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Abstract

In this thesis, we first study how classical fields can be quantized on a curved
spacetime. Interestingly, this provides a mechanism for purely gravitational
particle production which we investigate against the background of scalar
fields in the FLRW spacetime. Subsequently, this mechanism is used to pro-
duce DM particles at the end of inflation and during reheating which therefore
will not interact with other particles except gravitatively. Finally, we disduss
on a general ground how to construct models which describe purely gravita-
tively interacting particles.

Zusammenfassung

In der vorliegenden Arbeit geht es zunächst um die Frage wie man klassi-
sche Felder auf gekrümmten Raumzeiten quantisieren kann. Interessanterweise
führt das zu einem Mechanismus für eine rein gravitative Teilchenproduktion,
die wir am Beispiel von Skalarfeldern in der FLRW-Raumzeit genauer unter-
suchen. Diesen Mechanismus wollen wir anschließend benutzen um DM Teil-
chen am Ende von Inflation und während der Reheating-Phase zu produzieren,
die dadurch keine anderen Wechselwirkungen besitzen außer der Gravitation.
Abschließend diskutieren wir Möglichkeiten zur Konstruktion von allgemeinen
Modellen, die rein gravitativ-wechselwirkende DM Teilchen zu beschreiben.
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1. Introduction

The problem of dark matter is one of the most fascinating and captivating questions in
particle physics and cosmology. Despite growing and overwhelming evidence for its ex-
istence since the first discovery in the 1930s [1], its nature concerning its composition
and interactions with other particles is still completely unknown. None of the currently
observed particles of the Standard Model (SM) can account for this mysterious form of
matter. And although still lacking a direct or indirect detection in human-made experi-
ments, dark matter has become an essential part in related topics of modern physics for
example in models of cosmological structure formation [2].

In the context of particle physics there is a myriad of dark matter models each un-
derlying different ideas to overcome the problem. The most popular scenarios include
weakly-interacting massive particles (WIMPs) as candidates for dark matter. The cen-
tral idea considers dark matter in thermal equilibrium with other SM particles. At some
point, the rate of the interactions maintaining equilibrium with the rest of the thermal
bath dropped below the expansion rate of the universe and the WIMPs decouple from
equilibrium. They had received a lot of attention because of parameters typical for the
weak interaction it was possible to reproduce the observed dark matter abundance. Other
models try to “generalize” this and establish a so-called “hidden” sector in which dark
matter is supposed to live and study bosons or fermions as dark matter candidates and
possible interactions to the SM via so-called “portal terms” in the Lagrangian. Sometimes
the hidden sector is equipped with a new exotic gauge structure, e.g. a new U(1) charge,
and one is interested in possible signatures of such “dark photons”.

However, all observations so-far only allow to conclude that this non-luminous dark
matter is extremely weakly interacting with the SM. At least, as found by many obser-
vations, it must couple to gravity. Inspired by this minimal assumption there are models
which explores the possibility of dark matter being a purely gravitatively interacting par-
ticle. Since all SM particles are believed to have originated from interactions that do
require a direct non-gravitational coupling this states the question how these particles
were produced. Particle production by gravitational fields seems somewhat odd at first
glance.

The modern description of the universe is based on Einstein’s theory of General Rel-
ativity (GR), and hence when describing particles as quantum fields in an expanding
background one necessarily has to take this into account. Interestingly, quantum field
theory on curved spacetime opens the possibility for particle production. The original
work which developed these ideas was carried out in [3, 4]. In [5], this framework was
applied to an inflationary universe where it became apparent that the particle production



is caused by the time-dependent scale factor. The mechanism studied there was later used
for the production of supermassive dark matter [6, 7, 8, 9]. More recently, it was realised
that gravitational particle production is efficient for large masses up to the inflaton mass
[10, 11]. Moreover, [12] focusses on the oscillatory behaviour of the Ricci scalar and found
an enhancement of particle production in some mass regions. Othere references follow
different approaches and consider the production as consequence of s-channel annihila-
tions of SM particles in thermal equilibrium which are mediated by graviton exchange
[13]. The production rate is more efficient at higher temperatures.

This thesis is organized as follows. Chapter 2 collects some basics about cosmology.
In Chapter 3, we develop the formalism for the treatment of quantum fields on curved
spacetimes. Against the background of the Friedmann Universe the mechanism for particle
production is discussed. Chapter 3 addresses the physics of inflation which is an integral
part for a gravitational origin of dark matter. In Chapter 4, we study the production of
scalar particles in a simple but concrete model and calculate the abundance. Chapter 6
focuses on the idea of a purely gravitatively interacting dark matter particle and discusses
various possibilities of model building. We present our conclusions in Chapter 7.

– 10 –



2. Cosmology

This chapter summarizes some basic facts about cosmology that are needed during the
course of this thesis. They can be found in many textbooks including for example [14,
15, 16, 17]. Additional material is provided by many reviews or lecture notes, see e.g. [18,
19, 20].

2.1 Homogeneous and Isotropic Universes
Two fundamental assumptions form the basis of our current understanding of cosmology.
First, on cosmological scales the only relevant interaction affecting the dynamics of the
Universe is gravity, and second, when averaged over sufficiently large scales the Universe
appears homogeneous and isotropic. Together, they are usually referred to as the cos-
mological principle. Currently, gravity is best described by Einstein’s theory of general
relativity. Accordingly, spacetime is treated as a four-dimensional pseudo-Riemannian
manifold where the information about its geometry is encoded in the metric gµν . The
latter governs the dynamics of the matter content (given by the energy-momentum tensor
Tµν) but the former in turn determines the form of the metric. This mutual relationship
between the curvature of spacetime on one side and the dynamics of the matter on the
other side is given by Einstein’s field equations

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν (2.1)

where Rµν and R denote the Ricci tensor and Ricci scalar, respectively, and can be derived
from the metric. The field equations are highly non-linear and therefore only solvable by
making certain simplifying assumptions. In fact, a general solution without making any
constraints is still unknown. In the case of the so-called “cosmological solution” the precise
form of the metric can even be found without the help of (2.1) but simply by exploiting
some (assumed) properties about the geometry of the Universe, namely the cosmological
principle. In a second step, the equations (2.1) will then serve to determine the so-called
“scale factor” a(t) which parametrises the spatial expansion of the the Universe. The
symmetry assumptions underlying the Standard Model of cosmology are formulated as
follows.

(1) Homogeneity: Intuitively, homogeneity refers to the property that at a given time
t spacetime looks the same everywhere. However, in contrast to Newtonian gravity
the concept of absolute time does not exist in general relativity. Instead, the notion
of simultaneity crucially depends not only on the reference frame but also on the



underlying metric. So, in order to speak of homogeneity in any meaningful way,
time has to decouple from the space-like part. More precisely, homogeneity requires
that the manifold can be “foliated” into space-like hypersurfaces Σt of constant time
t which are homogeneous. Mathematically, homogeneity is defined such that for any
time t and for any points p, q ∈ Σt there exists a diffeomorphism1 on Σt mapping p
into q that leaves the metric invariant. Hence, on such hypersurfaces the metric will
remain unchanged under any translation p into q, or, in other words, the Universe
is invariant under translations.

(2) Isotropy: Whether the Universe looks isotropic, i.e. roughly speaking the same in
every direction, depends on the observer’s world line since two observers moving
away from each other cannot simultaneously perceive the Universe as isotropic. To
define this notion mathematically more rigorously, let’s consider the tangent vector
uµ along the word line sitting at a point p ∈ Σt and any two unit vectors vµ, wµ ∈ Σt

being perpendicular to uµ at p. Then, isotropy is defined such that there exists a
diffeomorphism on Σt mapping vµ into wµ that leaves the metric invariant. Hence,
for an isotropic spacetime there are no spatial directions perpendicular to uµ to be
identified and the worldline crossing the hypersurfaces are always perpendicular.
Fundamental observers who perceive the Universe as isotropic must be attached to
the average motion of galaxies and free-falling (since either this so-called Hubble
flow or gravity would otherwise indicate some preferred direction). Or, to put it in
other words, the Universe is invariant under rotations.

These assumptions are already sufficient to infer the form of the line element ds2 =

gµνdx
µdxν . It is convenient to choose comoving coordinates for which the fundamental

observers are sitting at rest. Then, one requires the coordinate time t to agree with the
proper time τ implying g00 = 1. Furthermore, due to isotropy the spatial part can only
consist of scalars like x ·x, which don’t indicate any direction. Essentially, this eliminates
all off-diagonal elements. In addition, the spatial hypersurfaces can still be rescaled by a
factor a(t) which can only be a function of time due to the symmetry assumptions. The
line element thereby reduces to

ds2 = dt2 − gijdx
idxj = dt2 − a2(t)dl2. (2.2)

It can be shown ([21], Sect. 20.1) that by choosing spherical coordinates (r, θ, φ) the
metric takes the form of the Robertson-Walker metric whose line element can be written
as

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
. (2.3)

where k denotes the curvature parameter distinguishing between open, closed and flat
universes by k = 1,−1, 0, respectively. In the following, we only consider the case of a flat

1 A differentiable map f : M → N between two manifolds M and N is called a “diffeomorphism” if f is
bijective and its inverse f−1 is differentiable as well.
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universe thereby setting k = 0. Then, introducing the conformal time dη = dt/a allows
to pull the scale factor out of the line element such that

ds2 = a2(η)
[
dη2 − dr2 − r2

(
dθ2 + sin2 θdφ2

)]
(2.4)

For a flat spacetime with k = 0 this form agrees with the Minkowski metric rescaled by
a(η) which shows the advantage of the conformal time. Light rays which are used to
define the causally-connected region of spacetime (“lightcone” for short) now correspond
to straight lines at ±45◦ in the (η, χ) plane.

2.2 Friedmann Equations
Although the symmetry assumptions already set strong constraints on the specific form of
the metric gµν the dynamics of the scale factor a(t) are still left unknown. As noted above
this can be determined with Einstein’s field equations (2.1) by calculating the Einstein
tensor Gµν = Rµν − 1

2
Rgµν in the FLRW-metric (2.3) and choosing a specific ansatz for

the energy-momentum tensor Tµν .
For the calculation of the Einstein tensor Gµν one needs the Ricci tensor and the Ricci

scalar which in turn require the computation of the Christoffel symbols Γµνρ and the
Riemann tensor. The Christoffel symbols are defined by

Γµνρ =
1

2
gµσ

(
∂νgσρ + ∂ρgνσ − ∂σgνρ

)
. (2.5)

Alternatively, all non-vanishing connection symbols can easily be read off by comparing
the Euler-Lagrange equation with the geodesic equation, that is

d

dτ

∂L

∂(ẋµ)
− ∂L

∂xµ
=

d2xµ

dτ 2
+ Γµνρ

dxν

dτ

dxρ

dτ
(2.6)

where the coordinates are xµ ∈ (t, r, θ, φ) and a dot denotes the derivative with respect to
proper time τ . Note that since the connection is assumed to be torsion-free the Christoffel
symbols are symmetric in the lower indices, Γµνρ = Γµρν . In the case of the flat FLRW
metric the Lagrangian is given by

L = gµν ẋ
µẋν = ṫ2 − a2(t)

[
ṙ2 + r2

(
θ̇2 + sin2 θφ̇2

)]
. (2.7)

Proceeding this way, all non-vanishing Christoffel symbols in cosmic time t are given by

Γrtr = Γθtθ = Γφtφ =
ȧ

a
, (2.8)

Γtrr = aȧ, Γtθθ = aȧr2, Γtφφ = aȧr2 sin2 θ, (2.9)
Γrθθ = −r, Γrφφ = −r sin θ, (2.10)

Γθrθ = Γφrφ =
1

r
, (2.11)

