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Abstract

We analyze the holographic entanglement entropy in a soliton background with Wilson

lines and derive a relation analogous to the first law of thermodynamics. The confine-

ment/deconfinement phase transition occurs due to the competition of two minimal sur-

faces. The entropic c function probes the confinement/deconfinement phase transition. It

is sensitive to the degrees of freedom (DOF) smaller than the size of a spatial circle. When

the Wilson line becomes large, the entropic c function becomes non-monotonic as a function

of the size and does not satisfy the usual c-theorem. We analyze the entanglement entropy

for a small subregion and the relation analogous to the first law of thermodynamics. For the

small amount of Wilson lines, the excited amount of the entanglement entropy decreases

from the ground state. It reflects that confinement decreases degrees of freedom. We finally

discuss the second order correction of the holographic entanglement entropy.
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1 Introduction

Entanglement entropy of a subsystem A counts the number of degrees of freedom of the

quantum entangled state in quantum field theories [1, 2]. In the condensed matter physics,

it is divergent at the critical point for quantum critical phase transitions and becomes an

order parameter [3]. It captures geometric discernment of field theories such as an area

law [4]: the entanglement entropy defined in a subregion looks like the black hole entropy.

The Ryu-Takayanagi formula proposes the holographic dual of the entanglement en-

tropy [5, 6, 7]. It is a powerful tool to analyze strongly coupled systems. It has been the

order parameter of the confinement/deconfinement phase transition in a confining gauge

theory [8, 9, 10, 11, 12, 13]. The phase transition occurs due to the competition of two min-

imal surfaces. After the phase transition, the entanglement entropy turns out to be trivial in

the confined phase at the infrared red limit. The holographic entanglement entropy (HEE)

also probes holographic superconductor phase transitions [14]-[20].

The entanglement entropy for excited states has been attracting attentions. The

entanglement entropy in the small region satisfies a relation similar to the first law of

thermodynamics [21]

Tent∆SA = ∆EA, (1)

where ∆EA is the increased amount of energy in the subregion and ∆SA is the increased

amount in excited states compared with the ground state of a CFT. Tent is called the en-

tanglement temperature. This relation has been investigated in many holographic models

dual to field theories at finite temperature [22, 23]. There are very extensive investiga-

tions [24][25][41][26][27][28][29][30][31][32] on the first law like relation of the holographic

entanglement entropy in various cases.

The second order correction to the holographic entanglement entropy has been stud-

ied by [33]. In the paper, authors rewrite the first law like relation of entanglement entropy

in terms of the Relative entropy [33]. They calculated the first law like relation of entan-

glement entropy with spherical entanglement surface up to second order and they also took

the deformation of entanglement surface into account. For spherical entanglement surface,

authors extend the first law relation to higher order and give insights to use boundary

information [34] to reconstruct the bulk geometry. However, it is very difficulty to study

the second order correction to the holographic entanglement entropy for generic entangle-

ment surface, for example, strip case [35] and so on. In Ref. [35], author have studied

the strip entanglement surface up to the second order corrections from gravitational back-
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ground without taking the shape deformation of the entanglement surface into account.

For higher derivative gravity, the dictionary of the holographic entanglement entropy has

to be changed in terms of [36]. In higher derivative gravity theories, the second order of

holographic entanglement entropy becomes very complicated. In the literature, authors

[37][38][39][40] have studied the similar first law like relation of the entanglement entropy

in various situations. Further, the corresponding holographic entanglement chemistry is

investigated by [41][42]. It would be interesting to apply to confining gauge theories with

Wilson lines. In an AdS soliton background, the boundary energy becomes negative and

comparable with the negative Casimir energy of a confining gauge theory. Adding Wilson

lines will vary the boundary energy.

In this paper, we analyze a phase transition as well as thermodynamic properties

of the holographic entanglement entropy in a solitonic background with the current and

the Wilson line. We will show that the Wilson line increases the energy and becomes

even positive. The vacuum expectation value of the current also excites the state. We

consider both small and large subregions of the entanglement entropy. We compute the

entanglement entropy and the entropic c-function. The latter becomes a nice probe of the

confinement/deconfinement phase transition. We will demonstrate that a phase transition

occurs for the Kaluza-Klein mass(mass of a Kaluza-Klein state)∼ 1/l analogous to [8].

We also analyze the contribution of the Wilson line and the current to the entropic c-

function [8]. We analyze the entanglement entropy at the small subregion. Computing

the boundary energy and increase amount of the entanglement entropy, we will obtain

an entanglement temperature. As a byproduct, we work out the generic formula for the

second order correction to the holographic entanglement entropy with contributions from

the deformation of the entangling surface. As a consistency check, we apply this formula

to a spherical entangling surface and the resulting second order corrections are the same

as ones presented in [33]. One can do the similar investigation in the strip case with some

numerical simulation. We leave the problem in the future work.

In section 2, we compute free energy of a QFT dual to a solitonic background with

the current. In section 3, we compute quasi-local stress tensor of the solitonic background.

In section 4, we compute the holographic entanglement entropy with a striped region. We

analyze the confinement/deconfinement phase transition. We also introduce the entropic

c-function to probe a phase transition. For the small subregion, we compute the relation

as in the first law of the thermodynamics. In section 5, we compute the second order

correction to the holographic entanglement entropy with spherical entanglement surface.

3



In appendices, we would like to list some relevant techniques and notations which are very

useful in our analysis.

