3) − N,

ĝ
′
0
= ∇2 −m′2

0 , m′2
0 L2 ≡ N(N + D − 1) − N.

(4.32)

Now we are ready to present our gauge invariant involutive system. The transformation of the 
massless spin-s field � is given in terms of a spin-(s − 1) gauge parameter λ, as δ� = u ·∇λ. 
They are governed by their respective involutive systems:(

∇2 −m2
0

)
� = 0, d ·∇� = 0, d2� = 0,(

∇2 −m′2
0

)
λ = 0, d ·∇λ = 0, d2λ = 0,

(4.33)

with the mass-like terms given by Eqs. (4.32). This system holds good in D ≥ 3 for spin s > 2
only in maximally symmetric spaces. The lower-spin case is considered below.

Lower spins The constraints (4.25) on the gravitational background are necessary only for 
gauge bosons with spin s ≥ 3. The gauge parameter in the spin-2 case satisfies: dμdνλ = 0, 
and therefore the Weyl tensor does not need to vanish in Eq. (4.24) for a field with s = 2. The 
necessary constraint in this case turns out to be:

For s = 2 : Sμν = 0. (4.34)

5 In this regard, the hermitian conjugation is implemented by: u†
μ = dμ and d†

μ = uμ. Indeed one has: [dμ, uν ] =
[dμ, d†

ν ] = gμν , which allows for interpretation in terms of creation and annihilation operators.
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In other words, the gravitational background must be an Einstein manifold. Note that the con-
ditions (2.32) in the massive case automatically hold for such a background. The system is still 
described by Eqs. (4.33), with the substitution: L2 → D(D − 1)/|R|.

The spin-2 result is quite expected in view of General Relativity. Einstein manifolds are 
nothing but the vacuum solutions of Einstein equations. On such backgrounds, one can always 
consider linearized graviton fluctuations, which of course will propagate consistently, thanks to 
General Relativity. Note that it is the absence of a stress-energy tensor that enables one to take 
into account solely graviton fluctuations in the EoM’s.

For s = 1, no restrictions on the gravitational background are imposed. In this case, it is easy 
to see that the gauge system will instead be described by:(

∇2 − Rμνu
μdν

)
� = 0, d ·∇� = 0; ∇2λ = 0. (4.35)

In particular, the mass-like terms M2
0 and M ′2

0 must be set to zero.

4.3. Electromagnetic background

In this section, we will consider the propagation of a charged bosonic field in an EM back-
ground, and will end up with a no-go for a higher-spin gauge boson, and a yes-go for a massless 
vector. The EM counterparts of the involutive systems (4.18)–(4.19), for the spin-s massless 
boson � and the accompanying spin-(s − 1) gauge parameter λ, read:[

ḡ
0

0
0 ḡ′

0

][
�

λ

]
= 0, ḡ1

[
�

λ

]
= 0, ḡ2

[
�

λ

]
= 0, (4.36)

with the deformed operators given directly from Eq. (2.49) as:

d’Alembertian : ḡ
0
= D2 − M̄2

0 + 2iqFμνu
μdν,

Divergence : ḡ1 = d ·D,

Trace : ḡ2 = d2,

(4.37)

along with ḡ′
0

= ḡ
0

+ M̄2
0 − M̄ ′2

0 , where the mass-like terms M̄2
0 and M̄ ′2

0 are polynomials in 
the index operator N that vanish in the limit of zero background EM field strength. On the other 
hand, the deformed symmetrized gradient is identified as a zeroth-order deformation (for a reason 
analogous to that of the gravitational case), i.e.,

Symmetrized gradient : ḡ−1 = u·D. (4.38)

In order to consider gauge transformations: δ� = ḡ−1λ, one needs the commutators of ḡ−1
with the other operators; they are easy to compute. Upon using the Eqs. (4.36), one ends up with 
the following variation of the involutive system:

δ(ḡ
0
�) =

(
ḡ−1M̄

′2
0 − M̄2

0 ḡ−1

)
λ,

δ(ḡ1�) =
(
M̄ ′2

0 − 3iqFμνu
μdν

)
λ,

δ(ḡ2�) = 0,

(4.39)

where the constancy of background field strength has been taken into account. It is clear that 
gauge invariance cannot be restored for a generic spin s > 1, irrespective of the mass parameters. 
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In particular, M̄ ′2
0 may only be a function of the index operator N , and so it cannot cancel the 

operation of the Fμνu
μdν -term in the variation δ(ḡ1�).

Thus, we come up with a no-go theorem: a charged gauge boson with spin s > 1 cannot 
propagate consistently in an EM background. This agrees with the no-go result forbidding the 
minimal coupling of massless higher-spin particles to a U(1) gauge field [5].

Yes-go for massless vector For spin s = 1, the right-hand sides of Eqs. (4.39) may all vanish, 
i.e., we have a yes-go result. To see this, let us note that dμλ = 0 in this case, and so the variation 
δ(ḡ1�) vanishes if M̄ ′2

0 is set to zero. Then, the variation δ(ḡ
0
�) also vanishes with the choice 

M̄2
0 = 0. This leaves us with the following involutive system for a massless vector �:(

D2 + 2iqFμνu
μdν

)
� = 0, d ·D� = 0, (4.40)

in an EM background: Fμν = constant, along with the gauge symmetry:

δ� = u·Dλ, D2λ = 0. (4.41)

This yes-go result may not come as a surprise given the existence of Yang-Mills theories as 
consistent interacting theories of spin-1 gauge fields. Indeed, the system (4.40)–(4.41) can be 
obtained from a non-Abelian gauge theory linearized around some background. To see this, let 
us consider an SU(2) gauge field Wa

μ, whose field strength is given by: Ga
μν = ∂μWa

ν − ∂νW
a
μ +

gεabcWb
μWc

ν , where g is the Yang-Mills coupling. The EoM’s are:

∂μGa
μν + gεabcWμ,bGc

μν = 0, a = 1,2,3, (4.42)

and the infinitesimal gauge transformations read:

δWa
μ = ∂μλa + gεabcWμ,bλc. (4.43)

It is easy to see that the EoM’s (4.42) admit the following solution:

W 1
μ = W 2

μ = 0, W 3
μ = Aμ �= 0, with Fμν = 2∂[μAν] = constant. (4.44)

On this background, let us now consider small fluctuations wa
μ. At the linearized level, the 

mode w3
μ behaves as if it were a U(1) gauge field:

∂μ
(
∂μw3

ν − ∂νw
3
μ

)
= 0, δw3

μ = ∂μλ3. (4.45)

The other two modes have the linearized field strengths:

f i
μν ≡ 2

(
∂[μwi

ν] + (−)igA[μw
j �=i
ν]

)
, i, j = 1,2, (4.46)

through which these modes are described by the coupled equations:

∂μf i
μν + (−)ig

(
Aμf j �=i

μν − Fμνw
μ,j �=i

)
= 0, (4.47)

that are invariant under the gauge transformations:

δwi
μ = ∂μλi + (−)igAμλj �=i . (4.48)

Now, we consider the following complex vector field and gauge parameter:

�μ ≡ 1√
(
w1

μ + iw2
μ

)
, λ ≡ 1√

(
λ1 + iλ2

)
. (4.49)
2 2
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At the linear level, the Yang-Mills coupling g can now be identified as the U(1) charge q of the 
vector �μ, on which acts the covariant derivative: Dμ ≡ ∂μ + igAμ. The EoM’s and the gauge 
symmetry of �μ read:

2DμD[μ�ν] − iqFμν�
μ = 0, δ�μ = Dμλ, (4.50)

which reduces precisely to our system (4.40)–(4.41) in the Lorenz gauge: Dμ�μ = 0.

5. Massless fermionic fields

This section explores the massless limit of the involutive system of a massive higher-spin 
fermion. In this limit, as we will see, the flat-space involutive system (3.7) acquires a gauge sym-
metry with an “unfree” gauge parameter governed by the same involutive system as the field. 
This is nothing but the description of a massless higher-spin fermion in the transverse-traceless 
gauge. We confirm, along the line of Appendix A.2.2, that the resulting involutive system de-
scribes the correct number of physical DoF’s of a gauge fermion. Given this reformulation, we 
go on to studying the consistent free propagation of higher-spin gauge fermions in nontrivial 
backgrounds.

5.1. Minkowski background

Let us consider, for the massive rank-n fermion � of Eqs. (3.7), the transformation:

δ� = g−1ε, ε = 1
(n−1)! εμ1···μn−1(x)uμ1 · · ·uμn−1 , (5.1)

where g−1 is the symmetrized gradient operator, already introduced in Eq. (4.2). In view of the 
commutation relations for the symmetrized gradient:

[f0, g−1] = 0, [g1, g−1] = (f0 + m)2, [f1, g−1] = f0 + m, (5.2)

it is easy to see that the left-hand sides of Eqs. (3.7) transform as:

δ(f0�) = g−1(f0ε),

δ(g1�) = g−1(g1ε) + (f0 + m)2ε, (5.3)

δ(f1�) = g−1(f1ε) + (f0 + m)ε.

To see if transformations of the type (5.1) may become a symmetry of the Fierz-Pauli sys-
tem (3.7), let us require that ε itself be governed by the following involutive equations:

f0ε = 0, g1ε = 0, f1ε = 0. (5.4)

Then, then the variations (5.4) vanish if and only if:

mε = 0. (5.5)

Clearly, in the zero mass limit: m → 0, there appears a nontrivial gauge symmetry.
The involutive system of a massless fermion therefore enjoys a gauge symmetry (5.1), where 

the gauge parameter itself is governed by Eqs. (5.4) with zero mass. In this case, the massless 
Dirac operator f

0
is of relevance, for which we have the following:

Massless Dirac: f
0

≡ /∂ = lim f0, with [N,f
0
] = 0. (5.6)
m→0
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Note that the set of operators essential for the massless case is given by:

F = {f
0
, g1, f1, g−1}, (5.7)

and that the massless counterparts of the commutators (5.2) read:

[f
0
, g−1] = 0, [g1, g−1] = f 2

0
, [f1, g−1] = f

0
. (5.8)

These commutators close completely within the set F\ {g−1}. This ensures transverse-traceless 
gauge symmetry, which in turn controls the DoF count, as we will now show.

Let us recall that the rank-n gauge field � and the rank-(n − 1) gauge parameter ε are both 
governed by the same involutive set of equations:

f
0

[
�

ε

]
= 0, g1

[
�

ε

]
= 0, f1

[
�

ε

]
= 0. (5.9)

It is easy to see from Section 3.1 that the massless limit does not affect the involutive structure of 
the Fierz-Pauli system (3.7). Neither does it alter the DoF count (3.12). However, because of the 
emergence of (unfree) gauge symmetry, the count (3.12) includes pure gauge modes as well. In 
this case, the analysis of Appendix A.2.2 applies, and one can easily write down the number of 
physical DoF for a rank-n gauge fermion. As seen from formula (A.29), it must be the difference 
between the DoF count of a massive rank-n fermion and that of a massive rank-(n − 1) fermion:

D
(0)
f (n) = Df (n) −Df (n − 1). (5.10)

From the DoF count formula (3.12), then it follows that

D
(0)
f (n) =

(
D + n − 4

n

)
2[D−2]/2. (5.11)

This is indeed the correct number of physical DoF’s for a rank-n gauge fermion [11].

