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We analyze the holographic entanglement entropy in a soliton background with a background gauge
field and derive a relation analogous to the first law of thermodynamics. The confinement/deconfinement
phase transition occurs due to the competition of two minimal surfaces. The entropic C function probes
the confinement/deconfinement phase transition. It is sensitive to the degrees of freedom smaller than the
size of a spatial circle. When the background gauge field becomes large, the entropic C function becomes
nonmonotonic as a function of the size and does not satisfy the usual c-theorem. We analyze the
entanglement entropy for a small subregion and the relation analogous to the first law of thermodynamics.
For the small amount of a background gauge field, the excited amount of the entanglement entropy
decreases from the ground state. It reflects that confinement decreases degrees of freedom. We finally
discuss the second order correction of the holographic entanglement entropy.
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I. INTRODUCTION

The entanglement entropy of a subsystem becomes a
nonlocal quantity in contrast to correlation functions in
quantum field theories [1,2]. The entanglement entropy is
divergent at the critical point for quantum critical phase
transitions and becomes an order parameter [3]. It captures
geometric discernment of field theories such as an area
law [4]: the entanglement entropy defined in a subregion
depends on properties of a shared boundary and looks like
the black hole entropy.
The Ryu-Takayanagi formula proposes the holographic

dual of the entanglement entropy [5–7], which is the area of
minimal surfaces. It is a powerful tool to analyze strongly
coupled systems. It has been the order parameter of the
confinement/deconfinement phase transition in a confining
gauge theory [8–13].1 The phase transition occurs due to
the competition of two minimal surfaces [8]. After the

phase transition (large length), the entanglement entropy
turns out to be trivial in the confined phase at the infrared
red limit. That is, there is no correlation with energy smaller
than the mass gap. The phase transition is analogous to
the finite temperature deconfinement transition: the finite
part of the entanglement entropy becomes OðN2Þ at small
length and Oð1Þ at large length. The phase transition in
gravity duals was connected to those of large Nc confining
field theories [9] and pure SUð3Þ Yang-Mills theory [21].
Consistent gravity dual of a confining theory is expected to
exhibit this phase transition.
The entanglement entropy for excited states has been

attracting attention. The entanglement entropy in the small
region satisfies a relation similar to the first law of
thermodynamics [22],

TentΔSA ¼ ΔEA; ð1Þ

where ΔEA is the increased amount of energy in the
subregion and ΔSA is the increased amount in excited states
compared with the ground state of a CFT. Tent is called the
entanglement temperature. This relation has been investi-
gated in many holographic models dual to field theories at
finite temperature [23,24]. There are very extensive inves-
tigations [25–34] on the first law like relation of the
holographic entanglement entropy in various cases.
The second order correction to the holographic entan-

glement entropy has been studied by [35]. In the paper,
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1The holographic entanglement entropy (HEE) also probes
holographic superconductor phase transitions [14–20].
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authors rewrite the first law like relation of entanglement
entropy in terms of the relative entropy [35]. They
calculated the first law like relation of entanglement
entropy with spherical entanglement surface up to second
order and they also took the deformation of entanglement
surface into account. For spherical entanglement surface,
authors extend the first law relation to higher order and give
insights to use boundary information [36] to reconstruct the
bulk geometry. However, it is very difficult to study the
second order correction to the holographic entanglement
entropy for generic entanglement surface, for example,
strip case [37] and so on. In Ref. [37], the authors have
studied the strip entanglement surface up to the second
order corrections from gravitational background without
taking the shape deformation of the entanglement surface
into account. For higher derivative gravity, the dictionary
of the holographic entanglement entropy has to be changed
in terms of [38]. In higher derivative gravity theories,
the second order of holographic entanglement entropy
becomes very complicated. In the literature, the authors
[39–42] have studied the similar first law like relation of
the entanglement entropy in various situations. Further, the
corresponding holographic entanglement chemistry is
investigated in [34,43].
A motivation of this paper is to apply entanglement

entropy to quantum field theory (QFT) with negative
energy. We consider d ¼ 4 N ¼ 4 SYM theory on S1

[44]. Fermions become massive at tree level due to the
antiperiodic boundary conditions along the compactified
direction. Scalars and the S1 component of the gauge field
acquire a mass via quantum corrections. Thus, the IR
behavior is dominated by that of d ¼ 3 pure Yang-Mills
theory, a feature of which is confinement and a mass gap
[45]. In terms of AdS=CFT, the IR region is cut off in the
AdS soliton and the mass gap arises. Computing the mass
of the AdS soliton using a standard method gives the
negative answer. The mass at the conformal boundary of
metrics asymptotic to the soliton is related via the
AdS=CFT correspondence to the negative Casimir energy
of a gauge theory on the boundary S1 × R1;2. The stability
considerations imply that the soliton must be the lowest
energy state with the given asymptotic conditions.
This negative energy arises due to the antiperiodic

boundary condition on fermions, which breaks supersym-
metry. Moreover, [8] shows that a twisted AdS soliton is
dual to the Yang-Mills theory on S1 × R1;2 with twisted
boundary conditions. The Casimir energy is also negative
except for the extremal limit, where energy vanishes. Thus,
Casimir energy depends on boundary conditions. It will be
interesting to pursue it.
Another motivation is the computation of degrees of

freedom from the entanglement entropy (e.g., the coeffi-
cient of the A-type anomaly for a spherical entangling
surface in CFT [46,47]). One can define the renormalized
entanglement entropy from the entanglement entropy with

a spherical entangling surface [48]. It can give the central
charge in CFT and show the number of the degrees of
freedom. Since the central charge with the strip subsystem
is not clear yet, however, it will be interesting to study it.
The finite part of the entanglement entropy with the strip
subsystem does not depend on the cutoff. It is proportional
to the number of fields or the effective number of colors
[e.g., N2 of d ¼ 4 N ¼ 4 SUðNÞ SYM and N3 of d ¼ 6
(2,0) SCFT [6]]. The authors of [8] proposed the entropic C
function from the entanglement entropy with the strip
subsystem. The entropic C function does not depend on
the cutoff and will measure degrees of freedom in general
cases. The entropic C function decreases at large length in
QFT dual to an AdS soliton and becomes a nice probe of
the deconfinement phase transition.
In this paper, we switch on a background gauge field

along an S1 direction. A gauge transformation gives Wilson
lines along S1, which should change the boundary con-
dition. Analyzing the gravity dual, we show that energy at
the strong coupling increases with increase of the back-
ground gauge field and becomes even positive. Recall that
the gauge field source is for the (conserved) current in the
gauge/gravity correspondence. The vacuum expectation
value (VEV) of the S1 component of the current becomes
nonzero hJϕi ≠ 0. This VEV hJϕi also excites the state.
We analyze a phase transition as well as thermodynamic

