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I. AB-INITIO CALCULATIONS

Our ab-initio calculations are performed using density functional theory (DFT) initially applying the generalized
gradient approximation (GGA / PBE)1 within the PAW formalism2 as implemented in the Vienna Ab initio Simulation
Package (VASP)3,4. We start with fully relaxing the internal atomic coordinates of an orthorhombic unit cell with

a ≈ 3.51
◦
A, b ≈ 14.07

◦
A, and c ≈ 15.79

◦
A as lattice constants in reasonable agreement with experimental value5. To

this end we use a 12× 12× 3 K-grid and an energy cut-off of 368 eV. The positions are optimized until all forces are

smaller than 0.005 eV/
◦
A.

Due to the layered structure, screening is reduced so that enhanced Coulomb interactions are expected. To take
the resulting correlation effects into account, we use the modified Becke-Johnson exchange potential6, which has
been shown to have a similar accuracy as hybrid functional or GW approaches7. The involved cmbj parameter is
self-consistently find to be cmbj = 1.26 on a 20× 20× 5 K-grid.

The resulting Kohn-Sham states are subsequently projected onto six dxz-like Wannier orbitals centered at the Ta and
Ni sites, which are maximally localized using the Wannier90 package8 applying an inner (frozen) window of about
±0.3 eV around the Fermi level. Thereby, the overlap between the original Kohn-Sham states and the reconstructed
ones is maximized throughout the low-energy window.

These six maximally localized Wannier functions are also used as the basis for the evaluation of the Coulomb matrix
elements calculated within the constrained Random Phase Approximation (cRPA)9 as recently implemented by M.
Kaltak within VASP10. We use in total 120 bands (about 50 unoccupied) and apply the weighted disentanglement
procedure from Ref. 11.

II. STRUCTURAL PHASE TRANSITION

Starting from the relaxed orthorhombic geometry we introduce a small distortion to β = 90◦ + δ (see figure 1) to
seed the monoclinic phase and perform a full relaxation allowing for an optimization of the cell shape, cell-volume
and atomic coordinates afterwards. To this end we use a 24 × 16 × 8 K-grid and the PBE (GGA) functional. As a
result we find distorted angles of α =90.013◦, β =90.571◦ and γ =89.919◦, yielding a triclinic structure (changes to
the lattice constants are negligible). This corresponds to an in-plane monoclinic distortion combined with a tilting in
the direction perpendicular to the planes. While the inter-layer geometry might suffer from neglected van-der-Waals
forces, the in-plane structure is mostly governed by electron-lattice couplings which are sufficiently well captured by
DFT. The in-plane monoclinic distortion is thus reliable and intrinsically driven already on the level of DFT.
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Figure 1. Orthorhombic unit cell. The Tantalum atoms are depicted in red, the Nickel atoms in blue and the Selenium atoms
in grey. In the lower part the three angles of the cell are displayed

III. MINIMAL MODEL

We consider a two-dimensional minimal model with six atoms per unit cell (with one dxz-like orbital each) reproducing
the double chain structure of a Ta2NiSe5 layer. We take into account i) single particle hoppings, ii) intra-atomic
density-density interactions, and iii) nearest-neighbor density-density interactions. For simplicity we recall here the
definition of the Hamiltonian which we already introduced in the main text:

Ĥ =Ĥhop + ĤU + ĤV

=
∑
~Rσ

∑
~δ

Ψ†~R+~δ
T(~δ)Ψ~Rσ + U

∑
~R

∑
j=1,...,6

n̂j↑(~R)n̂j↓(~R)+

+ V
∑
j=1,2

∑
~Rσσ′

[
n̂jσ(~R) + n̂jσ(~R+ ~δx)

]
n̂5σ′(~R) + V

∑
j=3,4

∑
~Rσσ′

[
n̂jσ(~R) + n̂jσ(~R− ~δx)