5.2. Gravitational background

We would like to have the deformed counterparts of the operators (5.7) in a gravitational 
background; they constitute the following set:

F̂ = {f̂
0
, ĝ1, f̂1, ĝ−1}, (5.12)

which includes the operators appearing in the zero mass limits of Eqs. (3.26), i.e.,

f̂
0
= /∇ −m0, ĝ1 = d ·∇, f̂1 = /d, (5.13)

where, as we recall from the ansatz (3.16), the mass-like term takes the form:

m0 = μ(N + δ) , (5.14)

with μ being a mass parameter that vanishes in the zero-curvature limit, and δ a numerical con-
stant. In order to write down the deformed symmetrized gradient ĝ−1, we recall that Eq. (3.24)
sets to infinity the suppression scale � of the higher-dimensional operators. This leaves us with 
the following generic form of ĝ−1:

ĝ−1 = u·∇ − μ̂ /u, (5.15)
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where μ̂ is another constant mass parameter vanishing in the limit of zero curvature. Note that 
Eq. (5.15) is in contrast with its bosonic counterpart (4.17), where only the zeroth-order defor-
mation could be written down. The higher-spin gauge fermion � and the gauge parameter ε are 
governed by the following involutive systems:[

f̂
0

0

0 f̂
′
0

][
�

ε

]
= 0, ĝ1

[
�

ε

]
= 0, f̂1

[
�

ε

]
= 0, (5.16)

where f̂
′
0
= f̂

0
+m0 −m′

0, for some mass-like term m′
0 of the form (5.14).

We consider gauge transformations of the gauge-fermion involutive system: δ� = ĝ−1ε. In 
view of Eqs. (5.16), it is easy to obtain the following variations:

δ(f̂
0
�) = [f̂

0
, ĝ−1]ε + ĝ−1(m

′
0 −m0)ε,

δ(ĝ1�) = [ĝ1, ĝ−1]ε,
δ(f̂1�) = [f̂1, ĝ−1]ε.

(5.17)

In order see how these variations may vanish, we need the commutators of ĝ−1 with the other 
operators: {f̂

0
, ĝ1, f̂1}. The simplest one reads:

[f̂1, ĝ−1] = f̂
′
0
+ 2μ̂ /uf̂1 +m′

0 − 2μ̂ (N + D/2) . (5.18)

The vanishing of the variation δ(f̂1�) therefore requires that

m′
0 = 2μ̂ (N + D/2) . (5.19)

Next, the computation of [f̂
0
, ĝ−1] is simplified by noting that, in the limit of m → 0 and � →

∞, the hermitian conjugate (in the sense of footnote 5) of Eq. (3.17) provides with [f̂
0
, u ·∇], 

whereas the commutator [f̂
0
, /u] is easy to compute. The end result is:

[f̂
0
, ĝ−1] = 2μ̂ /uf̂

′
0
+ 1

L2 u2f̂1 − (
μ + 2μ̂

)
ĝ−1 + /u

[
2μ̂

(
m′

0 − μ̂
)− 1

L2

(
N − 1

2 + D/2
)]

,

(5.20)

where we used the maximal symmetry of the background. When plugged into the variation 
δ(f̂

0
�), the last term of Eq. (5.20)−combined with the result (5.19)−implies:

μ̂2 = 1
4L2 . (5.21)

The terms containing ĝ−1, on the other hand, justify the mass ansatz (5.14), and give:

m0 = 2μ̂ (N − 2 + D/2) . (5.22)

This completely fixes all the parameters in the theory. It is conventional to choose the positive 
root of Eq. (5.21) [27,28], which sets: μ̂ = + 1

2L
.

One still needs to show that the variation δ(ĝ1�) also vanishes. Given the relation (C.4), it is 
straightforward to cast the commutator [ĝ1, ĝ−1] into the following form:

[ĝ1, ĝ−1] = ∇2 − μ̂(f̂
′
0
+m′

0) + 1
L2

[
u2f̂ 2

1 + 1
2 /uf̂1 − N

(
N + D − 3

2

)]
. (5.23)

The expression of ∇2 in terms of the massless Dirac operator is somewhat subtle. One needs to 
compute the anti-commutator {f̂ ′

, f̂
′ } to show that:
0 0
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∇2 = f̂
′2
0

+ 2m′
0f̂

′
0
+m′2

0 + 1
L2

[
/uf̂1 − N − 1

4D(D − 1)
]
. (5.24)

Then, the expressions (5.23)–(5.24) indeed render the variation δ(ĝ1�) vanishing on account of 
the relations (5.19) and (5.21).

We are now in a position of presenting our gauge invariant involutive system. The rank-n
gauge field � and the rank-(n − 1) gauge parameter ε obey:(

/∇ −m0
)
� = 0, d ·∇� = 0, /d � = 0,(

/∇ −m′
0

)
ε = 0, d ·∇ε = 0, /d ε = 0,

(5.25)

where the mass-like terms are given by:

m0L = N − 2 + D/2, m′
0L = N + D/2, (5.26)

and the gauge transformations read:

δ� = (
u·∇ − 1

2L
/u
)
ε. (5.27)

This system holds good for an arbitrary-spin gauge fermion in D ≥ 3 only in maximally sym-
metric spaces. While the length scale L appearing in Eqs. (5.26)–(5.27) is an AdS radius, the 
analytic continuation L → iL will aptly describe a Dirac fermion in dS space.

Rarita-Schwinger gauge field For s = 3
2 , the gravitational background will have a weaker con-

straint, but the involutive system (5.25)–(5.27) holds good, with L → √
D(D − 1)/|R|. Let us 

recall from Section 3.2 that the massive involutive system is consistent in Einstein spaces. Going 
massless in this case, by requiring gauge symmetry, does not pose any additional condition. To 
see this, let us notice how the gauge variations (5.17) could vanish for generic spin. The con-
ditions on the background played rôle only through Eqs. (5.20), (5.23) and (5.24). An Einstein 
manifold may well be conformally non-flat, i.e., possess a non-vanishing Weyl tensor. In this 
case, the right-hand side of Eq. (5.20) picks up an additional term: Wμνρσγ μuνuρdσ , which 
gives zero contribution in the variation δ(f̂

0
�), since dμε = 0. Similarly, Eq. (5.23) would 

include terms containing a Weyl tensor and at least one dμ, and they do not contribute to the vari-
ation δ(ĝ1�). Last but not the least, Eq. (5.24) also picks up the term: Wμνρσγ μνγ ρσ . By using 
the symmetries of the Weyl tensor, the γ -matrix product can be rewritten as: γ μνρσ − 2gμρgνρ . 
The latter terms give zero on account of the Bianchi identity and tracelessness of the Weyl tensor. 
Therefore, it is necessary and sufficient to require that the background be an Einstein space.

This result makes sense from the perspective of supergravity. The classical solutions of pure 
N = 1 supergravity are indeed Einstein spaces, on which fluctuations of the massless spin- 3

2
Majorana fermion propagate consistently. However, extended supergravity theories admit more 
generic classical backgrounds. In particular, Maxwell-Einstein spaces appear in pure N = 2
(un)gauged supergravity, and this seems to contradict our result. One of the loopholes lies in 
the deformed gauge transformation of the gravitino; it involves a U(1) gauge field [29–31]−a 
possibility we do not consider. Moreover, in the gauged theory the complex gravitino has a U(1)

charge as well.

5.3. Electromagnetic background

Let us recall that in Section 3.3 we assumed minimal coupling, i.e., a nonzero charge q of the 
higher-spin fermion. However, it is manifest that the resulting involutive system (3.44)–(3.45)
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is ill-defined in the massless limit: m → 0. This can be traced back to Eqs. (3.34), which admit 
no solutions of the deformed Dirac, divergence and γ -trace operators as the mass goes to zero 
for spin s ≥ 3

2 . Thus, we are led to a no-go theorem: a charged gauge fermion cannot propagate 
consistently in a purely EM background. In other words, there is no consistent theory of a gauge 
fermion, minimally coupled to a U(1) field, that admits a pure background of the Maxwell field 
as a classical solution. This is in accordance with the no-go results [5,32] that forbid in flat space 
the minimal coupling of a massless fermion with spin s ≥ 3

2 to a U(1) gauge field.
One way to bypass this no-go is to consider additional interactions in the theory such that 

purely U(1) backgrounds are not allowed. This works at least for a massless charged Rarita-
Schwinger field, which requires a cosmological constant [33] (see also [31] for a cohomological 
derivation). Indeed, N = 2 gauged supergravity [29,30] consistently incorporates a massless 
gravitino minimally coupled to a U(1) field (graviphoton) as well as gravity in the presence of a 
cosmological constant. Determined by Eq. (5.26), the mass parameter in this case is also related 
to the U(1) charge. In AdS4 the relations read:

m2
0 = 1/L2 = 2q2M2

P . (5.28)

The classical solutions of pure N = 2 are, of course, Maxwell-Einstein spaces on which fluctua-
tions of the massless charged gravitino propagate consistently. Whether a similar type of yes-go 
can be found for higher-spin gauge fermions is an open question.

6. Partially massless fields

In a constant curvature space, it turns out that gauge symmetries of a higher-spin field appear 
for a discrete series of mass parameters, known as partially massless (PM) points. Originally 
studied in [34,35], this phenomenon was further investigated in [36–40]. In this section, we con-
sider the involutive system of PM bosons and fermions. Just like a massless system is described 
by Eqs. (4.33) or (5.25), a PM field and its gauge parameter are also governed by the same type of 
involutive systems. However, PM fields are more general in that their gauge transformations may 
include multiple gradients of the gauge parameters. A PM field is said to have depth (k+1) when 
its gauge transformation contains (k + 1) space-time derivatives plus possibly a lower-derivative 
tail:

Boson : δ�(k+1)
s =

[
(u·∇)k+1 + · · ·

]
λs−k−1, k = 0,1, · · · , s − 1,

Fermion : δ�(k+1)
n =

[
(u·∇)k+1 + · · ·

]
εn−k−1, k = 0,1, · · · , n − 1,

(6.1)

where the subscripts on the fields and gauge parameters denote their respective ranks (unlike that 
on an operator, which gives the negative of its weight), whereas the superscript on a PM field 
stands for its depth. Let us denote by ĝ−k−1 the weight-(k + 1) operators appearing in the PM 
gauge transformations (6.1):

ĝ−k−1 = (u·∇)k+1 + lower-derivative tail. (6.2)

Note that the strictly massless case corresponds to depth = 1, i.e., k = 0. We would like to find 
the explicit form of ĝ−k−1, i.e., that of the depth-(k + 1) gauge transformations (6.1) as well as 
the PM discrete points of the mass parameters6 in AdS space.

6 With some abuse of notations, we will denote the discrete mass points by mk and m′
k

respectively for the PM field 
and the gauge parameter. These mass parameters are of course w = 0 operators, for which the subscript k does not
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The DoF count works in the following way. As we will see, just like the strictly massless 
case, the PM field and its gauge parameter will both be governed by their respective involutive 
systems. Therefore, the analysis of Appendix A.2.2 also applies here; the number of physical 
DoF will simply be the difference between the DoF counts of a massive field and a massive 
gauge parameter:

Boson : D
(k)
b (s) = Db(s) −Db(s − k − 1),

Fermion : D
(k)
f (n) = Df (n) −Df (n − k − 1).

(6.3)

Then, the DoF count at depth (k + 1) follows directly from formula (2.10) or (3.12). Below we 
go into the details separately for bosonic and fermionic PM fields.

