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IIn this letter, we study the indirect detection of Cosmological Constant from an open quantum
system of N entangled spins, weakly interacting with a thermal bath, a massless scalar field min-
imally coupled with the static De Sitter background, by computing the spectroscopic shifts. By
assuming pairwise entanglement between spins, we construct entangled N states using a generali-
sation of the superposition principle. We have found that in the realistic large N limit, where the
system consists of N ~ O(10% — 10*) spins, the corresponding spectroscopic shifts, caused by the
effective Hamiltonian of the system due to Casimir Polder interaction with the bath, play a crucial
role to determine the observationally consistent Cosmological Constant, A ~ O(107'2?) (Planckian

units) in the static patch of De Sitter space.

In recent times the study of the quantum systems
that are interacting with their surroundings has acquired
a lot of attention in different fields ranging from con-
densed matter [IH4], quantum information [5], subatomic
physics [6HIT], quantum dissipative systems [12], holog-
raphy [I3] [T4] to cosmology [5], [T5H46] for a sample of the
relevant literature. Here our interest is the study of the
curvature of the static patch of De Sitter space as well as
the Cosmological Constant from the spectroscopic Lamb
shift [47H49]. The system under consideration is an open
quantum system of N entangled spins which are weakly
coupled to their environment, modelled by a massless
scalar field minimally coupled to static patch of De Sitter
space-time. We are interested to study how the entangled
states of the system and the Lamb shift change affect the
curvature of the static patch of De Sitter space-time as
well as the Cosmological Constant as the number of spins
become very large in the thermodynamic limit, in real-
istic physical situations. One can design such a thought
experimental condensed matter analogue gravity [50} 1]
set up of measuring spectroscopic shift in an open quan-
tum system in a quantum laboratory to get a proper es-
timation of the curvature of the static patch of De Sitter
space as well as the Cosmological Constant without re-
course to any cosmological observation. This is the main
highlight of this letter, where our claim is that, with-
out doing any cosmological observation one can measure
the value of the Cosmological Constant from quantum
spectroscopy of open systems. For large NV spin system,
where the number of spins, N ~ O(10% — 10%), we show
from our analysis that the obtained value of the Cosmo-

logical Constant is perfectly consistent with the present
day observed central value of the Cosmological Constant,
Aobserved ~ 2.89 x 107122 in the Planckian unit [52].

The open quantum set up can be described by the
following Hamiltonian:

Hr :HS®IQ,B+IQ,S®HB+HI? (1)

where Hg, Hg and Hi respectively describes the Hamilto-
nian of the spin system, bath and the interaction between
them. Also Iy g and Iy p are the (2 x 2) identity opera-
tors for the system and bath, respectively. We choose our
spin Hamiltonian in such a way that the individual Pauli
matrices are oriented arbitrarily in space. In the present
context, the N spin system Hamiltonian is described by:

N 3
HS:%Zan.af, (2)

where n¢ represent the unit vectors along any arbitrary
i(= 1,2,3)-th direction for 6 = 1,---,N. Also, o?,
(1 = 1,2,3), are the three usual Pauli matrices for each
particle characterized by the particle number index §.
The free rescaled scalar field, minimally coupled with the
static De Sitter background is considered as the bath, and
is described by the following Hamiltonian:

e} T 2m
HB:/ dr/ de/ d [I12/2 + 1% sin? 02
0 0 0

{r2 (0:9)% + (1= 12/a?) " ((9p®)2 + (95B)?/ sin® 9)}} . (3)

Here, IIg represents the momentum canonically conju-
gate to the scalar field ®(z) in the static De Sitter patch.



As a choice of background classical geometry we have
considered here the static De Sitter patch as our prime
objective to implement the present methodology to the
real world cosmological observation. The static De Sitter
metric (which we will define later) contains the Cosmo-
logical Constant term explicitly which is one of the prime
measurable quantities at late time scale (mostly at the
present day) in Cosmology. Using this analogue gravity
thought experiment performed with IV spins our objec-
tive is to measure the value of Cosmological Constant
at present day from the spectroscopic shift formula indi-
rectly. For this purpose we have only taken the observed
value of Cosmological Constant to check the consistency
of our finding from this methodology. Not only the nu-
merical value of the Cosmological Constant, but also the
curvature of static patch of De Sitter space can be further
constrained using the present methodology. The interac-
tion between the IV spin system and the thermal bath
plays a crucial role in the dynamics of open quantum
system. For the model being considered, the interaction
between the system of N entangled spins and the bath is
given by:

where the parameter p represents the coupling between
the system and the bath and is taken to be sufficiently
small. Also, it is important to note that in the interac-
tion Hamiltonian we have restricted upto quadratic con-
tribution. Any higher order non-linear interactions are
avoided for the sake of simplicity, but for a generalised
case one can include such contributions in the present
analysis.

The normalized N spin entangled states for the system
Hamiltonian are given by:

N N
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where |g5), le,)Vé,n =1,--- , N are the eigen vectors for
individual atom corresponding to ground (lower energy)
state and excited (higher energy) state. Here we also
define the proportionality constant of the normalization
factor as, Nuorm = 1/v/NCy = /2(N —2)!I/N!. The
normalization constant has been fixed by taking the inner
products between elements of the direct product space
with the restriction that the inner product only acts be-
tween elements belonging to the same Hilbert space of
the open quantum system under consideration.

At the starting point we assume separable initial con-
ditions, i.e., the total density matrix pr at the initial
time scale 7 = 7 factorizes as, pr (1) = ps(70) ® pp(10),

where pg(70) and pp(7y) constitute the system and bath
density matrices at initial time 7 = 7y, respectively. As
the system evolves with time, it starts interacting with
its surrounding which we have treated as a thermal bath
modelled by massless scalar field placed in the static De
Sitter background. Since we are interested in the dy-
namics of our system of interest (sub system), made by
the N spins, we consider its reduced density matrix by
taking partial trace over the thermal bath, i.e., ps(r) =
Trg[pr(7)]. Though the total system plus bath joint evo-
lution is unitary, the reduced dynamics of the system of
interest is not. The non-unitary dissipative time evolu-
tion of the reduced density matrix of the sub system in
the weak coupling limit can be described by the GKSL
(Gorini Kossakowski Sudarshan Lindblad) master equa-
tion [I5], &:ps(r) = —ilHett, ps(r)] + Llps(r)], where
L[ps(7)] is the Lindbladian operator which captures the
effects of quantum dissipation and non-unitarity. The
effective Hamiltonian, for the present model, is Heg =
Hs + Hyg, where Hyg(7) is the Lamb shift Hamiltonian
given by:

HLS_—f Z Z YV (n8.00)(n].07).  (6)
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We consider interaction between two spins at a time,
which can be implemented in terms of the Pauli operators
as, 0? =0, ® Iy p (for even & odd §), Uf = I s ®0o; (for
even & odd ) and 0f = Ir s ® I g (for odd §), where
mathematical structure of, I s and Iy p are identical.
In the Lamb shift the time dependent coefficient matrix
Hl(f ")(7) can be obtained from the Hilbert transform of
the N spin Wightman function, which is computed in
the static De Sitter patch, described by the following 4D
infinitesimal line element:

ds* = (1—r?/a?)dt* — (1 7"2/042)71 dr? —r2dQy. (7)