Γθφφ = − sin θ cos θ, Γφθφ = cot θ. (2.12)
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The Ricci tensor is defined by contracting the first and third indices of the Riemann tensor
which gives

Rµν = Rρ
µρν = ∂ρΓ

ρ
µν − ∂νΓ

ρ
µρ + ΓρµνΓ

σ
ρσ − ΓσνρΓ

ρ
µσ. (2.13)

Its calculation turns out to be more involved. However, since the metric is diagonal this
must also hold for the Ricci tensor (to be not in conflict with the Einstein equations)
implying that all its non-diagonal elements must vanish, too, i.e. Ri0 = R0j = 0. As it
can be shown (e.g. Durrer 2008) the remaining components are given by

Rtt = −3
ä

a
, Rij = −

[
ä

a
+ 2

(
ȧ

a
+ 2

k

a2

)2
]
gij. (2.14)

Using these expressions one finds for the Ricci scalar

R = gµνRµν = −6
aä+ ȧ2 + k

a2
. (2.15)

A simple choice compatible with the cosmological principle is to describe the matter
content of the Universe (as seen by a fundamental observer) as an ideal fluid which is
completely characterised by its energy density ρ(t) and its pressure p(t). This can be
seen as follows. Since Gµν is diagonal, Tµν must be of the same form to be able to
satisfy (2.1). Then, the time-time component corresponds to the energy density ρ while
each space-space component must be equal to the pressure p. Again, by homogeneity
and isotropy all off-diagonal elements must vanish as they would indicate any preferred
direction otherwise. Altogether, this implies

Tµν =


ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 . (2.16)

This expression can be rewritten by using the four-velocity uµ = dxµ/dτ . Since the world-
line of a fundamental observer crosses the spatial hypersurfaces always perpendicularly
and since the coordinate time corresponds exactly to the proper time (remember g00 = 1),
the four-velocity in comoving coordinates (pointing along the observer’s worldline) must
be of the form uµ = −uµ = (1, 0, 0, 0). One is left with

Tµν = (ρ+ p)uµuν − pgµν . (2.17)

Then, the first and second Friedmann equations follow from the time-time component
G0

0 = 8πGT 0
0 and the trace over the space-space component Gi

i = 8πGT ii , respectively,
as (

ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
, (2.18)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (2.19)
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In this form, both equations state that the evolution of the Universe parametrised by a(t)
is determined by its matter content, its spatial curvature and the cosmological constant.
Obviously, a universe filled with matter that obeys ρ+ p > 0 and Λ = 0 cannot be static
and will necessarily expand or shrink with time.

The Friedmann equations can be combined into the so-called adiabatic equation
d

dt

(
ρa3

)
+ p

d

dt

(
a3
)
= 0. (2.20)

Heuristically, this reproduces the first law of thermodynamics dE + pdV = 0 with the
change in internal energy dE and the pressure-volume work pdV . Heat flows δQ are
not present since they would define a preferred direction and thereby violate the isotropy
principle. Alternatively, (2.20) can also be derived from ∇µT

µν = 0, which is necessary
when considering different fluids described by different energy-momentum tensors T µνi .

Irrespective of the composition of the “cosmic fluid” one usually distinguishes between
relativistic and non-relativistic matter, which is often called “radiation” and “dust” (or
simply “matter”), respectively. Different values of the so-called equation of state

w :=
p

ρ
(2.21)

allows one to compare different types of matter. One can rewrite (2.20) to obtain
ρ̇

ρ
= −3(1 + w)

ȧ

a
. (2.22)

For w = const this can immediately be integrated to give

ρ(a) = ρ0a
−3(1+w) (2.23)

where ρ0 ≡ ρ(t0) and by convention a(t0) ≡ 1 denote the density and scale factor today,
respectively. Radiation correspond to w = 1/3 while matter is characterised by w = 0. A
third energy form is obtained by setting w = −1 which possess a constant energy density.
Physically interesting, this would describe an exotic fluid Λ with a negative pressure,
ρ = −p. Hence, the scale dependence of these energy forms is given by

ρm(a) = ρm0a
−3, ρr(a) = ρr0a

−4, ρΛ = ρΛ0 (2.24)

where a zero as subscript denotes the value of ρ today. This behaviour can be understand
physically as follows. The scale dependence of non-relativistic matter is solely due to the
expansion of space. However, the energy density of relativistic matter drops by one power
of a faster since relativistic particles loose energy on top as they are getting redshifted.
Or, to put it in other words, for non-relativistic matter one has p � ρ and therefore the
first term in (2.20) can be neglected which on the other side must be taken into account
for relativistic matter with p � ρ. Solving the Friedmann equation with (2.23) for a
flat universe (k = 0) yields the time dependence of the scale factor for a single matter
component with w = const. One finds

a(t) ∝

t2/[3(1+w)] w 6= −1

exp(Ht) w = −1.
(2.25)

A Universe with exponentially increasing scale factor is called “de Sitter spacetime”.
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2.3 Cosmological Parameters
The Hubble function H(t) quantifies the relative expansion rate, i.e. by how much the
recession velocity of cosmic objects grows as their distance increases and is given by

H(t) :=
ȧ(t)

a(t)
, [H] = km s−1 Mpc−1. (2.26)

Its numerical value today which is conventionally written as function of h

H0 := H(t0) = 100h km s−1 Mpc−1

is referred to as the “Hubble constant”. With this one can define the “Hubble time” and
the “Hubble radius” which are respectively given by

tH :=
1

H0

' 4.41× 1017 s, rH :=
c

H0

' 1.4× 1010 yr (2.27)

and provide a characteristic time and length scale during the expansion of the Universe.
Usually, the Hubble radius gives the size of the observable Universe.

The critical density ρcr is defined as the density which produces a spatially flat Universe.
From the condition k = 0 it follows from the first Friedmann equation that

ρcr(t) :=
3H2(t)

8πG
, ρcr0 := ρcr(t0) =

3H2
0

8πG
. (2.28)

Interestingly, one can rewrite ρcr to obtain

4π

3
ρcra

3G

a
=
GM(a)

a
=
ȧ2

2
(2.29)

which shows that in a sphere filled with matter of critical density the gravitational po-
tential is exactly balanced by its kinetic energy.

Density parameters. It is convenient to introduce for each energy form a characteristic
density parameter Ω defined as the fraction of the respective energy density relative to
the critical density

Ω(t) :=
ρ(t)

ρcr(t)
, Ω0 := Ω(t0) =

ρ(t0)

ρcr(t0)
. (2.30)

For the matter forms mentioned above one obtains the following expressions

Ωm0 :=
ρm0

ρcr0
, Ωr0 :=

ρr0

ρcr0
, ΩΛ0 :=

ρΛ0
ρcr0

. (2.31)

In terms of the density parameters the first Friedmann (2.18) equation can be written as

H2(a) = H2
0

[
Ωr0a

−4 + Ωm0a
−3 + ΩΛ0 −

k

a2H2
0

]
≡ H2

0E(a)
2 (2.32)
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where E(a) denotes the “expansion function”. Since H2(a = 1) = H2
0 the terms in the

brackets must add to unity which in turn can be used to define the curvature density
today Ωk0

1− Ωm0 + Ωr0 + ΩΛ0 = Ωk0 := − k

H2
0

. (2.33)

Depending on its ingredients one can study how different matter forms entering E(a) affect
the expansion rate H(t). The expansion function E(a) can also be used to determine the
time evolution of the density parameters, e.g. for Ωm one finds

Ωm =
ρm

ρcr
=

ρm0a
−3

ρcr0H2/H2
0

=
Ωm0a

−3

E2(a)
. (2.34)

In the same way, one calculates Ωr, ΩΛ and Ωk as

Ωr =
Ωr0a

−4

E2(a)
, ΩΛ =

ΩΛ0

E2(a)
, Ωk =

Ωk0a
−2

E2(a)
. (2.35)

Due to different equations of state different constituents will dominate at different times.
Obviously, if the Universe is expanding with time, then it must contract when going

backwards. To calculate the time it will take to reach the singularity at a = 0, i.e. the
“Big Bang”, one can use the Friedmann equation (2.18),

1

a

da

dt
= H0E(a). (2.36)

Rearranging and integrating (2.18) gives the age of the Universe for a given scale factor a

t(a) =
1

H0

∫ a

0

da′

a′E(a′)
. (2.37)

Again, depending on the matter constituents entering E(a) different values will be ob-
tained. For example, the early Universe is radiation-dominated, i.e. E(a) =

√
Ωr0a−4

which implies

t =
a2

2H0

√
Ωr0

. (2.38)

This result will later be used when discussing the flatness problem.

2.4 Observational Status and the ΛCDM Model

Before discussing the current standard model of cosmology it is necessary to develop
some “tools” in order to support the theoretical considerations with observations which
are presented below.

– 17 –



Cosmological redshift. In an expanding Universe galaxies are moving away from each
other. Consequently, we will observe the wavelengths of photons emitted from a receding
galaxy as being stretched or redshifted. To understand this better consider a photon
that was initially emitted from a comoving source at (tem,xem) and later received by a
comoving observer at (tobs,xobs). The cosmological principle allows to choose coordinates
such that xem = 0 by homogeneity and xobs = (r, 0, 0) by isotropy. Since propagating
photons are characterised by ds2 = 0 this implies dr = ±dt/a(t) depending on whether r
was measured from the perspective of the emitting (+) or receiving observer (−). Taking
the positive sign the radial coordinate distance r between emission and observation is
constant since both observers are comoving, i.e.

r =

∫ tobs

tem

dr =

∫ tobs

tem

dt

a(t)
= const. (2.39)

This immediately implies for the time derivative of r

dr

dtem
= 0 =

1

a(tobs)

dtobs

dtem
− 1

a(tem)
(2.40)

and therefore
dtobs

dtem
' δtobs

δtem
=
a(tobs)

a(tem)
. (2.41)

Hence, time intervals δtem at the source are changed until they arrive at the observer in
the same way as the scale factor changes between those two events. Let δt = ν−1 denote
the period of a light wave with frequency ν.

a(tobs)

a(tem)
=
νem

νobs
=
λobs

λem
= 1 +

λobs − λem

λem
= 1 + z. (2.42)

The quantity z is called cosmological redshift if the emitted frequency is shifted towards
a smaller value. By convention on sets the scale factor today to one, a(tobs) ≡ 1 and
a(tem) ≡ a. With this one finds

a =
1

1 + z
, z =

1

a
− 1. (2.43)

Horizons. Due to the finite speed of light and the expansion of the Universe the radius
of causality which is called horizon is limited. Consequently, there may be regions of
spacetime that are inaccessible for a particular observer. One can distinguish mainly two
types of horizons where only one is relevant for us. The “particle horizon” at a given time
t is defined as the distance a photon can travel emitted at the time of the Big Bang ti to
the time t. This means that events outside the particle horizon are not causally connected
to any points inside this region. Similar to the calculation of the cosmological redshift
the comoving particle horizon is therefore given by

χp(t) :=

∫ t

ti

dt′

a(t′)
=

∫ a

ai

da′

a′2H
=

∫ a

ai

d log a′
(

1

a′H

)
(2.44)
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Tab. 2.1: Present day cosmological parameters taken from [2].

Name Symbol Value EoS w

Hubble constant h 0.7 –
baryonic matter Ωb 0.04 wb = 0

dark matter Ωd 0.23 wd = 0

dark energy Ωλ 0.73 wΛ ' −1

curvature Ωk ∼ 0 w = −1/3

photons Ωγ 2.4× 10−5 h−2 wγ = 1/3

neutrinos Ων 1.7× 10−5 h−2 wν = 1/3

where in the last step we introduced the comoving Hubble radius (aH)−1 which is for
matter with w > −1/3 of the order of the particle horizon. The physical size dp of the
comoving particle horizon is obtained by multiplying (2.44) with the scale factor a(t).

dp = a(t)χp. (2.45)

For example, in a flat Universe during radiation or matter-domination with scale factor
a ∼ t2/3 or a(t) ∼ t1/2, respectively, the particle horizon grows linearly with cosmic time
t. This becomes particularly important when discussing the horizon problem which was
one of the original motivations for introducing the concept of inflation.