6.1. Bosonic fields

For bosonic PM fields, it will be convenient to define the following operator:

� ≡ [d ·∇, u·∇], (6.4)

which can be written in terms of ∇2 through Eq. (C.4) in AdS space. In analogy with the strictly 
massless case of Section 4.2, the involutive system of a spin-s depth-(k + 1) PM boson �(k+1)

s

and its gauge parameter λs−k−1 can be written as:[
ĝ

(k+1)
0 0
0 ĝ

′(k+1)
0

][
�

(k+1)
s

λs−k−1

]
= 0, ĝ1

[
�

(k+1)
s

λs−k−1

]
= 0, ĝ2

[
�

(k+1)
s

λs−k−1

]
= 0,

(6.5)

where ĝ1 = d·∇ and ĝ2 = d2 are the usual divergence and trace operators appearing in Eq. (4.16), 
while the deformed d’Alembertian operators ĝ(k+1)

0 and ĝ′(k+1)
0 generalize Eqs. (4.32) for arbi-

trary depth. We will prove that the d’Alembertians are given by:

ĝ
(k+1)
0 = � − 1

L2 (k + 2)(k − 2N − D + 3) = ∇2 −m2
k + 1

L2 u2d2,

ĝ
′(k+1)
0 = � − 1

L2 k(k + 2N + D − 1) = ∇2 −m′2
k + 1

L2 u2d2,
(6.6)

where the PM mass parameters at depth (k + 1) are specified as:

m2
kL

2 ≡ (N − k − 2)(N − k + D − 3) − N,

m′2
k L2 ≡ (N + k)(N + k + D − 1) − N.

(6.7)

We will also prove the following explicit form of the gauge transformations:

ĝ−k−1 = (u·∇)εk

[
(u·∇)2 − 1

L2 u2(N − s + 1)2
][k+1]/2

, (6.8)

where εk = 1
2

[
1 + (−)k

]
, which is 1(0) for k even(odd). Note that Eq. (6.8) induces the following 

iterative expression on a spin-(s − k − 1) gauge parameter:

ĝ−k−1 =
[
(u·∇)2 − 1

L2 cku
2
]
ĝ−k+1, ck = k2, k ≥ 2. (6.9)

correspond to the weight but to the value of depth minus one. Accordingly, the mass parameters in the strictly massless 
case are denoted by m0 and m′ , as in Eqs. (4.32) or (5.26).
0
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In what follows we provide a proof of Eqs. (6.5)–(6.9) by recourse to the method of induction. 
To proceed, let us make the following ansätze for the deformed d’Alembertians:

ĝ
(k+1)
0 = � − 1

L2 (akN + bk) , ĝ
′(k+1)
0 = � − 1

L2

(
a′
kN + b′

k

)
, (6.10)

where ak, bk are their primed counterparts are numerical constants. Therefore, in order to prove 
Eqs. (6.6)–(6.7) we ought to show the following:

ak = −2(k + 2), bk = (k + 2)(k − D + 3), a′
k = 2k, b′

k = k(k + D − 1). (6.11)

Similarly, the PM gauge transformations will also be proved with ansätze compatible with 
Eqs. (6.8)–(6.9). Below present our proofs for k = 0, 1, 2, and then for generic k.

k = 0: This is the strictly massless case, for which Eqs. (6.5)–(6.7) have already been proved in 
Section 4.2. Indeed, for k = 0 the gauge transformation is given by: ĝ−1 = u ·∇ , whereas the 
dynamical equations reduce to Eqs. (4.32) given the trace constraints.

k = 1: This corresponds to depth 2−the simplest nontrivial PM gauge symmetry. In this case, the 
most generic form of the PM gauge transformation could be:

ĝ−2 = (u·∇)2 − 1
L2 c1u

2, c1 = constant. (6.12)

In order to compute the gauge variations of the EoM’s we need the commutator of ĝ−2 with 
{ĝ(2)

0 , ĝ1, ĝ2}, which are given in Eqs. (C.11)–(C.13). Upon making use of the involutive system 
for the gauge parameter λs−2, these variations simplify to Eqs. (C.14)–(C.15). Consequently, 
gauge invariance requires the following choice of constants:

a1 = −6, b1 = −3(D − 4), a′
1 = 2, b′

1 = D, c1 = 1. (6.13)

These are precisely the values given for k = 1 by Eqs. (6.11) and the gauge transformation (6.8), 
with c1 being the eigenvalue of (N − s + 1)2 corresponding to λs−2.

k = 2: Let us make the ansatz that the depth-3 gauge transformation is implemented by:

ĝ−3 = u·∇
[
(u·∇)2 − 1

L2 c2u
2
]
, c2 = constant. (6.14)

The variations of the EoM’s of the PM field �(3)
s are easy to compute given the basic com-

mutation relations (C.10)–(C.13). Again, the involutive system for the gauge parameter λs−3 is 
taken into account in order to simplify these gauge variations. Their explicit forms are given in 
Eqs. (C.16)–(C.17). In order for the gauge variations to vanish we must have:

a2 = −8, b2 = −4(D − 5), a′
2 = 4, b′

2 = 2(D + 1), c2 = 4. (6.15)

Again, these are the values Eqs. (6.11) and the gauge transformation (6.8) give for k = 2. Here, c2
is indeed the eigenvalue of (N − s +1)2 corresponding to λs−3. Also, the recursion formula (6.9)
works, since setting k = 2 therein reproduces Eq. (6.14) with c2 = 4.

Generic k: Let us assume that the involutive system (6.5)–(6.9) holds good up to and including 
k = j − 2, for some integer j ≥ 2. It will then follow that the same system also consistently 
describes the case k = j . To see this, let us make the ansatz that the depth-(j + 1) PM gauge 
transformation is implemented by the following operator:
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ĝ−j−1 =
[
(u·∇)2 − 1

L2 cju
2
]
ĝ−j+1, (6.16)

where cj is some constant to be determined. Recall that for the deformed d’Alembertians we 
have the ansätze (6.10). Then we can compute the gauge variations of the left-hand sides of the 
involutive equations for �(j+1)

s . They take the following form:

δ
[
ĝ

(j+1)

0 �
(j+1)
s

]
=
[� − 1

L2

(
ajN + bj

)] [
(u·∇)2 − 1

L2 cju
2
]
ĝ−j+1λs−j−1,

δ
[
ĝ1�

(j+1)
s

]
= d ·∇

[
(u·∇)2 − 1

L2 cju
2
]
ĝ−j+1λs−j−1, (6.17)

δ
[
ĝ2�

(j+1)
s

]
= d2

[
(u·∇)2 − 1

L2 cju
2
]
ĝ−j+1λs−j−1,

with the “unfree” gauge parameter λs−j−1 being subject to:[� − 1
L2

(
a′
jN + b′

j

)]
λs−j−1 = 0, d ·∇λs−j−1 = 0, d2λs−j−1 = 0, (6.18)

where aj and bj and their primed counterparts are constants to be determined.
In computing the right-hand sides of Eqs. (6.17), one needs to make repeated use of the 

commutators (C.10)–(C.13), and conditions (6.18) on the gauge parameter. After a tedious but 
straightforward calculation, one arrives at the following results:

δ
[
ĝ

(j+1)
0 �

(j+1)
s

]
=
{

1
L2 (u·∇)j+1 Lj1 + · · ·

}
λs−j−1,

δ
[
ĝ1�

(j+1)
s

]
=
{

1
L2 (u·∇)j Lj2 + · · ·

}
λs−j−1, (6.19)

δ
[
ĝ2�

(j+1)
s

]
=
{

1
L2 (u·∇)j−1 Lj3 + · · ·

}
λs−j−1,

where the ellipses stand for lower-derivative terms, and the Lj ’s are given by:

Lj1 = [a′
j − aj − 4(j + 1)]N + [b′

j − bj − (j + 1)(aj + 2(j + D − 1))],
Lj2 = (j + 1)(a′

j − 2j)N

+ [(j + 1)(b′
j − D + 1) − 2cj − (j − 1)(j (j + D − 1) + D − 1)],

Lj3 = [j (j + 1)a′
j − 4cj − 2j2(j − 1)]N

+ [j (j + 1)b′
j − 2(D + 2(j − 1))cj − j2(j − 1)(j + D − 3)].

(6.20)

In deriving the above expressions one makes use of the assumption that the involutive sys-
tem (6.5)–(6.8) holds good for k ≤ j − 2. Thus, the expressions (6.9)–(6.11) are valid up to 
and including k = j − 2. Now, in order for the gauge variations (6.19) to vanish it is necessary 
that the gauge parameter λs−j−1 belongs simultaneously to the kernels of Lj1, Lj2 and Lj3. It 
is however easy to see that, for a nontrivial gauge parameter, such conditions can only be satis-
fied when the operators themselves vanish. This gives a unique set of solutions for cj , aj , bj , a′

j

and b′
j ; it coincides with that given by Eqs. (6.9) and (6.11) for k = j . To see that these values 

also suffice for the vanishing of the gauge variations (6.19), one needs to compute all the lower-
derivative terms omitted in the ellipses. While one can convince oneself by explicitly working 
them out for any given j , we choose not to present this tedious exercise, and conclude without 
further ado.

Let us now summarize the results. In AdS space, the involutive system of a spin-s depth-(k +
1) PM boson �(k+1)

s and its spin-(s − k − 1) gauge parameter λs−k−1 reads:
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(
∇2 −m2

k

)
�(k+1)

s = 0, d ·∇�(k+1)
s = 0, d2�(k+1)

s = 0,(
∇2 −m′2

k

)
λs−k−1 = 0, d ·∇λs−k−1 = 0, d2λs−k−1 = 0,

(6.21)

with the mass terms given by Eqs. (6.7) for k ≥ 0. Note that the above system has been presented 
without the u2d2-terms appearing in the d’Alembertians (6.6). This is possible because the trace 
conditions themselves are a part of the involutive system. The depth-(k+1) PM gauge symmetry 
transformations of the system (6.21) are of the form:

δ�(k+1)
s = ĝ−k−1λs−k−1, (6.22)

where the operator ĝ−k−1 contains up to (k + 1) derivatives, given explicitly in Eq. (6.8).

6.2. Fermionic fields

For fermionic PM fields, let us define a deformed covariant derivative �μ as follows:

�μ ≡ ∇μ − 1
2L

γμ, [�μ,�ν] = − 1
L2

(
2u[μdν]

)
. (6.23)

In analogy with the strictly massless case of Section 5.2, the involutive system of a rank-n
depth-(k + 1) PM fermion �(k+1)

n and its gauge parameter εn−k−1 can be written as:[
f̂

(k+1)
0 0

0 f̂
′ (k+1)

0

][
�

(k+1)
n

εn−k−1

]
= 0, ĝ ′

1

[
�

(k+1)
n

εn−k−1

]
= 0, f̂1

[
�

(k+1)
n

εn−k−1

]
= 0,

(6.24)

where f̂ (k+1)
0 and f̂ ′ (k+1)

0 are the deformed Dirac operators, while ĝ ′
1 ≡ d ·� = d ·∇ − 1

2L
/d is a 

deformed divergence, and f̂1 the usual γ -trace operator. We will show that:

f̂
(k+1)
0 = /� − 1

L
(N − k − 2) = /∇ −mk,

f̂
′ (k+1)

0 = /� − 1
L
(N + k) = /∇ −m′

k,
(6.25)

where the PM mass parameters at depth (k + 1) generalize Eqs. (5.26), and are given by:

mkL ≡ N − k − 2 + D/2, m′
kL ≡ N + k + D/2. (6.26)

The gauge transformations will be quite similar to the bosonic ones (6.8). Explicitly,

ĝ−k−1 = (u·�)εk

[
(u·�)2 − 1

L2 u2(N − n + 1)2
][k+1]/2

. (6.27)

Again, this induces the following iterative expression on a rank-(n − k − 1) gauge parameter:

ĝ−k−1 =
[
(u·�)2 − 1

L2 δku
2
]
ĝ−k+1, δk = k2, k ≥ 2. (6.28)