Here, the parameter a = /3/A, where A > 0 is the
4D Cosmological Constant in Static De Sitter patch. We
use the Schwinger Keldysh technique to determine the
entries of each NV spin Wightman functions, which are
basically two point functions in quantum field theory at
finite temperature. Consequently, the diagonal entries
(auto-correlations) of the N spin Wightman function are
calculated as:

G (z,2") = GPP(z,2") = —1/(167%k* sinh® f(AT, k), (8)

where we define, f(A1,k) = (A7/2k —i€) and € is an
infinitesimal contour deformation parameter. Also the
off-diagonal (cross-correlation) components of the N spin
Wightman function can be computed as:

—(167T2k2)’

G (z,2') = GPY(z,2') =

{Sinh2 (AT, k) — 2 sin (AQ)}
Here the parameter k can be expressed as, k = /gooox =
Va2 =72 = \/3/A — 72 > 0. Further, the curvature of




the static De Sitter patch can be expressed in terms of the
Ricci scalar term, given by, R = 12/a?. This directly im-
plies that one can probe the Cosmological Constant from
the static De Sitter patch using the spectroscopic shift.
The shifts for identical N entangled spins can be phys-
ically interpreted as the energy shift obtained for each
individual spin immersed in a thermal bath, described by
the temperature, T = 1/ = 1/27k = /Téy + T¢run-
(with Planck’s constant 7 = 1 and Boltzmann con-
stant kp = 1) where the Gibbons-Hawking and Unruh
temperature are defined as, Tgg = 1/27a, Tunprun =
a/2m, with a = (r/a?) (1 71"2/042)71/2. When spins
are localised at » = 0, then a = 0, which in turn implies,
T = Tgu. Here the temperature of the bath T can also
be interpreted as the equilibrium temperature which can
be obtained by solving the GKSL master equation for
the thermal density matrix in the large time limit. Ini-
tially when the non-unitary system evolves with time it
goes out-of-equilibrium and if we wait for long enough
time, it is expected that the system will reach thermal
equilibrium. The N dependency comes in the states, in
the matrix Hfj" and the direction cosines of the align-
ment of each spin. The generic Lamb shifts are given by,
0Ey = (V|Hps|V), where |¥) is any possible entangled
state. Here the spectral shifts for the N spins derived as:

SEY SEY SEY
2FNY = PNS = *FNA = *f"(kavWO)/Nr?orma(l())
1;DC 2;DC 3;DC

where Y represents the ground and the excited states
and S and A symmetric and antisymmetric states, re-
spectively. Here, Fﬁ\fpc V i = 1,2,3 represent the di-
rection cosine dependent angular factor which appears
due to the fact that we have considered any arbitrary
orientation of N number of identical spins. These an-
gular factors become extremely complicated to write for
any arbitrary number of N spins. Because of this fact
it is also expected that as we approach the large N
limit we get extremely complicated expressions. For all
the spectral shifts we get an overall common factor of
N2, =NCy = N!/2(N — 2)! which is originating from
the expectation value of the Lamb Shift Hamiltonian.
Here we introduce a spectral function F(L, k,wp), given
by,

F(L,k,wo) = E(L, k) cos (2wok sinh ™" (L/2k)), (11)
where, £(L, k) = p?/(87L+/1+ (L/2k)?). In this con-

text, L represents the euclidean distance between any
pair of spins, and is L = 2rsin(Af8/2), where A0 rep-
resents the angular separation, which we have assumed
to be the same for all the spins. In different euclidean
length scales, we have:

2
4M;2 cos (2wokIn (L/2k)), L>>k
0

Sl;r—Lcos (woL) .

‘F(L7k7w0): Lk

Here, P is the principal part of the Hilbert transformed
integral of IV point Wightman function. For a realistic
situation we take the large N limit, using the Stirling-
Gosper approximation, as a result of which the normal-
ization factor can be written as:

1/4
— 2
ermLa el\IJV‘nrm%\/i 1_7
o —— ( (N+é)>

N\ N2 /N g\ N/2-1
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Here we use, N! ~ /(2N + 1/3) 7 (N/e)" (1+(1/12N)).
Thus shifts can be approximately derived as :

SEY  0EY  GEY Vo
— = — = 7_7'—(L, k,wo)//\/n rm (14)
2]?{\;[7% FS{DC Fé\{DC )

In the large N limit, behaviour of F(L,k,wy) remains
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FIG. 1. Behaviour of the spectroscopic shifts with the number
of entangled spins. Here we fix 4 = 0.1, L = 10 and wo = 1
for the given value of the curvature R = 1.714.

unchanged, as the euclidean distance L, inverse of the
curvature parameter k and the frequency wy of the N
number of identical spins are not controlled by N. Also,
for large N the normalization factor asymptotically sat-
urates to v/2 (1 +1/2N). In fig. , the behaviour of
shifts with the number of entangled spins are depicted.
From the plot it is understandable that the present pre-
scription does not hold for N = 1. For N = 2 the shifts
vary rapidly and reach a peak value. Once N increases
the shift gradually decreases and for large IV saturates to
a constant value of the normalization at 1/2. However
the scaling in these plots is different because of the pres-
ence of F(L, k,wy) which we have fixed by fixing the L,
k and wp. From this plot one can study the N depen-
dent behaviour of the shifts. In the first plot of fig. ,
the behaviour of the shifts with respect to the Cosmo-
logical Constant are depicted, for given large N. There
emerge two natural length scales in the problem: one
from the system, i.e., L which is the Euclidean distance
between two consecutive neighbouring spins and another
from the bath k, which is related to the curvature and
the cosmological constant. An interplay between these



For large number of entangled spins (N = 50000)
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FIG. 2. Behaviour of the spectroscopic shifts with the Cos-
mological Constant and euclidean distance. Here we fix
# = 0.1 and wo = 1 for the large number of entangled spin,
N = 50000.
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FIG. 3. Behaviour of Cosmological Constant A with the Num-
ber of entangled spins N at (L, wo, u) = (100, 100, 0.001).
The = and y axis values read off the exponents to base 10.

two scales leads to rich dynamical consequences. For
L <k~ +/12/R = /3/A one can find an inertial frame
where the laws of Minkowski space-time are valid and
the present shifts reduce to the flat space limit result.
For L > k, the curvature of the static patch of De Sit-
ter space-time dominates and plays a non-trivial role in
spectral shifts. Here, the spectral shifts vary as L=2 and
depend explicitly on k. These are related to the Cos-
mological Constant A and can be further linked to the
equilibrium temperature of the bath. For this reason we
will focus on the distances L > k to have a non-trivial
effect. For L < k, the spectral shifts vary as L= and
are independent of k£ or A for which the shifts should
be essentially the same, as obtained in Minkowski case.
Presence of k in the shifts for L > k confirms the pres-
ence of A in the De Sitter static patch, which is of course,
not present in the other limit i.e. L < k. We have found,
A ~ O(107122) in the Planckian unit, this corresponds