2 Free energy

In this section, we compute free energy of a QFT with Wilson lines by using the gauge/gravity

correspondence. The gravitational action with the Maxwell field has U(1) gauge symmetry,

which corresponds to U(1) global symmetry in the field theory side. The action also includes

the Gibbons-Howing boundary term to have a correct variation principle as follows [51]:

S =
∫
dd+1x

√
−g
( 1

2κ2

(
R+

d(d− 1)

L2

)
− 1

4g2e
F 2
)

+
1

2κ2
∫
ddx
√
γ
(

2K − 2(d− 1)

L

)
, (2)

where γ is the induced metric at the AdS boundary, K = γµν∇µnν , and a boundary term

is added.

The Einstein equations of motion become

Rµν −
R

2
gµν −

d(d− 1)

2L2
gµν =

κ2

2g2e
(2FµσF

σ
ν −

1

2
gµνF

2). (3)

We also have the Maxwell equation.

The metric of a AdSd+1 soliton becomes a solution of EOM as follows:

ds2d+1 =
L2

z2

(
− dt2 +

dz2

fd(z)
+ fd(z)dφ

2 +

d−2∑
dxidxi

)
, (4)

where

fd(z) = 1−
(

1 +
ε1z

2
+a

2
φ

γ2

)( z
z+

)d
+
ε1z

2
+a

2
φ

γ2

( z
z+

)2(d−1)
, (5)

where aφ describes Wilson lines and ε1 = −1. Recall that ε1 = 1 in the Reissner Nord-

strom AdS black hole [51]. We have described γ2 = (d−1)g2eL2

(d−2)κ2 , which is a dimensionless

combination. The background gauge field becomes

Aφ = aφ

(
1−

( z
z+

)d−2)
, (6)

where z+ is regular at the tip of the soliton. The dual current is defined as Jφ = δS
δaφ

. The

signature of t does not affect the background gauge field unlike the Reissner Nordström

AdS black hole. Kaluza-Klein mass of the φ circle is obtained in an Euclidean signature

solution as follows:

M0 =
1

4πz+

(
d−

ε1(d− 2)z2+a
2
φ

γ2

)
> 0. (7)
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Because a Wilson loop
∮
A vanishes around the vanishing circle at z = z+, the gauge

connection is regular at the tip of the soliton. Note that M0 becomes non-zero for any real

aφ and the dimensionless ratio aφ/M0 can smoothly be taken to be zero.

We have two branches solving the above equation in terms of z+ as follows:

z+ =
−2πM0γ

2 ±
√

(2πM0γ2)2 + d(d− 2)ε1γ2a2φ

(d− 2)ε1a2φ
. (8)

The solution exists when |aφ| ≤ 2πM0γ√
d(d−2)

. Choosing the minus sign in the above formula,

z+ is divergent at small aφ limit. Since this background does not smoothly continue to the

AdSd+1 soliton, it is not relevant for our analysis.

The free energy of the dual field theory is derived from analyzing the Euclidean action

via an analytic continuation Z = e−βF = e−SE(g∗). The free energy becomes

F = − Ld−1

2κ2zd+

(
1 + ε1

z2+a
2
φ

γ2

)
Vd−1. (9)

Note that Ld−1/κ2 is a dimensionless parameter and scales as in a power of N .

One can show that the solution of the plus sign is always stabler than that of the

minus sign (d ≤ 9). We define a new parameter aφ = 2πM0γ√
d(d−2)

x (|x| ≤ 1). In d = 4 and 5,

especially, the difference is computed as

κ2

Ld−1Md
0

(F− − F+) =


64

27
π3
(

1− x2
) 3

2 ≥ 0 (d = 3),

π4
(

1− x2
) 3

2 ≥ 0 (d = 4).

(10)

Thus, we choose the plus sign in (8) in later study.

3 Boundary stress tensor

In this section we compute the stress tensor of boundary field theory dual to soliton back-

ground in two different ways. In the first method the Brown-York tensor with counter terms

is used, and in the second the stress tensor is read from FG expansion of metric near the

boundary. Let us begin with the first way. The soliton metric (4) with can be casted into

the form (contemplate d = 4 here)

ds2 = F (z)dz2 + hab(z)dx
adxb, xa = t, xi (11)

with

hij =
L2

z2
diag(−1, f(z), 1, 1). (12)
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The boundary stress tensor near the boundary denoted by ∂M (constant-z surface with

z → 0) is [43]

Tij =
1

κ2

(
Kij −Khij −

3

L
hij

)∣∣∣
z→0

, (13)

where Kij is the extrinsic curvature of the boundary ∂M . The first two terms are Brown-

York tensor terms, and the last term is a counter term added to yield finite answer near the

boundary. Substituting into the metric (4), the stress tensor can be derived. Let us focus

on the tt-component which is relevant in the computation of boundary energy

Ttt = −
Lāφ

2κ2z4+
z2 +O(z3), āφ = 1−

(z+aφ
γ

)2
. (14)

It follows that the boundary energy is then (eq.(12) in [43])

M =

∫
d2xdφ

√
σuaξbTab =

∫
d2xdφ

√
σutξtTtt = − V2

M0

L3āφ
2κ2z4+

(15)

where σij is the metric of a spacelike surface Σ in ∂M , uµ is the timelike unit vector normal

to Σ. ξµ is timelike Killing vector generating time translation isometry of the boundary.

Here
√
σ =

√
fL3

z3
, ut = z

L , ξ
t = 1,

∫
d2x =

∫
dx1dx2 = V2. Note that the energy is negative

when aφ < a0 = 2πM0γ
d−1 . When aφ = 0, the above negative energy was compared with the

negative Casimir energy of the gauge theory on S1 ×R2. The result has a good agreement

with[44]. For metric (4) in general dimensions, we have

hij =
L2

z2
diag(−1, f(z), 1, . . . , 1). (16)

The tt-component of the quasi-local stress tensor becomes

Ttt = −
Lāφ

2κ2zdh
zd−2 +O(zd−1). (17)

The boundary energy is computed as follows:

M =

∫
dd−2xdφ

√
σutξtTtt = −Vd−2

M0

Ld−1āφ

2κ2zd+
, (18)

where
√
σ =

√
fLd−1

zd−1 ,
∫
d2x = Vd−2. The energy in general dimensions is also negative when

aφ < a0 = 2πM0γ
d−1 . When aφ = a0, the energy vanishes.