properties of the holographic entanglement entropy in a
solitonic background with a background gauge field. We
consider both small and large subregions of the entangle-
ment entropy. We compute the entanglement entropy and
the entropic C function. The latter becomes a nice probe of
the confinement/deconfinement phase transition. We will
demonstrate that a phase transition occurs for the Kaluza-
Klein mass (mass of a Kaluza-Klein state)∼1=l analogous
to [8]. We also analyze the contribution of a background
gauge field and the VEV hJϕi to the entropic C function
[8]. We analyze the entanglement entropy at the small
subregion. Computing the boundary energy and increasing
amount of the entanglement entropy, we will obtain an
entanglement temperature. As a by-product, we work out
the generic formula for the second order correction to the
holographic entanglement entropy with contributions from
the deformation of the entangling surface. As a consistency
check, we apply this formula to a spherical entangling
surface and the resulting second order corrections are the
same as ones presented in [35]. One can do a similar
investigation in the strip case with some numerical simu-
lation. We leave the problem to future work.
In Sec. II, we compute free energy of a QFT dual to a

solitonic background with a background gauge field. In
Sec. III, we compute the quasilocal stress tensor of the
solitonic background. In Sec. IV, we compute the holo-
graphic entanglement entropy with a striped region. We
analyze the confinement/deconfinement phase transition.
We also introduce the entropic C function to probe a phase
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transition. For the small subregion, we compute the relation
as in the first law of the thermodynamics. In Appendix A,
we analyze the first law of HEE in higher dimension. In
Appendix B, we compute the second order correction to the
holographic entanglement entropy with spherical entangle-
ment surface.

II. FREE ENERGY

In this section, we compute free energy of a QFT with a
constant gauge field by using the gauge/gravity correspon-
dence. The gravitational action with the Maxwell field has
Uð1Þ gauge symmetry, which corresponds to Uð1Þ global
symmetry in the field theory side. The action also includes
the Gibbons-Howing boundary term to have a correct
variation principle as follows [49]:

S ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
1

2κ2

�
Rþ dðd − 1Þ

L2

�
−

1

4g2e
F2

�

þ 1

2κ2

Z
ddx

ffiffiffi
h

p �
2K −

2ðd − 1Þ
L

�
; ð2Þ

where h is the induced metric at the AdS boundary,
K ¼ hμν∇μnν, and a boundary term is added.
The Einstein equations of motion and the Maxwell

equation become

Rμν −
R
2
gμν −

dðd − 1Þ
2L2

gμν ¼
κ2

2g2e

�
2FμσFν

σ −
1

2
gμνF2

�
;

∇μFμν ¼ 0: ð3Þ
The AdS soliton is a solution of equations of motion

(EOM), which is the double Wick rotation of the AdS black
hole. It describes the ground state of a QFT with the
antiperiodic boundary condition on fermions. The follow-
ing metric of an AdSdþ1 soliton also becomes a solution of
EOM as follows:

ds2dþ1 ¼
L2

z2

�
−dt2 þ dz2

fdðzÞ
þ fdðzÞdϕ2 þ

Xd−2
i¼1

dxidxi
�
;

ð4Þ
where

fdðzÞ ¼ 1 −
�
1þ ϵ1z2þa2ϕ

γ2

��
z
zþ

�
d
þ ϵ1z2þa2ϕ

γ2

�
z
zþ

�
2ðd−1Þ

;

ð5Þ

where aϕ describes a constant gauge field and ϵ1 ¼ −1.2

We have described γ2 ¼ ðd−1Þg2eL2

ðd−2Þκ2 , which is a dimensionless

combination. The IR region z > zþ is cut off in (5).
The background gauge field becomes

Aϕ ¼ aϕ

�
1 −

�
z
zþ

�
d−2
�
; ð6Þ

where Aϕ is regular at the tip of the soliton. The dual current
is defined as Jϕ ¼ δS

δaϕ
. The signature of t does not affect

the background gauge field unlike the Reissner-Nordström
AdS black hole. Because a Wilson loop

H
A vanishes

around the vanishing circle at z ¼ zþ, the gauge connection
is regular at the tip of the soliton. The Kaluza-Klein mass of
the ϕ circle is obtained in a Euclidean signature solution as
follows:

M0 ¼
1

4πzþ

�
d −

ϵ1ðd − 2Þz2þa2ϕ
γ2

�
> 0: ð7Þ

Note that M0 becomes nonzero for any real aϕ and the
dimensionless ratio aϕ=M0 can smoothly be taken to
be zero.
We have two branches solving the above equation in

terms of zþ as follows:

zþ ¼
−2πM0γ

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πM0γ

2Þ2 þ dðd − 2Þϵ1γ2a2ϕ
q

ðd − 2Þϵ1a2ϕ
: ð8Þ

The solution exists when jaϕj ≤ 2πM0γffiffiffiffiffiffiffiffiffiffiffi
dðd−2Þ

p . Choosing the

minus sign in the above formula, zþ is divergent at the
small aϕ limit. Since this background does not smoothly
continue to the AdSdþ1 soliton, it is not relevant for our
analysis.
The free energy of the dual field theory is derived from

analyzing the Euclidean action via an analytic continuation
Z ¼ e−βF ¼ e−SEðg�Þ. The free energy becomes

F ¼ −
Ld−1

2κ2zdþ

�
1þ ϵ1

z2þa2ϕ
γ2

�
Vd−1: ð9Þ

Note that Ld−1=κ2 is a dimensionless parameter and scales
as in a power of N.
One can show that the solution of the plus sign is always

stabler than that of the minus sign in (8) (d ≤ 9). We define
a new parameter aϕ ¼ 2πM0γffiffiffiffiffiffiffiffiffiffiffi

dðd−2Þ
p x (jxj ≤ 1). In d ¼ 3 and 4,

especially, the difference is computed as

κ2

Ld−1Md
0

ðF− − FþÞ ¼
� 64

27
π3ð1 − x2Þ32 ≥ 0 ðd ¼ 3Þ;

π4ð1 − x2Þ32 ≥ 0 ðd ¼ 4Þ:
ð10Þ

Thus, we choose the plus sign in (8) in later study.

2Note that the double Wick rotation t ¼ iϕ and ϕ ¼ it
with ϵ1 ¼ 1 corresponds to the Reissner-Nordström AdS black
hole [49].
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III. BOUNDARY STRESS TENSOR

In this section we compute the stress tensor of boundary
field theory dual to soliton background in two different
ways. In the first method the Brown-York tensor with
counterterms is used, and in the second the stress tensor
is read from Fefferman-Graham (FG) expansion of metric
near the boundary. Let us begin with the first way. The
soliton metric (4) can be cast into the form (contemplate
d ¼ 4 here)

ds2 ¼ FðzÞdz2 þ habðzÞdxadxb; xa ¼ t;ϕ; xi ð11Þ

with

hij ¼
L2

z2
diagð−1; fðzÞ; 1; 1Þ: ð12Þ

The boundary stress tensor near the boundary denoted by
∂M (constant-z surface with z → 0) is [50]

Tij ¼
1

κ2

�
Kij − Khij −

3

L
hij

�����
z→0

; ð13Þ

where Kij is the extrinsic curvature of the boundary ∂M.
The first two terms are Brown-York tensor terms, and the
last term is a counterterm added to yield a finite answer near
the boundary. Substituting into the metric (4), the stress
tensor can be derived. Let us focus on the tt component
which is relevant in the computation of boundary energy

Ttt¼−
Lāϕ
2κ2z4þ

z2þOðz3Þ; āϕ¼1−
�
zþaϕ
γ

�
2

: ð14Þ

It follows that the boundary energy is then [Eq. (12) in [50]]

M ¼
Z

d2xdϕ
ffiffiffi
σ

p
uaξbTab

¼
Z

d2xdϕ
ffiffiffi
σ

p
utξtTtt ¼ −

V2

M0

L3āϕ
2κ2z4þ

; ð15Þ

where σij is the metric of a spacelike surface Σ in ∂M, uμ is
the timelike unit vector normal to Σ. ξμ is a timelike Killing
vector generating time translation isometry of the boundary.