to almost constant shifts, which is consistent with the
observed value, Agpserved ~ 2.89 x 107122 in Planckian
unit [52]. On the other hand, Cosmological Constant in
the region A 2 (0.05) is not allowed, as it gives an initial
oscillation with a very small but fast decaying amplitude
of the shifts. After crossing this region all the shifts ap-
proach to zero asymptotically from which we will not get
any information of A. So the observationally relevant fea-
ture will come from the very small A where all shifts vary
very slowly in the L > k case. Additionally, using the
present analysis one can further constrain the curvature
of the static patch at very tiny value, R ~ O(107122), cor-
responding to A ~ O(107122). In the plot of fig. , the
behaviour of the shifts with respect to the euclidean dis-
tance (L) is depicted, for given large N and for the fixed
value of Cosmological Constant at the observed value. It
is clearly observed from the plot that the shifts for very
small value of L fluctuates with large amplitude and as
we increase the value of L all of them decay very fast
and for the asymptotic large value of L they saturates to
negligibly small value. Further, in fig. , we study the
behaviour of Cosmological Constant, A, as the number
of entangled spins, N, is varied from very small values of
O(1) upto macroscopic values of O(10%3). This kind of
study can be used to estimate the thermodynamic limit
of number of entangled spins corresponding to the ob-
served value of cosmological constant and the curvature.
It is also observed that as A — 107!22 the number of en-
tangled spins are of ~ O(10%). These highlight the ther-
modynamic limit of the system of entangled spins. The
thermodynamic limit lies in the range of O(10% — 10%).
In conclusion, we have studied indirect detection mech-
anism of observationally relevant Cosmological Constant
from the shifts obtained from a realistic model of open
system consisting of entangled large N spins. For this
purpose, we have utilized the superposition principle
along with equal Euclidean distance between all the
spins. In the large N limit-(a) we have found that the
shifts are very less sensitive to N, (b) a correct prediction
of the observationally consistent Cosmological Constant
[52] can be made in the region where the Euclidean dis-
tance between all the spins are large enough compared
to the length scale k (i.e. L > k), which implies very
tiny value of Cosmological Constant, A corresponding to
large N ~ O(10% — 10%) value of the spins and (c) flat
space effects are dominant in the region where the eu-
clidean distance between all the spins are small enough
compared to the length scale k (i.e. L < k).
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Supplementary Material

A. Computation of N spin Wightman functions

t +ie t
t
t+i(e-Tik) t-ink
t+i(e-21K)

FIG. 4. Schwinger Keldysh contour for computing N spin
Wightman Functions.

To compute the N spin Wightman functions of the
probe massless scalar field present in the external ther-
mal bath we use the 4D static De Sitter geometry of
our space-time as mentioned earlier. In this coordinate
system, the equation of motion of the massless external
probe scalar field can be written as:

[cosh‘l’(é)at (cosh3 ((i) 8t>

— ;]}

®(t,x,0,6) =0, (15
e (| 209 =0, (15)

where L? is the Laplacian operator, which is defined as:

71 { (sin2 )
sin? x LOx X 195
2

1 0 0 1
tmooe (Sm%a) i sinzaaqsz} » (16)

where Y is related to the radial coordinate r as, r = sin .
Further, the complete solution for the massless scalar
field is given by:

L=

o0

Ot r,0,0) = Z Dy (t,7,0, )
=0 m=—1
% dw o+l lem e iwt
_/ 27'(' QO(W Z Z l+ wzw)

F( l+3+zo¢w F( l+zaw )

iaw

,],.2 2
(1+%)
.2 —igw
(1+5)

T (l+3-&2-iozw) r (l+i2aw)

I (I+ 2) I (iaw)
I+ (l+3—|2-iocw) T+ (l+i2aw)

{ L (1+2)T(iaw)

Next, using this classical solution of the field equation
the quantum field by the following equation:

[e%) —+1

:Z Z [a1m @i (t, 7,0, 0)

=0 m=—1

d(t,r,0,0)

+al & (t,r,60,0). (18)

where the quantum states are defined through the fol-
lowing condition,

alm|\11> =0, ,+L.
(19)

Here ay,,, and a;rm represent the annihilation and creation

operator of the quantum thermal vacuum state |¥) which

is defined in the bath.

Now, we define the consecutive distance between any
two identical static spins localized at the coordinates

(r,0,¢) and (r, 9,,(1)) as:

where [ =0,---,00; m=—I,---

2
+ 12, (20)

Here L represents the euclidean distance between the any
two identical spins which is defined as,

Al
L =2rsin | —
rsm( ; )

where, Af is defined as, A0 =60 — 6.

Further, the N spin Wightman function for massless
probe scalar field can be expressed as:

(21)

Géé(x, x/)
—_——

Auto—Correlation

§ /
G"(z,x")
———

Cross—Correlation

<(i)(X5, T)(I)(X5’ T/)>,3

(®(xy, 7)B(x5,7)) 5
v 5777:15 aN

GOz, z')
——
Cross—Correlation

GN(.’L',(E ) = G""(m,x/)
—_———

Auto—Correlation

(for both even & odd).

} where the individual Wightman functions can be com-

(17)puted using the well known Schwinger Keldysh path in-

<(§(X5’ T)(I:’(Xm T/)>5

(D (3¢9, 7) (%, 7)) 5



tegral technique as: where 7 is the proper-time and the length scale k =

\/12/R represents the inverse of curvature in De Sitter

56
G*(x,2') = GM(w, ') static patch.
=Tr |pp b(xs, 7)d(xs,7')
(U|pp ®(xs,7)P(x5,7")|T) B. Computation of Hilbert transformation of N spin
1 1 Wightman functions
T T -y — (- —id
1 1 Now, using the Hilbert transformations one can easily
= T 1672k2 sinh? (B —ic)’ (23)fix the elements of the effective Hamiltonian matrix H i(f")
G‘;”( N Gm?( N 2k as appearing in the Lamb Shift part of the Hamiltonian:
T,x') = T, x
—T $ é O — e _ DY°6i; — 197 €0k — DY’ 03i035, 0 =1 (29)
= 1r |:pB ( ) (X5, )] g T iy T Dg"&'j _ iggneijk(SBk _ Dg"53i53g‘. §#n

= (Ulpp B(x,, 7)P(x5,7")|T) where we define:

1 1

2 .
= —— 66 _ M [4-(56) (88)( ]
An2 (29 — 20)% — A2% — e Dy 1 _IC (wo) + K (30)
S— 1 ey 0 = [ K (we)] . 31
167242 {sinh® (57 — ie) — 2—2 sin?(42)} ! 42 L
on _ M 5 (6
where we use the result, Sinh(% — ie) ~ Sinh(%) — Dy = 4 _IC( " (wo) + KO } (32)
i€ cosh(g). Here the thermal density matrix at the bath 2 ¢
is defined as: 0" = £ | KO () - /c<5ﬂ><—wo>} SNE )

where K" (+wy)¥(6,m = 1,--- , N) represents the Hilbert
transform of the Wightman functions which can be com-

pr =exp (—BHp) [Zp (25)

where Hp is the bath Hamiltonian of the massless scalar
field which is defined in Eqn. and Zp is the partition
function of the massless scalar field placed at the thermal
bath, defined as:

Z = Tt [exp (~BHp)] = (V| exp (~BHp) [¥). (26)

Here |¥) is the Bunch Davies thermal state of the bath
which is used to compute the trace operation to deter-
mine the individual entries of the Wightman functions
using Schwinger-Keldysh technique. However, this result
can be generalised to any non Bunch Davies state (for
example, « vacua). Additionally, we define the following
quantities:

puted as:

]C&; :|:(,U0 5 /

/CM(iwo) 271-27/ / dw

Here, P represents the principal part of the each inte-

W

W Fwyl — e2mkw’ (34)

T(w, L/2)

w F wo

w
1 — e2mkw : (35)

grals. For simplicity we also define frequency and eu-

clidean distance dependent a new function 7 (w, L/2) as:
sin(2kwsinh ™" (L/2k

T(w,L/2) = ( (L/2K)) . (36)

Lw\/1+ (L/2k)?