In the remainder of this section, we present the cosmological standard model. The
currently widely accepted so-called “concordance model” or ΛCDM model describes a
(nearly) flat Universe which is dominated today by some “dark energy” parametrised by
a cosmological constant Λ and some exotic “cold dark matter” (CDM). See Fig. ?? and
Tab. 2.1. To the present day there are still no observations or experiments revealing the
nature of these exotic forms of energy and matter. Further details including observational
evidence and possible scenarios to approach the dark matter problem are presented in the
next chapter. Despite this, the ΛCDM model is in excellent agreement with observational
data which come, among other things, from the analysis of the CMB, the explanation
of the large-scale structure, the successful prediction of the element abundances and the
observed accelerated expansion of the Universe today.

Based on the observations in recent years we are now in a position to successfully
reconstruct the history of the Universe since the so-called “Big Bang Nucleosynthesis”
(BBN). In the following, we mention several cosmic events, note however that everything
before BBN is (maybe justified) speculation.

(1) Early Universe (10−43 − 10−10 s, T ∼ 100 − 1019GeV): This first moment includes
the Planck era (where General Relativity is supposed to break down), the time of
grand unification (where the three known SM forces are supposed to be unified) and
the inflationary epoch

(2) Electroweak Phase Transition (10−10 s, T ∼ 100GeV): The electroweak symmetry
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Ωb = 0.04
Ωd = 0.23
ΩΛ = 0.73

Fig. 2.1: Present day composition of the Universe. Values taken from [2].

is spontaneously broken by the Higgs mechanism and the W and Z bosons as well
as the SM quarks and leptons acquire masses.

(3) Quark-gluon transition (10−5 s, T ∼ 200MeV): During the quark-gluon transition
quarks and gluons propagating freely through the thermal plasma are confined into
baryons and mesons.

(4) Nucleosynthesis (200 − 300 s, T ∼ 0.05MeV): Free protons and neutrons form
helium and other light elements. The predicted abundances of the produced pri-
mordial elements fit neatly with observational data thereby providing an important
test of the ΛCDM model.

(5) Matter-radiation equality (1011 s, T ∼ eV): At this time the energy densities of
radiation and matter were equal. The precise value depends on how much the dark
matter contributes to Ωm.

(6) Recombination (1012 − 1013 s): Electrons and nuclei coalesce into neutral atoms.
The Universe is no longer opaque to photons which are today observed as the cosmic
microwave background (CMB) radiation.

(7) Structure formation (1016 − 1017 s): Due to gravitational instability small matter
fluctuations grow and gradually form galaxies and galaxy clusters.
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3. Dark Matter

3.1 Observational Evidence
There are several observational hints suggesting the existence of non-baryonic dark matter
(DM). Among others this includes

(1) Galaxy rotation curves: The virial theorem 〈T 〉 = −1
2
〈V 〉 relates the velocities of

gravitational bound objects (e.g. stars orbiting the center of a galaxy) to the total
mass M of the system as

M 〈v2〉 ∼ G
M2

〈r〉
. (3.1)

According to Newton’s law one expects for the velocity of a star to be a function of
the distance r from the galactic center

v(r) =

√
GM

r
. (3.2)

However, observations have shown that this so-called “rotational velocity” stays
nearly constant irrespective of the distance. This phenomenon can be explained by
extending the visible matter content of the galaxy by some non-luminous “dark”
matter component surrounding the galaxy. In this context one often speaks of a
“dark matter halo”.

(2) Gravitational lensing: The central idea of General relativity is that spacetime gets
distorted in the presence of (gravitating) massive objects, and that this curvature is
related to their masses. As a consequence, light rays get bent when traveling close to
large masses. In the far field limit this is commonly known as “gravitational lensing”,
light bent by the sun is not typically referred to as lensing. In the case of “strong
lensing”, the distorting mass is so large that the light may take any paths around the
lens. If the light source (e.g. a distant galaxy) is aligned directly behind the mass
one can sometimes observe multiple images, arcs or even “Einstein rings” where the
radius of such rings is proportional to the square root of the mass of the object. The
measured amount of strong lensing suggests the existence of additional gravitational
matter of galaxy clusters and thus supports the assumption of invisible dark matter.
Unfortunately, strong lensing requires very special conditions including for example
a very large mass and that background galaxy, lensing mass and observer are at
the right distance from each other. More commonly, “weak lensing” effects induce



only slight distortions. However, by combining a large number of galaxies one can
still reconstruct the original matter distribution by exploiting statistical properties
of the distorted images. To put it differently, strong lensing effects are used for
probing small structures while weak lensing effects help to resolve large structures.

(3) Cosmic microwave background: The temperature of the photons released after
recombination is nearly constant (δT/T ∼ 10−5) in every direction which strongly
supports the initial assumption of the cosmological principle. A careful analysis of
the measured temperature fluctuations allows to independently infer the numerical
values of the density parameters corresponding to the total matter Ωm and the
fraction of baryonic matter Ωb which as a result do not coincide.

(4) Structure formation: The CMB depicts the early Universe as a homogeneous and
isotropic state with energy fluctuations of order δρ/ρ ∼ 10−5. However, these fluc-
tuations must have somehow grown into the large structures we observe today.
Baryonic matter couples to both photons and gravity. Photons which have domi-
nated the early Universe can build-up a certain pressure which prevents ordinary
matter from collapsing due to gravity. Once photons decouple from the thermal
bath (about 300 000 years ago) this radiation pressure will no longer be present and
the density fluctuations will collapse. However, there has simply not enough time
passed by such that these fluctuations might have been originated from this event.
Since DM does not couple to photons, DM density fluctuations could have started to
grow long before photon decoupling. Then, since DM does interact gravitationally
with SM particles it could have helped ordinary matter to cluster much faster than
without DM.

Assuming that DM consists of particles we can summarize their required properties based
on the observations mentioned above.

(1) DM must be electrically neutral or couple very weakly to photons.

(2) DM must be stable or its lifetime must be larger than the age of the Universe.

(3) DM must be non-relativistic at the time of decoupling.

3.2 Production Mechanisms and Candidates
In this section, we present some popular models that aim to overcome the problem of DM.
Assuming that DM consists of particles different DM scenarios can be classified according
to their masses and their couplings to the SM. A recent review can be found in [22].

(1) Freeze-out: DM particles are initially kept in thermal equilibrium with the SM
through annihilation processes. Once the interaction rate at which DM is produced
drops below the Hubble rate, it decouples from the thermal bath and its number
density freezes out. For this to happen only a small coupling y ' O(0.1) is required.
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The weakly-interacting1 massive particle (WIMP) is probably the most popular
DM candidate and its production is based on the freeze out mechanism for thermal
relics. At temperatures T > m, the DM was in equilibrium with the SM. As
the Universe expands it also cooled down. For T . m, the DM becomes non-
relativistic and decouple from thermal equilibrium, because its interaction rate Γ ∼
n ∼ exp(−m/T ) becomes Boltzmann-suppressed and eventually smaller than the
Hubble rate. As it turns out the correct DM abundance can be obtained for a
cross section typical for the weak interaction which becomes known as the “WIMP
miracle”.

(2) Freeze-in: DM did never thermalize with the SM which calls for a very small
coupling y ' O(10−7). Instead, in the simples case, its number density becomes
constant once the number density associated with the bath particle producing DM
(through decay or annihilation) becomes Boltzmann-suppressed. See also [23]. The
PIDM scenario is a variation of the freeze-in mechanism. In this model, DM is only
gravitationally coupled to the SM through s-channel graviton exchange. The correct
DM abundance can be achieved via the freeze-in mechanism in the large PIDM mass
range 1TeV . mX . mGUT for a sufficiently high reheating temperature [13].

There are several other DM scenarios with very different underlying ideas. Here, we
mention only two of them, the QCD axion DM and primordial black holes. The motivation
for the axion is the “strong CP problem” which is based on a certain term in the QCD
Lagrangian, namely

L ⊃ −1

4

g2s
8π2

θGa
µνG̃

a,µν (3.3)

where Ga,µν denotes the SU(3)c gauge kinetic term, gs the strong coupling constant and
θ a dimensionless number. As one can show for θ 6= 0 this term does not preserve parity
and charge conjugation (CP). CP-violating effects in the strong sector will induce a non-
vanishing electric dipole moment which can in principle be measured for the neutron which
ultimately constrains the possible value of θ. The strong CP problem consists of the huge
discrepancy between the naturally expected value θth ' 1 and the experimentally inferred
value θexp ' 10−9. An elegant resolution is provided by the Peccei-Quinn mechanism
which postulates the existence of a new global U(1) symmetry being spontaneously broken
[24]. According to the Goldstone theorem this generates an additional scalar particle, the
so-called “axion” a(x) which renders the θ term making it a dynamical variable

θ → θ +
a(x)

fa
(3.4)

where fa denotes the axion decay constant. In the broken phase this sum vanishs thereby
effectively dropping (3.3). If the axion accounts for all the dark matter then its mass must

1 In the original works, the term “weakly” refers not only to the coupling strength but in particular to
the weak interaction of the SM.
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be very small. Recent simulations provide values of the order of ma ∼ 10 µeV [25].
Once we abandon the particle hypothesis of DM there are other possibilities to approach

the DM problem. The so-called “primordial black holes” (PBHs) are believed to had form
in the very early Universe from extremely large density inhomogeneities that eventually
collapsed under the influence of gravity. Depending on the time of formation PBHs can
have very different masses ranging from 10−5 g (when formed at Planck time 10−43 s) to
105M�. PBHs are non-baryonic and travel through space at non-relativistic velocities.
And, if their masses are large enough they are stable and hence can serve as DM candidates
[26].
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4. Quantum Fields in Curved
Spacetime

The goal of this chapter is to develop the framework for dealing with quantum fields in
curved backgrounds. The following considerations are mainly based on [27] and supple-
mented by [21]. Details can be found in [28, 29].

4.1 Classical Fields coupled to Gravity
While most interactions in nature are mediated by gauge bosons, gravity is on the other
hand regarded as geometric effect of spacetime which in turn is encoded in the metric
gµν . For this reason, one may wonder how to implement it in a field-theoretic approach
in order to describe for example particles in the presence of strong gravitational fields1.
The idea is to consider the metric carrying all the information about the geometry of
spacetime and thus about the gravitational field as a classical field which enters an action
of matter fields in the following way:

(1) Replace the flat metric ηµν with the curved one gµν , i.e.

ηµν → gµν (4.1)

(2) Replace the ordinary derivative ∂µ with the covariant one ∇µ, i.e.

∂µ → ∇µ (4.2)

(3) Replace the usual volume element d4x with the covariant one d4x
√
−g, i.e.

d4x→ d4x
√
−g. (4.3)

Recall that for the case of scalar fields the covariant derivative reduces to the ordinary
derivative ∇µφ = ∂µφ. The minus sign in front of the determinant g := det gµν is due to
the signature of the metric which we choose to be (+,−,−,−).

Suppose the complete action S can be written as the sum of the action describing the
gravitational field gµν and the matter fields2 φ which are respectively described by Sgrav[g]

1 The question is here how gravitational effects could be taken into account in a quantized theory of
matter. It should not to be confused with looking for a quantum theory of gravity itself.

