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Abstract : Measurements of t he plasma current density dist r i bution j(r) 
dur ing injection of stat ionary or propagating lower hybrid wave spectra have 
been performed on ASDEX. Positive current drive leads to broade r j(r) pro­
files - while Te(r) is peaking - coupled with an increase in q from q ~ 1 to 
q > 1. The other spectr a inf luence j(r) only t o the extent predicted f r om 
classical conductivity based on changes in Te(r) under the condition 
q(O) - 1. 

Introduc tion: It has been demonstra ted on various experiments that lower 
hybrid current drive (LHCD) can be used to suppress sawt ooth oscillations 
/1- 4/ or influence m/n • 2/1 tear ing modes /2-4/ . Based on magnetic signals 
and the monitoring of MHD act ivity it has been conjectured that these 
effects have t heir origin in an LHCD- induced broadening of the j(r) profi le 
/2-4 / . In the same way, magne tic s i gnals have been interpreted as inferring 
a st r ong peaking of j(r), attained by appropriately adj usting the LH wave 
spectrum /4/. These points have been invest igated on ASDEX hy dir.,ct mea­
sur ements of j (r ) for a variety of LH spectra. 

Experiment : ASDEX was operated in the divertor configuration with parame­
ters: ne • 1.2 x 1013 cm-3 (0 110 11 : 8 x 1012 cm- 3), I • 292 - 301 kA, BT = 
21. 5 kG, a - 39 . 4 cm and R - 167 cm. Approximately sEa kW (0 110 TT: 340 kW) 
of rf power was launched into t he plasma via an 8-waveguide grill with a 
phase difference M/J between the waveguides s uch that a spectrum with N, - 2 
(0 110 11 : N, - 4) was generated symmetrically ( 0 0 11 11 • • , 0 11 0 11 • •. ; LHH) , 
parallel (lli/) • +11/2, LHCD) or antiparallel (ll i/) • -11/2) to the plasma cllr­
ren t /5/ . Zeff in t he ohmic heating (OH) phase- deduced assuming neoclassi­
cal conduct ivity - and the OH/LH loop voltages Vt are given in Table 1 . 

The resulting incremental changes in the diamagnetic beta signal li Bp~ a•1d 
li(B~qu + li/2) (measur ed ·by poloidal f lux loops) are depicted i n Fig. z . It 
is seen that liBP.1 increases to a plateau in -100 - 150 ms. The behavior in 
li(B~q + li/2) is diffe rent; the initial increase in thi s quantity, common to 
all cases , is followed by a slow decrease over - 300 ms to a pla t eau below 
the OH value for +11/2 and 0 11 011. We note tha t Bp~ i s sensi tive onl y t o t he 
perpendicular energy W~ and B~q to the entire energy W•(W~+W, )/2 , so that 
D • [I (B~q + li /2) - liBp~ = li(W,-W~ )/2 + lll i/2 . Hence, the discrepancies D 
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seen between 6Bp~ and 6(B~q + li/2) in Fig. 2 can be ascribed t o the 
production of a pressure anisotropy between the directions perpendicular and 
parallel to the magnetic field, and /or to a change in 6 l i, i .e. to a 
redistribution in j{r). 

The effect on j{r) was determined directly by means of a neutral lithium 
beam probe which measures the magnetic field pitch angle ep • tan-1(Bp/BT) 
at the intersection between the beam and optical axis of the detecting 
system {Fig . 1) /6-7/ ; j{r) can be calculated using 9p{r) in conjunction 
with Maxwell ' s equations. Te{z) is registered a l ong a vertical chord {not 
passing through the magnetic axis) by a 60Hz pulsed Thomson scattering 
system {Fig. 1) /8/ . 

Results: The measured pitch angle profiles 9~, adj usted to cyl indr ical 
geometry, for +TI/2 are plotted vs. the flux-surface radius rf in Fig. 
{top, right) for the OH and steady-state LHCD phases along with the corre­
sponding q(r) and j{r) profiles (top, left ) . It should be noted t ha t the OH 
points are well documented with two points each a t rf • - 1. 7, +10. 3 , 14.3 
and 29 . 2 cm. The indicated err or bars on 9~ r eflect the noise level 
associated with the base line of 9~ and of 9~ itself. For OH, the q=1 radius 
is in rough agreement with the ECE sawtooth inve r sion radius (hatched 
region) rst• The application of LHCD leads to a broadening of the j{r) 
profile {from which 61i - -0.12 is comput ed) and an associated increase in 
q{O) from 0.98 + 0 .03/-0 . 01 tq- 1. 14, in concord with previous r esults 
/7/ . While Te profiles are not available fo r this series , the experience is 
always that Te peaks with LHCD in the fashion seen with 0 0 TI TI, thereby 
demonstrating that the LH- driven current is decoupled from the classical 
conductivity profile . 