Alternatively, we can obtain boundary stress tensor by resorting to FG expansion [45,

46]. The bulk metric in FG gauge can be written as

ds2 =
L2

z̃2
(dz̃2 + gµνdx

µdxν), gµν = ηµν + δgµν . (19)

Here ηµν is Minkowski flat metric, δgµν begins with terms of order z̃d near the boundary.
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Next transforming the soliton background (4) into the form (19)

ds2 =
L2

z2
(−dt2 +

dz2

h(z)
+ h(z)dφ2 +

d−2∑
dxidxi) =

L2

z̃2

(
dz̃2 + gµνdx

µdxν
)

(20)

with asymptotic expansion

h = 1− αzd + βz2d−2, α =
1

zd+
(1−

z2+a
2
φ

γ2
), β = − 1

z2d−4+

a2φ
γ2
. (21)

we obtain

gtt = −
(

1 + α
z̃d

d
+ β

z̃2d−2

2(1− d)

)
, (22)

gφφ = 1 + β
(2d− 3)z̃2d−2

2(d− 1)
+ α(−1 +

1

d
)z̃d, (23)

gij =
z̃2

z2
= δij

(
1 + α

z̃d

d
+ β

z̃2d−2

2(1− d)

)
. (24)

The general variation of metric ,to leading order, takes the form [33]

δgµν = az̃dT (0)
µν + z̃2d−2(bJµJν + cηµνJ

2), (25)

where T (0) is the boundary stress tensor, and the boundary current Jµ appears due to the

dual gauge field of the bulk (4) is turned on. Here a = 2κ2

dLd−1 as given in [33], then from

(25), we can read off all components of stress tensor

T
(0)
tt = −T (0)

xixi
= − α

ad
= −L

d−1

2κ2
1

zd+

(
1−

z2+a
2
φ

γ2

)
= −L

d−1

2κ2
1

zd+
ᾱφ, (26)

T
(0)
φφ =

α

a

(
− 1 +

1

d

)
=
dLd−1

2κ2
1

zd+

(
1−

z2+a
2
φ

γ2

)(
− 1 +

1

d

)
. (27)

Note the (26) is energy density of boundary field theory which is consistent with (18).

4 The holographic entanglement entropy

We compute the holographic entanglement entropy [5, 6] in this background. We divide

the boundary region into two regions. The first region is defined as −l/2 ≤ x1 ≤ l/2 and

0 ≤ xi ≤ Lx for the remaining xi, and wrapping φ direction. The second region is the

complement. The boundary of the Ryu-Takayanagi surface ends on the boundary of the

above region. The surface becomes a codimension 2 surface at a constant time slice with

the embedding scalar z = z(x1). The surface action becomes

A = Ld−2x

∫
dx1
(L
z

)d−1√
(z′)2 + fd(z). (28)

7



The Hamiltonian of A becomes a constant independent of x1. It leads to the following EOM

of the first order

z′ =

√
fd(z)

( fd(z)
fd(z∗)

z
2(d−1)
∗

z2(d−1)
− 1
)
, (29)

where z∗ is the turning point. z′ = 0 at z = z∗. By integrating z′, we require the boundary

condition

l = 2

∫ z∗

ε
dz

1√
fd

( fd(z)z2(d−1)∗

fd(z∗)z2(d−1)
− 1
) . (30)

The above formula relates l with z∗. Substituting (29), the surface action (28) becomes

A = 2Ld−2x

∫ z∗

ε
dz

Ld−1z2−2d√
z2−2d − fd(z∗)

fd(z)
z2−2d∗

, (31)

where ε is a small cutoff scale. The singular part of A becomes A ∼ 2Ld−2x Ld−1

(d− 2)εd−2
.

For pure AdS, the surface action (31) can be integrated over a region. Replacing z∗

with l, it becomes

A = 2Ld−2x Ld−1
( 1

(d− 2)εd−2
− 2d−2π

d−1
2

d− 2

(Γ( d
2(d−1))

Γ( 1
2(d−1))

)d−1 1

ld−2

)
. (32)

4.1 The confinement/deconfinement transition

According to [8, 9], the holographic entanglement entropy can capture the confinement/

deconfinement phase transition without black brane solutions. In this section, we analyze

the confinement/deconfinement transition applying it. We also examine the dependence on

the Wilson line along φ. The entanglement entropy counts the degrees of freedom of the

entangled states at the energy scale Λ ∼ 1/l. In confining gauge theories, the behavior of

the entanglement entropy will become trivial when l becomes large. That is, it corresponds

to the IR limit.

We have two choices of the minimal surface. The first one is a connected surface (31),

which corresponds to the deconfinement phase. The second one is a disconnected surface,

which goes straight from the AdS-soliton boundary to the bulk. Because the disconnected

surface does not depend on l, it corresponds to the confinement phase.

The connected surface (31) has the maximal size lmax of the interval, which depends

on the Wilson line aφ and the Kaluza-Klein mass M0. The size lM0 of the interval is

8



aϕ=ac

aϕ= 3 ac/2

aϕ=0

aϕ=5 I γ

0.0 0.2 0.4 0.6 0.8 1.0
z*

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
lM0

Figure 1: The size lM0 of the subregion with some fixed aφ as a function of z∗ in d = 3.