In what follows we will employ the method of induction to prove Eqs. (6.24)–(6.28). We start 
by making the following ansätze for the deformed Dirac operators:

f̂
(k+1)
0 = /� − 1

L
(αkN + βk) , f̂

′ (k+1)
0 = /� − 1

L

(
α′

kN + β ′
k

)
, (6.29)

where αk, βk, α′
k and β ′

k are numerical constants. Then, the proof of Eqs. (6.25)–(6.26) boils 
down to finding the following solutions for these constants:

αk = 1, βk = −(k + 2), α′ = 1, β ′ = k. (6.30)
k k
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With ansätze compatible with Eqs. (6.27)–(6.28), the PM gauge transformations will also be 
proved. Below we present the proofs for k = 0, 1, 2, and then for arbitrary k.

k = 0: This is the strictly massless case, already considered in Section 5.2. Note that because of 
the γ -trace conditions, in writing the involutive system one can replace the deformed divergence 
d·� by d·∇ . Clearly, Eqs. (6.24)–(6.27) for k = 0 take the form of Eqs. (5.25)–(5.27). The gauge 
transformation in this case is given by: ĝ−1 = u ·�.

k = 1: This corresponds to the simplest nontrivial PM gauge symmetry with depth 2. In this case, 
the PM gauge transformation can be implemented by an operator of the form:

ĝ−2 = (u·�)2 − 1
L2 δ1u

2, δ1 = constant. (6.31)

The computation of the gauge variations of the EoM’s requires the commutator of ĝ−2 with 
{f̂ (2)

0 , ĝ ′
1, f̂1}, which are given in Eqs. (C.20)–(C.25). These variations simplify to Eqs. (C.26)–

(C.27) when the involutive system for the gauge parameter εn−2 is taken into account. The fol-
lowing choice of constants is required by gauge invariance:

α1 = 1, β1 = −3, α′
1 = 1, β ′

1 = 1, δ1 = 1. (6.32)

These coincide with the values given for k = 1 by Eqs. (6.30) and the gauge transforma-
tion (6.27), where δ1 is precisely the eigenvalue of (N − n + 1)2 corresponding to εn−2.

k = 2: Let us assume that the depth-3 gauge transformation is implemented by:

ĝ−3 = u·�
[
(u·�)2 − 1

L2 δ2u
2
]
, δ2 = constant. (6.33)

It is easy to compute the variations of the EoM’s of the PM field �(3)
n given the commutation 

relations (C.20)–(C.25). On account of the involutive system for the gauge parameter εn−3, these 
expressions simplify considerably. Their explicit forms are given in Eqs. (C.28)–(C.29). The 
vanishing of the gauge variations then requires that

α2 = 1, β2 = −4, α′
2 = 1, β ′

2 = 2, δ2 = 4, (6.34)

which are precisely the values Eqs. (6.30) and the gauge transformation (6.27) give for k = 2. 
Note that δ2 is indeed the eigenvalue of (N − n + 1)2 corresponding to εn−3. The recursion 
formula (6.28) works too, as it reduces to Eq. (6.33) with δ2 = 4 for k = 2.

Generic k: Suppose the involutive system (6.24)–(6.28) is consistent up to and including k =
j − 2, for some j ≥ 2. Then, the same system holds good also for k = j . This can be proven with 
the following ansatz for the depth-(j + 1) PM gauge transformation:

ĝ−j−1 =
[
(u·�)2 − 1

L2 δju
2
]
ĝ−j+1, (6.35)

where δj is some constant to be determined. Given the ansätze (6.29) for the deformed Dirac 
operators, it is straightforward to compute the gauge variations of the left-hand sides of the 
involutive equations for �(j+1)

n . These variations can be written as:

δ
[
f̂

(j+1)

0 �
(j+1)
n

]
= [

/� − 1
L

(
αjN + βj

)] [
(u·�)2 − 1

L2 δju
2
]
ĝ−j+1εn−j−1,

δ
[
ĝ ′�(j+1)

n

]
= d ·�

[
(u·�)2 − 1

2 δju
2
]
ĝ−j+1εn−j−1, (6.36)
1 L
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δ
[
f̂1�

(j+1)
n

]
= /d

[
(u·∇)2 − 1

L2 δju
2
]
ĝ−j+1εn−j−1,

where the “unfree” gauge parameter εn−j−1 will be governed by:[
/� − 1

L

(
α′

jN + β ′
j

)]
εn−j−1 = 0, d ·�εn−j−1 = 0, /d εn−j−1 = 0, (6.37)

given that αj and βj and their primed counterparts are some numerical constants.
The right-hand sides of Eqs. (6.36) can be computed by making repeated use of the commu-

tators (C.20)–(C.25), as well as the conditions (6.37) on the gauge parameter. One obtains the 
following results after a tedious but straightforward calculation:

δ
[
f̂

(j+1)
0 �

(j+1)
n

]
=
{

1
L

(u·∇)j+1 Pj1 + · · ·
}

εn−j−1,

δ
[
ĝ ′

1�
(j+1)
n

]
=
{

1
L2 (u·∇)j Pj2 + · · ·

}
εn−j−1, (6.38)

δ
[
f̂1�

(j+1)
n

]
=
{

1
L

(u·∇)j Pj3 + · · ·
}

εn−j−1,

where the ellipses contain lower-derivative terms, and the Pj ’s are given by:

Pj1 = (α′
j − αj )N + [β ′

j − βj − (j + 1)(αj + 1) ],
Pj2 = (j + 1)(α′2

j −1)N2 + (j + 1)[α′
j (2β ′

j + D − 1) − 2j − D + 1]N
+ [(j + 1)(β ′

j + j + D − 1)(β ′
j − j) − 2(δj − j2)],

Pj3 = (j + 1)[(α′
j − 1)N + (β ′

j − j)].

(6.39)

The derivation of the above expressions relies on the assumption that the involutive sys-
tem (6.24)–(6.27), and therefore the expressions (6.28)–(6.30) hold good up to and including 
k = j − 2. Now, vanishing of the gauge variations (6.38) necessarily requires that the gauge 
parameter εn−j−1 belongs simultaneously to the kernels of Pj1, Pj2 and Pj3. For a non-trivial 
gauge parameter, however, such conditions can be satisfied iff the operators themselves vanish. 
This leads to a unique set of solutions for δj , αj , βj , α′

j and β ′
j , which coincides with that spelled 

out by Eqs. (6.28) and (6.30) for k = j . That these values are also sufficient for the gauge vari-
ations (6.38) to vanish can be proved by explicitly showing that all the lower-derivative terms 
vanish. It is not difficult to convince oneself of this fact for any given j , but we conclude without 
presenting this tedious exercise.

We now summarize our results. In AdS space, the involutive system of a rank-n depth-(k + 1)

PM fermion �(k+1)
n and its rank-(n − k − 1) gauge parameter εn−k−1 reads:(

/∇ −mk

)
�(k+1)

n = 0, d ·∇ �(k+1)
n = 0, /d �(k+1)

n = 0,(
/∇ −m′

k

)
εn−k−1 = 0, d ·∇ εn−k−1 = 0, /d εn−k−1 = 0,

(6.40)

with the mass terms given for k ≥ 0 by Eqs. (6.26). Note that the above system has been presented 
without the /d-piece appearing in the deformed divergence d ·�; this possible because the γ -
trace conditions themselves are included in the system (6.40). The depth-(k + 1) PM gauge 
transformations of this involutive system are of the form:

δ�(k+1)
n = ĝ−k−1εn−k−1, (6.41)

where ĝ−k−1 is spelled out in Eq. (6.27), and it contains up to (k + 1) derivatives.
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Table 3
Operators on symmetric tensor(-spinor)s in flat space.

Operator Symbol Definition Weight (w) Type

d’Alembertian g
0

∂2 0
Divergence g1 d ·∂ −1
Symmetrized Gradient g−1 u·∂ +1 bosonic
Trace g2 d2 −2
Symmetrized Metric g−2 u2 +2

Massless Dirac f 0
/∂ 0

Gamma Trace f1 /d −1 fermionic
Symmetrized Gamma f−1 /u +1

Index Operator N u·d 0 bosonic

7. Lie algebra of operators

This section studies the Lie superalgebra formed by the various operators acting on symmet-
ric tensor(-spinor)s in maximally symmetric spaces. Section 7.1 presents the flat-space algebra, 
while Section 7.2 shows how in AdS space the algebra closes only nonlinearly with a central ex-
tension. In this regard, let us note that nonlinear Lie algebras7 are generalizations of ordinary Lie 
algebras containing different order products of the generators on the right-hand side of the defin-
ing brackets without violating Jacobi identities. In AdS space, the nonlinear bosonic subalgebra 
of operators has been studied in [44–48], while the full supersymmetric algebra was considered 
in [44,46,49].

7.1. Algebra in flat space

In flat space, the Lie superalgebra of all the operators on symmetric tensor(-spinor)s turns out 
to be a subalgebra of osp(4|1), whereas the Lie subalgebra formed only by the bosonic generators 
is a subalgebra of sp(4) [46]. In order to present the Lie algebras, let us first list all the flat-space 
operators, along with their various properties (Table 3).

Note that in the above list we have included, among other things, all the operators that appear 
in the EoM’s of symmetric tensors and tensor-spinors, namely {g

0
, g1, g2, f 0

, f1}. However, it 
also includes the hermitian conjugates (in the sense of footnote 5) of these operators as well: 
{g

0
, g−1, g−2, f 0

, f−1}. The positive-weight operators appear not in the EoM’s, but in the her-
mitian conjugates thereof; their inclusion is tantamount to admitting a Lagrangian formulation, 
e.g., via BRST approach [45,49]. Last but not the least, the index operator N is added as it 
provides a grading to all the operators.

The graded commutators of all these operators are given in Table 4. The computation is easy 
because ordinary derivatives commute: [∂μ, ∂ν]� = 0 = [∂μ, ∂ν]�. In particular, [∂μ, ∂ν] is blind 
to the statistical nature of the field. As we will see in the next section, this seemingly naive 
observation provides valuable input when it comes to curved backgrounds.

7 They appear in Physics as Higgs algebra [41] and W3 algebra [42], in quantum optics [43], and so on.
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Table 4
Graded commutators of flat-space operators.

[↓, →} N g0 g1 g−1 g2 g−2 f 0 f1 f−1

N 0 0 −1 +1 −2 +2 0 −1 +1

g
0

0 0 0 0 0 0 0 0

g1 0 g0 0 2g−1 0 0 f 0

g−1 0 −2g1 0 0 −f 0 0

g2 0 4N+2D 0 0 2f1

g−2 0 0 −2f1 0

f 0 2g0 2g1 2g−1

f1 2g2 2N+D

f−1 2g−2

7.2. Algebra in AdS space

In a curved background, the deformed counterparts of the flat-space operators in Table 3 do 
not form an algebra in general because of non-commutativity of covariant derivatives. It can be 
shown that the bosonic subalgebra may close, perhaps nonlinearly, only in constant curvature 
manifolds [50], or in Freund-Rubin type backgrounds AdSp × Sq with equal radii [48], in which 
case the algebra is simply a covariant uplift of the AdSp algebra.