]
n̂6σ′(~R),

(1)

with Ψ~Rσ a spinor defined as Ψ†~Rσ ≡
(
c†1σ(~R) c†2σ(~R) c†5σ(~R) c†3σ(~R) c†4σ(~R) c†6σ(~R)

)
and n̂iσ(~R) = c†iσ(~R)ciσ(~R). The

hopping matrix T(~δ) contains intra-cell [T(~0)] as well as nearest-cells terms [T(±ax,±ay)] corresponding to the main
contributions of the Wannier Hamiltonian derived above. These matrix elements are summarized in the scheme of
Fig. 2(A), which includes Ta-Ta (a) and Ni-Ni (b) intra-chain, Ta-Ni intra- (c)-(d) and inter-chain (e)-(f) hoppings as
well as inter-chain Ni-Ni (g) and Ta-Ta (j)-(h) hoppings. Dashed/full pairs of arrows indicate that in order to preserve
the symmetry, these matrix elements must be anti-symmetric under a reflection with respect to a plane perpendicular
to the chains. We have also indicated symmetry-forbidden Ta-Ni hybridization, that become non-zero upon symmetry
breaking. The matrix elements are summarized in the Table I. Fig. 2(B) shows the comparison between the band
structure of the minimal and the Wannier model.

A. Hartree-Fock

We consider a single-particle variational wavefunction |Ψ0〉 that allows for the breaking of the crystal symmetries.
The variational energy is computed by decoupling the interaction terms in the standard way:

〈Ψ0|n̂j↑(~R)n̂j↓(~R)|Ψ0〉 ≈ 〈Ψ0|n̂j↑(~R)|Ψ0〉〈Ψ0|n̂j↓(~R)|Ψ0〉 (2)
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Figure 2. (A) Hopping processes defining the minimal model. Letters are used to group different hopping processes according
to the table I. (B) Comparison between the Wannier (top) and the minimal model (bottom) band structure.

Hopping matrix elements T(~δ)

Intra-chain Ta-Ta hopping (a)-(b)
Tii(ax, 0) = Tii(−ax, 0) = −0.72 eV i = 1, . . . , 4
Tii(0, 0) = 1.35 eV

Intra-chain Ni-Ni hopping (a)-(b)
Tii(ax, 0) = Tii(−ax, 0) = 0.30 eV i = 5, 6
Tii(0, 0) = −0.36 eV

Intra-chain Ta-Ni hopping (c)-(d)
T15(~0) = −T15(ax, 0) = T25(~0) = −T25(ax, 0) = 0.035 eV

T36(~0) = T46(~0) = −T15(~0)

Inter-chain Ta-Ni hopping (e)-(f)
T45(−ax, ay) = −T45(ax, ay) = T35(ax, 0) = −T35(−ax, 0) = 0.04 eV
T26(ax, 0) = T16(ax,−ay) = T45(ax, ay)

Inter-chain Ni-Ni hopping (g) T65(ax, ay) = T65(ax, 0) = T65(0, 0) = T65(ax, 0) = 0.030 eV
Inter-chain Ta-Ta hopping (h)-(i) T61(−ax, ay) = T61(0, ay) = T23(0, 0) = T23(ax, 0) = 0.020 eV

Table I. Elements of the hopping matrix T(~δ). Matrix elements are grouped accordingly to the scheme in Fig. 2 with letters
corresponding to the different hopping processes indicated by arrows.

and for i 6= j

〈Ψ0|n̂jσ(~R)n̂iσ′( ~R′)|Ψ0〉 ≈ 〈Ψ0|n̂jσ(~R)|Ψ0〉〈Ψ0|n̂iσ′( ~R′)|Ψ0〉−δσσ′〈Ψ0|c†jσ(~R)ciσ′(
~R′)|Ψ0〉〈Ψ0|c†iσ′( ~R′)cjσ(~R)|Ψ0〉. (3)