At the special value aφ = a0, the boundary energy is zero. In the figure a0 =
√

3ac/2

(ac = 2πM0γ/
√
d(d− 2)). The size l linearly grows for small z∗ and has the maximal value

lmax = 0.39, 0.27, 0.22, 0.17 in units of 1/M0 from the top to the bottom, respectively.

The figure shows that z∗ has two values.

aϕ=0

aϕ= 3 ac/2

aϕ=ac

aϕ=5 iγ

0.1 0.2 0.3 0.4 0.5
lM0

-15

-10

-5

0

ΔA

Figure 2: The entanglement entropy as a function of l in 3 dimensions. The larger surface

is unphysical between two connected surfaces of the same curve. When 0 < l < lc, the

connected surface is favored. When l > lc, the disconnected surface dominates the behavior.

The critical length is given by lc = 0.34, 0.24, 0.19, 0.15 in units of 1/M0 from the bottom

to the top, respectively. This implies that the phase transition occurs at the large Kaluza-

Klein mass M0 with increase of the Wilson line aφ.
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aϕ= 3 ac/2

aϕ=5iγ

0.1 0.2 0.3 0.4 0.5
lM0

-100

-80

-60

-40

-20

0
Afin

Figure 3: The finite part of the entanglement entropy is plotted as a function of lM0 in

3 dimensions. The curve of aφ = ac almost agrees with that of the pure AdS (32) when

0 < l < lc.

plotted as a function of z∗ in 3 dimensions in Fig. 1. The size lM0 has the maximal value

lmaxM0 ∼ 1. Explicitly, lmaxM0 = 0.39 when aφ = ac. This is larger than that of the

AdS5 soliton. When aφ becomes imaginary, the curve aφ = 5iγ leads to the result of the

geometric entropy [48]. The geometric entropy is related to the entanglement entropy via

the double Wick rotation [49, 50].

When l becomes large, the connected surface doesn’t exist anymore. Instead, the

disconnected surface dominates the behavior. It ends at the tip of the soliton (z = z+).

Adis = 2Ld−2x Ld−1
∫ z+

ε
dz

1

zd−1
=

2Ld−2x Ld−1

d− 2

( 1

εd−2
− 1

zd−2+

)
. (33)

The difference ∆A = A − Adis in 3 dimensions is plotted in Fig. 2. There are

two connected surfaces of the same curve. The larger one is unphysical. For large l, the

disconnected surface dominates the behavior. There is a first order phase transition at a

critical point l = lc. The critical length increases with increase of aφ in general.

To probe the confinement/deconfinement phase transition, we introduce the entropic

c function. It was proposed in [8]. The entropic c function is defined as

C(l) =
ld−1

V

dS

dl
, (34)

where V = Ld−2x . This is the generalization of the 2 dimensional entropic c function defined

in [52, 53]. The entropic c function shows degrees of freedom at an energy scale 1/l. For

the pure AdS, the c function becomes

C(l) = C0 ≡
Ld−12dπ

d+1
2

κ2

(Γ( d
2(d−1))

Γ( 1
2(d−1))

)d−1
. (35)
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lM0

C(l)

Figure 4: The entropic c function as a function of lM0 at small aφ. C(l) decreases with

increase of lM0. At the critical point l = lc, it jumps and becomes zero. This figure explains

the confinement/deconfinement phase transition. Finally, this figure implies that DOF of

entangling states are frozen in the confined phase.

aϕ=5 I γ

aϕ=0

aϕ=
2 2

3
ac

aϕ=ac

0.1 0.2 0.3 0.4 0.5 0.6
lM0

0.625

0.630

0.635

0.640

0.645

0.650
C(l)

Figure 5: The entropic c function as a function of lM0 with some fixed aφ. C(l) can

increase until the middle when aφ = ac. It decreases after passing the peak. The green line

is a critical line due to the analytical calculation. Lines above the green line increase at

first, and line below the green line decreases.
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The entropic c function is plotted as a function of lM0 in Fig. 4 and 5. When aφ is small or

an imaginary number, the entropic c function decreases with increase of lM0. The entropic

c function suddenly becomes 0 at the critical point l = lc. The figure 4 implies that there

are no DOF in the confined phase. In Fig. 5, the entropic c function increases until the

middle of the horizontal line. After passing the peak, it decreases.

There is a characteristic length of the system 1/M0 which is the radius of the spacial

cycle denoted by S1 in the soliton background, the entanglement entropy counts the degrees

of freedom (DOF) of the entangled states at the energy scale of the subsystem size l (E ∼

1/l) between the subsystem and the complement. Once the subsystem size l chosen here

is smaller than the characteristic length (E & M0), the entanglement entropy can detect

the effective degree of freedom encoding on the S1. While these DOF can not be detected

by entanglement entropy once the subsystem size is much larger than the characteristic

length (E �M0), the DOF will be smeared and the entanglement entropy can not identify

such kinds of DOF hidden in S1. In this sense, then entanglement c function in the small

subsystem can monotonically increase vs the length of the subsystem. However, once the

subsystem size is comparable with the characteristic length of the system (E ∼ M0), the

DOF can not be detectable which leads to the entropy c function monotonically decrease

with respect to the size of the subsystem. That is a one interpretation of the non-monotonic

behavior of entropy c function with respect to subsystem size. The other interpretation of

the non-monotonic behavior of the entropy c function is that the Lorentz symmetry on the

boundary of the AdS soliton background has been explicitly broken [53]. In this sense, the

monotonic behavior of the entropy c function can not be protected.

4.2 HEE in a small region (d = 3)

Since we are interested in a small subregion, we expand the action and l in terms of small z∗.