The {Fig . 3) 9~ and Te profiles for -n/2 exhibit no significant change 
between the OH and LH phases, i.e. D is due solely to a large anisotropy in 
the non-thermal elect ron population in favor of the component parallel to 
the magnetic field . A compari son between the experimental ec points and the 
curves predicted from Spitzer or neoclassical {neo) conductlvity {assuming 
Zeff and t he electric fie ld E are constant) shows no consistent agreement 
with either case. {Fig . 3- the c urve spread reflects the Te error bars . ) 
However, neither model cor rectly predic ts rst' neo gives q{O) values far 
be l ow the q{O) - 0.96 dete rmined from the lithium beam , whereas Spitzer 
generally yields q - 1 onl y very near the axis . If a central zone of 
anomalous resis t ivity or a smal le r E i s postulated such that q - 1 is 
fulfi lled, then neoclassical cond uctivity would describe the experimental 
points reasonably well i n the q > 1 r egi on. However, for fiducial purposes 
the Spitzer curves are used in comparison hereafter . 

The failure of the experimental 9~ curves to cross the axis at rf • 0 for 
both - n/2 and 0 Onn {consecut ive series) is probably due to a slight 
{-0.3°) beam misalignment. The sys t ematic trend of the rf < 0 e~ points to 
increase fo r -n/2 is not understood, as a symmetric behavior for rf- 10 cm 
is not observed. 

The heating s pectrum 0 0 TITI produces a pronounced peaking in Te{r), but no 
distinct change in 9p . In contras t to the OH phase , the Spitzer e&H profiles 
lie above the experimental e~ points, demonstrating that j{r) has not 
tracked the Te{r) change - suggestive that a mechanism which always main­
tains q{O) - 1 is operative. 
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The 0 n 0 n TgH profile is broader in the central region compared to 
0 0 n n , leading t o a narrower j(r) distribution (synonymous with higher 9~ 
values) as corrobora ted by t he Li-beam measurements . LHH produces a decrease 
in Te (r~a/2), which j(r) follows up to L'.tLH- 300 - 400 ms as confirmed by 
9~ from experiment (Fig. 3). Hence j(r) has been alt ered by affecting the 
bul k thermal electron population , changing qOH(O) from -0.97 to qLH(O) -
1.06 and l£H from 1. 35 to ltH- 1.15. The behavior after 6 tLH- 400 ms 
cannot be considered here. 

Discussion : Table I summarizes the experimentally determined changes in q(O) 
and l i, from which we see that q0H(O) • 0 .96- 0 . 98. This implies that only 
a few per cent of the current inside the q • 1 surface needs be displaced 
outwards in order to achieve q > 1 and an associated suppression of saw­
teeth . Such a small change can take place inside one sawtooth period, which 
is congruous with the observed invariance of rst up to the moment of saw­
t ooth disappearance described e l sewhere /1/. 

Taking the experimental 6li it is possible to compute L',B~q for all cases, 
the values of which are i nd icated on Fig . 2 by arrows. Accordingly, +rr/2 
produces a nearly i so tropic pressure (i_. e. 613~q ~ L'.llP.1) , whereas -rr/2 exhi­
bits an extreme anisotropy and 0 0 1f rr lLes in between. These deduced trends 
are consistent with di rect measurements of the non-thermal electron popula­
tion on ASDEX /9/ . 

In passing i t should be mentioned that t he profiles discussed he r e are 
interesting candidates for a "profile consistency" analysis / 10/ inasmuch as 
Te(r) and j(r) are loosely coupled for 0 01111 and decoupled for n/2, but 
both yield approximately the same Te profi le . Further , for 0 n 0 n , LHH 
produces a large, coupled change in Te(r) and j(r). 

Final ly, the Li-beam measurements reported here support the thesis /11/ that 
sawtooth stabilization on ASDEX occurs only when the condition q > 1 pre­
vails in the central region . 
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Table I: Experimental Results 
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the OH and LH discharge phases ar e 
shown for opposite current drive - Tr/2 , 
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