Here
ffiffiffi
σ

p ¼
ffiffi
f

p
L3

z3 , ut ¼ z
L, ξ

t ¼ 1,
R
d2x ¼ R dx1dx2 ¼ V2.

Note that the energy is negative when aϕ < a0 ¼ 2πM0γ
d−1 .

When aϕ ¼ 0, the above negative energy was compared
with the negative Casimir energy of the gauge theory on
S1 × R2. The result has a good agreement with [51]. When
aϕ > a0, energy becomes even positive.
For metric (4) in general dimensions, we have

hij ¼
L2

z2
diagð−1; fðzÞ; 1;…; 1Þ: ð16Þ

The tt component of the quasilocal stress tensor becomes

Ttt ¼ −
Lāϕ
2κ2zdh

zd−2 þOðzd−1Þ: ð17Þ

The boundary energy is computed as follows:

M ¼
Z

dd−2xdϕ
ffiffiffi
σ

p
utξtTtt ¼ −

Vd−2

M0

Ld−1āϕ
2κ2zdþ

; ð18Þ

where
ffiffiffi
σ

p ¼
ffiffi
f

p
Ld−1

zd−1
,
R
d2x ¼ Vd−2. The energy in general

dimensions is also negative when aϕ < a0 ¼ 2πM0γ
d−1 .

The energy vanishes at aϕ ¼ a0. When aϕ > a0, energy
becomes positive.
Alternatively, we can obtain boundary stress tensor by

resorting to FG expansion [52,53]. The bulk metric in FG
gauge can be written as

ds2 ¼ L2

z̃2
ðdz̃2 þ gμνdxμdxνÞ; gμν ¼ ημν þ δgμν: ð19Þ

Here ημν is Minkowski flat metric, δgμν begins with terms of
order z̃d near the boundary.
Next transforming the soliton background (4) into the

form (19)

ds2 ¼ L2

z2

�
−dt2 þ dz2

fdðzÞ
þ fdðzÞdϕ2 þ

Xd−2
dxidxi

�

¼ L2

z̃2
ðdz̃2 þ gμνdxμdxνÞ ð20Þ

with asymptotic expansion

fd ¼ 1 − αzd þ βz2d−2; α ¼ 1

zdþ

�
1 −

z2þa2ϕ
γ2

�
;

β ¼ −
1

z2d−4þ

a2ϕ
γ2

; ð21Þ

we obtain

gtt ¼ −
�
1þ α

z̃d

d
þ β

z̃2d−2

2ð1 − dÞ
�
; ð22Þ

gϕϕ ¼ 1þ β
ð2d − 3Þz̃2d−2

2ðd − 1Þ þ α

�
−1þ 1

d

�
z̃d; ð23Þ

gij ¼
z̃2

z2
¼ δij

�
1þ α

z̃d

d
þ β

z̃2d−2

2ð1 − dÞ
�
: ð24Þ

The general variation of metric, to leading order, takes the
form [35]
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δgμν ¼ az̃dTð0Þ
μν þ z̃2d−2ðbJμJν þ cημνJ2Þ; ð25Þ

where Tð0Þ is the boundary stress tensor, and the boundary
current Jμ appears because the dual gauge field of the bulk

(4) is turned on. Here a ¼ 2κ2

dLd−1 as given in [35], then from
(25), we can read off the component of stress tensor:

Tð0Þ
tt ¼ −Tð0Þ

xixi ¼ −
α

ad
¼ −

Ld−1

2κ2
1

zdþ

�
1 −

z2þa2ϕ
γ2

�

¼ −
Ld−1

2κ2
1

zdþ
ᾱϕ; ð26Þ

Tð0Þ
ϕϕ ¼ α

a

�
−1þ 1

d

�
¼ dLd−1

2κ2
1

zdþ

�
1 −

z2þa2ϕ
γ2

��
−1þ 1

d

�
:

ð27Þ

Note that (26) is energy density of boundary field theory
which is consistent with (18).

IV. THE HOLOGRAPHIC ENTANGLEMENT
ENTROPY

We compute the holographic entanglement entropy [5,6]
in the soliton background (4). We divide the boundary
region into two regions. The first region is defined as
−l=2 ≤ x1 ≤ l=2 and 0 ≤ xi ≤ Lx for the remaining xi, and
wrapping ϕ direction. The second region is the comple-
ment. The boundary of the Ryu-Takayanagi surface ends on
the boundary of the above region. The surface becomes a
codimension 2 surface at a constant time slice with the
embedding scalar z ¼ zðx1Þ. The surface action becomes

A ¼ Ld−2
x

Z
dx1
�
L
z

�
d−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz0Þ2 þ fdðzÞ
q

: ð28Þ

The Hamiltonian of A becomes a constant independent of
x1. It leads to the following EOM of the first order,

z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fdðzÞ

�
fdðzÞ
fdðz�Þ

z2ðd−1Þ�
z2ðd−1Þ

− 1

�s
; ð29Þ

where z� is the turning point. z0 ¼ 0 at z ¼ z�. By
integrating z0, we require the boundary condition

l ¼ 2

Z
z�

ϵ
dz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd
�

fdðzÞz2ðd−1Þ�
fdðz�Þz2ðd−1Þ − 1

�r : ð30Þ

The above formula relates l with z�. Substituting (29), the
surface action (28) becomes

A ¼ 2Ld−2
x

Z
z�

ϵ
dz

Ld−1z2−2dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2−2d − fdðz�Þ

fdðzÞ z
2−2d�

q ; ð31Þ

where ϵ is a small cutoff scale. The singular part of A

becomes A ∼ 2Ld−2
x Ld−1

ðd−2Þϵd−2 .
For pure AdS, the surface action (31) can be integrated

over a region. Replacing z� with l, it becomes

A ¼ 2Ld−2
x Ld−1

�
1

ðd − 2Þϵd−2

−
2d−2π

d−1
2

d − 2

�Γð d
2ðd−1ÞÞ

Γð 1
2ðd−1ÞÞ

�
d−1 1

ld−2

�
: ð32Þ

A. The confinement/deconfinement transition

According to [8,9], the holographic entanglement
entropy can capture the confinement/deconfinement phase
transition without black brane solutions. In this section, we
analyze the confinement/deconfinement transition applying
it to a solitonic background with a background gauge field
along the ϕ direction. The entanglement entropy counts the
degrees of freedom of the entangled states at the energy
scale Λ ∼ 1=l. When l is large, it probes the IR limit.
We have two choices of the minimal surface. The first

one is a connected surface (31), which corresponds to the
deconfinement phase. The second one is a disconnected
surface, which goes straight from the AdS-soliton boundary
to the bulk. Because the disconnected surface does not
depend on l, it corresponds to the confinement phase.
The connected surface (31) has the maximal size lmax of

the interval, which depends on the background gauge field
aϕ and the Kaluza-Klein mass M0. The size lM0 of the
interval is plotted as a function of z� in three dimensions in
Fig. 1. The size lM0 has the maximal value lmaxM0 ∼ 1.
Explicitly, lmaxM0 ¼ 0.39 when aϕ ¼ acð¼ 2πM0γ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd − 2Þp Þ. This is larger than that of the AdS5 soliton.