In the supersymmetric case, however, there is an immediate puzzle in deforming the flat-space 
generators: the commutator of covariant derivatives acts differently on bosonic and fermionic 
fields, as we see from Eq. (C.3). Then, how can the same operator algebra be realized on states 
with different statistics? The resolution of the puzzle lies in that a central charge Z must be 
introduced in the following way. In AdS space, when Eq. (C.3) is compared with Eqs. (6.23), the 
following possibility immediately comes to one’s mind:

�μ ≡ ∇μ + Zγμ, such that [�μ,�ν] =
⎧⎨
⎩− 2

L2 u[μdν], for bosons;

− 2
L2 u[μdν], for fermions,

(7.1)

where Z is a bosonic operator of mass dimension 1 that commutes with all the other generators. 
A bosonic state � and a fermionic state � carry different charges under Z:

Z� = 0, Z� = − 1
2L

�. (7.2)

In other words, deformed covariant derivative �μ in the supersymmetric case reduces to ∇μ

and 
(∇μ − 1

2L
γμ

)
respectively for bosons and fermions. As a supersymmetric generalization 

of (C.19), one has the commutation relation: [γ μ, �ν] = [�μ, γ ν] = 2Zγ μν .
In what follows we will set the AdS radius to unity: L = 1. One can start by defining the 

following deformed bosonic operators:

Divergence : g1 ≡ d ·�,

Symmetrized Gradient : g−1 ≡ u·�,

d’Alembertian : g ≡ [g ,g ].
(7.3)
0 1 −1
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Table 5
Graded commutators of operators in AdS.

[↓, →} N g0 g1 g−1 g2 g−2 f0 f1 f−1 Z

N 0 0 −1 +1 −2 +2 0 −1 +1 0

g0 0 c23 c24 0 0 c27 c28 c29 0

g1 0 g0 0 2g−1 c37 0 c39 0

g−1 0 −2g1 0 c47 −c39 0 0

g2 0 4N+2D 0 0 2f1 0

g−2 0 0 −2f1 0 0

f0 c77 2g1 2g−1 0

f1 2g2 2N+D 0

f−1 2g−2 0

Z 0

In view of Eqs. (7.1), the deformed d’Alembertian g0 can also be expressed as:

g0 = �2 − N(N + D − 2) + u2d2. (7.4)

Furthermore, the deformed Dirac operator can be chosen such that its anti-commutation relations 
with the other fermionic operators mimic their flat-space counterparts. It is easy to check that the 
following choices achieve the desired feat:

Dirac : f0 ≡ /� − (D − 1)Z,

Gamma Trace : f1 ≡ γ ·d,

Symmetrized Gamma : f−1 ≡ γ ·u.

(7.5)

The remaining three bosonic operators include the index operator N ≡ u ·d , and

Trace : g2 ≡ d2,

Symmetrized Metric : g−2 ≡ u2.
(7.6)

This exhausts the list of operators. It is straightforward to calculate all the graded commutators. 
While many of them close linearly like their flat-space counterparts, nonlinearity arises in some 
of the commutators. The results are summarized below in Table 5.

In particular, the deformed d’Alembertian g0 has nonlinear commutation relations with the 
divergence and gradient as well as with all the fermionic operators:

[g0,g1] = 2(2N + D − 1)g1 − 4g−1g2 ≡ c23,

[g0,g−1] = −2g−1(2N + D − 1) + 4g−2g1 ≡ c24,

[g0, f0] = 2 (f−1g1 − g−1f1) ≡ c27, (7.7)

[g0, f1] = (2N + D − 1)f1 − 2f−1g2 + 4Z (g1 − f1f0) ≡ c28,

[g0, f−1] = −f−1(2N + D − 1) + 2g−2f1 − 4Z (g−1 − f0f−1) ≡ c29.

The Dirac operator f0 also closes nonlinearly with the divergence, gradient, and itself:
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[f0,g1] = (N − D + 1)f1 − 2(D − 1)Z2f1 − f−1g2 + 2Z (g1 − f1f0) ≡ c37,

[f0,g−1] = −f−1(N − D + 1) + 2(D − 1)Z2f−1 + g−2f1 − 2Z (g−1 − f0f−1) ≡ c47, (7.8)

{f0, f0} = 2g0 + 2N(N + D − 1) − 2 (g−2g2 + f−1f1) + 2(D − 1)2Z2 ≡ c77.

Last but not the least, we have nonlinear closure of the following commutators:

[g1, f−1] = −[g−1, f1] = f0 + Z (2N + D − 1 − 2f−1f1) ≡ c39. (7.9)

Some comments are in order at this point. First, the AdS nonlinear superalgebra (Table 5) con-
tains a bosonic central charge Z, which does not show up in the flat-space Lie superalgebra (Ta-
ble 4). The appearance of a central charge in AdS, when fermionic fields are considered, was al-
ready noted in [49]. This central extension is however not required when one considers only sym-
metric tensors in AdS [48], i.e., for the bosonic algebra generated by {g0, g1, g−1, g2, g−2, N}. 
Second, one can perform a covariant uplift of the AdSD-superalgebra to render it consistent 
for any Freund-Rubin type background AdSp × Sq with equal radii, exactly the same way the 
bosonic algebra can be [48]. In this case, the AdSp × Sq -superalgebra will be non-analytic in the 
neighborhood of flat space.

8. Conclusions

In this article, we have studied the involutive systems of equations describing the free prop-
agation of massive, massless and partially massless symmetric tensors and tensor-spinors. For 
massive and massless fields, we have employed the involutive deformation method to find 
consistent dynamical equations and constraints/gauge-fixing conditions, compatible with gauge 
symmetries if present, in gravitational and electromagnetic backgrounds. For partially massless 
fields, we have given explicit expressions for the gauge transformations and mass parameters at 
arbitrary depth. We have also shown that the Lie superalgebra of operators acting on symmetric 
tensor(-spinor)s in AdS space closes nonlinearly as an extension of the flat-space algebra by a 
bosonic central charge.

As pointed out in the Introduction, in the involutive approach, all the consistency issues re-
garding the propagation of higher-spin fields are under proper control. The mutual compatibility 
and possible gauge invariance of the equations describing the system are taken care of by the 
involutive structure itself, which thereby preserves the degrees of freedom count. On the other 
hand, higher-derivative terms may inflict Ostrogradsky instability [59], while non-canonical ki-
netic terms may affect hyperbolicity or causal propagation. The latter issues become manifest in 
the involutive approach, unlike in the Lagrangian formulation, so much so that avoiding them 
simply becomes a matter of choice. More importantly, the involutive deformation method can 
also be employed to construct consistent interactions [22]. This goes beyond the scope of our 
present work.

The various deformed involutive systems presented throughout this article could be viewed as 
the infrared limits of some effective-field-theory equations. Let us recall from Sections 2 and 3
that, for higher-curvature and higher-derivative terms in the equations, the suppression scales �
and �̄ were introduced. For a given system, such a scale ought to be parametrically larger than 
other mass scales in order for an effective field theory description to be valid. Eventually, for the 
sake of simplicity, we considered only the infrared limit by sending these scales to infinity. This 
also rids the systems of higher derivatives and/or kinetic deformations that might otherwise jeop-
ardize causal propagation. One could however keep these scales finite, and move on to searching 
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for the deformed involutive systems. Thus, one would find higher-curvature corrections to the 
equations of motion, e.g., those for massive higher-spin fields in string theory [13–15,51].

We only considered the propagation of a single higher-spin field in a pure gravitational or elec-
tromagnetic background. One could generalize the analysis for interactions with more generic 
backgrounds [19], and thus find yes-go results. For example, as already mentioned in Sec-
tion 5.3, Einstein-Maxwell backgrounds do admit the propagation of a charged spin- 3

2 gauge 
field. The assumption of a field in isolation is a strong one since, in a nontrivial background, var-
ious fluctuations of different spins may mix in the EoM’s even at the linear level. Relaxing this 
assumption would again lead to yes-go results by weakening the constraints on the backgrounds, 
otherwise required by consistency. One obvious example includes the graviton fluctuation in any 
geometry sourced by a nontrivial stress-energy tensor. Surely, its propagation will be consistent, 
thanks to General Relativity, but the linearized equations will inevitably mix the graviton with 
the fluctuations of the fields contributing to the stress-energy tensor. On the other hand, when 
gravity is dynamical, any finite number of massive higher-spin fields could lead to causality 
violation [52,53].

By construction, the involutive deformations we obtained have smooth flat limits. Accord-
ingly, so do the deformed masses chosen in Sections 2 and 3; the deformations however are 
non-unique in that they could be arbitrary polynomials of the index operator N . For gravitational 
backgrounds, these ambiguities could be removed by requiring smooth massless limits. However, 
the non-uniqueness of mass deformations persists in the case of electromagnetic backgrounds. In 
fact, it is even consistent to start with flat-space masses that are polynomials of N , generalizing 
the Regge law in string theory.

What rôle would mixed-symmetry fields play if included in the spectrum? Let us recall that 
even a massive higher-spin fermion calls for an AdS background. While AdS10 is not a solution 
of superstring theory, AdS5 ×S5 is. As noted in Section 7.2, one can perform a covariant uplift of 
the higher-spin involutive systems to make them consistent even in such a background [48]. In the 
latter case, however, the deformations will not be analytic in the neighborhood of flat space [48]. 
This is in sharp contrast with string theory. While our analysis is restricted to symmetric tensor(-
spinors)s only, it is the mixed-symmetry fields in string theory that ensure analyticity in the 
background curvature. This point could be further justified by considering the theory of charged 
open bosonic strings in a background gauge field [13,15]. The full Virasoro algebra ensures 
consistent propagation of the string fields. However, if the subleading Regge trajectories are 
excluded by switching off some of the oscillators, the remaining non-trivial generators no longer 
form an algebra [48].
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Appendix A. Involutive system of equations

Involutive systems of partial differential equations (PDE) and how they control the number 
of DoF’s of a dynamical system are well studied in the literature [21]. Related to the count 
of Cauchy data [21], the DoF count can be made by relying on the notion of “strength” of an 
involutive system. This direction was first explored by Einstein [54], and further developed by 
subsequent authors [55–58]. In this appendix, we explain the basics of involution and derive 
some necessary formulae for DoF count. For technical details, which we will skip, readers may 
resort to Ref. [22] and references therein.

Let us work with the convention that repeated indices appearing all as either covariant or 
contravariant ones are symmetrized with minimum number of terms. This gives us the rules: 
μ(k)μ = μμ(k) = (k + 1)μ(k + 1), μ(k)μ(2) = μ(2)μ(k) = (

k+2
2

)
μ(k + 2), μ(k)μ(k′) =

μ(k′)μ(k) = (
k+k′

k

)
μ(k + k′), and so on, where μ(k) has a unit weight by convention, and so 

the proportionality coefficient gives the weight of the right hand side.

A.1. Involution basics

We consider a set of fields �A, with A = 1, 2, ..., f , and denote their k-th space-time deriva-
tive by �A

μ(k). Let their dynamics be described by the following system of PDE’s:

T a[�A,�A
μ, . . . ,�A

μ(p)] = 0, with a = 1,2, ..., t. (A.1)

The maximal derivative order p is called the order of the system. Consider any order-p′ subsys-
tem: T b[�A, ∂μ�A, . . . , �A

μ(p′)] = 0, b ⊂ a, p′ ≤ p. The system (A.1) is involutive if it contains 
all the differential consequences of order ≤ p′ derivable from the subsystem.

If the system (A.1) is involutive, it may possess nontrivial identities of the form:∑
a

Li
aT

a = 0, i = 1,2, . . . , l, (A.2)

with Li
a being local differential operators. These are called the gauge identities. The (total) order

of a gauge identity is again the maximal derivative order appearing therein. Note that gauge iden-
tities are more generic than Noether identities, and may exist even without gauge symmetries. 
The two coincide only for a set of Lagrangian equations that is involutive to begin with [22]. 
Gauge identities play an important rôle in that they reflect algebraic consistency of the involutive 
system, and control the DoF count.