= /gooa = Va2 —r2, (27) Finally, substituting the these above mentioned expres-
PR sions and using Bethe regularisation technique we get the
AT = \/goo(t —t') =k ( - > , (28)  following simplified results:
J
/OO dw ¥ {(0sj — 03i03;) w — i€ijndarwo} 0 5=n
(1 —e2mw) (w+ wp) (w — wp) ’
gON _ ) _ LT P / P — 03403j) w — d€i103kw0 } T (W, L/2) (37)
Y = 4 1 — e 2™ ) (w4 wp) (w — wo)
1672
——————— cos(2kwo sinh " (L/2k)) = —Z.F(L, k, wo). 0#m
N (L/2k)2

where the function F(L, k,wp) is defined in Eqn. (111]).

(

Hence these matrix elements are fixed which will be



needed for the further computation of the spectroscopic
shifts from different possible entangled states for the N
spin system under consideration.

C. Entangled states for N =2 (even) and N =3
(odd) spins

For N = 2 case the sets of eigenstates (|g1),]e1)) and
(lg2), |e2)) are described by the following expressions:

For spin 1:
w
H, = 5 (a% cosal 4+ o3 cos Bt + o} cosvl)

Ground state =

B (cos al — icosﬁl)

lg1) = N1 1+ cosyt

1

= Eigenvalue Eg) = 7%’

Excited state =
1
(cosal! +icospt)
1+ cos "yl

= Eigenvalue E(Q) 5 (39)

le1) = N1

For spin 2 :

w

H, = 5 (0F cosa® + o5 cos 8% + 05 cosv?)
Ground state =

(cosa® —icos 3?)

lg2) = N2 1+ cos 2

1
= Eigenvalue E(Q) = —%, (40)
Excited state =

1
le2) = Na | (cosa? + icos %)

1+ cos 72

= Eigenvalue E( ) = (41)

2 )

where we define the normalisation factor for spin 1 and
2 as:

L\/1 + cosyl,

M= (12)
Ny = L\/1+cos’y2. (43)

V2

Consequently, the ground (|G)), excited (|E)), symmet-
ric (|S)) and the anti-symmetric (]A)) state of the two-
entangled spin system can be expressed by the following

expression:

Ground state : =

|G) =91) ®|g2)
B (cosal — i cos 61) (cos a? —icos 52)

1+ cos~y! 1+ cos~y?
(cos al — icosﬁl)
=N B 1+ cosy! )
(cos a? —icos ﬁz)

1+ cos~?
1

Excited state : =
[E) = ler) ® |ez)
1
(cos a? +icos 52)
1+ cos~?
(cosat +icos Bt) , ,
1+ cosy!
(cos al +icos 51) (cos a? +icos 52)
1+ cos~y! 1+ cos~?
Symmetric state : =

:N12

s

1
15) = ﬁ“eﬁ ® |g2) + |91) @ |ea)]

(cos al —icos ﬁl) (cosa — zcosﬁz)

1 +cosny 1 +cos7
(cosa —jcos 3t ) (cosa —|—zcosﬁ2)

:NL? 1+cos'y 1+cosv

V2 (cosa +icos B! ) (cosa —idcosf ) ’

1+ cos~y! 1+ cos~?
(cosoz1 +icosﬁl) (cosa2 —I—icosﬁg)

1+ cos~y! 1+ cos~?

Antisymmetric state : =

[A) = 7[|@1> ® |g2) — lg1) @ [e2)]

(cos al —icos 61) (cos a? —icos ,6’2)

1+ cos~y! B 1+ cos~y?
(cosa' —icosB) (cosa? + icos %)
:/\/1,2 1+ cosy?t 1+ cosv?
V2 (cosoz1 —|—icosﬁ1) (cosoz2 — icosﬁg) ’
1+ cosy! 1+ cos~y?
(cosa! +icosBt)  (cosa® +icos?)
1+ cos~! 1+ cos~y?

where we define the two spin normalisation factor A7 o
as:

1
Nia= NNy = 5\/(1 +cosy1)(1 + cosy2).  (48)

For N = 3 case for the third spin the sets of eigen-
states (|gs), |es)) are described by the following expres-
sions: sets of eigenstates (|g1),|e1)) and (]g2),|e2)) are

(46)

(47)



described by the following expressions:

For spin 1:

1

w
H, = 5 (o1 cosal 4+ o3 cos B + o} cos'yl)

Ground state =
(cos al —icos 51)

lg1) = N1 1+ cosy!
1

= Eigenvalue Eg) -

)

Excited state =
1
le1) = N1 | (cosat +icos )
1+ cosy!

= Eigenvalue ES) = %

For spin 2:

(49)

w
H = 5 (a% cos & 4 o3 cos B2 + o2 cos 72)

Ground state =
(cos a? —icos 52)

|92) = N 1+ cosv?
1

= Eigenvalue Eg) - Y

9

Excited state =

(51)

1
le2) = Na | (cosa? +icos 32)
1+ cos~?
= Eigenvalue Eg) =3 (52)
J
Ground state : =
1

|G) = 7“90 ® |g2) +191) @ |g3) + g2) @ |g3)] =

Excited state : =

|E) = 7[I61> ® lez) + ler) @ [es) + [ea) @ les)] =

g

b
2V3

For spin 3 :
Hy = % (ai" cos o 4 o cos 3% + o3 cos 73)
Ground state =
(cos a® —icos ﬁ3)

lgs) = N3 1+ cosy3
1
: B __ Y
= Eigenvalue E;’ = —5 (53)

Excited state =
1
les) = N3 | (cosa® +icos 33)
1+ cos~y3

= Eigenvalue Eg’) = % (54)

where we define the normalisation factor for spin 1, 2 and
3 as:

1
Nézﬁ\/l—&—cosvl. (55)
Consequently, the ground (|G)), excited (|E)), symmetric

(1S)) and the anti-symmetric (]A)) state of the three-
entangled spin system can be expressed as:

(cos(al)—lch(Bl))(cos(aQ)—tcos(BQ))+(cos(al)—zCos(Bl))(cos(afﬁ)—lcos(,{'}fﬁ))
cos(v1)+1/cos(72)+ s(y1)+1y/cos(¥3)+1
+(coh(a2)7tcos.(ﬁZ))(c:.;s(aS)fLco:.(ﬂ[*:))
cos(v2)+1y/cos(vy3)+1
Veos(~v2)+1(cos(al)—icos(B1l)) y/cos(~43)+1(cos(a2)—icos(B2))
cos(y1)+1 cos(y2)+1
vecos(~1)+1(cos(a3)—icos(B3))
cos(y3)+1
_ V/cos(¥3)F1(cos(al) —icos(B1))  y/cos(yD)+1(cos(a2)—icos(B2))
cos(v1)+1 cos(v2)+1
_ y/cos(v2)+1(cos(a3)—icos(B3))
cos(73)+1
cos(71)+1+/cos(72)F1++/cos(v1)F11/cos(73)+1-++/cos(72)+1+/cos(¥3)+1

cos(~v1)+1y/cos(v2)+1++/cos(y1)+1+/cos(v3)+1+4++/cos(v2)+1/cos(y3)+1
Vecos(~v3)+1(cos(al)+i coa(ﬁl)) Veos(y1)+1(cos(a2)+i cos(B2))
cos(y1)+1 cos(y2)+1
Vcos(~v2)+1(cos(a3)+icos(B83))
+ cos(v3)+1
vVeos(~v2)+1(cos(al)+i cos(Bl)) vVcos(v3)+1(cos(a2)+icos(82))
cos(y1)+1 cos(v2)+1
\/co<(71)+ (cos(ad)+1 cos(83))

os(y3
(cos(al)4i cos(ﬂl))(cob<02)+z cos(/:?Q)) . (cos(a1)+7.cob(ﬁl))(cos(a?)«l»tcob(ﬁ?))

cos(v1)+1/cos(72)+1 os(v1)+1/cos(73)+1
+(cos((12)+zcos(ﬁ?))(cos(a3)+zcos(ﬁS))
cos(~v2)+1y/cos(y3)+1




Symmetric state : =

1
9) = 7

\/Co>(72)+ (cos(al)—icos(B1))

V<os(78) F1(cos(al)—icos(B1))

[le1) ® |g2) + [g1) ® |e2) + |e1) @ |gs) + |g1) @ |es) + |e2) ® |g3) + |g2) ® |es)]

Veos(v D F1(cos(a2)—i cos(82))

_ (cos(al)—icos(B1))(cos(a2)+icos(B2))

(cos(al)—icos(B1))(cos(a3)+icos(B83))

cos(y1)+1 cos(y1)+1 cos(7v2)+1
\/Cos(wd)-%— (cos(a2)—icos(82))  \/eos(yDFI(cos(ad)—icos(83))  /cos(v2)+1(cos(ad)—icos(83))
cos(72)+1 cos(v3)+1 cos(73)+1

(cos(a2)—icos(B2))(cos(a3)+icos(B3))

cos(y1)+1y/cos(vy2)+1

cos(~v1)+1y/cos(y3)+1

cos(y2)+1y/cos(vy3)+1

10

1 +/cos(v1) + 1y/cos(v2) + 1 4+ /cos(v1) + 1\/cos(v3) + 1 + y/cos(~42) + 1/cos(~43) + 1
=— (58)
2\/6 _ (cos(al)+icos(B1))(cos(a2)—icos(B2))  (cos(al)+icos(B1))(cos(ald)—icos(B3)) (cos(x2)+icos(B2))(cos(a3)—icos(83))
cos(y1)+1y/cos(v2)+1 cos(~v1)+1y/cos(y3)+1 cos(y2)+1y/cos(vy3)+1
+/cos(~1) F 1/cos(72) + 1 + y/cos(71) + 1/cos(73) + 1 + /cos(~2) + 1 /cos(73) + 1
Veos(y2) F1(cos(al) i cos(81)) | Veos(3B)F1(cos(al)ticos(81)) | Veos(y1)F1(cos(a2)ticos(52))
cos(y1)+1 cos(y1)+1 cos(v2)+1
4 VEos(YB) T 1 (cos(a2) +icos(82)) | y/eos(yIIF1(cos(ad)icos(83)) | /os(v2)F1(cos(a8) +icos(B3))
+
cos(72)+1 cos(v3)+1 cos(7v3)+1
Antisymmetric state : =
1
|A) = 76[|€1> ® |g2) — |91) @ le2) + le1) @ [g3) — [g1) ® |e3) + |e2) ® |g3) — [g2) @ |es)]
cos(72)F+1 (Los(al)ftcob(ﬂl))+\/c05(73)+ (cos(al)—icos(B1)) /cos(y1)+1(cos(a2)—icos(52))
cos(v1)+1 cos(v1)+1 cos(~v2)+1
\/co:.(-yS)+ (cos(a2)—icos(B2))  /cos(y1l)+1(cos(aB)—icos(B3)) _ +/cos(v2)+1(cos(a3)—icos(B83))
cos(~v2)+1 cos(vy3)+1 cos(y3)+1
(cos(a1)—icos(B1))(cos(a?) +icos(82))  (cos(al)—icos(B1))(cos(aB)ticos(B3)) | (cos(a2)—icos(82))(cos(aB)+icos(83))
cos(y1)+1y/cos(v2)+1 cos(v1)+1y/cos(v3)+1 cos(v2)+1y/cos(v3)+1
1 +/cos(v1) + 1/cos(72) + 1 + /cos(~v1) + 1/cos(73) + L + /cos(~72) + L /cos(73) + 1
_ ; (59)
2\/6 _ (cos(al)+icos(B1))(cos(a2)—icos(82)) (cos(al)+icos(B1))(cos(ad)—icos(B83)) (cos(a2)+icos(82))(cos(ald)—icos(B3))
cos(v1)+1y/cos(7v2)+1 cos(v1)+1/cos(~73)+1 cos(v2)+1y/cos(v3)+1
—y/cos(71) F 1/cos(72) + 1 — J/cos(~1) + 1y/cos(73) + 1 — /cos(72) + 1 /cos(~3) + L
Vcos(72)F1 (cos(a1)+z cos(81)) | Vcos(73)F1 (cos(a1)+z cos(B1))  /eos(yD)+1(cos(a2)+icos(82))
cos(y D)+ cos(Y1)+ cos(72)+1
1/L05(73)+ (Loa(u2)+1co>(ﬁ2)) Veos(71)F1 (uos((x3)+1cos([33)) _ /cos(v2)+1(cos(aBd)+icos(B3))
cos(~v2)+1 cos(y3)+1 cos(v3)+1
[
D. Direction cosine dependent angular distribution A= cos g — icos By _ COSag —1Co8 B2 (66)
factors for N =2 (even) and N =3 (odd) spins 1+ cosvy 1+ cosys
- [ cos a; — 1¢os 31 cos ag + 1 cos Bo
For N — 2 h Jar distribution T B=|1 (67)
or = 2 case we have two angular distribution 1,DC i 1+ cosmy 1+ coss
and I'y,pe, which are defined as: & r cos ay + i cos By cos g — i cos fa (68)
B 14 cosvy 1+ cosys
Tipe = Q{ B?+(C? - D2 cos(al) cos( 2) - ) .
) ) ) ) | 2 D cosay —icosfBy  cosag + icos [ (69)
+ AT+ B+ C7 4 D7) COS( ) cos(8%) }, (60) 1+ cosm 1+ cosya
Ts. :Q{f)Q—i—AZ— cosoz1 cos(a? 1
2;DC ( ) cos(a) Q=—=V(1+4cosy1)(1+cosye) = NNy = N 2. (70)
12 2 2 2 1 2 2\/§
— (A2 + B>+ C? + D?) ) cos(B) cos(B )}, (61)

where we define few quantities important for rest of the

For N = 3 case we introduce few symbols to write the
angular dependence of the spectral shift

calculation:
_ 1
g |cosan— icosf1 . cosag — icos P (62) 0 = SV 1+ cosmi, (71)
o 1+ cosvy 1+ cosvys 1
B _1 cosaq — icos B cosa2+icosﬁ2] (63) Qy = §V1+COS’Y27 (72)
Tl [ —
L 1+ c0§ Y1 1+ cgs Y2 Qs = £ /T T cosa, (73)
C— cosay +icos By cosag —icos P (64) 2
| 1+ cosm 1+ cosvyz @12 = COS (1 COS (2, (74)
D= [cosay +icosBi  cosag +icos s (65) B12 = cos B cos Ba, (75)
B 1+ cosy 1+ cosys a1 = cosay —icos [, (76)