When aϕ becomes imaginary, the curve aϕ ¼ 5iγ leads
to the result of the geometric entropy [54]. The geometric
entropy is related to the entanglement entropy via the
double Wick rotation [55,56].
When l becomes large, the connected surface does not

exist anymore. Instead, the disconnected surface dominates
the behavior. It ends at the tip of the soliton (z ¼ zþ):

Adis ¼ 2Ld−2
x Ld−1

Z
zþ

ϵ
dz

1

zd−1

¼ 2Ld−2
x Ld−1

d − 2

�
1

ϵd−2
−

1

zd−2þ

�
: ð33Þ

The difference ΔA ¼ A − Adis in three dimensions is
plotted in Fig. 2. There are two connected surfaces of the
same curve. The larger one is unphysical because the lower
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entropy is a dominant contribution to the path integral. For
large l, the disconnected surface dominates the behavior.
There is a first order phase transition at a critical point
l ¼ lc. The critical length increases with increase of aϕ in
general.
Because two surfaces correspond to confinement and

deconfinement phases, this phase transition can be inter-
preted as the confinement/deconfinement transition. The
disconnected surface (33) corresponds to the confinement
phase. Because the disconnected surface does not depend
on the size l, there is no correlation at a large distance due to
the mass gap M0.
To probe the confinement/deconfinement phase transi-

tion, we introduce the entropic C function. It was proposed
in [8]. The entropic C function is defined as

CðlÞ ¼ ld−1

V
dS
dl

; ð34Þ

where V ¼ Ld−2
x . This is the generalization of the two-

dimensional entropic C function defined in [57,58]. The
entropic C function shows degrees of freedom at an energy
scale 1=l. For the pure AdS, the C function becomes

CðlÞ ¼ C0 ≡ Ld−12dπ
dþ1
2

κ2

 
Γð d

2ðd−1ÞÞ
Γð 1

2ðd−1ÞÞ

!
d−1

: ð35Þ

The entropic C function is plotted as a function of lM0 in
Figs. 3 and 4. When aϕ is small or an imaginary number,
the entropic C function decreases with increase of lM0. The
entropic C function suddenly becomes 0 at the critical point
l ¼ lc. Figure 3 implies that there are no d.o.f. in the
confined phase. In Fig. 4 (left), the entropic C function
increases until the middle of the horizontal line. After
passing the peak, it decreases. Figure 4 (right) shows a
competitive behavior between ld−1 and ∂S=∂l. The product
of these becomes CðlÞ, which becomes nonmonotonic.
This figure also shows S00ðlÞ ≤ 0 (concave S), which agrees
with the strong subadditivity applied to the entanglement
entropy [59,60].
There is a characteristic length of the system 1=M0

which is the radius of the spatial cycle denoted by S1 in
the soliton background; the entanglement entropy counts
the degrees of freedom (d.o.f.) of the entangled states
at the energy scale of the subsystem size l (E ∼ 1=l)
between the subsystem and the complement. Once the
subsystem size l chosen here is smaller than the character-
istic length (E≳M0), the entanglement entropy can detect
the effective degree of freedom encoding on the S1. While
these d.o.f. cannot be detected by entanglement entropy

FIG. 2. The entanglement entropy as a function of l in three
dimensions. The larger surface is unphysical between two
connected surfaces of the same curve. When 0 < l < lc, the
connected surface is favored. When l > lc, the disconnected
surface dominates the behavior. The critical length is given by
lc ¼ 0.34, 0.24, 0.19, 0.15 in units of 1=M0 from the bottom to
the top, respectively. This implies that the phase transition occurs
at the large Kaluza-Klein mass M0 with increase of the back-
ground gauge field aϕ.

FIG. 3. The entropic C function as a function of lM0 at small
aϕ. CðlÞ decreases with increase of lM0. At the critical point
l ¼ lc, it jumps and becomes zero. This figure explains the
confinement/deconfinement phase transition. Finally, this figure
implies that degrees of freedom (d.o.f.) of entangling states are
frozen in the confined phase.

FIG. 1. The size lM0 of the subregion with some fixed aϕ
as a function of z� in d ¼ 3. At the special value aϕ ¼ a0,

the boundary energy is zero. In the figure a0 ¼
ffiffiffi
3

p
ac=2

[ac ¼ 2πM0γ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd − 2Þp

]. The size l linearly grows for small
z� and has the maximal value lmax ¼ 0.39, 0.27, 0.22, 0.17 in
units of 1=M0 from the top to the bottom, respectively. The figure
shows that z� has two values.
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once the subsystem size is much larger than the character-
istic length (E ≪ M0), the d.o.f. will be smeared and the
entanglement entropy cannot identify such kinds of d.o.f.
hidden in S1. In this sense, then entanglement C function
in the small subsystem can monotonically increase vs the
length of the subsystem. However, once the subsystem
size is comparable with the characteristic length of the
system (E ∼M0), the d.o.f. cannot be detectable which
leads to the entropy C function monotonically decreasing
with respect to the size of the subsystem. That is a one
interpretation of the nonmonotonic behavior of entropy C
function with respect to subsystem size. The other
interpretation of the nonmonotonic behavior of the
entropy C function is that the Lorentz symmetry on the
boundary of the AdS soliton background has been
explicitly broken [58]. In this sense, the monotonic
behavior of the entropy C function cannot be protected.
Here we generalize the entropy C function for the
spherical entanglement surface to the one for strip case.
In terms of [48,61], the monotonic behavior of entropy C
function for the spherical entanglement surface can be
valid. In general, the entropy C function depends on the
shape of the entanglement surface. One can express the

entropy C function CðΣÞ
4 as follows:

CðΣÞ
4 ¼ 2a4

Z
Σ
d2σ

ffiffiffi
h

p
E2 þ c4

Z
Σ
d2σ

ffiffiffi
h

p
I2; ð36Þ

where the Σ is entanglement surface, a4, c4 are asso-
ciated with the four-dimensional a type and c type

anomaly respectively, and E2 is Euler density and I2
is built from the Weyl tensor. In particular, we have
studied the strip entanglement surface and the entropy C
function may not fully correspond to the central charge
of the boundary field theory, since the entropy C
function for the strip contains the two types of anoma-
lies, such as a type and c type anomalies. In this sense,
the entropy C function in our case is the combination of
a and c. For the spherical case, the I2 is vanishing. That
means the spherical case is a good choice to test the
monotonical behavior of the entropy C function. Due to
this reason, one cannot make sure whether the central
charge behaves indeed monotonically with respect to the
variation of the scale. We would like to investigate this
issue in the near future.