In general, the involutive system (A.1) may also enjoy local gauge symmetries:

δε�
A =

∑
RA

α εα, δεT
a|T =0 = 0, α = 1,2, . . . , r, (A.3)
α
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where εα are the gauge parameters, while RA
α are differential operators of finite order. It may 

happen that the gauge parameters are not arbitrary (as is often the case with partial gauge fixing), 
but they themselves are governed by an involutive system of equations. In the bulk of the article, 
we only have to deal with gauge symmetries of the latter kind.

A.2. DoF count

Let us assume that �A(x) are analytic functions of the space-time coordinates xμ. One may 
write down a Taylor series expansion of �A(x) around some point xμ

0 :

�A(x) = �̄A +
∞∑

k=1

1

k! �̄A
μ1···μk

(x − x0)
μ1 · · · (x − x0)

μk , (A.4)

where a “bar” stands for the corresponding unbarred quantity evaluated at x = x0. Here, the 
Taylor coefficients at O(k) are furnished by the quantities �̄A

μ(k), which constitute a set of mono-
mials. Because of the EoM’s (A.1), however, not all of these monomials remain undetermined. 
Moreover, if the system enjoys gauge symmetries, some of the monomials will be physically 
equivalent. Let us define the following quantities:

nk = Total number of monomials at O(k),

n̂k = Number of undetermined gauge-inequivalent monomials at O(k).

Then, the number of physical DoF per point in D dimensions will be given by:

D = f

2(D − 1)
lim

k→∞

(
k

n̂k

nk

)
. (A.5)

This formula measures the number of physical DoF’s as the proliferation of the physical mono-
mials relative to the unconstrained ones, à la Einstein [54]. For large k, we will see below that 
n̂k ∼ nk/k, and so the above limit yields a finite number. The dimension-dependent proportion-
ality factor can be obtained, for example, by matching with the DoF count for a scalar field. Note 
that the formula (A.5) gives the number of physical polarizations, i.e., the number of physical 
DoF’s in configuration space.

We will make use of Eq. (A.5) for a system of free-field equations. In other words, the 
EoM’s (A.1) are assumed to be linear in the fields. At x = x0, they can be written as:

J a, ν(p)
A �̄A

ν(p) + ba = 0, J a, ν(p)
A ≡ δT a

δ�A
ν(p)

, (A.6)

where ba will be linear in �̄A
ν(p′) with p′ < p. Note that the quantity J a, ν(p)

A is called the zeroth-

order symbol matrix. In general, one may have the m th-order symbol matrix:

J a, ν(k)
A,μ(m) ≡ δT a

μ(m)

δ�A
ν(k)

, m ≡ k − p ≥ 0, (A.7)

where T a
μ(m) denotes the m-th gradient of the EoM’s. Then, the m-th gradient of Eq. (A.1) eval-

uated at x = x0 gives a straightforward generalization of (A.6), which is

J a, ν(k)
�̄A + · · · = 0, (A.8)
A,μ(m) ν(k)
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where the ellipses stand for linear terms in the monomials �̄A
ν(k′) at order k′ < k = p + m. The 

above equation involves monomials at order k ≥ p; their total number is given by:

nk = f

(
k + D − 1

k

)
. (A.9)

The space of these monomials is determined by the finite system (A.8) of linear inhomogeneous 
equations, whose total number amounts to

nT
k = t

(
m + D − 1

m

)
= t

(
k − p + D − 1

k − p

)
. (A.10)

Note that in order for the system (A.8) to be compatible, a left null vector of the symbol matrix 
must annihilate the inhomogeneous term, and vice versa. This compatibility criterion is automat-
ically satisfied by any involutive system (since otherwise the system would not be involutive in 
the first place). Existence of a left null vector of the mth-order symbol matrix then gives rise to 
an identity at O(k). Such an identity must be a consequence of the gauge identities (A.2). If q is 
the total order of the gauge identities, then taking (k − q)-th gradient of Eq. (A.2) leads us to an 
identity of the following form:

�
i,ν(m)
a,μ(k−q)J

a,ρ(k)

A,ν(m)�̄
A
ρ(k) + · · · = 0, k ≥ q ≥ p, m = k − p ≥ 0, (A.11)

where the ellipses contain terms linear in �̄A
ν(k′) with k′ < k. Because k can be made arbitrarily 

large, in order for identity (A.11) to hold good, it is necessary that

�
i,ν(m)
a,μ(k−q)J

a,ρ(k)

A,ν(m) = 0, for large k. (A.12)

Therefore, �i,ν(m)
a,μ(k−q) serves as a set of left null vectors of the symbol matrix J a,ρ(k)

A,ν(m) for large 
k. The total number of these null vectors is equal to

nL
k = l

(
k − q + D − 1

k − q

)
. (A.13)

They will be linearly independent if the original gauge identities (A.2) are irreducible.
The number of O(k)-monomials determined by the system is given by the rank of the symbol 

matrix of order m =k − p. The rank, in turn, is the difference between the number (A.10) of 
O(k)-equations and the number of independent left null vectors of the symbol matrix. Once 
these quantities are known, one can count the number of undetermined O(k)-monomials. The 
DoF count further requires modding out gauge-equivalent monomials if gauge symmetries are 
present in the system.

Let us Taylor expand the local gauge symmetry parameters appearing in Eq. (A.3):

εα(x) = ε̄ α +
∞∑

k=1

1

k! ε̄ α
μ1···μk

(x − x0)
μ1 · · · (x − x0)

μk . (A.14)

If s is the order of the gauge transformation (maximal order of RA
α ), then taking m-th gradient 

of the equation: δεT
a|T =0 = 0, leads us to the following schematic form:

J a, ν(k)
{
�

A,ρ(k+s)
ε̄ α
ρ(k+s)

}
+ · · · = 0, m = k − p ≥ 0, (A.15)
A,μ(m) α, ν(k)
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where the ellipses contain terms linear in ε̄ α
ν(k′) with k′ < k + s. Again, since k can be arbitrarily 

large, Eq. (A.15) necessarily implies the following8:

J a, ν(k)
A,μ(m)

�
A,ρ(k+s)

α, ν(k)
= 0, for large k = p + m. (A.16)

Therefore, �A,ρ(k+s)

α, ν(k) furnishes a set of right null vectors of the mth-order symbol matrix for 
large k. The total number of such right null vectors is given by:

nR
k = r

(
k + s + D − 1

k + s

)
. (A.17)

These vectors will all be nontrivial and linearly independent for irreducible gauge symmetries 
with unconstrained parameters. If it is otherwise, the DoF count becomes more involved. This 
is also the case when the gauge identities are reducible. Taking such cases into account, we will 
now derive some formulae for DoF count.

A.2.1. No gauge symmetries
In general, the system (A.1) may contain equations of various orders. Suppose the number of 

equations at order p is given by tp . The generalization of the count (A.10) would read:

nT
k =

∑
p

tp

(
k − p + D − 1

k − p

)
. (A.18)

The gauge identities may come at different orders as well. Moreover, the gauge identities may not 
be irreducible. Suppose there are lq,j number of gauge identities at total order q and reducibility 
order j . It is not difficult to convince oneself that the generalization of (A.13) to the total count 
of independent gauge identities will be given by:

nL
k =

∑
q,j

(−)j lq, j

(
k − q + D − 1

k − q

)
. (A.19)

In the absence of gauge symmetries, the number of undetermined physical monomials at O(k)

will be given by: n̂k = nk − (nT
k − nL

k ), which is equal to

n̂k = f

(
k + D − 1

k

)
−
∑
n

⎛
⎝tn −

∑
j

(−)j ln, j

⎞
⎠(

k − n + D − 1

k − n

)
. (A.20)

We can make use of the following asymptotic expansion for binomial coefficients [55,58]:(
k ± n + D − 1

k ± n

)
=
(

k + D − 1

k

){
1 ± n

k
(D − 1) +O

(
1

k2

)}
, k → ∞. (A.21)

Now, plugging the above expansion into Eq. (A.20) and dividing by Eq. (A.9), we obtain:

f n̂k

nk

= c+
(

D − 1

k

)∑
n

n

⎛
⎝tn −

∑
j

(−)j ln, j

⎞
⎠+O

(
1

k2

)
, (A.22)

8 If the gauge parameters are completely arbitrary, which is not the case we deal with in this article, the relation would 
be true for any k = p + m.
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where c is called the compatibility coefficient, given by:

c ≡ f −
∑
n

⎛
⎝tn −

∑
j

(−)j ln, j

⎞
⎠ . (A.23)

We will assume that the system (A.1) is absolutely compatible, i.e., c = 0. In this case, the DoF 
count (A.5) can be computed by taking a limit of Eq. (A.22), which gives:

D = 1
2

∑
n

n

⎛
⎝tn −

∑
j

(−)j ln, j

⎞
⎠ . (A.24)

This is the formula for physical DoF count of an absolutely compatible involutive system of with 
reducible gauge identities, but no gauge symmetries.

A.2.2. Irreducible gauge symmetries with constrained parameters
Now we will take into account the presence of irreducible gauge symmetries of the system. 

Let us consider the case when the gauge symmetry parameters are not arbitrary, but obey some 
differential constraints. In other words, we have a set of gauge parameters ε α, with α = 1, 2, ..., r , 
governed by the following order-p̃ system of PDE’s:

T a[ε α, ε α
μ , . . . , ε α

μ(p̃)] = 0, with a = 1,2, ..., t̃ . (A.25)

We further assume that the system (A.25) is involutive, and that the gauge symmetries appear 
in a single finite order s. The k-th derivatives of the gauge parameters evaluated at x = x0 con-
stitute a set of monomials ε̄ α

μ(k). Because the gauge symmetries are irreducible, the number of 
undetermined monomials at O(k + s) follows directly from Eq. (A.20):

n̂R
k = r

(
k + s + D − 1

k + s

)
−
∑
n

⎛
⎝t̃n −

∑
j

(−)j l̃n, j

⎞
⎠(

k + s − n + D − 1

k + s − n

)
, (A.26)

for large k, where t̃n is the number of equations at order n, and l̃n, j number of gauge identities 
at total order n and reducibility order j . This count generalizes Eq. (A.17) to the case when the 
gauge parameters are governed by an involutive system of equations.

In order to find the number of O(k) monomials �̄A
μ(k) that are undetermined as well as gauge 

inequivalent, we must subtract the count (A.26) from the gauge-redundant count (A.20). To sim-
plify the exercise we first note that the expansion (A.21) gives:

n̂R
k =

(
k + D − 1

k

){
�̃ + 2

k
(D − 1)

(
D̃+ 1

2 s c̃
)

+O
(

1

k2

)}
, k → ∞, (A.27)

where c̃ and D̃ are respectively the compatibility coefficient and the DoF count of the involutive 
system (A.25) of the gauge parameters; they are given by:

c̃ = r −
∑
n

⎛
⎝t̃n −

∑
j

(−)j l̃n, j

⎞
⎠ , D̃= 1

2

∑
n

n

⎛
⎝t̃n −

∑
j

(−)j l̃n, j

⎞
⎠ . (A.28)

While ̃c= 0 by the assumption of absolute compatibility, D̃ counts the number of pure gauge DoF
of the original system (A.1) that enjoys the local gauge symmetry under consideration. A straight-
forward calculation now leads to the physical DoF count:
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D = 1
2

∑
n

n

⎛
⎝tn −

∑
j

(−)j ln, j

⎞
⎠− D̃. (A.29)

This is an intuitively-clear generalization of Eq. (A.24): the physical DoF count is obtained sim-
ply by subtracting the pure-gauge DoF count from the dynamical DoF count (including gauge 
modes). When gauge symmetries are absent, D̃= 0, and we recover Eq. (A.24).