2 For the moment we do not distinguish between bosons and fermions but collectively denote them as
φ.



and Smat[φ, g]. The equations of motion for g follow by varying the sum S[φ, g] of both
with respect to the metric

δS[φ, g]

δgµν
=
δSgrav[g]

δgµν
+
δSmat[φ, g]

δgµν
. (4.4)

The Einstein field equations in the vacuum and the absence of a cosmological constant Λ
are found by calculating only the variation of Sgrav

δSgrav[g]

δgµν
= −

√
−g

16πG

(
Rµν −

1

2
gµνR

)
= 0 (4.5)

for the Einstein-Hilbert action given by

Sgrav[gµν ] = − 1

16πG

∫
d4x

√
−gR. (4.6)

Since the result of (4.4) must return the full Einstein equations (2.1) we obtain an ex-
pression for the energy-momentum tensor in terms of the variation of the matter action

Tµν =
2√
−g

δSmat

δgµν
. (4.7)

The action of one of the simplest classical field theories containing only a single real
scalar field φ(x) in the background of Minkowski spacetime is given by

S =

∫
d4x

[
1

2
ηµν∂µφ∂νφ− V (φ)

]
. (4.8)

Here, ηµν denotes the Minkowski metric and V (φ) the potential containing the mass m
and perhaps some terms governing the interactions of the field. Let’s consider the same
field but in a curved spacetime described by different metric gµν . Applying the rules above
one arrives at

S =

∫
d4x

√
−g

[
1

2
gµν∂µφ∂νφ− V (φ)

]
. (4.9)

Due to the presence of √
−g the resulting action describes a real scalar field which is

“minimally coupled” to gravity. Non-minimal couplings arise by adding terms that for
instance explicitly contain the Ricci scalar R. Since [R] = m2, renormalizability further
forces the Ricci scalar R to couple only linearly to φ2, thereby acting as a curvature
dependent mass correction for the scalar field. Other terms like the dimension-6 operator
Rµν∂µφ∂νφ explicitly containing the Ricci tensor Rµν are conceivable as well but cannot
be properly renormalized due to [Rµν ] = m2.

The simplest example of an action with a non-minimal coupling to gravity reads

S =

∫
d4x

√
−g

[
1

2
gµν∂µφ∂νφ− 1

2
m2φ2 + ξRφ2

]
. (4.10)

Depending on the coefficient of ξ this action can describe a scalar which is for example
“minimally” (ξ = 0) or “conformally coupled” (ξ = 1/6) to gravity.
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4.1.1 Scalar Fields in the FLRW Universe
In the following, we consider this field in the background of an expanding flat FLRW
Universe. Moreover, any effects of back-reaction that the field may have to influence the
form of the metric are assumed to be negligible. Then, expressed in cosmic time t one has
gµν = (gµν)

−1 = diag(1,−a2,−a2,−a2)−1 and √
−g = a3. Hence, the action (4.9) changes

accordingly

S =

∫
d4xa3

[
1

2
φ̇2 − 1

2a2
(
∇φ

)2 − V (φ)

]
. (4.11)

The equation of motion for φ follows by varying S with respect to φ. Noting that ordinary
derivatives commute with variations, i.e. δ(∂µφ = ∂µ(δφ)), one finds after integrating by
parts

δS =

∫
d4x

[
−φ̈− 3Hφ̇+

1

a2
∇2φ− ∂V

∂φ

]
δφ (4.12)

where the boundary terms are assumed to vanish. Therefore, the equation of motion
simply follows as

φ̈+ 3Hφ̇− 1

a2
∇2φ+ (m2 − ξR)φ = 0. (4.13)

For an expanding Universe the term 3Hφ̇ will damp any field oscillations and is therefore
sometimes called a “friction term”. Being suppressed for increasing scale factor, the term
∇φ can often be neglected, in case of a spatially homogeneous field, φ = φ(t), the gradient
completely vanishes. For instance, (4.13) can describe the dynamics of the inflaton. This
is a hypothetical particle that potentially drives the short period of accelerated expansion
being originally invented to resolve some shortcomings of the ΛCDM model.

Sometimes, it can be particularly useful to express the relevant equations in terms of
the so-called “conformal time” η instead of the cosmic time, where both are related by
dη = dt/a. Note that in this case one has gµν = a−2ηµν and √

−g = a4. Then, after
rewriting the derivatives of the scale factor with respect to η

ȧ =
da

dt
=

da

dη

dη

dt
=:

a′

a
, ä =

1

a

(
a′

a

)′

=
a′′

a2
− a′2

a3
(4.14)

the Ricci scalar (2.15) of a flat Universe (k = 0) simplifies to

R = −6

(
ä+

ȧ2

a2

)
= −6

a′′

a3
. (4.15)

Note that a prime denotes the derivative with respect to conformal time. With these
expressions the action becomes

S =

∫
d4x

[
1

2
a2
(
∂µφ

)2 − 1

2
a2
(
∇φ

)2 − 1

2
(m2 − ξR)φ2

]
(4.16)

=

∫
d4x

[
1

2
a2φ′2 − 1

2
a2
(
∇φ

)2 − 1

2

(
m2a2 + 6ξ

a′′

a

)
a2φ2

]
. (4.17)

– 27 –



This form can further be simplified by rescaling the field variable as X = a(η)φ from
which it follows that

a2φ′2 = X ′2 − 2
a′

a
XX ′ +

(
a′

a

)2

X2 (4.18)

= X ′2 +
a′′

a
X2 −

(
X2a

′

a

)′

. (4.19)

The total time derivative (X2a′/a)′ can later be dropped from the action. Therefore, by
putting everything together the full action is

S =

∫
d4x

[
1

2
X ′2 − 1

2

(
∇X

)2 − 1

2
m2

eff(η)X
2

]
(4.20)

where we introduced the time-dependent effective mass

m2
eff(η) := m2a2 −

(
1− 6ξ

)a′′
a
. (4.21)

Similarly, by varying the action S with respect to X one obtains the equation of motion
for X

X ′′ −
(
∇2X

)
+m2

effX = 0. (4.22)

At this point two remarks seem to be appropriate. First, brought into this form, the
advantage of using the conformal time together with the rescaled field variable becomes
apparent. Quantizing a scalar field theory in an expanding flat FLRW Universe turns
out to be nothing else than quantizing in Minkowski spacetime. The whole information
about the gravitational field is encoded in the time-dependent effective mass. Second,
note that the energy of the scalar is not conserved due to the explicit time-dependence
of the action through m2

eff(η). As a consequence, when quantizing (4.20) this property
translates into an astonishing phenomenon which is absent in Quantum Field Theory in
flat spacetime. The energy of the gravitational field is released to create new particles.
The precise mechanism of particle production by gravitational fields is reserved for the
next sections.

4.2 Quantization
The discussion so far has only been on a classical level. When constructing a quantum
theory several problems arise that are not present in the case of flat spacetime and shall
be discussed in this section. A classical field theory in curved spacetime expressed in
terms of a Lagrangian L (φ, ∂µφ) can in principle be quantized the same way as with a
flat background but requires certain modifications. To better emphasize the differences
we recap the quantizing procedure of a classical harmonic oscillator described by

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2. (4.23)

To quantize this theory one would normally proceed as demanded by the following recipe.
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(1) Define the canonically conjugated momentum

π(t,x) :=
∂L

∂φ̇
= φ̇(t,x) (4.24)

and expand φ and π in Fourier modes as

φ(t,x) =

∫
d3k

(2π)3/2
eik·xφk(t), (4.25)

π(t,x) =

∫
d3k

(2π)3/2
eik·xπk(t). (4.26)

Use the classical Hamiltonian

H =

∫
d3x

(
πφ̇− L

)
=

1

2

∫
d3x

(
π2 +

(
∇φ

)2
+m2φ2

)
(4.27)

to write down the corresponding Hamilton’s equation of motion for φ and π

φ̇ =
∂H

∂π
, π̇ =

∂H

∂φ
. (4.28)

Similarly, for φk and πk one obtains φ̇k = πk, π̇k = −ω2
kφk which can be combined

into

φ̈k + ω2
kφk = 0. (4.29)

with ω2
k = k2 +m2.

(2) Promote φ and π to operators and impose equal-time commutation relations[
φ(t,x), π(t,y)

]
= iδ(x− y),

[
φ(t,x), φ(t,y)

]
=

[
π(t,x), π(t,y)

]
= 0. (4.30)

Substitute the Fourier expansions of φ and π into (4.43) and obtain similar commu-
tation relations for the mode operators φk and πk[

φk(t), πk(t)
]
= iδ(x− y),

[
φk(t), φk′(t)

]
=

[
πk(t), πk′(t)

]
= 0. (4.31)

(3) Construct creation and annihilation operators a±k as functions of the mode operators
φk and πk

a−k :=
ωk
2

(
φk +

iπk
ωk

)
, a+k :=

ωk
2

(
φ−k −

iπ−k

ωk

)
. (4.32)

Derive similar commutation relations for a±k using (4.31)[
a+k , a

−
k′

]
= iδ(k − k′),

[
a+k , a

+
k′

]
=

[
a−k , a

−
k′

]
= 0. (4.33)

(4) Translate Hamilton’s equations of motion for φk and πk into two differential equa-
tions for a±k governing their time evolution

d

dt
a±k = ±iωka

±
k (4.34)

which is solved by

a±k (t) = a±0,ke
iωkt. (4.35)
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(5) Rearrange (4.47) to give an expression for φk in terms of the ladder operators

φk =
1

√
ωk

(
a−k e

−iωkt + a+−ke
iωkt

)
(4.36)

where the zero was dropped in a0k± . At the end, one arrives at the field operator
expansion for φ in position space

φ(t,x) =

∫
d3k

(2π)3/2
1√
2ωk

(
a−k e

−iωkt+ik·x + a+k e
iωkt−ik·x) (4.37)

after changing k → −k in the second term.

There is different approach which does not need the knowledge of the mode operators φk

and πk to explicitly construct the ladder operators a±k . Here we follow this second ap-
proach because it is more easily generalized to harmonic oscillators with a time-dependent
frequency. We apply this alternative directly to our problem at hand.

(1) Revisit (4.22) and substitute the Fourier expansion of X

X(η,x) =

∫
d3k

(2π)3/2
eik·xχk(η) (4.38)

to obtain a differential equation for the momentum modes χk

χ′′
k + ω2

k(η)χk = 0 (4.39)

with ω2
k(η) := k2 + m2

eff(η). According to the dimension of the solution space of
(4.39), its general solution can be written as a superposition of two linearly inde-
pendent (and undetermined) solutions of (4.39)

χk(η) =
1√
2

(
a−k v

∗
k + a+−kvk

)
(4.40)

where a±k denote two complex constants of integration. The functions vk(η) satisfy

v′′k + ωk(η)vk = 0. (4.41)

For real fields with X∗ = X one has χ∗
k = χ−k and therefore

(
a−k

)∗
= a+k . At this

point, it is convenient to introduce the Wronskian W (v, w) of two functions v, w as

W (v, w) := v′w − vw′ = 2i Im
(
v′w

)
. (4.42)

Note that W (vk, v
∗
k) is time-independent if both vk and v∗k solve (4.39), and does not

vanish if and only if vk and v∗k are linearly independent. Moreover, by rescaling the
solutions as vk → λvk the Wronskian changes as W → |λ|2W . This means that if vk
and v∗k are indeed supposed to be linearly independent, then they must be normalized
such that W 6= 0 (which in turn is possible due to the scaling property described
above). Note also that the exponentials in (4.36) are replaced in (4.40) by general
functions vk, v∗k. In other words, one could say that (4.36) serves as motivation for
an ansatz whenever considering harmonic oscillators with time-dependent frequency
ωk(η). Here, the time dependence eventually comes from the gravitational field in
the form of the scale factor a(η).
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(2) Promote X and its canonically conjugated momentum π = X ′ to operators and
impose equal-time commutation relations[

X(η,x), X(η,y)
]
= iδ(x− y),

[
X(η,x), X(η,y)

]
=

[
π(t,x), π(t,y)

]
= 0.

