In the format provided by the authors and unedited.

Organizing principles for vegetation dynamics

Oskar Franklin^{® 1,2} ⊠, Sandy P. Harrison^{® 3}, Roderick Dewar^{4,5}, Caroline E. Farrior⁶, Åke Brännström^{1,7}, Ulf Dieckmann^{1,8}, Stephan Pietsch¹, Daniel Falster^{® 9}, Wolfgang Cramer^{® 10}, Michel Loreau¹¹, Han Wang^{® 12}, Annikki Mäkelä¹³, Karin T. Rebel¹⁴, Ehud Meron^{15,16}, Stanislaus J. Schymanski^{® 17}, Elena Rovenskaya¹, Benjamin D. Stocker^{® 18,19}, Sönke Zaehle^{® 20}, Stefano Manzoni^{® 21,22}, Marcel van Oijen^{® 23}, Ian J. Wright^{® 24}, Philippe Ciais^{® 25}, Peter M. van Bodegom^{® 26}, Josep Peñuelas^{® 19,27}, Florian Hofhansl^{® 1}, Cesar Terrer^{® 28}, Nadejda A. Soudzilovskaia^{® 26}, Guy Midgley^{® 29} and I. Colin Prentice^{12,24,30}

¹International Institute for Applied Systems Analysis, Laxenburg, Austria. ²Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden. ³Department of Geography and Environmental Science, University of Reading, Reading, UK. ⁴Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia. ⁵Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland. ⁶Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA. ⁷Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden. 8Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (Sokendai), Hayama, Japan. 9 Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia. ¹⁰Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Technopôle Arbois-Méditerranée, Aix-en-Provence, France. ¹¹Centre for Biodiversity, Theory, and Modelling, Theoretical and Experimental Ecology Station, CNRS, Moulis, France. ¹²Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China. ¹³Forest Sciences, University of Helsinki, Helsinki, Finland. ¹⁴Copernicus Institute of Sustainable Development, Environmental Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands. ¹⁵Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boger Campus, Israel. ¹⁶Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel. ¹⁷Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg. ¹⁸Department of Environmental Systems Sciences, ETH Zurich, Zurich, Switzerland. ¹⁹CREAF, Cerdanyola del Vallès, Spain. ²⁰Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Jena, Germany. ²¹Department of Physical Geography, Stockholm University, Stockholm, Sweden. ²²Bolin Centre for Climate Research, Stockholm, Sweden. ²³Centre for Ecology and Hydrology (CEH-Edinburgh), Bush Estate, Penicuik, UK. ²⁴Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia. ²⁵Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, France. ²⁶Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Leiden, The Netherlands. ²⁷CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain. ²⁸Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA. ²⁹Department Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa. ³⁰AXA Chair of Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK. Me-mail: franklin@iiasa.ac.at

				Traditional
Due se se (Tue it		Defense	T 4	approach in
Process/Trait	Optimality hypothesis	References	lest	DGVIVIS
	Leaf scale op	otimality		
Photosynthetic	Fitness proxy: Leaf net carbon	Coordination	Gas exchange	PFT-dependent
capacity	assimilation	hypothesis	data	photosynthetic
	Optimized variables: leaf N allocation	(Maire et al.		capacity
	to the light and Rubisco limited	2012)		
	Benefits: Photosynthesis			
	Costs: Respiration			
	Constraints and drivers: Structural			
	leaf N, light, Temperature (T), $[CO_2]$			
	Fitness proxy: Leaf net carbon	(Xu et al.	Gas exchange	
	assimilation	2012, Ali et	data	
	Optimized variables: leaf N allocation	al. 2016,		
	to the light and Rubisco limited	Quebbeman		
	photosynthetic capacities and storage	and Ramirez		
	Benefits: Photosynthesis	2016)		
	Costs: Respiration			
Leaf stomatal	<i>Eitness proxy:</i> Minimized C cost per C	Least cost	Leaf ¹³ C and	PFT-dependent
conductance and	assimilation	hypothesis	flux tower	photosynthetic
photosynthesis	<i>Optimized variables:</i> Photosynthetic	(Prentice et	measurement	capacity and
. ,	capacity and water conducting	al. 2014),	across a range	generic light-
	capacity per C assimilation	(Wang et al.	of different	and temperature
	Benefits: Photosynthesis	2017)	environments	responses
	<i>Costs:</i> Construction and maintenance	(Stocker et al.		
	C costs of capacities	2019)		
	altitude			
Stomatal	Fitness proxy: Daily C gain	(Cowan and	Gas exchange	Empirical model
conductance	Optimized variable: stomatal	Farquhar	data	with 2 or 3 PFT
	conductance (g_s) over time	1977,		specific
	Benefits: Daily photosynthesis	Manzoni et		parameters
	Constraint and driver: transpiration	al. 2013)		
	Fitness proxy: Net carbon gain	(Sperry et al.	Leaf trait data	-
	Optimized variable: gs	2017) (Wolf		
	Benefits: Photosynthesis	et al. 2016,		
	Costs: C costs of hydraulic damages	Anderegg et		
	Constraints and drivers: T, humidity,	al. 2018)		
	light, wind speed, [CO ₂], soil water			
	potential	(1/:1		DET den sie deut
Lear life span	<i>Continuized variable:</i> Leaf lifespan		Plant trait data	
	Renefits: Photosynthesis (declines	al 2017)		Lear longevily
	with leaf age)	3. 2017		
	Costs: Respiration			