Appendix B. Involutive deformations

Given a set of free field equations in the involutive form−with all the gauge identities and 
symmetries identified−it is possible to systematically deform the theory and thereby introduce 
consistent of interactions [22]. The algebraic consistency and the correct DoF count are obtained, 
even for the deformed system, by strictly preserving the involutive structure. The same approach 
can be taken also for the problem of writing down consistent EoM’s for fields propagating freely 
in nontrivial backgrounds [17–19]. To see how this works, let us first enumerate the consistency 
conditions to be taken into account:

1. Algebraic Consistency: The dynamical equations and constraints/gauge-fixing conditions 
ought to be mutually compatible. They should not give rise to any new conditions on the 
fields that cease to exist when the background is switched off [6].

2. Gauge Invariance: When placed in a nontrivial background, the gauge symmetries of a 
dynamical system should be preserved in order to eliminate unphysical modes.

3. No Higher Derivatives: Constraint equations must not contain more than one time-
derivatives of the field, i.e., they cannot be promoted to dynamical ones. On the other hand, 
dynamical equations ought to include two time-derivatives at most. Otherwise, the system 
will generically be plagued with Ostrogradsky instability [59] (see also [60] for a recent 
discussion).

4. Hyperbolicity: Even when the dynamical equations contain only up to two time-derivatives, 
non-canonical kinetic terms may ruin the hyperbolicity of the system. In other words, such 
terms may render the Cauchy problem ill posed [7].

5. Causality: A hyperbolic system of PDE’s describing the dynamics of some field should also 
have a propagation speed not exceeding the speed of light. When non-canonical kinetic terms 
are present in the dynamical equations of a Lorentz-invariant theory, this feature cannot be 
taken for granted (see [11] for a recent review).

6. DoF Count: Last but not the least, the count of physical DoF’s of a dynamical system should 
be correct. In other words, consistent free propagation in a nontrivial background implies that 
the DoF count does not alter by turning off the background.

In the involutive deformation method conditions 1, 2 and 6 are automatically taken care of by 
the involutive structure. By virtue of working at the EoM level, one also has conditions 3, 4 and 5
under control, since higher-derivatives and/or non-canonical kinetic terms can simply be avoided 
by choice. Lagrangian formulation has severe limitations in this regard, as we already mentioned 
in the Introduction.

Below we outline the systematic procedure of writing down consistent EoM’s for free higher-
spin fields in nontrivial gravitational or electromagnetic backgrounds.

• The flat-space free system of equations is written down in an involutive form.
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• All the gauge identities and gauge symmetries of the system are identified.
• Zeroth-order deformation of the system, in the presence of a nontrivial background, is ob-

tained by replacing ordinary derivatives by covariant ones (minimal coupling).
• Because covariant derivatives do not commute, zeroth-order deformations will not be self 

sufficient in general. Higher-order deformations of the equations, gauge identities/symme-
tries will cast Eqs. (A.1)–(A.3) into the following schematic form:

T a = T a
0 + gT a

1 + g2T a
2 + · · · ,

Li
a = Li

a,0 + gLi
a,1 + g2Li

a,2 + · · · , (B.1)

RA
α = RA

α,0 + gRA
α,1 + g2RA

α,2 + · · · ,

where the numerical subscript denotes the deformation order in some dimensionless param-
eter g. In fact, the deformation parameter g is just a book-keeping device to track the power 
of background curvature. For example, linear terms in the curvature will be O(g), quadratic-
curvature terms will be O(g2), and so on.

• The deformations (B.1) are chosen in such a way that the gauge identities and gauge symme-
tries hold good order by order in g, and that the number equations and gauge identities/sym-
metries at a given derivative order do no change.9

• Because derivatives and curvatures are dimensionful quantities, their higher powers must 
come with suppression by a relevant mass scale �. Accordingly, the respective mass dimen-
sions of the deformations (B.1) remain the same at any order. In order for an effective field 
theory description to make sense, � should be parametrically larger than any other mass 
scale in the system.

This method ensures that the system remains involutive and absolutely compatible, and con-
tains the same number of physical DoF’s before and after the deformation. While algebraic 
consistency of the system is guaranteed by the involutive structure, causal propagation is main-
tained by avoiding non-canonical kinetic terms in the dynamical equations.

Appendix C. Technical details

Here we provide some technical details omitted in the bulk of the article for the sake of read-
ability. Appendix C.1 deals with gravitational backgrounds, whereas C.2 with EM backgrounds. 
They present some useful formulae and elaborate on important technical steps leading to some 
of the derivations for both bosonic and fermionic fields.

C.1. Gravitational background

The Riemann tensor can be decomposed into the following irreducible pieces:

Rμνρσ = Wμνρσ +
(

2
D−2

)(
gμ[ρSσ ]ν − gν[ρSσ ]μ

)+ 2
D(D−1)

Rgμ[ρgσ ]ν, (C.1)

where D is the space-time dimensionality. Note that a conformally flat Einstein manifold is a 
maximally symmetric space. For a maximally symmetric space, one can write:

9 In principle, the derivative orders of the equations and gauge identities/symmetries may increase at any order in 
g. We, however, do not explore this possibility in order to make sure that the consistency conditions involving higher 
derivatives, hyperbolicity and causality (3, 4 and 5) are not violated.
45



R. Rahman Nuclear Physics B 964 (2021) 115325
Rμνρσ = − 1
L2

(
gμρgνσ − gμσ gνρ

)
, Rμν = −

(
D−1
L2

)
gμν, R = −D(D−1)

L2 , (C.2)

where L is the AdS radius (for dS space, we make the substitution: L2 → −L2). Then, the 
commutator of covariant derivatives (1.4)–(1.5) reduces to the following form:

[∇μ,∇ν] =
⎧⎨
⎩− 1

L2

(
2u[μdν]

)
, for bosons;

− 1
L2

(
2u[μdν] + 1

2γμν

)
, for fermions.

(C.3)

The commutator of divergence and symmetrized gradient in this case reads:

[d ·∇, u·∇] =
{∇2 − 1

L2 N (N + D − 2) + 1
L2 u2d2, for bosons;

∇2 − 1
L2 N

(
N + D − 3

2

)+ 1
L2

(
u2d2 + 1

2 /u /d
)
, for fermions.

(C.4)

Computations with bosonic fields The derivation of the explicit form of Eq. (2.12) relies on the 
following commutators:

[d ·∇,∇2] = −2Rμνρσ ∇μuρdνdσ + Rμν∇μdν + (∇μRμν)d
ν − 2∇[μRν]ρuμdνdρ,

[d ·∇,Rμνu
μdν] = (∇ρRμν)u

μdνdρ + (∇μRμν)d
ν + Rμν∇μdν, (C.5)

[d ·∇,Rμνρσ uμuρdνdσ ] = (∇αRμνρσ )uμuρdαdνdσ + 4∇[μRν]ρuμdνdρ

+ 2Rμνρσ ∇μuρdνdσ .

With the help of these commutators, it is easy to obtain the following:

[ĝ1, ĝ0] = 2(α1 − 1)Rμνρσ ∇μuρdνdσ + (α2 + 1)Rμν∇μdν − Rμνρσ uμuρdνdσ [α1, d ·∇]
− Rμνu

μ [α2, d ·∇] − R [α3, d ·∇] + [M2, d ·∇] + α1(∇αRμνρσ )uμuρdαdνdσ

+ 2(2α1 − 1)(∇[μRν]ρ)uμdνdρ + α2(∇μRνρ)uρdμdν + α3(∇μR)dμ +O
(

1
�2

)
.

(C.6)

Eq. (2.12) then follows from the decomposition (C.1). Terms containing gradients of the curva-
ture can be further massaged with the decomposition given in Eqs. (2.13)–(2.14).

In order to prove Eq. (2.21), let us note the combination 
(
Rμνρσ uμuρdνdσ − Rμνu

μdν
)

commutes with the trace operator, which is easy to show. Then, with the choices (2.15) the 
commutator [ĝ2, ĝ0] reduces to the following:

[ĝ2, ĝ0] = −R[α3, d
2] + [M2, d2] +O

(
1

�2

)
, (C.7)

which gives rise the relation (2.21) for the choices and (2.17)–(2.18).
In (2.25) we used the operators Ôi , i = 1, 2, 3, without spelling out their explicit forms; these 

operators are defined as follows:

Ô3 = [ĝ1, ĝ2],
Ô2 = [ĝ2, ĝ0] + 2

(D−1)(D+2)
ĝ2R (2N + D − 2) + ĝ2P(N), (C.8)

Ô1 = [ĝ0, ĝ1] − 2
(D−1)(D+2)

[
2ĝ1R (2N + D − 1) − ĝ2

(
u2d ·U + u·U)]− ĝ1Q(N).

Next, we move on to the massless case and give the explicit expression of the weight-0 oper-
ator X0 appearing in Eq. (4.22); it reads:

X0 = −2
(
Rμνρσ uμuρdνdσ − Rμνu

μdν
)− 2(N−1)(N+D−2)

R + M ′2. (C.9)

(D−1)(D+2) 0
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Then, we consider the details of partially-massless bosons in Section 6.1. To avoid clumsiness 
in the expressions, in what follows we will set the AdS radius to unity: L = 1. The following 
commutation relations involving the d’Alembertian operator are useful:

[�−aN−b,u·∇] = −u·∇ {a + 2(2N + D − 1)} + 4u2d ·∇, (C.10)[�−aN−b, (u·∇)2−cu2
]

= −2(u·∇)2(a+4N+2D)+8u2u·∇d ·∇
+ 4u2(�+ 1

2ac), (C.11)

where a, b and c are numerical constants. For the divergence operator, note from Eq. (6.4) that, 
by definition: [d ·∇, u ·∇] = �. We also have the following important commutator:[

d ·∇, (u·∇)2 − cu2
]

= 2u·∇ {� − c − (2N + D − 1)} + 4u2d ·∇. (C.12)

Last but not the least, the trace operator has the commutation relations:[
d2, u·∇

]
= 2d·∇,

[
d2, (u·∇)2 − cu2

]
= 4u·∇ d·∇ +2 {� − c(2N + D)} . (C.13)

The variations of the left-hand sides of EoM’s for the case k = 1 are given by:

δ
[
ĝ

(2)
0 �(2)

s

]
=
{
(u·∇)2L11 + u2Q11

}
λs−2,

δ
[
ĝ1�

(2)
s

]
= {u·∇L12}λs−2, δ

[
ĝ2�

(2)
s

]
= {L13}λs−2,

(C.14)

where we recall that L = 1, and the L’s and Q’s are the following linear functions of N :

L11 = (a′
1 − a1 − 8)N + [b′

1 − b1 − 2(a1 + 2D)],
Q11 = [4(a′

1 − 2) − c1(a
′
1 − a1 − 8)]N + [4b′

1 − c1(b
′
1 − 2a1 − b1)],

L12 = 2(a′
1 − 2)N + 2(b′

1 − c1 − D + 1),

L13 = 2(a′
1 − 2c1)N + 2(b′

1 − Dc1).