Gty = COS (g — 1.COS f3a, (77)
Q3 = cos g — i cos f33, (78)
a5 = cosay +icos f, (79)
G5 = cos ag + 7 cos f3a, (80)
a5 = cos aig + 1 cos B3 (81)

Therefore the angular dependence for the ground state
in this case can be written as:

é(gl + o+ G5+ ) (82)

Iipe =

where we define:

G1 =2( Qs + Q103 + Q203)

a1d3
62103

. dldQ dgdg
) _
[ ionz = Prz) (69192 + * 69293)
. . dQQl d?,QQ 05193
2
2oz + i) ( 20, | 205 | 20y )

10y a3y @
+ 2i(ona + if12) <0;1912 + O;‘?’Q; + O;Q;’ﬂ , (83)

L (adyt | adst dpdst
G2 = (691(22 s 69293>
) . aofly  azfly  ai3
2 _
[ ionz = if12) ( 2 | 205 | 20, )

. ) aifly  asfly a3
2 _
+ 2ia12 = i) ( 20, " 205 T 20, )
— 2i(a12 — 512)(29192 + 20103 + 29293)] , (84)

g o d]_*QQ _ dg*Ql _ dQ*Q3
57\ 20, 203 20

‘ ‘ @104 a103 a0

-2

{ i(on2 +1if12) (69192 60,05 + GQQQ3>
OZQQl OZ3QZ

. a1 )
+ 2i(a12 + Bi2) < 20, 20 21(213)

— 2i(0é12 — iﬂlg) (29192 + 29193 —|— 29293)] 5 (85)

PO P o T A
g‘*__( 20, | 205 20, >
a0 072023
6210 + 69293)
afly  aigld

. 3y,
— 2i(a12 + Pi2) ( 50, T 20, 22923>

— 2i(0[12 — iﬁlz) (29192 + 2Q193 + 29293)] . (86)

Qs
621 Q3

[—Qi(alg +if12) (

Therefore the angular dependence for the excited state
in this case can be written as:

1
I'ipec = 6(51 +E&+E+ &) (87)

11

where we define:
E1 =2(210 + Q1023 + Q2Q3)
[—21(0412 — B12) < Hiac

6213

~ ok~ ok
ap Q2

6219

o di”
t 5020 )
G0 s

n RN
20, 20, | 20,
a1 Qo

— 2i(a12 — iP12) (

. . dQ*Q?)
—2z(a12—1512)< 20, + 2Q3 - 200y ﬂ (&

o0
6213

o O
52:( 192

n Q203
691 QQ 692 QS

) ) ax* QY az®Qy  a" Qg
-2
[ 1(0‘12“5”)< 20, | 20; | 20, )

. . ar* Qe a3 dr" Qg
-2

Z(O‘12HB12)< 20, 20, 20, >

- 21'(0[12 — 612)(29102 + 29193 + 29293)] 5 (89)

Ea — 07192 OZng OZQQg
3720, 205 20,

a"ag” 041*0?3* ay”as”
2
{ ilasz = if2) (6(2 92 600 69293>

a *Q a1" )
= 2i(a12 + Prz2) ( 5932 + 5913>
— 27,(6%12 + ZB12 (2Q QQ + 20 Qg + 29293)] (90)

Yo Q Q-
54:<a2 1+a3 2+a1 3)

2Q 2Q

2 ﬂ 0[1 Ckz al*dg* + dQ*dg*
Z « 7
12 = i12) 6y 6010 | 6050
Oél QQ 013 Ql

(6%} Qg
— 2i(
(o2 + Pr2) ( 20, 205 20, )
— 21(0&12 + 1,812 29 Q2 +2Q QS + 29293)] (91)

Therefore the angular dependence for the Symmetric
state in this case can be written as:

1
Pape= G484 8+8)  (92)
where we define:
dl*dQ d1*d3 022*073
S1=|~ - - 20105 + 20103 + 20,0
' ( 6210 692103 60503 12801800 + 280803 + 28 3)
@ aifly  azly

P“alﬁ"ﬁm) (_ 202G 205

_ as€ds - a3 _ o3
20; 20, 20,

. . dQQl 02192 d193
~ i1z = if12) 20, 20, | 20
asfly  asly  aells
o0, T, T 292)

' a1*dy  dody  di*ds
i(onz + S12) ( 6010 62,03 60,05
+ 2010 + 204 Q5 + 20,Q3)]

(93)
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20, 20 2Q3
dg*Qg dl*Q3 dQ*Q?))

Sy = <— @'l ah  as’ where we define:

~ ok~ ~ %k ~ ~ % ~
Q1 Qg ay Qa3 Qo Q3
A =

20,0 + 20105 + 20,0
6010 | 6010 | a0, | o T S S 3)

2Q)3 i 391 2992 0 |: i(a Iy ) ( asf)y n a8y a3y
* v i3 —i(a2 12) | — -
[—i(au — B12) (a;Q Ly a;Q 2 4 a;’Q ! 2% | 20, 20,
. ~2* ~1* 3 asfly  a1fls  alls
as™ Qe a3 a3 ~3q + 50 + 50
tT o, T 20, T 3 ! 2
3~ 2 ! i(a iB12) < aofly  a1fdy a3
*a v o o — (o2 —iB12) | —
—i(alg —iﬁu) (_ 1 g Qg a3 Q2 Qg 20, 20, 20,
602102 602103 60205 G5 @3 s
+ 20105 4+ 20,03 + 29293) — 20 — 20 + 20, )

i(ors — iBia) C@idy @dst st
U000 60105 6000 —z‘(a12+612)<
+ 2010 + 20105 + 20,935)]  (94)

021*072 dg*dg 071*023
6 60:Q5 60,05
— 2010y — 20103 — 20,0Q5)] (98)
Ay = (_ ' | Ay dz' dzQy | A dz*QS)

20, 20, 205 205 20, 20,

(@ aQe a3y azQy s bl s - .
Sz = ( 50, + 50, + 50 + 50 + 20, + 50, (o — fua) R LG Qa3
- - - 205 20, 2Q)3
7( *B ) 70429170t192704391 o . .
112 12 292 291 293 . a3 QQ 4 (o) Qg 4 o Qg)

sy Qs dmg) 223 2 2h

~i(ons — iBra) _071*(3?2 _ a1*as _ as*as
12 12 60,05 69,05 600
— 2040 — 20105 — 20,Q5)