Near the AdS-soliton boundary neglecting the information of the infrared region, z∗ � z+.

The leading order contribution of the surface comes from the AdS boundary and is the zero

temperature entanglement entropy in the infinite volume. Since the background gauge field

and the Kaluza-Klein (KK) mass (or finite volume corrections) are small, one can use the

perturbation in terms of z∗: M0z∗ ∼M0l� 1 and aφl� 1.

We compute small deviations in d = 3. The size of the interval l is expanded in a

power series as follows:

l = 2z∗(E(−1)−K(−1)) +
āφz

4
∗
(
1
2E(−1)− 1

2K(−1)− π
8

)
z3+

12



+
2(āφ − 1)z5∗(E(−1)−K(−1))

5z4+
+
ā2φz

7
∗
(

5
16E(−1)− 5

21K(−1)− π
8

)
z6+

+
(āφ − 1)āφz

8
∗
(
1
2(E(−1)−K(−1))− 1

64π
)

z7+
. . . , (36)

where āφ = 1 + ε(
z+aφ
γ )2. E(k) and K(k) are elliptic integrals. The action is expanded in a

power series as follows:

A

LxL2
=

2

ε
+

2(K(−1)− E(−1))

z∗

+
āφz

2
∗
(
1
2E(−1)− 1

2K(−1)− π
4

)
z3+

+
z3∗ (āφ − 1) (E(−1)−K(−1))

z4+

+
ā2φz

5
∗
(

3
16E(−1)− 1

12K(−1)− π
8

)
z6+

+
z6∗ (āφ − 1) āφ (12E(−1)− 12K(−1)− π)

16z7+

−
3 (āφ − 1) 2z7∗ (E(−1)−K(−1))

20z8+
+
ā3φz

8
∗
(

7
64E(−1) + 1

48K(−1)− 3π
32

)
z9+

+ . . . (37)

Note that z+ = d
4πM0

+O(a2φ) when aφ �M0. The above expansion is in terms of the KK

mass when aφ = 0. For non-zero aφ, the above result also shows corrections of background

gauge fields.

HEE is written up to order l5 as follows:

κ2

2π
S = A =

2LxL
2

ε
− 8π3LxL

2

Γ
(
1
4

)4
l

+LxL
2
(
−

4Γ
(
5
4

)4
āφl

2

π2z3+
+

3Γ
(
1
4

)4
(āφ − 1) l3

80π3z4+

)
+O(l5). (38)

For very small l, the increased amount of HEE becomes

∆S = −
2LxL

2Γ(54)4āφl
2

κ2πz3+
, (39)

where ∆S becomes negative when aφ < 2πM0γ
d−1 . Because quarks can not be isolated in

confinement, confinement decreases degrees of freedom. The O(l3) contribution coming

from the real Wilson line aφ is also negative and similar to HEE of the Reissner Nordström

AdS black hole [38].

The energy difference in the dual field theory is defined as

∆E = T
(0)
tt Lxl = −

LxlL
2āφ

2κ2z3+
, (40)

where T
(0)
tt is defined in (26) and ∆E is proportional to the small volume lLx = l/M0.

The relation like the first law of thermodynamics is as follows:

∆E = Tent∆S, (41)
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where entanglement temperature [21, 23] is defined as

Tent =
π

16Γ(54)4l
. (42)

Entanglement temperature is inversely proportional to the length l. Its coefficient is known

to be universal in asymptotic AdS black holes [47]. However, it is different from AdS

solitons by a factor 2 because the increased amount of HEE ∆S generally includes Txixi

in a striped subregion [33]. Note that the expansion (36) and (37) can be computed until

higher orders. HEE becomes of O(ā2φl
5/z6+) at the next order.

In appendix, we computed entanglement temperature in other dimensions (d ≥ 5).

Both the increased amount of HEE become negative as in the energy difference when aφ <

2πM0γ
d−1 . That is, confinement decreases degrees of freedom.

Our results including 3-dimensional ones (d ≥ 3) are summarized as follows:

∆E

∆S
≡ Tent =

(d+ 1)Γ
(
d+1
2d−2

)
Γ
(
3d−2
2d−2

)2
√
πd2Γ

(
d
d−1

)
Γ
(
2d−1
2d−2

)2 1

l
. (43)

The above formula shows that the amount of information inside an interval l is proportional

to the energy inside the region surrounded by the entangling surface.

We also evaluate the entropic c function for small l. The entropic c function is

sensitive to the DOF at the energy scale E ∼ 1/l. Making use of (34), it becomes

C(l) = C0 +
2T

(0)
tt l

d−1

Tent
+O(ld). (44)

The energy density T
(0)
tt is negative when aφ < 2πM0γ

d−1 . Moreover, C(l) decreases with

increase of l (M0l . 1). On the other hand, the energy density T
(0)
tt becomes positive when

aφ >
2πM0γ
d−1 : Wilson lines are of the same order as the KK mass (aφl/γ ∼ M0l . 1). The

entropic c function C(l) increases with increase of l. Here it is not necessary that the c

theorem C ′(l) ≤ 0 has monotonic behavior in a theory with breaking Lorentz symmetry

explicitly. Note that results (43) and (44) do not apply to a 3 dimensional soliton with

Wilson lines.