Taking the variation with respect to 〈Ψ0| the HF Hamiltonian reads

ĤHF = Ĥhop +
∑
kσ

Ψ†kσ

(
ĥA(k) 0

0 ĥB(k)

)
Ψkσ (4)

where ĥA(k) and ĥB(k) are the decoupled interaction Hamiltonian for the A and B chain respectively. Specifically,
accordingly to the atom labeling of Fig. 2,

ĥA(k) =

 δε1 0 w∗15(k)
0 δε2 w∗25(k)

w15(k) w25(k) δε5

 ĥB(k) =

 δε3 0 w∗36(k)
0 δε4 w∗46(k)

w46(k) w46(k) δε6

 (5)

with

δεi=1,2 =
U

2
ni + 2V n5 δεi=3,4 =

U

2
ni + 2V n6 δε5 =

U

2
n5 + 2V (n1 + n2) δε6 =

U

2
n6 + 2V (n3 + n4) (6)

and

wi5 = −V∆i5(~0)(1− e−ikxa)− V φi5e−ikxa wi6 = −V∆i6(~0)(1− eikxa)− V φi6eikxa. (7)

In these equations ni = 〈Ψ0|c†iσ(~0)ciσ(~0)|Ψ0〉, ∆ij(~0) = 〈Ψ0|c†iσ(~0)cjσ(~0)|Ψ0〉 and φij are the order parameters defined
in the main text. All the above parameters are self-consistently determined by diagonalizing the HF Hamiltonian
starting from an initial guess.
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B. Double Counting Corrections

To avoid double counting of correlation effects within our Hartree-Fock calculations which are already present on
the level of the DFT calculations, we make use of cRPA Coulomb matrix elements and apply a double counting
correction potential to the bare band structure. The former aims to avoid a double counting of screening processes
to the Coulomb interactions resulting from the model band structure. By excluding these screening processes in
cRPA calculations for the Coulomb matrix elements based on the full ab initio band structure we take screening from
the ”rest” of the band structure into account, but not from the bands of the minimal model. A double counting of
this kind is thus avoided in the interaction terms. On the other side, the double-counting potential is introduced to
not count twice the effect of local interactions already included in DFT. The commonly used ansatz for this is an
orbital-independent potential which is acting only on the correlated orbitals. Since our minimal model is completely
down-folded to correlated orbitals only, a potential of this form would equally shift all involved bands and would thus
have no effect at all. We can thus safely neglect a double-counting correction potential of this form.
Care must, however, be taken due to the use of the modified Becke-Johnson (mbj) exchange potential (in contrast
to GGA or LDA approximations). Although this exchange potential is still local, it effectively accounts for non-local
Coulomb interaction terms here. The most prominent effect of the mbj exchange potential for Ta2NiSe5 is to decrease
the overlap between the mostly Ta-like conduction bands with the mostly Ni-like valence bands, which is controlled
by the mbj parameter cmbj. For cmbj = 1.0 the results are very similar to GGA/LDA calculations with a an overlap of
about 400 meV at Z. For our self-consistently calculated cmbj = 1.26 the overlap is approx. 200 meV. In order to not
double-count this decreasing trend of the overlap upon inclusion of correlation effects, the Ta and Ni onsite energies
of our minimal model are adjusted to result in an overlap of about 400 meV (see Fig. 2 B). We also checked the
influence of this procedure and find that all of our conclusions hold independently on the exact value of this change
in the overlap. The phase diagram looks qualitatively the same and just slight quantitative changes are observed so
that the critical values V ∗l (U) and V ∗u (U) shift to slightly larger values upon increasing the band overlap in the bare
minimal model.

∗ These two authors equally contributed
giacomo.mazza@unige.ch
m.roesner@science.ru.nl

† ageorges@flatironinstitute.org
1 John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized Gradient Approximation Made Simple. Physical

Review Letters, 77(18):3865–3868, October 1996.
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