2Q3 2Qs 20

. . ai*a;  ayfaz  dptas
ilasz + i) ( 600 610 69250
+ 20199 + 201 Q3 + 20220Q3) — (a2 —if12) (

ajds” aas” n asds”
69192 69193 69293

) . ajay”  opazt dpaz”
— (a2 +1S12) < 6L 60,0 60 ) +~2§21(22 —f 2(21(23~+ QQQQ%)] , ) (99)
2040 + 20405 + 20,Q5)] (95)  As = ( 6;29921 N 0;19912 B c;gQQ; B 0;3(?32 6!219913 n 0;&)
|:—i(a12 ~ Buo) (_dQQl arfdy  azly
s <_ Gidy® st dady” ] ~292 ?Ql 203
6010 60103 6003 _ 038 anfls alﬂs)
+ 201 Q9 + 20,03 + 20,03) 203 202 20

. . dZQl 02192 del . . _dl*dQ _ dl*d3 N 072*023
I:_'L(Ol12 + 1612> (_ 292 B 291 B 293 Z(a12 * Zﬂ12) < 69192 60193 69293
d3QQ 07193 OZQQg) - 29192 - 29193 - 29293)

203 20 2Q9 - i(alz + iﬁﬁz) <

~ ~ % ~ o~ % ~ o~ %k
(658 Qa3 Q203

) ) dZ*Ql Ozl*QQ 073*Q1 69192 69193 69293
_ Z(Oé12 - 1512) < 20 2053 205 + 2015 4+ 20103 + 29293)] , (100)
@y @ a0 Ay = (_ Guda’ Myt DA o0 00 90 00 90,0 )
20, + 20, + 20, ) 4 60, 60,95 60,05 1342 1343 24.3
S~k S~k S =k o) a2 asf)
o g Qs QiQg —i(a12 + iB12) (_a2 1 134y il
2(0412 + ﬁ12) ( 69192 69293 6Q193 [ 20 20 293
+ 2019 + 20103 + 29293)] (96) . ai3€o i a;Q3 I o3
203 204 205
Therefore,the angular dependence for the Antisymmetric . . —a" Q1 a1"Qs a3t
state in this case can be written as: — i(onz — if12) 209 + 203 B 203
1 B az* Qs a* (s L a1 Qs
Is.pc = 6(“41 + Ag + Az + Ay) (97) 2023 20 20,

. arde”  dads®  apds”
ilaas + frz) (69192 60205 | 60103
20, Qs + 20105 + 20203))]. (101)




D. Spectroscopic shifts for N spins in static patch of
De Sitter space

To compute the spectroscopic shifts from the entangled
ground, excited, symmetric and antisymmetric states we

J
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need to compute the following expressions for N spin
system:

. N 3 N
9PF(L, k,wo)I'}
. t (om) ¢ n 0 _ » s W0)% 1,0
Ground state: J0EY = (G|Hps|G) = 55;1 ”z::lH (Gl(ng.09)(n].0M)|G) = — N ; (102)
N 3 N
OPF(L, k,wo)TN
Excited state: O0EN = (E|H.s|E) ——% > HY™(B|(nl.0?)(n].0")|E) = — ( e ) LB (103)
6,n=11,7=1 norm
. N 3 N
PF(L,k,wy)Ts
Symmetric state: J0EY = (S|Hps|S) = % Z Z H(&7 (S|(n?.o¢ )(n;’ oIS) = — ( e 0) 5D (104)
Sm=1i,5=1 norm
. N 3 N
PF(L,k,wo)l's.
Antisymmetric state: dE) = (A|Hpg|A) = % Z Z H(én (A|(n .o} )(n?a?)|A> = ( e ) 5PC - (105)

Here the overall normalisation factor is appearing from
the N entangled spin states, which is given by, Myorm =

ZZG|TLO’ (n].0])|G) =

(

1/v/NCy = \/2(N — 2)!/N!. For the computation of the
matrix elements in the above mentioned shifts we have
used the following results:

(95 1(n?.07)(n].0])lgg) @ |g,7)

> Syl

6’!] 11‘] 1 norm 577 15’77 _16<7] 6” nl/_15 <n//,LJ 1
Eri\:DC
b (106)
2 1,DCo
Nnorm
SN\( M M
S S EE AR = Y Y S S legleleglofoloDles) @ ey
sn=14,j=1 normén 1§ m'=1,8"<n' 8" /' =1,6" <n’ ,5=1
=Ipe

_ 1 FN
- N2 1,DC>
norm

N 3

> D (Slnf.of)(n].07)IS)
Sn=114,57=1
N

>

"n'=1,6"<n" & n''=1,6" <n/ ©,i=1

(107)

® (g5 + (g, | @ (eg N|(ng.00)(n].o D) (legn) @ |g,7) + lgsn) @ le,r))

~ 5 Laine
2 5 ’
2'A/norm

N
71—‘2 DC

(108)



N 3
Yo D (Alnfod)(n].a])A)

Sm=1i,j=1

14

= 2/\/2 Z Z Z Z ® (g5 | = (g, @ (e DI(ng.09) (0] .07 (les) @ |g,7) — g57) @ leyr))
HOT S n=1¢6" 0’ =1,6"<n’ 8" n" =1,6" <n’ 13=1
=Tipe
1 N

Here we found from our computation that the direction
cosine dependent factors which are coming as an out-
come of the highlighted contributions are exactly

same for ground and excited states, so that the shifts are
also appearing to be exactly same with same signature.
On the other hand, from the symmetric and antisymmet-
ric states we have found that he direction cosine depen-
dent highlighted factors are not same. Consequently, the
shifts are not also same for these two states. Now one
can fix the principal value of the Hilbert transformed
integral of the IV spin Wightman functions to be unity
(P = 1) for the sake of simplicity, as it just serves the pur-
pose of a overall constant scaling of the computed shifts
from all the entangled states for N spins. The explicit
expressions for these direction cosine dependent factors
are extremely complicated to write for any general large
value of the number of IV spins. For this reason we have
not presented these expressions explicitly in this paper.
However, for N = 2 and N = 3 spin systems we have
presented the results just in the previous section of this
supplementary material of this paper. Finally, one can
write the following expression for the ratio of the spec-
troscopic shifts with the corresponding direction cosine
dependent factor in a compact notation is derived as:

SEY _ SEY  SEY
21“{{736

Fé\;{DC Fé\;}Dc —F (L, wo, k)/Nnormv (110)
where Y represents the ground and the excited states
and S and A symmetric and antisymmetric states, re-
spectively. Here, FﬁYDC V1 =1,2,3 represent the direc-
tion cosine dependent angular factor which appears due
to the fact that we have considered any arbitrary orienta-
tion of N number of identical spins. This result explicitly
shows that the ratio of all these shifts with their corre-
sponding direction cosine dependent factor proportional
to a spectral function F(L,wy, k), given by,

F(L,k,wo) = E(L, k) cos (2wok sinh ™" (L/2k)) , (111)

where,

E(Lk) = p*/(87L\/T + (L/2k)?).