5 Second order correction to HEE

The Fefferman-Graham (FG) expansion is convenient when we consider the asymptotic

expansion of the AdS geometric. In this section, we compute the second order correction

14



to HEE with a spherical entangling surface in terms of the FG expansion. A general metric

in FG gauge is

ds2 =
L2

z2
(
dz2 + gµν(z, xµ)dxµdxν

)
, (45)

where the AdS boundary is located at z ∼ 0. We approximate that the circle of the

φ direction is large enough (M0L � 1). Therefore, the boundary metric at z → 0 is

almost flat. Note that small M0 limit is consistent with assumptions of the asymptotic AdS

geometry M0L� 1 and aφL� 1. The metric is

gµν(z, xµ) = ηµν + δg(1)µν (z, xµ) + δg(2)µν (z, xµ). (46)

We assume that the metric is static. The bulk surface stays at a constant time slice. The

embedding scalar is z = z(xi) only. With the induced metric hij = L2

z2
(gij + ∂iz∂jz), the

area is then

A =

∫
dd−1x

√
h =

∫
dd−1x

Ld−1

zd−1

√
det gij

√
1 + gij∂iz∂jz (47)

To evaluate the leading order correction, we use the solution of the zero-th order z(0) =√
R2 −

∑d−1
i=1 (xi)2.

The first order is

δA(1) =
α

2

∫
dd−1x

√
det g

(0)
ij

(√
1 + g(0)ij∂iz(0)∂jz(0)tr(g

(0)−1δg(1))

+
δg(1)ij∂iz

(0)∂jz
(0)√

1 + g(0)ij∂iz(0)∂jz(0)

)
, (48)

where the term linear to ∂iz
(1) vanishes due to the EOM. The second order is

δA(2) = Ld−1
∫
dd−1x

√
det g

(0)
ij

{ 2α2g(0)ij∂iz
(2)∂jz

(0)

2
√

1 + g(0)ij∂iz(0)∂jz(0)
+

α2g(0)ij∂iz
(1)∂jz

(1)

2
√

1 + g(0)ij∂iz(0)∂jz(0)

−
(α

2
δg(1)ij∂iz

0∂jz
0
)( 2αg(0)ij∂iz

(1)∂jz
(0)

2(1 + g(0)ij∂iz(0)∂jz(0))
3
2

)
+
α2

2

( 2δg(1)ij∂iz
(1)∂jz

0√
1 + g(0)ij∂iz(0)∂jz(0)

)

+
α2

2

δg(2)ij∂iz
(0)∂jz

(0)√
1 + g(0)ij∂iz(0)∂jz(0)

− α2

8

(δg(1)ij∂iz
(0)∂jz

(0))2

(1 + g(0)ij∂iz(0)∂jz(0))
3
2

+
α

2
tr(g(0)−1δg(1))

( 2αg(0)ij∂iz
(1)∂jz

(0)

2
√

1 + g(0)ij∂iz(0)∂jz(0)
+
α

2

δg(1)ij∂iz
0∂jz

0√
1 + g(0)ij∂iz(0)∂jz(0)

)

+
(α2

2
tr(g(0)−1δg(2))− α2

4
tr(g(0)−1δg(1))2+

α2

8
tr2(g(0)−1δg(1))

)√
1 + g(0)ij∂iz(0)∂jz(0)

}
,

(49)

where the profile of the minimal surface is corrected due to the change of the bulk metric.

Since the remaining computation is lengthy, it is placed in appendix B.
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6 Discussion

We analyzed the confinement/deconfinement phase transition and thermodynamic proper-

ties of the holographic entanglement entropy in a soliton background with the current. The

phase transition occurs due to the competition of two minimal surfaces as analogous to [8].

The phase transition happens at the scale lM0 ∼ 1 (see Fig. 2). We also computed the

entropic c function C(l). It probes a phase transition and counts degrees of freedom at an

energy scale E ∼ 1/l. When E & M0, HEE can detect the effective degrees of freedom

of entangling states inside the circle. When aφ >
2πM0γ
d−1 , C(l) increases with increase of

l and doesn’t comply with the c theorem. When E . M0, it can not detect degrees of

freedom inside the circle and decrease. Note that the 2-dimensional entropic c function

Cd=2(= ldS/dl) satisfies dCd=2/dl ≤ 0 by applying the strong subadditivity to quantum

field theories [52, 53]. Since the entropic c function C(l) (d 6= 2) is a generalized version,

however, it does not need to satisfy the analogous condition.

We derived the relation as in the first law of thermodynamics. The entanglement

temperature is defined in (43) and becomes an inverse function of l. We find that both the

boundary energy and the increased amount of HEE become negative in the field theory side

when aφ <
2πM0γ
d−1 . That is, confinement decreases degrees of freedom. On the other hand,

aφ can increase degrees of freedom and makes both quantities positive.

Finally, the generic formula for the second order correction to the holographic entan-

glement entropy with contributions from the deformation of the entangling surface has been

given. We apply this formula to a spherical entangling surface and reproduce the resulting

second order corrections are the same as ones given in [33].
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A The first law in 5 and 6 dimensional QFTs

In this section, we analyze the deviation from the infinite volume and d = 5. l and the

action are expanded in a power series as follows:

l =
2
√
πΓ
(
13
8

)
z∗

5Γ
(
9
8

) +
āφz

6
∗

z5+

(√
πΓ
(
13
8

)
20Γ

(
9
8

) − √πΓ
(
5
4

)
12Γ

(
3
4

) )+
4
√
πΓ
(
13
8

)
(āφ − 1) z9∗

45Γ
(
9
8

)
z8+

+
z11∗ ā

2
φ

z10+

(
−
√
πΓ
(
5
4

)
16Γ

(
3
4

) +
9
√
πΓ
(
13
8

)
320Γ

(
9
8

) − 7
√
πΓ
(
15
8

)
704Γ

(
11
8

) )

+
z14∗ āφ(āφ − 1)

z13+

(
−
√
πΓ
(
5
4

)
84Γ

(
3
4

) +

√
πΓ
(
13
8

)
10Γ

(
9
8

) ) . . . , (50)

and

A

L3
xL

4
=

2

3ε3
−

2
√
πΓ
(
13
8

)
15Γ

(
9
8

)
z3∗

+

(√
πΓ
(
13
8

)
20Γ

(
9
8

) − √πΓ
(
5
4

)
4Γ
(
3
4

) ) z2∗ āφ
z5+

+

√
πΓ
(
13
8

)
5Γ
(
9
8

) z5∗(āφ − 1)

z8+
+

(√
πΓ
(
13
8

)
64Γ

(
9
8

) − √πΓ
(
5
4

)
16Γ

(
3
4

) − √πΓ
(
15
8

)
64Γ

(
11
8

) ) z7∗ ā
2
φ

z10+
. . . , (51)

The above expansion is able to be used to compute corrections in terms of Kaluza-Klein

mass and the background gauge field.