(4.43)

The Hamiltonian for X can be calculated according to

H(η) =
1

2

∫
d3x

[
π2 +

(
∇X

)2
+m2

eff(η)X
2
]
. (4.44)

Regard the constants of integration a±k in the Fourier expansion of X

X(η,x) =

∫
d3k

(2π)3/2
1√
2

(
a−k v

∗
k(η)e

ik·x + a+k vk(η)e
−ik·x) (4.45)

as operators where the mode functions vk(η) fulfil (4.39) and are supposed to be
normalized by

Im
(
v′kv

∗
k

)
= 1. (4.46)

Using the Fourier expansion of X and π the commutation relations (4.43) imply
together with (4.46) similar commutation relations for a±k[

a+k , a
−
k′

]
= iδ(k − k′),

[
a+k , a

+
k′

]
=

[
a−k , a

−
k′

]
= 0. (4.47)

which shows that they can indeed be interpreted as creation and annihilation oper-
ators.

4.2.1 Bogoliubov Transformations
Usually, the creation and annihilation operators a±k are the building blocks to construct
an orthonormal Hilbert basis of quantum states. This, however, requires that the mode
functions vk(η) are already (uniquely) determined. By only imposing the normalisation
condition (4.46) the differential equation (4.41) can as well be solved by the transformed
mode functions uk given by

uk(η) = αkvk(η) + βkv
∗
k(η) (4.48)

with time-independent complex numbers αk, βk. Moreover, if these so-called “Bogoliubov
coefficients” αk, βk satisfy the constraint

|αk|2 − |βk|2 = 1, (4.49)

then the new mode functions uk will also be normalized by (4.46) which implies that vk
and uk can equivalently be considered as mode functions. The new mode functions are of
course associated with different creation and annihilation operators b±k such that the field
X(η,x) is expressed as

X(η,x) =
1√
2

∫
d3k

(2π)3/2

[
b−ku

∗
k(η)e

ik·x + b+kuk(η)e
−ik·x

]
. (4.50)
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Both expression must, however, represent the same field operator X(η,x) which therefore
implies that both integrands must coincide, i.e.

a−k v
∗
k(η) + a+k v

∗
k(η) = b−ku

∗
k(η) + b+−kuk(η) (4.51)

from which the so-called “Bogoliubov transformations”

a−k = α∗
kb

−
k + βkb

+
−k, a+k = αkb

+
k + β∗

kb
−
−k (4.52)

follow. Furthermore, the Bogoliubov coefficients are explicitly given by

αk =
1

2i

[
u′kv

∗
k − ukv

∗′
k

]
, βk =

1

2i

[
v′kuk − vku

′
k

]
. (4.53)

4.2.2 Hilbert Space
Having defined two different sets of annihilation operators

{
a−k , b

−
k

}
this poses the question

how to unambiguously define the vacuum state since both operators have by definition
the characterising property of the vacuum state, i.e.

a−k |0a〉 = 0 = b−k |0b〉 (4.54)

The vacuum states |0a〉 and |0b〉 are called the “a-vacuum” and “b-vacuum”, respectively.
Essentially, the vacuum vector thus depends on the particular mode function being used
to describe a given quantum state. Both vacua will form the basis of two different set of
excited states that are constructed with two different types of creation operators

|mk1 , nk2 , ...〉a =
1√

m!n!...

[(
a+k1

)m(
a+k2

)n
· · ·

]
|0a〉 (“a-particles”), (4.55)

|mk1 , nk2 , ...〉b =
1√

m!n!...

[(
b+k1

)m(
b+k2

)n
· · ·

]
|0b〉 (“b-particles”) (4.56)

An interesting phenomenon can be found by computing the expectation value of the
a-particle number operator N (a)

k = a+k a
−
k in the the b-vacuum〈

0b

∣∣∣N (a)
k

∣∣∣ 0b〉 =
〈
0b

∣∣ a+k a−k ∣∣ 0b〉 (4.57)

=
〈
0b

∣∣∣ (αkb+k + β∗
kb

−
−k

)(
α∗
kb

−
k + βkb

+
−k

) ∣∣∣ 0b〉 (4.58)

=
〈
0b

∣∣∣ (β∗
kb

−
−k

)(
βkb

+
−k

) ∣∣∣ 0b〉 (4.59)

= |βk|2δ(3)(0) (4.60)

where the divergent factor δ(3)(0) results from the infinite spatial extent. Therefore,
if |βk|2 6= 0 then the b-vacuum which by definition does not contain any “b-particles”
nevertheless consists of a-particles. As a remark, this effect cannot occur in flat spacetime
since in this case the mode functions are uniquely chosen as vk ∼ eiωkt. The mean number
density of a-particles in mode k is therefore nk = |βk|2. Integrating over all momenta k

and dividing by the spatial volume a3 gives the total mean number density

n(t) =
1

a3(t)

∫
d3k|βk(t)|2 =

1

2π2a3(t)

∫ ∞

0

dkk2|βk(t)|2 (4.61)

which is only finite for |βk|2 decaying faster than k−3 for large k.
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4.2.3 Physical Vacuum
The previous section has shown that the particle spectrum of a given theory crucially
depends on the selected mode functions. However, different sets of mode functions (related
by Bogoliubov transformations) describe the same quantum state and are therefore on the
same footing. Since the particle interpretation is based on the vacuum state one needs
a prescription for choosing the correct one to reproduce the physical observed particle
states.

Instantaneous Vacuum. Obviously, for a time-dependent Hamiltonian like (4.44) one
cannot find time-independent eigenvectors as candidates for describing the vacuum. How-
ever, it is still possible to define the vacuum |0〉η0 at a particular moment of time η0 as
the lowest-energy state of H(η0). This is done by determining the expectation value
(v) 〈0 |H(η0) | 0〉(v) for arbitrary mode functions vk(η) and minimising afterwards this ex-
pression with respect to vk(η), i.e. finding the eigenvector of H(η0) with the smallest
eigenvalue. By plugging the mode expansion (4.50) into the Hamiltonian (4.44) one finds

(v) 〈0 |H(η0) | 0〉(v) =
1

4
δ(3)(0)

∫
d3k

(
|v′k(η)|2 + ωk(η)

2|vk(η)|2
)

(4.62)

≡ 1

4
δ(3)(0)

∫
d3kEk(η0). (4.63)

The energy density ε(η0) follows by dropping the divergent factor δ(3)(0) as

ε(η0) =
1

4

∫
d3kEk(η0). (4.64)

The second step requires to find the mode functions vk, v′k that simultaneously minimises
Ek(η0) and satisfy the normalisation condition (4.46) for each mode k separately. Using

vk(η) = rk(η)e
iθ(η) (4.65)

as ansatz for the mode function, the normalisation condition translates into

r2kθ
′
k = 1. (4.66)

On the other hand, the integrand of ε(η0),

Ek(η0) = r′2k +
1

r2k
+ ω2

kr
2
k, (4.67)

becomes minimal for rk(η0) = 1/
√
ωk(η0) and r′k = 0 as can be seen by testing the

minimization conditions
∂Ek(η0)

∂rk
= 0 =

∂Ek(η0)

∂r′k
. (4.68)

The phases θk are left undetermined by this and therefore set to zero for simplicity. Note
that for ωk(η0) < 0, the minimum does not exist and the vacuum cannot be defined.
Therefore, the initial conditions selecting the mode functions (which respect the normal-
isation conditions and characterise the vacuum) follow as

vk(η0) =
1√
ωk(η0)

, v′k(η0) = iωkvk(η0). (4.69)
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Adiabatic Vacuum. In curved spacetimes, the vacuum as seen by different observers
cannot unambiguously defined. The so-called adiabatic vacuum can still provide an alter-
native notion for the concept of a particle for spacetimes with slowly changing geometry,
i.e. ∆ωk/ωk ∼ O(1) only during time T � 1/ωk. For the FLRW spacetime this implies
that ω2

k(η) is varying slowly with time. By substituting an ansatz based on the WKB
approximation for the solutions of (4.39)

vk(η) =
1√
Wk(η)

exp

[
i

∫ η2

η1

dηWk(η)

]
(4.70)

one obtains a differential equation for the function Wk(η)

W 2
k = ω2

k −
1

2

[
W ′′
k

Wk

− 3

2

(
W ′
k

Wk

)2
]
. (4.71)

By using 1/(Tωk) as a small parameter (4.71) can be solved perturbatively. To lowest
order one finds

W
(0)
k = ωk. (4.72)

The field χk can now be expressed in terms of the mode functions as

χk(η) =
αk(η)√
2ωk(η)

exp

(
−i

∫ η

ηinit

dη̃ωk(η̃)

)
+

βk(η)√
2ωk(η)

exp

(
i

∫ η

ηinit

dη̃ωk(η̃)

)
(4.73)

where ηinit simply denotes the time from which one starts to investigate the system. This
is going to be very useful for our numerical work and we pick it up later.

– 34 –



5. Inflation
This chapter collects some basic elements about the physics of inflation. A detailed
summary is given in [30].

5.1 Shortcomings of the Standard Model of Cosmology
Although successfully explaining the current observational status the underlying assump-
tion according to which the Big Bang is directly followed by a radiation-dominated epoch
leads to several shortcomings. These issues are neither contradictions with observations
nor inconsistencies of the theory itself but cannot be resolved by it. Instead, they concern
the question of naturalness of the initial conditions. The most important ones include the
flatness problem and the horizon problem and are presented in the following paragraphs.

Flatness Problem. By rearranging the Friedmann equation (2.18) the curvature density
Ωk = |1− Ωtot| can be rewritten as follows

|1− Ωtot| =
∣∣1− (

Ωr + Ωm + ΩΛ

)∣∣ (5.1)

=

∣∣∣∣1− (
Ωr0

a4
+

Ωm0

a3
+ ΩΛ0

)
H2

0

H2

∣∣∣∣ (5.2)

=

∣∣∣∣1− (
H2

H2
0

− Ωk0

a2

)
H2

0

H2

∣∣∣∣ (5.3)

=

∣∣∣∣Ωk0

a2
H2

0

H2

∣∣∣∣ . (5.4)

A flat Universe with Ωk0 = 0 therefore corresponds to Ωtot = 1, i.e. if the total energy
density is exactly equal to the critical density. The flatness problem becomes apparent
when evaluating |1 − Ωtot| at the Planck time tPl =

√
~Gc−5 ' 10−44 s. In the very

early Universe, radiation is believed to have dominated, so the expansion function can be
estimated as

E(a) =
H

H0

=
√
Ωr0a−4 ' a−2. (5.5)

On the other hand, the scale factor during radiation domination is given by (cf. 2.38)

a(t) '
√
2H0t. (5.6)

Using (5.5) and (5.6) the curvature density (5.1) at the Planck time can be related to the
one today by

|Ωk0| =
∣∣1− Ωtot

∣∣
a2Pl

' 4.2× 1060
∣∣1− Ωtot

∣∣. (5.7)



Hence, the curvature density Ωk(aPl) at the Planck time was about 60 orders of magnitude
smaller than today. However, observations have shown that the curvature density today
Ωk0 is close to zero. The flatness problem can therefore be formulated how to the Universe
today can be flat if even small deviations must have become incredibly large.