Here this spectral function is very important as it is the
only contribution in this computation which actually di-
rectly captures the contribution of the static patch of

(

the De Sitter space-time through the parameter k. In
this computation we are dealing with two crucial length
scale which are both appearing in the spectral function
F(L,k,wp), which are:

1. Euclidean distance L and

2. Parameter k which plays the role of inverse curva-
ture in this problem.

Depending on these two length scales to analyse the be-
haviour of this spectral function we have considered two
limiting situations, which are given by:

e Region L > k, which is very useful for our compu-
tation as it captures the effect of both the length
scale L and k. We have found that to determine
the observed value of the Cosmological Constant at
the present day in Planckian unit this region gives
very important contribution.

e Region L < k, which replicates the analogous ef-
fect of Minkowski flat space-time in the computa-
tion of spectral shifts. This limiting result may
not be very useful for our computation, but clearly
shows that exactly when we will loose all the infor-
mation of the static patch of the De Sitter space.
For this reason this region is also not useful at all to
determine the value of the observationally consis-
tent value of Cosmological Constant from the spec-
tral shifts. In the later section of this supplemen-
tary material it will be shown that if we start doing
the same computation of spectral shifts in exactly
Minkowski flat space-time then we will get the same
results of the spectral shifts that we have obtained
in this limiting region.

In different euclidean length scales, we have the follow-
ing approximated expressions for the above mentioned

function:
1’k
oz <o (2wokIn (L/2k)), L >>k
F(L, kywy) = (112)
SML cos (woL) . L <<k



E. Large N limit of spectroscopic shifts

In this section our objective is to derive the expression
for shifts at large IV limit. This large NV limit is very use-
ful to describe a realistic system in nature and usually
identified to be the thermodynamic limit. Stirling’s ap-
proximation is very useful to deal with factorials of very
large number. The prime reason of using Stirling’s ap-
proximation is to estimate a correct numerical value of
the factorial of very large number, provided small error
will appear in this computation. However, this is really

J

N\
Stirling’s formula : N!~+V2N7 ()
e

which finally leads to the following bound on N!, where
J

1
21 NN+3 -N —_—
V2 2 exp(—N) eXP(lQN—i—l

Later Gosper had introduced further modification in the
Stirling’s formula to get more accurate answer of the fac-

1
> < N!'<exp(l) NN+3 exp(—N) exp (12]\7) .
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useful as numerically dealing with the factorial of very
large number is extremely complicated job to perform
and in some cases completely impossible to perform. In
our computation this large number is explicitly appear-
ing in the normalization constant of the entangled states,
Naorm = 1/3/NCy = \/2(N — 2)I/N1, which we will fur-
ther analytically estimate using Stirling’s formula. Now,
according to this approximation one can write the expres-
sion for the factorial of a very large number (in our con-
text that number N correspond to the number of spins)
as:

1 1
1+ —+4+0 | — e 113
+ont ( N2) + ; (113)
small corrections
[
N is a positive integer for our system, as:
(114)

(

torial of a very large number, which is given by the fol-
lowing expression:

Stirling Gosper formula : N! ~

Gosper factor

Using this formula one can further evaluate the expres-
|

oo e ()

Here we want to point out few more revised version of the

1+

N\Y 1 1
7T<6> +12N+O<N2>+ (115)
small corrections
[
sion for (N — 2)! for N spin system as:
1 1
12(N—2)+O<(N—2)2>+ (116)

small corrections

(

Stirling’s formula, which are commonly used in various
contexts:



Stirling Burnside formula : N! ~

Stirling Ramanujan formula :

N/2

1

Stirling Windschitl formula : N! ~ V27N ( ) (N sinh N) ,
e

N\ 1 N
Stirling Nemes formula : N!~ V27N | — I+ -
(& 12N2 ~ 10

Further in the large N limit, using the Stirling-Gosper

MIOTIII - Large N -/\fl—mr\m ~ \/5 <1 -
E—

1
/NC,

Thus in the large N limit the spectral shifts can be ap-
proximately derived as :

SEY  0EY  GEY 2
2FNY — FNS — I‘NA = —]:(L,k’,LUO)/Nnorm . (122)
1;DC 2;,DC 3DC

From the above expressions derived in the large N limit
we get the following information:

e Contribution from the large N limit will only effect
the normalization factors appearing in the shifts,

e The prime contribution, which is comping from the
spectral function F(L,wy, k) is independent of the
number N. So it is expected that directly this con-

J

/
GMIH( )
%,_/
Auto—Correlation
nd !
Ghtin (@, 2')
———

§
GI\/T[’in(x7 xl)
N———
N (z,2') =
’ Gifin (2, 27)
N————

Cross—Correlation Auto—Correlation

where the individual Wightman functions can be com-

Cross—Correlation
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5) (117)

(f) <N3 +ineg 8N + 2i0>l/6 : (118)
(119)
(120)

(

approximation, the normalization factor can be written
as:

tribution will not be effected by the large N limiting
approximation in the factorial.

F. Flat space limit of spectroscopic shifts for N spins

Now, our objective is to the obtained results for spec-
troscopic shifts in the L << k limit with the result one
can derive in the context of the Minkowski flat space.
Considering the same physical set up, the two point ther-
mal correlation functions can be expressed in terms of the
N spin Wightman function for massless probe scalar field
can be expressed as:

(@ (x5, 7)®(x5,7"))5 (@ (x5, 7) (x40, 7)) 5

(@ (g, 7)®(x5,7)) 5 (@(xn, M)2(x, ™))5 / i

N (for both even & odd). (123)

puted using the well known Schwinger Keldysh path in-
tegral technique as:



oo

1 1 1
Gl(z/(lsin(w7x/) DY Z

m=—0o0
oo

S
GI\/?in(z7 1'/) =

(AT — i {2nkm + €})* 1672k

17

cosec? (Hm—) , (124)

2k

m=—0o0

where € is an infinitesimal quantity which is introduced
to deform the contour of the path integration. Using this

N N N
For general N : 6EY,Min o (SES,Min o 6EA,Min
: N - TN TN
2111;DC FQ;DC I—‘S;DC
Minkowski space calculation
TN N N
F 1 N : 5EY,Min o 5ES,Min o 75EA,Min
or large N : STN = TN =-7Tx
1;DC 2;DC 3;DC

Minkowski space calculation

where Y represents the ground and the excited states
and S and A symmetric and antisymmetric states, re-
spectively. Here, FffDC Vi = 1,2,3 represent the direc-
tion cosine dependent angular factor which appears due
to the fact that we have considered any arbitrary ori-
entation of N number of identical spins. Here all the
quantities in"are evaluated at the large N limit by using

1 1 1 1 e+i(Ar+ L)
_ - 2{ Floor [ — arg [ 2= T2
42 Z (AT — i {2nkm + ¢})* — L2 16m2kL [ { o (277 “E ( k ))

o (L (S107212)))

+i {cot (W) — cot (HZ(?]:_L)) H , (125)

(

Wightman function we can carry forward the similar cal-
culation for spectroscopic shifts in Minkowsi space, which
gives:

N N N
o L N2 o 5EY,Min o (SES,Min o (SEA,Min 126
__COS(wO )/ norm oTN - TN - T~ ’( )
1;,DC 2;DC 3;DC
Region LKk calculation
N N N
. I /\7\2 o OEY Min _ OEg Min . OE ) Min 12
= —cos (woL) /Noorm = o' N =~ TN =T n , (127)
1;DC 2;DC 3;DC

Region LKLk calculation

(

Stirling Gosper formula as mentioned earlier. Here it is
clearly observed that the shifts are independent of the
temperature of the thermal bath, T' = 1/27k and only
depends on direction cosines and the euclidean distance
L. Also we found that this result exactly matches with
the result obtained for the limiting case L < k.
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