B. HEE in a small region (d = 3)

Since we are interested in a small subregion, we expand
the action and l in terms of small z�. Near the AdS-soliton
boundary neglecting the information of the infrared
region, z� ≪ zþ. The leading order contribution of the
surface comes from the AdS boundary and is the zero
temperature entanglement entropy in the infinite volume.
Since the background gauge field and the Kaluza-Klein
(KK) mass (or finite volume corrections) are small, one
can use the perturbation in terms of z�: M0z� ∼M0l ≪ 1
and aϕl ≪ 1.
We compute small deviations in d ¼ 3. The size of the

interval l is expanded in a power series as follows:

l ¼ 2z�ðEð−1Þ − Kð−1ÞÞ þ
āϕz4�

�
1
2
Eð−1Þ − 1

2
Kð−1Þ − π

8

�
z3þ

þ 2ðāϕ − 1Þz5�ðEð−1Þ − Kð−1ÞÞ
5z4þ

þ
ā2ϕz

7�
�

5
16
Eð−1Þ − 5

21
Kð−1Þ − π

8

�
z6þ

þ
ðāϕ − 1Þāϕz8�

�
1
2
ðEð−1Þ − Kð−1ÞÞ − 1

64
π
�

z7þ
� � � ; ð37Þ

FIG. 4. Left: the entropic C function as a function of lM0 with some fixed aϕ. CðlÞ can increase until the middle when aϕ ¼ ac. It
decreases after passing the peak. The green line is a critical line due to the analytical calculation (45). Lines above the green line increase
at first, and the line below the green line decreases. Right: the competition between ld−1 and ∂S=∂l terms when aϕ ¼ ac and M0 ¼ 1.
Compared with the left figure, this explains a nonmonotonic behavior of CðlÞ.
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where āϕ ¼ 1þ ϵðzþaϕγ Þ2. EðkÞ and KðkÞ are elliptic integrals. The action is expanded in a power series as follows:

A
LxL2

¼ 2

ϵ
þ 2ðKð−1Þ − Eð−1ÞÞ

z�
þ āϕz2�ð12Eð−1Þ − 1

2
Kð−1Þ − π

4
Þ

z3þ
þ z3�ðāϕ − 1ÞðEð−1Þ − Kð−1ÞÞ

z4þ

þ ā2ϕz
5�ð 316Eð−1Þ − 1

12
Kð−1Þ − π

8
Þ

z6þ
þ z6�ðāϕ − 1Þāϕð12Eð−1Þ − 12Kð−1Þ − πÞ

16z7þ

−
3ðāϕ − 1Þ2z7�ðEð−1Þ − Kð−1ÞÞ

20z8þ
þ ā3ϕz

8�ð 764Eð−1Þ þ 1
48
Kð−1Þ − 3π

32
Þ

z9þ
þ � � � : ð38Þ

Note that zþ ¼ d
4πM0

þOða2ϕÞ when aϕ ≪ M0. The above
expansion is in terms of the KK mass when aϕ ¼ 0. For
nonzero aϕ, the above result also shows corrections of
background gauge fields.
HEE is written up to order l5 as follows:

κ2

2π
S ¼ A ¼ 2LxL2

ϵ
−
8π3LxL2

Γð1
4
Þ4l

þ LxL2

�
−
4Γð5

4
Þ4āϕl2

π2z3þ
þ 3Γð1

4
Þ4ðāϕ − 1Þl3
80π3z4þ

�
þOðl5Þ: ð39Þ

For very small l, the increased amount of HEE becomes

ΔS ¼ −
8LxL2Γð5

4
Þ4āϕl2

κ2πz3þ
; ð40Þ

where ΔS becomes negative when aϕ < 2πM0γ
d−1 . Because

quarks cannot be isolated in confinement, confinement
decreases degrees of freedom. The Oðl3Þ contribution
coming from the real gauge field aϕ is also negative and
similar to HEE of the Reissner-Nordström AdS black
hole [40].
The energy difference in the dual field theory is

defined as

ΔE ¼ Tð0Þ
tt Lxl ¼ −

LxlL2āϕ
2κ2z3þ

; ð41Þ

where Tð0Þ
tt is defined in (26) and ΔE is proportional to the

small volume lLx ¼ l=M0.
The relation like the first law of thermodynamics is as

follows:

ΔE ¼ TentΔS; ð42Þ

where entanglement temperature [22,24] is defined as

Tent ¼
π

16Γð5
4
Þ4l : ð43Þ

Entanglement temperature is inversely proportional to
the length l. Its coefficient is known to be universal in
asymptotic AdS black holes ΔS ¼ ΔE=ð2TentÞ [62].
However, it is different from AdS solitons by a factor
because the increased amount of HEE ΔS generally
includes Txixi in a striped subregion [35]: An AdS soliton
(aϕ ¼ 0) gives negative energy density of boundary field

theory Tð0Þ
tt ¼ Ti

ð0Þi ¼ −Tð0Þ
xixi < 0 unlike AdS black holes.

The increased amount of HEE can be computed from
Eq. (3.78) of [35]. Note that the expansion (37) and (38)
can be computed until higher orders. HEE becomes of
Oðā2ϕl5=z6þÞ at the next order.
In Appendix A, we computed entanglement temperature

in other dimensions (d ≥ 5). The increased amount of
HEE become negative as in the energy difference when
aϕ < 2πM0γ

d−1 . That is, confinement decreases degrees of
freedom.
Our results including three-dimensional ones (d ≥ 3) are

summarized as follows:

ΔE
ΔS

≡ Tent ¼
ðdþ 1ÞΓð dþ1

2d−2ÞΓð3d−22d−2Þ2ffiffiffi
π

p
d2Γð d

d−1ÞΓð2d−12d−2Þ2
1

l
: ð44Þ

Entanglement temperature is different from that of AdS
black holes by a factor 2 again. The above formula shows
that the amount of information inside an interval l is
proportional to the energy inside the region surrounded
by the entangling surface.
We also evaluate the entropic C function for small l. The

entropic C function is sensitive to the d.o.f. at the energy
scale E ∼ 1=l. Making use of (34), it becomes

CðlÞ ¼ C0 þ
2Tð0Þ

tt ld−1

Tent
þOðqldÞ: ð45Þ

The energy density Tð0Þ
tt is negative when aϕ < 2πM0γ

d−1 .
Moreover, CðlÞ decreases with increase of l (M0l≲ 1).

On the other hand, the energy density Tð0Þ
tt becomes positive

when aϕ > 2πM0γ
d−1 : a constant gauge field is of the same

order as the KK mass (aϕl=γ ∼M0l≲ 1). The entropic C
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function CðlÞ increases with increase of l. Here it is not
necessary that the c-theorem c0ðlÞ ≤ 0 has monotonic
behavior in a theory with breaking Lorentz symmetry
explicitly. Note that results (44) and (45) do not apply
to a three-dimensional soliton with a background gauge
field.