Horizon Problem. As we have seen, the particle horizon grows linearly with time but
the scale factor during radiation or matter domination only as t2/3 or t1/2, respectively.
A given length scale L gets stretched and increases with growing scale factor, i.e. L ∼ a.
This means that if L today lies inside the particle horizon, then there must have been
a time when L was outside the horizon due to the different time dependencies of scale
factor and particle horizon. This behaviour is crucial for what is known as the horizon
problem. The analysis of the CMB has shown that the Universe has to high precision the
same temperature everywhere. On one hand this is a good sign because it shows that our
initial assumptions about the spacetime geometry match the observations. On the other
hand, since the particle horizon marks the maximal radius of a causally connected region
this raises the question how regions that were causally disconnected in the past can have
the same temperature today. In other words, there has simply not enough time passed by
for the present day Universe to be completely causally connected which would however
be necessary for the whole Universe to have the same temperature.

At least the flatness problem can be resolved by a tremendous fine-tuning of certain
parameters. However, any fine-tuning is suffering from the same unpleasant property of
being “unnatural”; it appears unsatisfactory that the whole evolution of the Universe
should be based only on a “lucky” choice of parameters (since other values are equally
likely). What we would like to have is a mechanism that explain these problems.

5.2 Idea of Inflation
In the expression of the curvature density we recognize the comoving Hubble radius
rH/a = (aH)−1 meaning that the Universe can maintain spatial flatness, i.e. Ωk ' 0,
if the comoving Hubble radius is decreasing with time. A shrinking Hubble radius is also
capable of resolving the horizon problem. If the size of the observable Universe, i.e. rH/a,
gets smaller than the size of the causally connected region, i.e. χp, the whole Universe
starts to communicate with each other and can thus eventually acquire thermal equilib-
rium. Note the conceptual difference between the Hubble radius and the particle horizon.
If particles are separated by a distance λ > χp, then they were never in causal contact
whereas if λ > (aH)−1 the particles cannot communicate now.

Taking the time derivative of (5.7)

d

dt

∣∣1− Ω
∣∣ = d

dt

k

ȧ2
= −2k

ä

ȧ3
(5.8)

shows that a Universe becoming gradually flatter is equivalent to an accelerating scale
factor, ä > 0. Inflation is exactly this, namely a period of accelrated expansion of space
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thereby resolving the flatness and horizon problems. Although accelerated spatial expan-
sion might be contradictory to the apparent feature of gravity being always attractive,
the second Friedmann equation (2.19) however allows a repulsive behaviour if the energy
density and the pressure of the enclosed fluid satisfy

ρ+ 3p < 0 (5.9)

or, equivalently w < −1/3. Such fluids satisfying (5.9) are characterised by a negative
pressure, i.e. when compressing the fluid its energy density increases less than one would
expect when reducing the enclosed volume. At first glance, the cosmological constant with
w = −1 might serve as an example for such an exotic fluid. However, in a Universe which
is dominated by a cosmological constant the scale factor would never stop to accelerate.
Hence, there would be no reason for inflation to end which is also known as the “graceful
exit problem”.

Whatever inflation is driven by one can reformulate the condition for accelerated ex-
pansion, namely the shrinking Hubble radius, as follows:

d

dt

(
1

aH

)
= − ȧH + aḢ

(aH)2
= −1

a
(1− εH) (5.10)

where we defined the so-called exact “slow-roll” parameter εH as

εH := − Ḣ

H2
. (5.11)

For a flat Universe with a vanishing cosmological constant, εH can be related to the
equation of state w as follows. Remeber that the acceleration equation (for k = Λ = 0)
reads

ä

a
= − 1

6M2
P
ρ (1 + 3w) = H2 + Ḣ. (5.12)

Using the Friedmann equation H2 = 1
3M2

P
ρ this form can further be simplified as

−1

2
(1 + 3w) = 1− εH (5.13)

which becomes

εH =
3

2
(1 + w) . (5.14)

Hence, successful inflation requires w ' −1 which can be achieved by demanding ε � 1.
For inflation to persist long enough one introduces a second parameter ηH that quantifies
the relative change of εH per Hubble time H−1 as

ηH :=
1

H

ε̇H
εH

(5.15)

which is similarly required to be small during inflation, |ηH | � 1.
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5.3 Models of Inflation
This section changes the previous cosmological point of view and continues the discussion
from the perspective of particle physics. Having studied the phenomenological properties
needed for successful inflation we are now looking for the physics behind it and ask how
this scenario can be realised in nature.

5.3.1 Scalar Field and Slow-Roll
A simple field theory including only a single real scalar field φ can be consulted for
describing (under certain conditions) the physics of inflation. Its action was already
discussed in Ch. 4. To decide over its applicability to inflation we must somehow realize
the required equation of state w < −1/3. Since this is connected to the energy density
and pressure of the fluid which is supposed to consist of φ we need to calculate its energy-
momentum tensor. Recalling (4.7) we arrive at

Tµν = ∂µφ∂νφ− gµν

(
1

2
∂αφ∂

αφ+ V (φ)

)
(5.16)

From (5.16) we calculate the energy density as

ρ = T00 =
1

2
φ̇2 +

1

2

(
∇φ

)2
+ V (φ) (5.17)

and the pressure as

p =
1

3
T ii =

1

2
φ̇2 − 1

6

(
∇φ

)2 − V (φ) (5.18)

Expressed in terms of T00 and T ii the equation of state parameter for a homogeneous
scalar field (∇φ = 0) reads

w =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (5.19)

Therefore, if the energy density is dominated by the potential V (φ) and the kinetic energy
φ̇2/2 can be neglected, w tends to −1 and inflation can take place. In other words, the
field φ must not change significantly which in turn gives a constraint on the form of the
potential. The condition (5.19) implies φ̇2 < V which we tighten up to φ̇2 � V . Taking
the time derivative gives

2φ̈� V ′(φ) (5.20)

where the prime denotes the derivative with respect to φ. Hence, by neglecting φ̇2 and φ̈
the dynamics of φ and H are determined by the two coupled differential equations

3Hφ̇ = −∂V
∂φ

, H2 =
8πG

3
V (φ) (5.21)
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which can be combined into the so-called approximate “slow-roll” parameters

εV :=
M2

P
2

(
V ′

V

)2

� 1, |ηV | :=M2
P

∣∣∣∣V ′′

V

∣∣∣∣ � 1. (5.22)

The physical meaning behind these conditions can be formulated like this: As we have
seen for successful inflation φ has to change very slowly which requires the potential to
be flat, i.e. V ′/V � 1. In addition, inflation must continue long enough so that the slope
of the potential must not change rapidly, i.e. V ′′/V � 1.

5.3.2 Examples
From (5.7) one can infer how long inflation has to last in order to solve the flatness
problem. The comoving Hubble radius (aH)−1 has to shrink by a factor of about (4.2×
1060)1/2 ∼ 1030 or equivalently ∼ e70. Assuming that the scale factor increases during
inflation, i.e. between ai and af , by a factor of eN , we define the number N of e-foldings
simply as N = ln af/ai. Using the relations in (5.21) we can rewrite N as integral

N =

∫ af

ai

da

a
=

∫ tf

ti

dtH(t) =

∫ φi

φf

dφ
3H2

V ′ =
1

MP

∫ φi

φf

V

V ′ . (5.23)

For given N ∼ 70 we can determine the field value φf at the end of inflation.
Depending on the precise form of the potential V (φ) one can distinguish inflation scenarios
that either require field values larger or smaller than the Planck mass M2

P := (8πG)−1.

(1) Large Field Models: Models of this class have in common that the inflaton moves
from a large value φ &MP towards a minimum at φ = 0. For instance, in “chaotic
inflation”, the potential is usually given by a simple power-law of the form

V (φ) = λpφ
p. (5.24)

The slow-roll parameters will not depend on the coefficient λp. In “natural inflation”,
the potential is

V (φ) = V0

[
cos

(
φ

f

)
+ 1

]
(5.25)

which often comes up when considering the inflaton to be the axion.

(2) Small Field Models: These models are often closely connected to mechanisms of
spontaneous symmetry breaking where the inflaton initially sits at an symmetric
but unstable point and subsequently travels towards a stable but non-symmetric
minimum. In models of “Higgs inflation” [31, 32], the role of the inflaton is played
by the SM Higgs field with the potential

V (φ) = λ

[
1−

(
φ

µ

)2
]2

(5.26)
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Since spontaneous symmetry breaking may also occur as a consequence of radiative
corrections this motivates to use the Coleman-Weinberg potential to drive inflation

V (φ) = V0

[(
φ

µ

)4(
ln

(
φ

µ

)
− 1

4

)
+

1

4

]
. (5.27)

As an explicit example, we consider the potential V (φ) = m2φ2/2 for which one finds

εV = ηV = 2

(
MP

φ

)2

. (5.28)

If inflation is defined to end at εV = ηV = 1, one has φf =
√
2MP and the number of

e-folds is simply given by

N =
1

MP

∫ φi

φf

dφ
φ

2
. (5.29)

Taking N ∼ 65 yields φi ∼ 15MP. The time evolution of the inflaton is calculated with
the (approximated) Friedmann equation (ti = 0)

φ(t) = φi −
2

3
MPmt (5.30)

from which the scale factor follows as

a(t) = ai exp

[√
2

3

(
N +

1

2

)
mt+

1

6
m2t2

]
. (5.31)

5.4 Reheating
During inflation the relic particle densities will extremely shrink as can be seen from the
scale factor dependence of the Ω-parameters in (2.34) and (2.35). After inflation the
Universe is cold and left empty. In order for primordial nucleosynthesis to work out we
need a mechanism that re-establishes the initial conditions required for successful BBN,
i.e. a hot thermal equilibrium state. All such mechanisms that explain how the original
energy density of the inflaton field is “somehow” transferred into a bath of SM particles
are collectively called “reheating”. There are several other scenarios like for example
“preheating” but we focus here on the simplest possible scenario.

The central idea is to directly couple the inflaton with the SM such that the inflaton φ
simply decays into SM particles where we consider here the case of scalars χ and fermions
ψ. The necessary Lagrangian can be of the form of

L = −gvφχ2 − hφψ̄ψ (5.32)

where g, h are dimensionless couplings and v has dimensions of mass. For large inflaton
masses, mφ � mχ,mψ, the corresponding decay rates can be calculated as

Γ(φ→ χχ) =
g2v2

8πmφ

, Γ(φ→ ψ̄ψ) =
h2mφ

8π
. (5.33)
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According to the Gamow criterion, thermal equilibrium will be reached when the inter-
action rate Γ is balanced by the expansion rate H which in turn allows to estimate the
reheating temperature TRH. Assuming the Universe to be completely radiation-dominated
at the end of reheating the energy density is given by ρ = g∗π

2T 4/30 where g∗ denotes
the effective number of massless degrees of freedom. Putting everything together yields

TRH ' 0.2

(
90

g∗

)1/4√
8πΓtotMP (5.34)

where Γtot denotes the sum of (5.33). The reheating temperature does not only depend
on the precise nature of the inflaton decay but also on the produced particles (being rel-
ativistic or non-relativistic which modifies the temperature dependence of H). Also, the
smaller the couplings g, h are, the longer reheating will last and therefore the smaller the
TRH will be at the end.
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6. Gravitational Production by Inflation

6.1 Preliminaries
In this section, we want to study the gravitational particle production of a single scalar
field X during inflation and the subsequent reheating phase. Ultimately, we want to
compute the number density nX of produced particles at the end of reheating, or, to
explore the potential to account for all of the DM, the abundance ΩXh

2.
As already discussed in a previous chapter, one begins by writing down the action for

X from which one can derive the equation of motion. In the example studied earlier it
was found that the momentum modes χk of X satisfy

χ′′
k + ω2

k(η)χk = 0 (6.1)

where the time-dependent frequency ω2
k(η) was defined as

ω2
k(η) := k2 +m2

eff(η) = k2 +m2a2 − (1− 6ξ)
a′′

a
. (6.2)