Supplementary Table 1. Examples of optimality-based plant models

Leaf thermo- regulation	Fitness proxy: Leaf C gain per leaf C invested Optimized variable: Leaf T Benefits: Photosynthesis Costs: Leaf C investment Constraints and drivers: LMA, T90, gs, LDMC, leaf temperature acclimation rate (t) Fitness proxy: Canopy photosynthesis	(Michaletz et al. 2016) (Hikosaka	Gas exchange data. Trait data: LMA, T90, g₅, LDMC, τ Herbaceous	Not considered	
	Optimized variables: Leaf angle Benefits: Photosynthesis Costs: Respiration Constraint and driver: LAI	and Hirose 1997)	plant canopy data	considered	
Leaf size	Fitness proxy: Leaf water use efficiency of photosynthesis Optimized variables: Leaf size Benefits: Photosynthesis Costs: Water use Constraints and drivers: Light, T, humidity	(Parkhurst and Loucks 1972)	Observed leaf sizes in tropical trees, herbs, and lianas	Not considered	
SLA, and leaf N per area	Fitness proxy: Canopy net C gain Optimized variables: LAI, N per leaf area Benefits: Photosynthesis Costs: Respiration Constraints and drivers: Canopy N and water use	(McMurtrie and Dewar 2011)	Plant trait data	PFT-dependent	
	Whole plant scale optimality				
Rooting depth	Fitness proxy: Net C gain Optimized variable: Rooting depth Benefits: C gain = WUE × water use Costs: Root respiration Constraint: Precipitation that predicts evapotranspiration (E)	(Guswa 2010, Yang et al. 2016)	Water balance- based observations of E	PFT-dependent	
Root and shoot C allocation	Fitness proxy: Balanced growth (target plant C:N ratio) Optimized variable: Fraction of productivity allocated to roots or shoots Benefits: None explicit Costs: None explicit	(Reynolds and Chen 1996)	Theoretical model (not statistically tested against data)	Fixed fractions of NPP, PFT dependent	
	Fitness proxy: Net growth Optimized variable: ESS for root biomass Benefits: C gain Costs: Leaf and root turnover, respiration Constraints and drivers: Soil water and N, light	(Farrior et al. 2013)	Field trials in grassland		
	Fitness proxy: Net C gain Optimized variables: Root:shoot ratio, leaf N concentration Benefits: C gain Costs: respiration	(Ågren and Franklin 2003)	Experiments with birch seedlings and tomato plants		

Leaf phenology	Fitness proxy: Net C gain Optimized variable: LAI Benefits: C gain Costs: Respiration, leaf growth Constraints and drivers: Light, T, soil moisture *Not strictly optimization, but	(Caldararu et al. 2014)	Satellite-based LAI from the MODIS	Empirical function of climate variables, PFT- dependent
	<i>Gynamic</i> adjustment of LAI to increase productivity <i>Fitness proxy:</i> Long-term mean net C gain <i>Optimized variable:</i> LAI during the dry season <i>Benefits:</i> C gain <i>Costs:</i> Respiration, leaf growth <i>Constraints and drivers:</i> Soil moisture under stochastic rainfall. N availability	(Vico et al. 2017)	Satellite-based fraction of drought- deciduous vegetation	
	Fitness proxy: Growth per leaf biomass Optimized variable: Leaf habit – evergreen or deciduous Benefits: Growth Costs: C costs of respiration and transpiration Constraints and drivers: Length of growing season, seasonality, soil fertility	(Givnish 2002)	Qualitative patterns of leaf habit and climate	
Leaf mass per area and leaf life span	Fitness proxy: Net C gain Optimized variable: ESS for leaf mass per area Benefits: C gain Costs: C for leaf construction and respiration Constraints and drivers: Soil N mineralization	(Weng et al. 2017)	Plant trait data	Fixed PFT dependent
C allocation in trees	Fitness proxy: Life-time reproductive production Optimized variable: ESS for leaf, stem and root biomass Benefits: Reproductive production Costs: biomass turnover, respiration, mortality Constraints and drivers: Light and water availability	(Farrior et al. 2015)	Theoretical model	Fixed fractions of NPP, PFT dependent
	Fitness proxy: Life-time reproductive production Optimized variable: ESS for leaf, stem and root biomass Benefits: Reproductive production Costs: biomass turnover, respiration, mortality Constraints and drivers: Light and nutrient availability	(Dybzinski et al. 2011)	Fluxnet data on NPP	