HEE is rewritten up to order l5 as follows:

κ2

2π
S = A =

2L3
xL

4

3ε3
−

16π2Γ
(
13
8

)4
L3
xL

4

1875Γ
(
9
8

)4
l3

+L3
xL

4
(
−

25Γ
(
9
8

)2
Γ
(
5
4

)
āφl

2

24
√
πΓ
(
3
4

)
Γ
(
13
8

)2
z5+

+
3125Γ

(
9
8

)4
(āφ − 1)l5

288π2Γ
(
13
8

)4
z8+

)
. . . (52)

The increased amount of HEE becomes

∆S = −
25
√
πΓ
(
9
8

)2
Γ
(
5
4

)
āφl

2L3
xL

4

12Γ
(
3
4

)
Γ
(
13
8

)2
κ2z5+

. (53)

∆S becomes negative when aφ <
2πM0γ
d−1 . Because quarks can not be isolated in confinement,

confinement decreases degrees of freedom of entangled states.

The increased amount of energy in the dual field theory is defined as

∆E = −
lL3
xL

4āφ
2κ2z5+

. (54)

Using the relation like the first law ∆E = Tent∆S, entanglement temperature is

defined as

Tent =
6Γ
(
3
4

)
Γ
(
13
8

)2
25
√
πΓ
(
9
8

)2
Γ
(
5
4

)
l
. (55)
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We analyze the deviation in 6 dimensions. The size l and the action are expanded in

a power series as follows:

l =

√
πΓ
(
8
5

)
z∗

3Γ
(
11
10

) +

(√
πΓ
(
8
5

)
30Γ

(
11
10

) − 2
√
πΓ
(
6
5

)
35Γ

(
7
10

) ) z7∗ āφ
z6+

+
5
√
πΓ
(
8
5

)
z11∗ (āφ − 1)

66Γ
(
11
10

)
z10+

+
z13∗ ā

2
φ

z12+

(
−
√
πΓ
(
6
5

)
25Γ

(
7
10

) +
11
√
πΓ
(
8
5

)
600Γ

(
11
10

) − 4
√
πΓ
(
9
5

)
325Γ

(
13
10

)) . . . , (56)

and

A

L4
xL

5
=

1

2ε4
−
√
πΓ
(
8
5

)
12Γ

(
11
10

)
z4∗

+
z2∗ āφ
z6+

(√
πΓ
(
8
5

)
30Γ

(
11
10

) − √πΓ
(
6
5

)
5Γ
(

7
10

) )

+
z8∗ ā

2
φ

z12+

(
−
√
πΓ
(
6
5

)
25Γ

(
7
10

) +

√
πΓ
(
8
5

)
100Γ

(
11
10

) − √πΓ
(
9
5

)
50Γ

(
13
10

))+

√
πΓ
(
8
5

)
z6∗ (āφ − 1)

6Γ
(
11
10

)
z10+

. . . , (57)

The above expansion can be used to compute corrections in terms of Kaluza-Klein mass

and the background gauge field.

HEE is rewritten up to order l6 as follows:

κ2

2π
S = A =

L4
xL

5

2ε4
−
π5/2Γ

(
8
5

)5
L4
xL

5

972Γ
(
11
10

)5
l4

+L4
xL

5
(
−

9Γ
(
11
10

)2
Γ
(
6
5

)
āφl

2

7
√
πΓ
(

7
10

)
Γ
(
8
5

)2
z6+

+
729Γ

(
11
10

)5
11π5/2Γ

(
8
5

)5 (āφ − 1)l6

z10+

)
. . . (58)

The increased amount of HEE becomes

∆S = −
18Γ

(
11
10

)2
Γ
(
6
5

)
āφl

2L4
xL

5

7
√
πΓ
(

7
10

)
Γ
(
8
5

)2
κ2z6+

. (59)

The increased amount of energy in the dual field theory is defined as

∆E = −
L4
xlL

5āφ
2κ2z6+

. (60)

Using the relation like the first law ∆E = Tent∆S, the entanglement temperature is

defined as

Tent =
7Γ
(

7
10

)
Γ
(
8
5

)2
36
√
πΓ
(
11
10

)2
Γ
(
6
5

)
l
. (61)
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B Second Order Correction in Spherical case

This appendix is a brief review of second order corrections in [33]. In section 5, we have not

considered the deformation of profile which is described by z(xi). We take the deformation

into account and we expand

z(xi) = z0(xi) + αz1(xi) + α2z2(xi) + ..., (62)

where z0 =
√
R2 −

∑d−1
i=1 x

2
i . Note that since we are only interested in quadratic corrections

to the entanglement entropy, z2 will not make contributions since it appears linearly in the

area functional. By performing the variation of the action, we will obtain the equation of

motion for spherical case.