V. DISCUSSION

We analyzed the confinement/deconfinement phase
transition and thermodynamic properties of the holographic
entanglement entropy in a soliton background with a
background gauge field. The phase transition occurs at
the scale lM0 ∼ 1 due to the competition of two minimal
surfaces as analogous to [8] (see Fig. 2). Our result implies
that the dual QFT is a confining theory and there is no
correlation at a large distance due to the mass gap and
confinement.
We also computed the entropic C function CðlÞ, which

probed a phase transition. The entropic C function for
small aϕ decreases with increase of l as usual for the
Zamolodchikov C function in two-dimensional theories.
However, a large amount of aϕ makes behaviors non-
trivial. When E≳M0, HEE can detect the effective
degrees of freedom of entangling states inside the circle.
When aϕ > 2πM0γ

d−1 , CðlÞ increases with increase of l and
does not comply with the c-theorem. When E≲M0, it
cannot detect effective degrees of freedom inside the circle
and decrease. Although CðlÞ is nonmonotonic, it still
always satisfies the condition Cðl → 0Þ ≥ Cðl → ∞Þ.
Note that the two-dimensional entropic C function
Cd¼2ð¼ ldS=dlÞ satisfies dCd¼2=dl ≤ 0 by applying the
strong subadditivity to quantum field theories [57,58].
However, the coefficient is ld−1 instead of l in the
definition of the general entropic C function CðlÞ
(d ≠ 2) and makes CðlÞ independent of l at small l.
Thus, it does not need to satisfy the analogous condition.
See also the nonmonotonic behaviors of renormalized
entanglement entropy in the 4d example such as the steep
domain wall [48] (see also [63]).
We also pointed out the two possible reasons to

understand the nonmonotonic behavior of entropic C
function for the strip case. The first one is entanglement
entropy can count the effective degrees of freedom up to
some specific energy scale. The other is entropic C
function depends on the shape of the entanglement
surface and the entropic C function contains a type
and c type anomaly contributions respectively. It is
interesting to study their effects on the entropic C
function in the future.
We derived the relation as in the first law of thermo-

dynamics. The entanglement temperature is defined in
(44) and becomes an inverse function of l. We find that
both the boundary energy and the increased amount of
HEE become negative in the field theory side when

aϕ < 2πM0γ
d−1 . That is, confinement decreases degrees of

freedom. On the other hand, aϕ can increase degrees of
freedom and makes both quantities positive. As seen in
(44) and (45), the sign of the increased amount of HEE
or the energy density affects nonmonotonic behavior of
the entropic C function.
In Appendix B, the generic formula for the second

order correction to the holographic entanglement
entropy with contributions from the deformation of
the entangling surface has been given. We apply this
formula to a spherical entangling surface and reproduce
the resulting second order corrections the same as ones
given in [35].
We showed that the AdS soliton with the background

gauge field corresponded to a QFT with constant gauge
fields (Wilson lines). This QFT is nontrivial because it
also has the nonzero VEV hJϕi. So, it will be interesting
to analyze dependence of a constant gauge field in other
physics such as the confinement/deconfinement phase
transition between an AdS soliton and the AdS black
hole.
Moreover, the comparison between the field theory and

the gravity dual will be possible in two dimensions. A
two-dimensional spin 1

2
field with a background gauge

field on the cylinder can change signs of vacuum energy.
The periodic spin 1

2
field with flat gauge connection has

an equivalent description in terms of twisted boundary
conditions. That is, a constant gauge field along the S1

direction can be changed into a twisted boundary con-
dition: ψðt:xþ LÞ ¼ e−2πiνψðt; xÞ via a gauge transfor-
mation, where a parameter ν is related withWilson lines (see
[64]). Vacuum energy of a spin 1

2
field satisfying a twisted

boundary condition becomes [65]

EF0 ¼ −4E0; ð46Þ

where E0 becomes vacuum energy of a scalar as follows:

E0 ¼
2π

L

X∞
n¼1

ðn − νÞ ¼ 2π

L

�
1

24
−
1

8
ð2ν − 1Þ2

�
: ð47Þ

Here, we have introduced a cutoff factor e−ðn−νÞα=L into
the divergent sums in the second equality (α → 0) and
have discarded a cutoff dependent term. For the periodic
and antiperiodic boundary conditions, EF0 ¼ 2π

3L ðν ¼ 0Þ and
EF0 ¼ − π

3L ðν ¼ 1
2
Þ, respectively. Thus, the constant ν can

simultaneously change the boundary condition and vacuum
energy. The entanglement entropy of spin 1

2
theories should be

comparable with those of an AdS3 soliton with a background
gauge field. However, one needs to take care of the mass gap,
which is taken into account in [66].
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APPENDIX A: THE FIRST LAW IN FIVE- AND SIX-DIMENSIONAL QFTs

In this section, we analyze the deviation from the infinite volume and d ¼ 5. l and the action are expanded in a power
series as follows:

l ¼ 2
ffiffiffi
π

p
Γð13

8
Þz�

5Γð9
8
Þ þ āϕz6�

z5þ

� ffiffiffi
π

p
Γð13

8
Þ

20Γð9
8
Þ −

ffiffiffi
π

p
Γð5

4
Þ

12Γð3
4
Þ
�
þ 4

ffiffiffi
π

p
Γð13

8
Þðāϕ − 1Þz9�

45Γð9
8
Þz8þ

þ z11� ā2ϕ
z10þ

�
−

ffiffiffi
π

p
Γð5

4
Þ

16Γð3
4
Þ þ 9

ffiffiffi
π

p
Γð13

8
Þ

320Γð9
8
Þ −

7
ffiffiffi
π

p
Γð15

8
Þ

704Γð11
8
Þ
�

þ z14� āϕðāϕ − 1Þ
z13þ

�
−

ffiffiffi
π

p
Γð5

4
Þ

84Γð3
4
Þ þ

ffiffiffi
π

p
Γð13

8
Þ

10Γð9
8
Þ
�
� � � ; ðA1Þ

and

A
L3
xL4

¼ 2

3ϵ3
−
2
ffiffiffi
π

p
Γð13

8
Þ

15Γð9
8
Þz3�

þ
� ffiffiffi

π
p

Γð13
8
Þ

20Γð9
8
Þ −

ffiffiffi
π

p
Γð5

4
Þ

4Γð3
4
Þ
�
z2�āϕ
z5þ

þ
ffiffiffi
π

p
Γð13

8
Þ

5Γð9
8
Þ

z5�ðāϕ − 1Þ
z8þ

þ
� ffiffiffi

π
p

Γð13
8
Þ

64Γð9
8
Þ −

ffiffiffi
π

p
Γð5

4
Þ

16Γð3
4
Þ −

ffiffiffi
π

p
Γð15

8
Þ

64Γð11
8
Þ
�
z7�ā2ϕ
z10þ

� � � : ðA2Þ

The above expansion is able to be used to compute corrections in terms of Kaluza-Klein mass and the background
gauge field.
HEE is rewritten up to order l5 as follows:

κ2

2π
S ¼ A ¼ 2L3

xL4

3ϵ3
−
16π2Γð13

8
Þ4L3

xL4

1875Γð9
8
Þ4l3 þ L3

xL4

�
−

25Γð9
8
Þ2Γð5

4
Þāϕl2

24
ffiffiffi
π

p
Γð3

4
ÞΓð13

8
Þ2z5þ

þ 3125Γð9
8
Þ4ðāϕ − 1Þl5

288π2Γð13
8
Þ4z8þ

�
� � � : ðA3Þ

The increased amount of HEE becomes

ΔS ¼ −
25

ffiffiffi
π

p
Γð9

8
Þ2Γð5

4
Þāϕl2L3

xL4

12Γð3
4
ÞΓð13

8
Þ2κ2z5þ

: ðA4Þ

ΔS becomes negative when aϕ < 2πM0γ
d−1 . Because quarks cannot be isolated in confinement, confinement decreases degrees

of freedom of entangled states.
The increased amount of energy in the dual field theory is defined as

ΔE ¼ −
lL3

xL4āϕ
2κ2z5þ

: ðA5Þ

Using the relation like the first law ΔE ¼ TentΔS, entanglement temperature is defined as

Tent ¼
6Γð3

4
ÞΓð13

8
Þ2

25
ffiffiffi
π

p
Γð9

8
Þ2Γð5

4
Þl : ðA6Þ
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We analyze the deviation in six dimensions. The size l and the action are expanded in a power series as follows:

l ¼
ffiffiffi
π

p
Γð8

5
Þz�

3Γð11
10
Þ þ

� ffiffiffi
π

p
Γð8

5
Þ

30Γð11
10
Þ −

2
ffiffiffi
π

p
Γð6

5
Þ

35Γð 7
10
Þ
�
z7�āϕ
z6þ

þ 5
ffiffiffi
π

p
Γð8

5
Þz11� ðāϕ − 1Þ

66Γð11
10
Þz10þ

þ z13� ā2ϕ
z12þ

�
−

ffiffiffi
π

p
Γð6

5
Þ

25Γð 7
10
Þ þ

11
ffiffiffi
π

p
Γð8

5
Þ

600Γð11
10
Þ −

4
ffiffiffi
π

p
Γð9

5
Þ

325Γð13
10
Þ
�
� � � ;

ðA7Þ

and

A
L4
xL5

¼ 1

2ϵ4
−

ffiffiffi
π

p
Γð8

5
Þ

12Γð11
10
Þz4�

þ z2�āϕ
z6þ

� ffiffiffi
π

p
Γð8

5
Þ

30Γð11
10
Þ−

ffiffiffi
π

p
Γð6

5
Þ

5Γð 7
10
Þ
�
þ z8�ā2ϕ

z12þ

�
−

ffiffiffi
π

p
Γð6

5
Þ

25Γð 7
10
Þ þ

ffiffiffi
π

p
Γð8

5
Þ

100Γð11
10
Þ−

ffiffiffi
π

p
Γð9

5
Þ

50Γð13
10
Þ
�
þ

ffiffiffi
π

p
Γð8

5
Þz6�ðāϕ − 1Þ

6Γð11
10
Þz10þ

� � � :

ðA8Þ

The above expansion can be used to compute corrections in terms of Kaluza-Klein mass and the background gauge field.

HEE is rewritten up to order l6 as follows:

κ2

2π
S ¼ A ¼ L4

xL5

2ϵ4
−
π5=2Γð8

5
Þ5L4

xL5

972Γð11
10
Þ5l4 þ L4

xL5

�
−

9Γð11
10
Þ2Γð6

5
Þāϕl2

7
ffiffiffi
π

p
Γð 7

10
ÞΓð8

5
Þ2z6þ

þ 729Γð11
10
Þ5

11π5=2Γð8
5
Þ5
ðāϕ − 1Þl6

z10þ

�
� � � : ðA9Þ

The increased amount of HEE becomes

ΔS ¼ −
18Γð11

10
Þ2Γð6

5
Þāϕl2L4

xL5

7
ffiffiffi
π

p
Γð 7

10
ÞΓð8

5
Þ2κ2z6þ

: ðA10Þ

The increased amount of energy in the dual field theory
is defined as

ΔE ¼ −
L4
xlL5āϕ
2κ2z6þ

: ðA11Þ

Using the relation like the first law ΔE ¼ TentΔS, the
entanglement temperature is defined as

Tent ¼
7Γð 7

10
ÞΓð8

5
Þ2

36
ffiffiffi
π

p
Γð11

10
Þ2Γð6

5
Þl : ðA12Þ

APPENDIX B: SECOND ORDER
CORRECTION TO HEE

In this Appendix we would like to extend the study of the
first order correction of HEE in the main text to second
order. Especially, by virtue of the fact that the Fefferman-
Graham (FG) expansion is convenient when we consider
the asymptotic expansion of the AdS geometry, we com-
pute the second order correction to HEE with a spherical
entangling surface in terms of the FG expansion. A general
metric in FG gauge is

ds2 ¼ L2

z2
ðdz2 þ gμνðz; xμÞdxμdxνÞ; ðB1Þ

where the AdS boundary is located at z ∼ 0. We approxi-
mate that the circle of the ϕ direction is large enough

(M0L ≪ 1). Therefore, the boundary metric at z → 0 is
almost flat. Note that the small M0 limit is consistent with
assumptions of the asymptotic AdS geometry M0L ≪ 1
and aϕL ≪ 1. The metric is

gμνðz; xμÞ ¼ ημν þ δgð1Þμν ðz; xμÞ þ δgð2Þμν ðz; xμÞ: ðB2Þ

We assume that the metric is static. The bulk surface stays
at a constant time slice. The embedding scalar is z ¼ zðxiÞ
only. With the induced metric hij ¼ L2

z2 ðgij þ ∂iz∂jzÞ, the
area is then

A¼
Z

dd−1x
ffiffiffi
h

p
¼
Z

dd−1x
Ld−1

zd−1

ffiffiffiffiffiffiffiffiffiffiffiffi
detgij

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gij∂iz∂jz

q
:

ðB3Þ

To evaluate the leading order correction, we use the

solution of the zeroth order z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 −

P
d−1
i¼1 ðxiÞ2

q
.