For simplicity, we consider only the case of a conformally-coupled scalar (ξ = 1/6) here.
Substituting a WKB approximation for the mode functions vk

vk(η) =
1

√
ωk

exp

[
i

∫ η2

η1

dηωk

]
(6.3)

into the ansatz for the momentum modes

χk(η) =
1√
2

(
αk(η)v

∗
k(η) + βk(η)vk(η)

)
(6.4)

one arrives at a system of two coupled differential equations for αk(η) and βk(η)

α′
k(η) =

ω′
k(η)

2ωk(η)
exp

(
2i

∫ η

ηinit

dη̃ωk(η̃)

)
βk(η), (6.5)

β′
k(η) =

ω′
k(η)

2ωk(η)
exp

(
−2i

∫ η

ηinit

dη̃ωk(η̃)

)
αk(η). (6.6)

The initial conditions are usually chosen as α(ηinit) = 1 and β(ηinit) = 0. The idea is
drawing from the Bogoliubov coefficients which quantify the relative change of the mode
functions during the evolution of the Universe. This is usually interpreted as particle
production. The initial conditions above ensure that there is no net number density in
the beginning. From this one can calculate the (comoving) number density as

n(t) =
1

2π2a3(t)

∫ ∞

0

dkk2|βk(t)|2 (6.7)
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Fig. 6.1: Inflation potential used for the numerical analysis.

being rewritten in terms of the cosmic time t.
The amount of produced particles is controlled by the scale factor. The precise form

of the scale factor in turn is determined by the energy budget of the universe, i.e. in the
case at hand by the inflation potential V (φ). The scale factor can be extracted by firstly
solving the Friedmann equation together with the equation of motion of the inflation for
H and φ, namely

H2 =
1

3MP

(
1

2
φ̇2 + V (φ)

)
and φ̈+ 3Hφ̇ = −∂V

∂φ
, (6.8)

and secondly calculating the scale factor from

H =
ȧ

a
. (6.9)

These are the ingredients that we need to study gravitational production by an inflationary
Universe. The detailed numerical analysis is given in the next section.

6.2 Numerical Analysis
For the numerical simulations we picked as inflation potential (see Fig. 6.1)

V (φ) =M4

[
1−

(
φ

v

)6
]2

(6.10)

with M = 0.2 and v = 0.5. We use natural units with c = ~ =MP = 1.
As suggested by the form of the potential one would expect inflation to last as long

as φ “rolls down the hill”, and it should come to an end once φ starts oscillating about
its minimum at v. The coupled differential equations were numerically integrated from
tmin = 0 to tmax = 1000. The value of the Hubble rate during inflation was found to
be Hinf ≡ H(tmin) ' 0.024, and it was used to introduce a new time variable Hinft (for
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Fig. 6.2: Left: Hubble rate during and after inflation. Right: Evolution of the inflaton.
The oscillations marks the end of inflation and the begin of reheating.
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Fig. 6.3: Evolution of the scale factor. It is normalized to one at the end of inflation.

numerical convenience). The evolution of the Hubble rate and the inflaton are shown in
Fig. 6.2, where the plot in the right panel confirms that the oscillations of φ occur indeed
about the minimum of V (φ).

The scale factor can simply be obtained by numerically integrating

da

a
= Hdt. (6.11)

The result is depicted in Fig. (6.3). Using a logarithmic scale for the y-axis the exponential
growth can easily be recognized where the slope corresponds to the (constant) Hubble rate
during inflation.

The time tend at which inflation will end can be determined by using the exact slow-roll
parameters. We define it as

εH = − Ḣ

H2
= 1. (6.12)
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Fig. 6.4: Comparison of the exact scale factor (dotted blue) and the approximate version
(dashed red).

In the numerical implementation, we first used the approximate condition

εV =
M2

P
2

(
V ′

V

)2

= 1 (6.13)

to obtain a rough estimate for the time interval where we have to look for the exact value
given by (6.12). In this way, we found

Hinftend ' 9.6. (6.14)

As dictated by the specific inflation model, the scale factor mimics first a de Sitter universe
and behaves after inflation as a matter-dominated epoch. This knowledge can be used to
approximate these stages loosely by a piecewise defined function as follows:

a(t) :=

ef(t) Hinftmin < t < Hinftend

c1(t− c2)
2/3 Hinftend < t < Hinftmax

(6.15)

where the function

f(t) :=
ȧ(tmin)

a(tmin)
t+ ln

(
a(tmin)

)
. (6.16)

ensures that the scale factor is normalized to one at the end of inflation. The coefficients
c1, c2 are calculated from the fit to the numerical result. Fig. 6.4 shows the result. It is
well justified to use the approximate version instead, which in particular implies that the
universe is indeed matter-dominated after inflation.

The numerical calculation of the Bogoliubov coefficients turns out to be more involved.
We suspect here the rapidly oscillating integral in the exponential of (6.5) to be the
origin. In the literature, there are two conventions usual concerning the choice of the
time variable. When using cosmic time t (as we did so far) the strong oscillations occur
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Fig. 6.5: Real part of the oscillatory exponential in (6.5) expressed in cosmic (left) and
conformal (right) time. The extremely rapid oscillations occur at early times in
the case of cosmic time and at late times in the case of conformal time.

at the beginning and end at some point (cf. left panel of Fig. 6.5). In contrast, when
reformulating the exponential in conformal time η they take place at late times (cf. right
panel of Fig. 6.5). In the figures, we used different expressions for the oscillatory integrals,
namely I(t) and I(η) defined below

I(t) =

∫ tmax

tmin

dt
ωk(t)

a(t)
and I(η) =

∫ ηmax

ηmin

dηωk(η) (6.17)

where we used ηmin = −50 and ηmax = 140. Since the desired behaviour of the scale factor
can simply be mapped by a piecewise function we just translate the above ansatz into
conformal time, namely

a(η) =

(1− η)−1 η < 0(
1 + 1

2
η
)2

η > 0
(6.18)

where η = 0 marks the end of inflation1. Note that this ansatz is also normalized to one
at the end of inflation.

To overcome this problem we use a “hybrid” version where we split the solution for
the Bogoliubov coefficients into an early and a late part. For early times the differential
system (6.5) is solved in conformal time where the frequency of the oscillations is supposed
to be rather small. Here, we used (6.18) as ansatz for the scale factor. For late times
the solution is continued in cosmic time where the oscillations are thought to be already
negligible. The initial conditions for the second part are given by the values which the
Bogoliubov coefficients had when the first part has ended. Afterwards, both solutions
are matched together. The left panel of Fig. 6.6 shows the Bogoliubov coefficient squared
|βk|2 as a function of the k-modes for a given mass m = 0.1, in the right panel one can
see the integrand of the number density k2|β2

k| again as a function of the k-modes and

1 Note that for a(t) ∝ tn one has η =
∫

dt
a(t) ∝ t1−n and therefore a(η) ∝ η

1
1−n . Similarly, for a(t) ∝ eHt

one obtains η =
∫
dte−Ht = (aH)−1 + η0 and therefore a(η) = (H(η0 − η))−1.
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Fig. 6.6: Bogoliubov coefficient squared |βk|2 (left) and integrand of the number density
(6.7) each of them as a function of k-modes for a specific mass m = 0.1.
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Fig. 6.7: The same functions |βk|2 and k2|βk|2 as plotted in Fig. 6.6 but with mass m =

0.0001.

for the same mass value. In both cases, the quality of the interpolation shrinks with
increasing k. However, since in these regimes the respective value of k2|β2

k| has already
shrinked by several orders of magnitude we expect that the contribution to the integral
in (6.7) is negligible. The impact of the mass on the Bogoliubov coefficient can be seen
by comparing it with Fig. 6.7 where a smaller mass m = 0.0001 was used. For smaller
masses the peak of k2|βk|2 is shifted towards smaller values. Moreover, a second smaller
peak appears to the right of the first one.

Having computed the interpolation functions for k2|βk|2 we can numerically integrate
them to obtain the number density nX(tmax) as a function of the particle mass mX . This
is done in Fig. 6.8. For small mX the number density increases linearly with mX . Around
mX = 1 the number density reaches a maximum and falls off again thereafter.

The abundance ΩX can be calculated according to (2.30) as

ΩX,0 =
ρX,0
ρcrit0

=
nX(t0)mX

3M2
PH

2
0

(6.19)

The number density that we computed was evaluated at tmax and is therefore not the
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Fig. 6.8: Number density nX(tmax) as a function of the particle mass mX .

same as the desired number density today. Hence, we need a way to convert nX(tmax)

into nX(t0). For reasons that become clear in the following we want to express nX(t0) in
terms of the corresponding number density at the end of reheating, nX(tRH). Assuming
that the produced particles are not affected by any number-changing interactions since
tRH (which we turned off by definition), the only way the number density can change is
by the spatial expansion, i.e.

nX(t0) =

(
a(tRH)

a(t0)

)3

nX(tRH). (6.20)

Combining the definition of the entropy density in relativistic species

s =
2π

45
g∗ST

3 (6.21)

(where g∗S denotes the effective entropic number of relativistic degrees of freedom) with
the assumption that the comoving entropy density is conserved between tRH and today,
i.e. s ∝ a−3, one arrives at

a ∝ (g∗S)
−1/3T−1. (6.22)

Using this expression, we can translate the time dependence of the number density into
a temperature dependence

nX(t0) =
g0∗S
gRH
∗S

(
T0
TRH

)3

nX(tRH). (6.23)

The subscripts “0” and “RH” denote the corresponding quantity today and at the time
of reheating, respectively. We still have to connect n(tRH) to what we computed, namely
nX(tmax). Although strictly speaking, before tmax the number density is an ill-defined
quantity, we evolve nX(tmax) back to the time when inflation has ended assuming that
the Universe was matter-dominated during that time:

nX(tinf) =

(
a(tmax)

a(tinf)

)3

nX(tmax) =
1

2π2

∫
dkk2|βk(tmax)|2 (6.24)
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where we used that a(tinf) ≡ 1. However, this quantity is not the actual number density
but rather an auxiliary construction to conveniently calculate the number density at tRH

in terms of nX(tinf) as

nX(tRH) =

(
a(tinf)

a(tRH)

)3

nX(tinf) (6.25)

Again by exploiting the assumption of matter domination between tinf and tRH we can
express the ratio of the scale factors in terms of the energy densities at these times as(

a(tinf)

a(tRH)

)3

=
ρ(tRH)

ρ(tinf)
. (6.26)

The end of reheating is commonly defined as the time when the total energy density is
twice the radiation density, i.e.