(C.15)

Similarly, the variations for a depth-3 PM field, corresponding to k = 2, read:

δ
[
ĝ

(3)
0 �

(3)
s

]
= {

(u·∇)3L21 + u2u·∇Q21
}
λs−3,

δ
[
ĝ1�

(3)
s

]
= {

(u·∇)2L22 + u2Q22
}
λs−3, (C.16)

δ
[
ĝ2�

(3)
s

]
= {u·∇L23}λs−3,

where again the L2i’s and Q2i ’s are linear functions of N , given by:

L21 = (a′
2 − a2 − 12)N + [b′

2 − b2 − 3(a2 + 2(D + 1))],
Q21 = [4(3a′

2 − 2c2 − 4) − c2(a
′
2 − a2 − 12)]N

+ [c2(3a2 + b2 + 2D − 2) − b′
2(c2 − 12) − 8(D − 1)],

L22 = 3(a′
2 − 4)N + (3b′

2 − 2c2 − 6D + 2),

Q22 = −(c2 − 4)(a′
2N + b′

2),

L23 = 2(3a′
2 − 2c2 − 4)N + [(3b′

2 − (D + 2)(c2 + 2) + 6].

(C.17)

Next, we elaborate on the computations with fermionic fields in gravitational backgrounds.
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Computations with fermionic fields In deriving Eq. (3.14), one can first make use of the com-
mutator (1.5) to write:

[ /∇, d ·∇] = Rμνρσ γ μuρdνdσ − Rμνγ
μdν − 1

4Rμνρσ dμ(γ νγ ρσ ). (C.18)

Thanks to the γ -matrix identity: γ νγ ρσ = γ νρσ + 2ην[ργ σ ], and the properties of the Riemann 
tensor, the last term in the above equation simplifies to 1

2Rμνγ
μdν . Then, one can plug in the 

Riemann-tensor decomposition (C.1) to arrive at Eq. (3.14).
Next, we give the technical details of PM fermions in Section 6.2. Here, the AdS radius is 

set to unity: L = 1. It is important to note that, unlike the usual covariant derivative ∇μ, the 
deformed one �μ does not commute with γ -matrices. To be explicit:

[γ μ,�ν] = [�μ,γ ν] = −γ μν. (C.19)

Some commutators involving the Dirac operator that will be useful for our purpose are:[
/� − aN − b,u·�]= −(a + 1)u·� + /u

(
/� − N + /u /d

)
, (C.20)[

/� − aN − b, (u·�)2 − cu2
]

= −2(a + 1)(u·�)2 + 2u2 ( /� − N + ac + /u /d
)

+2/uu·� (
/� − N − 1 + /u /d

)
, (C.21)

where a, b and c are numerical constants. Similarly, for the divergence operator:

[d ·�,u·�] = (
/� + N + D − 1

) (
/� − N

)+
(
/u + u2/d

)
/d, (C.22)[

d ·�,(u·�)2 − cu2
]

= 2u·� (
/� + N + D

) (
/� − N − 1

)− 2(c − 1)u·�
+4u2d ·� + 2u·�

(
/u + u2/d

)
/d. (C.23)

The gamma-trace operator, on the other hand, has the commutation relations:[
/d,u·�]= (

/� − N
)+ /u /d, (C.24)[

/d, (u·�)2 − cu2
]

= 2 (u·� + /u)
(
/� − N − 1 + /u /d

)− 2(c − 1)/u. (C.25)

First, we compute the variations of the left-hand sides of EoM’s for a depth-2 PM fermion, 
which corresponds to k = 1. Given the commutation relations (C.21), (C.23) and (C.25), and the 
involutive system of the gauge parameter, they reduce to:

δ
[
f̂

(2)
0 �

(2)
n

]
= {

(u·�)2 P11 + /uu·�M11 + u2N11
}
εn−2,

δ
[
ĝ ′

1�
(2)
n

]
= {u·�P12 + /uM12} εn−2, (C.26)

δ
[
f̂1�

(2)
n

]
= {u·�P13 + /uM13} εn−2,

where we set L = 1, and the P, M and N ’s are the following polynomial functions of N :

P11 = (α′
1 − α1)N + [β ′

1 − β1 − 2(α1 + 1) ],
P12 = 2(α′2

1 −1)N2 + 2[α′
1(2β ′

1+D−1)−D−1]N + [2(β ′
1+D)(β ′

1−1)−2(δ1−1)],
P13 = M11 = 2(α′

1 − 1)N + 2(β ′
1 − 1), (C.27)

M12 = 0, M13 = 2(α′
1 − 1)N + [2(β ′

1 − 1) − 2(δ1 − 1)],
N11 = [2(α′ − 1) − (α′ − α1)δ1]N + [2(α′ + 1) − (β ′ − β1)δ1].
1 1 1 1
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Similarly, the variations for a depth-3 PM field, corresponding to k = 2, are given by:

δ
[
f̂

(2)
0 �

(3)
n

]
= {

(u·�)3 P21 + /u(u·�)2M21 + u2u·�N21 + u2/uR21
}
εn−3,

δ
[
ĝ ′

1�
(3)
n

]
= {

(u·�)2P22 + /uu·�M22 + u2N22
}
εn−3, (C.28)

δ
[
f̂1�

(3)
n

]
= {

(u·�)2P23 + /uu·�M23 + u2N23
}
εn−3,

where again the P, M, N and R’s are polynomial functions of N , given by:

P21 = (α′
2 − α2)N + [β ′

2 − β2 − 3(α2 + 1) ],
P22 = 3(α′2

2 −1)N2 + 3[α′
2(2β ′

2+D−1)−D−3]N
+ [3(β ′

2+D+1)(β ′
2−2)− 2(δ2−4)],

P23 = M21 = 3(α′
2 − 1)N + 3(β ′

2 − 2),

M22 = 0, M23 = 6(α′
2 − 1)N + [6(β ′

2 − 2) − 2(δ2 − 4)], (C.29)

N21 = [6(α′
2 − 1) − (α′

2 − α2)δ2]N + [6β ′
2 − 4 − (β ′

2 − β2 − 3α1 − 1)δ2],
N22 = (4 − δ2)[(α′

2(2β ′
2 + D − 1) − D + 1)N + β ′

2(β
′
2 + D − 1)],

N23 = R21 = (4 − δ2)[(α′
2 − 1)N + β ′

2].
This finishes our exposition of the computational details for gravitational backgrounds.

C.2. Electromagnetic background

Let us emphasize that minimal coupling to the EM background has been assumed. Here, the 
commutator of covariant derivatives acts the same way on bosons and fermions:

[Dμ,Dν]� = iqFμν�, [Dμ,Dν]� = iqFμν�. (C.30)

Below we elaborate on some computations involving bosonic and fermionic fields.

Computations with bosonic fields The derivation Eq. (2.37) makes use of the following com-
mutation relation:

[d ·D,D2] = −2iqFμνDμdν − iqdμV μ, (C.31)

which simplifies the commutator [ḡ1, ḡ0] to the following form:

[ḡ1, ḡ0] = iq (α − 2)FμνDμdν − iqα∂(μFν)ρuρdμdν + iq(α − 1)d ·V
− iq[α,d ·D]Fμνu

μdν + [M̄2, d ·D] +O
(

1
�̄2

)
.

(C.32)

Then, one can easily arrive at Eq. (2.37) from the definition of Aμνρ given in Eq. (2.36).

Computations with fermionic fields We will now provide justification for the ansätze (3.32)–
(3.33). At first order in Fμν , the non-minimal deformation A of the Dirac operator may contain 
five independent terms:

A = iq
(
a+F+

μν + a−F−
μν + a1Fμργ ργν + a2Fνργ ργμ

)
uμdν + iqa0Fρσ γ ρσ + · · · ,

(C.33)
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where the a’s are weight-0 operators of mass dimension −1, and the ellipses stand for terms 
containing derivatives or higher powers of the field strength. The third term on the right-hand side 
of Eq. (C.33) is however redundant since it is proportional to f̄1, under the assumption (3.31). 
Without any loss of generality therefore one can set: a1 = 0. Given this, if one further requires 
that the Dirac operator be hermitian in the sense of footnote 5, one must also set: a2 = 0. This 
justifies our ansatz (3.32). Similarly, the non-minimal deformation B of the divergence operator 
takes the generic form:

B = iq
(
b0Fμνγ

μdν + b1Fρσ γ ρσ /d
)+ · · · , (C.34)

with b0 and b1 being weight-0 operators of dimension −1, and the ellipses contain derivatives 
and higher powers of the field strength. Again, without any loss if generality, one can set: b1 = 0. 
This leads us to the ansatz (3.33).

Next, we compute the graded commutators of Section 3.3, which are eventually expressed in 
Eq. (3.37). Starting from Eq. (3.28), a straightforward computation gives:

[f̄0, ḡ1] = iq
[
1 − m(a+ − a− + 2b0)

]
Fμνγ

μdν + 2iq (a− − b0)Fμνd
μDν

+ iq (a+ − a−)
[
Fμνγ

μDν f̄1 + 1
2Fρσ γ ρσ

(
ḡ1 − /Df̄1

)]
− iq (a+ − a− + 2b0)Fμνγ

μdνf̄0 + · · · ,

(C.35)

where the ellipses stand for terms containing derivatives or higher powers of the field strength, 
and commutators involving the weight-0 operators a±, a0 and b0. In deriving the above result, 
we have used a number of γ -matrix identities, in particular:

F+μν = 1
4

(
γ μγ ρσ γ ν − γ νγ ρσ γ μ

)
Fρσ , F−μν = − 1

4

(
γ μνγ ρσ + γ ρσ γ μν

)
Fρσ .

(C.36)

On the other hand, Eq. (3.29) leads rather easily to the following result:

[ḡ1, f̄1] = 2b0Fμνγ
μdνf̄1 + · · · . (C.37)

Finally, in order to work out {f̄1, f̄0} from Eq. (3.30), we need to compute the anti-commutator 
{/d, A} with the help of the following γ -matrix identities:

γ μνρσ γ λ + γ λγ μνρσ = 2γ μνρσλ, γμγ μνρσ = (D − 3)γ νρσ ,

γ μνγ ρ + γ ργ μν = 2γ μνρ, γ μνρ = γ μνγ ρ + 2ηρ[μγ ν].
(C.38)

After a straightforward calculation, one arrives at the following expression:

{f̄1, f̄0} = 2ḡ1 − 2mf̄1 − iq
[
(D − 4)a+ − (D − 2)a− + 4a0 + 2b0

]
Fμνγ

μdν

+ iqFμν

[
2(a+ + a−)uνdν + 1

2 {4a0 + (D − 3)(a+ − a−)}γ μν
]
f̄1 + · · · .

(C.39)

Clearly, the Fμνγ
μdν - and Fμνγ

μDν -terms appearing in the first lines of Eqs. (C.35)
and (C.39) obstruct the closure of these commutators, for spin s ≥ 3

2 . Their coefficients must 
therefore be set to zero, which results in the choice (3.35). At O(q), other offending terms may 
appear through derivatives of the field strength. Omitted in the ellipses of Eqs. (C.35), (C.37)
and (C.39), such terms can be eliminated by the condition (3.36).

We finish with the derivation of Eq. (3.40). Because the non-minimal corrections to the gauge-
identity operators (3.38) are proportional to the EoM’s, it is easy to see why the schematic 
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form (3.40) should appear. After a somewhat tedious computation, one finds that the operators 
Ō2, Ō ′

1 and Ō1 are given by:

Ō2 = h̄2 − (iεq/m)Fμνγ
μdνf̄1,

Ō ′
1 = h̄′

1 + (2iq/m)Fμν

(
εγ μdν + uμdνf̄1

)
, (C.40)

Ō1 = h̄1 + (2iq/m)Fμν

[
uμdνḡ1 + εγ μDν f̄1 + 1

2εγ μνf̄1 /D + (
1 − 3

2ε
)
γ μdνf̄0

−(2 − ε) /Dγ μdν
]
.

This marks the end of the necessary technical details.
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