The first order is

δAð1Þ ¼ α

2

Z
dd−1x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gð0Þij

q

×

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gð0Þij∂iz0∂jz0

q
trðgð0Þ−1δgð1ÞÞ

þ δgð1Þij∂iz0∂jz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gð0Þij∂iz0∂jz0

q
!
; ðB4Þ

where the term linear to ∂iz1 vanishes due to the EOM.
The second order is
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δAð2Þ ¼ Ld−1
Z

dd−1x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gð0Þij

q 8<
: 2α2gð0Þij∂iz2∂jz0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gð0Þij∂iz0∂jz0

q þ α2gð0Þij∂iz1∂jz1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gð0Þij∂iz0∂jz0

q

−
�
α

2
δgð1Þij∂iz0∂jz0

��
2αgð0Þij∂iz1∂jz0

2ð1þ gð0Þij∂iz0∂jz0Þ32
�
þ α2

2

0
B@ 2δgð1Þij∂iz1∂jz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ gð0Þij∂iz0∂jz0
q

1
CA

þ α2

2

δgð2Þij∂iz0∂jz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gð0Þij∂iz0∂jz0

q −
α2

8

ðδgð1Þij∂iz0∂jz0Þ2
ð1þ gð0Þij∂iz0∂jz0Þ32

þ α

2
trðgð0Þ−1δgð1ÞÞ

0
B@ 2αgð0Þij∂iz1∂jz0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gð0Þij∂iz0∂jz0

q þ α

2

δgð1Þij∂iz0∂jz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gð0Þij∂iz0∂jz0

q
1
CA

þ
�
α2

2
trðgð0Þ−1δgð2ÞÞ − α2

4
trðgð0Þ−1δgð1ÞÞ2 þ α2

8
tr2ðgð0Þ−1δgð1ÞÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gð0Þij∂iz0∂jz0

q 9=
;; ðB5Þ

where the profile of the minimal surface is corrected due to the change of the bulk metric, and it can be expanded as follows:

zðxiÞ ¼ z0ðxiÞ þ αz1ðxiÞ þ α2z2ðxiÞ þ � � � ; ðB6Þ

where z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 −

P
d−1
i¼1 x

2
i

q
. Note that since we are only interested in quadratic corrections to the entanglement entropy, z2

will not make contributions since it appears linearly in the area functional. By performing the variation of the action, we will
obtain the equation of motion for the spherical case.
Following the procedures in [35], from formula (B5) we can divide the second order contribution to three categories by

the power of z1. In the zeroth order of z1,

A2;0 ¼
Z

dd−1xLd−1zd0

	
α2

2
trðgð0Þ−1δgð2ÞÞ − α2

4
trðgð0Þ−1δgð1ÞÞ2 þ α2

8
tr2ðgð0Þ−1δgð1ÞÞ



R
z0

¼
Z

dd−1xLd−1zd0R

	
−

1

16

�
1 −

r2

R2ðd − 1Þ
�
ðT2

00 þ TijTijÞ þ Ti0Ti0

8

�
1þ r2

ðd − 1ÞR2

�

þ xixjTiαTiα

4R2
þ 1

8
ðT2 − T2

x − 2TTxÞ


; ðB7Þ

where we have made use of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gð0Þij∂izð0Þ∂jzð0Þ

q
¼ R=zð0Þ and

T ≡ Ti
i; Tx ≡ Tij

xixj

R2
: ðB8Þ

The power of z1 appears in the second index of A2;n. A2;0 does not contribute to EOM of z1. Next is the power one of z1 as
follows:

A2;1 ¼
Z

dd−1x
Ld−1

zd−10

	
−
ðd − 1ÞRz1Trðg−10 g1Þ

2z0
þ z0

R
gð1Þij∂iz1∂jz1 þ

z0
2R

Trðg−10 g1Þgij0 ∂iz0∂jz1




¼
Z

dd−1xLd−1 R
2z0

	
T

�
z1 −

z20
R2

xi∂iz1

�
þ Tij

�
2z20x

i∂jz1
R2

−
z1xixj

R2
−
z20x

ixjxk∂kz1
R4

�

: ðB9Þ

The power two of z1 becomes
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A2;2 ¼
Z

dd−1x
Ld−1

zd−10

	
z0
2R

gð0Þij∂iz1∂jz1 þ
dðd − 1Þ

2

�
z1
z0

�
2 R
z0

þ ðd − 1Þ z1
z0

xi∂iz1
R




¼
Z

dd−1x
Ld−1

zd0

	
dðd − 1Þz21

2z20
þ z20ð∂z1Þ2

2R2
−
z20ðxi∂iz1Þ2

2R4
þ ðd − 1Þ

2

xi∂iz21
R2



: ðB10Þ

The EOM of z1 is obtained from the variation of A2;1 þ A2;2:

δðA2;1 þ A2;2Þ
δz1

¼ Ld−1
Z

dd−1x

�
R
2z0

ðT − TxÞ þ
R
zd0

�
dðd − 1Þz1

z20
þ d − 1

R2
xi∂iz1

��
ðB11Þ

and

δðA2;1 þ A2;2Þ
∂kz1

¼ Ld−1
Z

dd−1x

8<
: R
2z0

�
−
Tz20x

k

R2
þ 2Tk

i z
2
0x

i

R2
−
z20Tijxixjxk

R4

�
þ R

zd0ðz
2
0
∂kz1
R2 − z2

0
xi∂iz1xk
R4 þ ðd − 1Þ z1xkR2 Þ

9=
;; ðB12Þ

so that the equation of motion becomes

2 − d
2R

z0T þ z0ð−2 − dÞTx

2R
þ ð1 − dÞz1

R · zd0
þ ðz20 − 2R2ÞXk∂kz1

R3 · zd0
þ ∂k∂kz1

zd−2R
−
2ðxk∂kz1ðxi∂iz0ÞÞ

R3zd−10

−
xixk∂i∂kz1
R3zd−20

¼ 2 − d
2R

z0T þ z0ð−2 − dÞTx

2R
þ ð1 − dÞz1

zd0R
−
xk∂kz1
R3zd−20

þ ∂k∂kz1
Rzd−20

−
xixk∂i∂kz1
R3 · zd−20

¼ 0; ðB13Þ

where z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 −

P
d−1
i x2i

p
, T ¼ Ti

i is constant and Tx ¼ Ti;j
xixj

R2 . One can set Ti
i ¼ T for convenience. We just want to

solve the z1.
We consider an ansatz for z1 of the form z1 ¼ TfðrÞ þ Ti;jxixjf2ðrÞ. If we substitute this ansatz, we will have the

following equation:

Tðd − 2Þ
r

f01 þ Tf001 −
T · r2

R2
f001 þ 2Tf2 þ

4Txf02R
2

r
þ R2Txf002 þ

ðd − 2ÞR2Txf02
r

− 2Txf2 − 4Txrf02 − Txf002r
2

¼ zd0
2
½ðd − 2ÞT þ ðdþ 2ÞTx�: ðB14Þ

Comparing modes T and Tx, we have the following equation:

d2f2
du2

ðR2 − u2Þ − df2
du

ðd − 1ÞR2 þ 4u2

u
− 2f2 ¼

udðdþ 2Þ
2

; ðB15Þ

and

ðR2 − u2Þ
R2

d2f1
du2

−
ðd − 1Þ

u
df1
du

þ 2f2 ¼
udðd − 2Þ

2
: ðB16Þ

We have let u ¼ z0, these two equations have the following solution:

f1 ¼ −
R2zd

2ðdþ 1Þ ; f2 ¼ −
zd

2ðdþ 1Þ : ðB17Þ

The final answer is to coincide with the second order correction [35] to HEE for spherical entanglement surface.
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