ρ(tRH) = 2ρrad = 2
π2

30
gRH
∗ T 4

RH (6.27)

where gRH
∗ denotes the number of relativistic degrees of freedom, usually gRH

∗ ' 108 for
the full SM. The energy density at the end of inflation is simply given by Hinf as

ρ(tinf) = 3M2
PH

2
inf . (6.28)

Combining these two expressions yield(
a(tinf)

a(tRH)

)3

=
2π2

90

gRH
∗

M2
PH

2
inf

T 4
RH (6.29)

and the number density at tRH becomes

nX(tRH) =
2π2

90

gRH
∗

M2
PH

2
inf

T 4
RHnX(tinf). (6.30)

Bringing all these expressions into one the abundance for X follows as

ΩX,0 =
1

270

g0∗ST
3
0

M4
PH

2
0

mXTRH

H2
inf

∫
dkk2|βk(tmax)|2 (6.31)

where we used that gRH
∗S ' gRH

∗ at the end of reheating. For our numerical simulations we
chose the integral

∫
dkk2|βk|2 to be measured in units of H3

inf . We can arrange (6.31) to
obtain

ΩX,0h
2 ' 2× 10−3

(
Hinf

1010GeV

)3(
TRH

Hinf

)
mX

∫
dkk2|βk(tmax)|2 (6.32)

where we used g0∗S ' 3.91. Eq. (6.32) can be used to check different values for mX

and TRH whether they yield the observed value of the DM abundance. The result is
depicted in Fig. 6.9. Depending on the reheating temperature the DM particle must
acquire different masses to account for the observed DM abundance. For an increasing
reheating temperature the necessary mass becomes smaller. In other words, the curve
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Fig. 6.9: Abundance ΩX,0h
2 today as a function of the particle mass mX for TRH =

109GeV (solid blue), TRH = 1011GeV (dashed green) and TRH = 1013GeV (dot-
ted orange). The dotted dashed curve represents the observed DM abundance.
For the numerical values we used Hinf = 1013GeV.

gets shifted towards smaller values for mX . Moreover, if the reheating temperature is
not sufficiently high for a given Hubble rate, the corresponding curve lies below the value
of ΩX,0h

2 and it is not possible to obtain the desired abundance. Likewise, if the DM
mass is too large for a given reheating temperature and Hubble rate, then the abundance
becomes too large. Based on our numerical analysis we can conclude that for reheating
temperatures between 109GeV and 1013GeV the expected DM particle mass must lie
between 1010GeV and 1012GeV if we choose the Hubble rate to be Hinf = 1013GeV.
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7. Aspects of Model Building

7.1 Setup and Assumptions
The central idea is to consider DM as a purely gravitationally produced and interacting
particle. Self-interactions of DM should not considered for the moment, but are possible
in principle. Before presenting our underlying assumptions we begin by setting the stage
and describe the general framework.

As we have already discussed the early Universe is assumed to have undergone a short
period of accelerated expansion called inflation which is in many models driven by a scalar
field φ called the “inflaton”. All particles that could have been present before are diluted
and the Universe is left empty. A mechanism is needed to “reheat” the Universe, i.e. to
populate the visible sector, for example by the decay of the inflaton into SM particles.
Since also the hidden sector is affected by inflation a similar reheating scenario is required
to produce DM. Therefore, the inflationary sector must be somehow connected to the
SM and DM. This can take place either by so-called “matter portals” or “gravitational
portals”. Matter couplings are defined as gauge-invariant interaction terms of matter
fields while gravitational couplings denote interaction terms of matter fields which couple
non-minimally to gravity. Possible matter portals include the scalar, fermion and vector
portal and are defined as follows:

(1) Scalar portal: Given two complex scalars φ and σ being charged under G and/or
H. Then, irrespective of their representations, they will always couple via a quartic
coupling term of the form |φ|2|σ|2.

(2) Fermion portal: Given a complex scalar φ and two fermions ψ, χ. Then, they could
in principle couple via a Yukawa term of the form φψ̄χ.

(3) Vector portal: Given two vector bosons Aµ and Bµ associated with different groups
U(1)A and U(1)B. Then, their associated field strength tensors Aµν and Bµν will
couple via the kinetic mixing term AµνBµν . As usual, Aµν = ∂µAν − ∂νAµ.

Now we will formulate our assumptions.

(1) Gravity part: In all following models, gravity will be described by the so-called
Einstein-Hilbert action

Sgrav[gµν ] = − 1

16πG

∫
d4x

√
−g

(
R + 2Λ

)
(7.1)

leading to the Einstein Field Equations (2.1) by varying Sgrav + Smat with respect
to the metric gµν .



Tab. 7.1: SM matter content and its representation under G.

Name Label Representation

LH quark doublet qL = (uL, dL) (3,2, 1/3)

RH up quark uR (3,1, 4/3)

RH down quark dR (3,1,−2/3)

LH lepton doublet lL = (νL, eL) (1,2,−1)

RH electron eR (1,1,−2)

Higgs H (1,2, 1)

(2) Matter part: The matter part consists of a visible sector SSM containing the SM
and a hidden sector SDM in which DM is supposed to live. An additional sector
SINF governs the physics responsible for inflation. The action describing the matter
fields can thus be written as

Smat = SSM + SDM + SINF + Sint (7.2)

where Sint contains all couplings between the individual sectors. The matter content
of the visible sector and its associated representations are listed in Tab. 7.1. In
principle, the hidden sector can contain scalars, fermions or vector bosons. Fermions
are either left-handed (LH), right-handed (RH) or vector-like.

(3) Portals: Since the DM particle is supposed to communicate with us only through
gravity the hidden sector SDM is linked to SSM only via gravitational couplings.
Matter couplings connecting the dark with the inflationary sector are also forbidden
and only allowed between the visible and the inflationary sector. This assumption
will of course set some constraints of possible reheating scenarios.

(4) Gauge sector: The visible sector is equipped with the usual SM gauge group

G = SU(3)c × SU(2)L × U(1)Y . (7.3)

The hidden sector could have its own gauge sector H. Both sectors are assumed
to be orthogonal to each other. This implies that particles belonging to the hidden
sector must be complete singlets under G (and vice versa once H is fixed).

7.2 Fermionic DM
Based on the definitions of possible portals given above we can draw the following con-
clusions. Scalar DM S will always couple to the SM Higgs H via |S|2|H|2 and similarly
to the inflaton φ irrespective of the representations. There are models in which inflation
is driven by vector fields [33] but we concentrate only on scalars here. This makes it
impossible to construct models containing scalars while satisfying the rules mentioned
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above and is therefore no longer to be discussed.
Fermionic DM X appears more promising. The Yukawa term HX̄X connecting DM

with the SM Higgs will not be present since X is supposed to be a complete SM singlet.
Couplings to other SM quarks are forbidden as well, however, a Yukawa term of the form
H†l̄LX connecting the left-handed SM lepton doublet with DM is allowed. In this case,
a right-handed sterile neutrino νR being a complete SM singlet could play the role of
DM. Stabilizing this neutrino requires an extremely small coupling such that its lifetime
becomes comparable to the age of the Universe. On the other hand, to contribute signifi-
cantly to neutrino masses (e.g. via the type-1 seesaw mechanism) its coupling must be of
order one. Hence, this DM candidate would not significantly contribute to the neutrino
masses. Furthermore, assuming that the inflaton is a total SM singlet a Yukawa coupling
φX̄X between inflaton and DM becomes possible. Both terms can be dropped by consid-
ering additional symmetries of X and φ. In the following, we discuss several possibilities
how to avoid these terms.

7.2.1 Charged DM and Uncharged Inflaton
The simplest way to prevent the “lepton portal” H†l̄LX is to promote X to be odd under
a Z2 symmetry (while leaving the SM to be even). This, however, does not affect the
“inflaton portal” φX̄X representing the inflaton decay into DM. The next option would
be to equip DM with its own gauge sector H (as already indicated in the assumptions).
A U(1) charge would be a bad choice since every combinations containing X̄X would
automatically cancel it. Similarly, products of identical representations of SU(2) or SU(3)
will always include a singlet. Hence, simply “gauging” the hidden sector and assigning
the dark fermion a charge under this new group will not avoid the inflaton portal.

7.2.2 Charged Inflaton and Uncharged DM
Similar considerations can also be made in the case of the inflaton. At first glance, when
introducing new symmetries for the inflaton, a constraint might be given by the required
reheating scenario. For example, the inflaton portal into DM would be absent if the
infaton is odd under a Z2 symmetry. However, in this case the inflaton can also not
decay into a SM Higgs pair in order to reheat the Universe. In models of kination where
inflation is driven by the kinetic energy of the inflaton, this is not really a problem since
reheating can alternatively be accomplished by gravitational production [34, 35].

Assigning the inflaton a charge first requires to fix the corresponding group. Being
charged under the SM gauge group G would be the simplest possibility since in this case
the term φX̄X is automatically forbidden. In contrast, if the inflaton was charged under
H as in the last paragrah the new gauge bosons associated with H would let it speak with
the DM (assuming that X is also charged under H). A third option could be to enlarge
the SM gauge group by a new factor G ′ as in the case of “left-right symmetric models”.
For this to work an extended Higgs sector is required in order to break G ′. Unfortunately,
the inflaton decay into SM is again forbidden unless the SM particles were equipped with
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appropriate representations under G ′ or new particles charged under G ′ were introduced
which subsequently decay into SM. For example, the Higgs needed to break G ′ could
be used as a mediator to realize scalar portals between the inflaton and the SM Higgs.
Otherwise one can overcome this problem in two ways: First, the inflaton must also be
charged under G as in models of Higgs inflation where the inflation is driven by a scalar
SU(2) doublet [31]. A recent review can be found in [32]. The Higgs potential is however
subjected to loop corrections which will ultimately steepen its form unless the inflaton
is not sufficiently weekly coupled to the SM fields. In addition, the coupling constant
λ turns out to be too large for inflation to last long enough. An interesting way out is
by adding strong non-minimal couplings to gravity of the form ξRφ2 where ξ ≈ 50 000.
Second, the SM Higgs could also be charged under G ′. The particular representations of
H then of course depends on the chosen group G ′. For example, for G ′ = SU(2)R where
the Higgs and the inflaton transform as doublet and triplet, respectively, the decay into
two Higgs would be allowed.

To close this chapter we can draw the following conclusion. Minimal models of fermionic
DM which only allow for gravitational interactions can be realized but require giving the
inflaton a charge.
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8. Conclusion

The minimal assumption compatible with observations is that DM interacts with the SM
only through gravity. The main subject of this thesis was therefore to explore this pos-
sibility in more detail. An obvious question was how these particles were produced since
traditional production mechanisms require a direct non-gravitational coupling between
the particles. For example, one can think of production through direct decays or annihi-
lation processes. A general result of quantum field theory on curved spacetime provides
exactly what is needed, namely a mechanism for particle production only by the dynamics
of the gravitational background.

After reviewing some basics of cosmology we presented this mechanism in more detail
in the case of scalar singlet fields in an expanding Friedmann Universe. Similar to the
quantization procedure in flat spacetime, the corresponding momentum modes satisfy a
differential equation describing a harmonic oscillator, however, with a time-dependent
frequency.

As it turns out, the particle production is most efficient at the transition from an
inflationary stage to a matter or radiation dominated epoch and during the inflaton os-
cillations after inflation. Therefore, we studied this in a concrete inflation model. The
numerical analysis was carried out with a simple toy model of the scale factor mimick-
ing the inflationary and matter dominated era where we only considered the case of a
conformally coupled scalar here. As we have shown this scale factor was able to describe
a realistic model. Also, some technical issues concerning the numerical implementation
were documented. As the final result of this work, depending on the considered reheating
temperature very heavy particles in the mass range of 1010GeV to 1012GeV are required
to account for the complete DM abundance.

In the last chapter, we presented some aspects concerning possibilities of model build-
ing. The central paradigm was to allow the hidden sector to be connected to the visible
and inflationary sectors only via gravity. Given this assumption we considered various
possible models of purely gravitatively interacting fermionic DM having no direct coupling
neither to the SM nor to the inflaton. These ideas stood on a more general footing, that
is, where for example phenomenological constraints are not yet included. This ultimately
led to the idea of giving the inflaton a charge but leave the DM neutral.

There is some additional work that can be done in the future and we give only a
prospect here. In the numerical analysis we can for example investigate the effect of a
general non-minimal coupling ξ 6= 1/6. In models of leptogenesis, lepton number vio-
lating decays of heavy right-handed neutrinos generate a non-vanishing lepton number
which is afterwards transferred into a baryon asymmetry by sphareon processes. The



generalization to the production of fermions would be crucial here. Another interesting
question is the relationship to other production mechanisms like, for example, the PIDM
scenario where the DM particles are produced through annihilation processes of the SM
particles mediated by graviton exchange. The production is believed to be most efficient
at higher temperatures. However, the energy density in the very early Universe is dom-
inated by the inflaton being in favour of the gravitational production. One may wonder
which mechanism is dominating at that time.
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