From formula (49) we can divide the second order contribution to three category by

the power of z1. In the zero-th order of z1,

A2,0 =

∫
dd−1xLd−1zd0 [

α2

2
tr(g(0)−1δg(2))− α2

4
tr(g(0)−1δg(1))2 +

α2

8
tr2(g(0)−1δg(1))]

R

z0

=

∫
dd−1xLd−1zd0{

1

2
(ηij − xixj

R2
)(

1

2
TiαT

α
j −

ηij
8(d− 1)

TαβT
αβ)

− 1

4
(ηij − xixj

R2
)Tjk(η

km − xkxm

R2
)Tmi +

1

8
[(ηij − xixj

R2
)Tji]

2}R
z0

=

∫
dd−1xLd−1zd0R[

1

4
TiαT

αi − xixjTiαT
αj

4R2
− 1

16
TαβT

αβ +
r2

16R2(d− 1)
TαβT

αβ

− 1

4
TimT

mi +
xixjTmj Tmi

2R2
− 1

4R4
xixjTjkx

kxmTmi +
T 2

8
+

1

8R4
(xixjTij)

2 − TxixjTij
4R2

]

=

∫
dd−1xLd−1zd0R[− 1

16
(1− r2

R2(d− 1)
)(T 2

00 + TijT
ij) +

Ti0T
i0

8
(1 +

r2

(d− 1)R2
)

+
xixjTiαT

iα

4R2
+

1

8
(T 2 − T 2

x − 2TTx)],

(63)

where we have made use of
√

1 + g(0)ij∂iz(0)∂jz(0) = R/z(0) and

T ≡ Tii, Tx ≡ Tij
xixj

R2
. (64)

The power of z1 appears in the second index of A2,n. A2,0 does not contribute to EOM of

z1. Next is the power one of z1 as follows:

A2,1 =

∫
dd−1x

Ld−1

zd−10

[−(d− 1)Rz1Tr(g
−1
0 g1)

2z0
+
z0
R
g(1)ij∂iz1∂jz1 +

z0
2R

Tr(g−10 g1)g
ij
0 ∂iz0∂jz1]

=

∫
dd−1xLd−1[

z0
R
∂iz1x

j(T ij −
2xixkT jk
R2

+
xixkTklx

lxj

R4
) +

RTz1
2z0

− Rz1Tijx
ixj

2z0
]

=

∫
dd−1xLd−1

R

2z0
[T (z1 −

z20
R2

xi∂iz1) + Tij(
2z20x

i∂jz1
R2

− z1x
ixj

R2
− z20x

ixjxk∂kz1
R4

)].

(65)
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The power two of z1 becomes

A2,2 =

∫
dd−1x

Ld−1

zd−10

[
z0
2R

g(0)ij∂iz1∂jz1 +
d(d− 1)

2
(
z1
z0

)2
R

z0
+ (d− 1)

z1
z0

xi∂iz1
R

]

=

∫
dd−1x

Ld−1

zd0
[
d(d− 1)z21

2z20
+
z20(∂z1)

2

2R2
− z20(xi∂iz1)

2

2R4
+

(d− 1)

2

xi∂iz
2
1

R2
].

(66)

The EOM of z1 is obtained from the variation of A2,1 +A2,2.

δ(A2,1 +A2,2)

δz1
= Ld−1

∫
dd−1x{ R

2z0
(T − Tx) +

R

zd0
(
d(d− 1)z1

z20
+
d− 1

R2
xi∂iz1)}. (67)

and
δ(A2,1 +A2,2)

∂kz1
= Ld−1

∫
dd−1x{ R

2z0
(−Tz

2
0x

k

R2
+

2T ki z
2
0x

i

R2
− z20Tijx

ixjxk

R4
)

+
R

zd0(
z20∂

kz1
R2 − z20x

i∂iz1xk

R4 + (d− 1) z1x
k

R2 )
},

(68)

so that the equation of motion becomes

2− d
2R

z0T +
z0(−2− d)Tx

2R
+

(1− d)z1

R · zd0
+

(z20 − 2R2)Xk∂kz1

R3 · zd0
+
∂k∂

kz1
zd−2R

− 2(xk∂kz1(x
i∂iz0))

R3zd−10

− xixk∂i∂kz1

R3zd−20

=
2− d
2R

z0T +
z0(−2− d)Tx

2R
+

(1− d)z1

zd0R
− xk∂kz1

R3zd−20

+
∂k∂

kz1

Rzd−20

− xixk∂i∂kz1

R3 · zd−20

= 0,

(69)

where z0 =
√
R2 −

∑d−1
i x2i , T = T ii is constant and Tx = Ti,j

xixj

R2 . One can set T ii = T for

convenience. We just want to solve the z1.

We consider an ansatz for z1 of the form z1 = Tf(r) + Ti,jx
ixjf2(r). If we substitute

this ansatz, we will have following equation

T (d− 2)

r
f ′1 + Tf ′′1 −

T · r2

R2
f ′′1 + 2Tf2 +

4Txf
′
2R

2

r
+R2Txf

′′
2

+
(d− 2)R2Txf

′
2

r
− 2Txf2 − 4Txrf

′
2 − Txf ′′2 r2 =

zd0
2

[(d− 2)T + (d+ 2)Tx]

(70)

Comparing modes T and Tx , we have following equation

d2f2
du2

(R2 − u2)− df2
du

(d− 1)R2 + 4u2

u
− 2f2 =

ud(d+ 2)

2
, (71)

and
(R2 − u2)

R2

d2f1
du2

− (d− 1)

u

df1
du

+ 2f2 =
ud(d− 2)

2
. (72)

We have let u = z0 , this two equation have following solution

f1 = − R2zd

2(d+ 1)
, f2 = − zd

2(d+ 1)
. (73)

The final answer is to coincide with the second order correction [33] to HEE for spherical

entanglement surface.
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