C and N allocation in trees Dynamic C	Fitness proxy: Net C gain Optimized variables: Fine roots, canopy N, Vertical distribution of leaf N, LAI Benefits: C gain Costs: Turnover of leaves and roots, respiration Constraints and drivers: Soil N availability, [CO ₂] Fitness proxy: Life-time reproductive	(Franklin et al. 2009) (Iwasa 2000)	FACE experiments Theoretical	Fixed fractions of NPP, PFT dependent Fixed fractions of
allocation	production Optimized variables: Roots, Shoot, Storage, Reproduction over time Constraints and drivers: Soil moisture, light		model	NPP, PFT dependent
Foliage cover and photosynthetic capacity, canopy conductance, rooting depth and fine root distribution	Fitness proxy: Net C gain Optimized variables: projected cover, photosynthetic capacity, canopy conductance, fine root distribution (dynamic); rooting depth, tree cover (static) Benefits: Access to water and light for photosynthesis Costs: Respiration, leaf and root turnover Constraints and drivers: light, [CO ₂] and water availability	(Schymanski et al. 2009, 2015)	Eddy covariance, FACE experiments	PFT-dependent, static or prescribed
LAI of crop plants	Fitness proxy: Net C gain Optimized variable: LAI (dynamic) Benefits: Photosynthesis per LAI increase including N resorption from senescing leaves Costs: Respiration, senescing leaves Constraints and drivers: Canopy N, Fraction N resorbed at leaf senescence	(Franklin and Ågren 2002)	Crop experiments	Empirical function of degree-days
Tree height	Fitness proxy: ESS for net C gain Optimized variable: height Benefits: C gain Costs: C for construction and respiration	(King 1990, Valentine and Mäkelä 2012)		Allometric function of stem diameter
Mycorrhizal C allocation	<i>Fitness proxies:</i> ESS for net growth of trees and ESS for N uptake strategy of mycorrhizal fungi <i>Optimized variable:</i> C export to mycorrhiza, leaves and stem, fungal allocation to N uptake <i>Benefits:</i> C gain <i>Costs:</i> C use for N uptake and tissue turnover <i>Constraints and drivers:</i> Soil N availability, [CO ₂], connectivity among trees and fungi	(Franklin et al. 2014)	Experimental forest plots	Not considered

1				
	Fitness proxies: Tree biomass	(Baskaran et	Experimental	Not considered
	Optimized variable: C export to	al. 2017)	forest plots	
	mycorrhiza			
	Benefits: C and N gain			
	Costs: C allocation to mycorrhiza			
	Constraints and drivers: Soil N			
	availability and soil organic matter			
	decomposability			
Hydraulic traits	Fitness proxies: long-term mean	(Manzoni et	Global	Trait values are
and stomatal	transpiration rate (assumed	al. 2014)	hydraulic trait	PFT dependent
conductance	proportional to GPP)	,	datasets	
	Optimized variable: responses of			
	xylem hydraulic conductivity and $\alpha_{\rm c}$ to			
	dry conditions			
	Benefits: C gain (assumed			
	proportional to GPD)			
	Costs: reduced C gain due to			
	inefficient water use			
	Constraints and drivers Soil moisture			
	constraints and anvers: son moisture			
	Fitness proxies: C gain over a year	(Bartlett et al.	Inter-trait	
	<i>Optimized variable:</i> Variable g _s over	2019)	relationships in	
	time		tropical	
	<i>Benefits:</i> C gain over time		evergreen	
	<i>Costs:</i> Loss in C gain due to reduced		forest	
	plant water potential			
	Constraints and drivers: Drought			
	length and frequency, [CO ₂]			
Defense	Fitness proxies: Net growth	(Fagerstrom	Theoretical	Not considered
	Optimized variable: C allocation to	et al. 1987)	model	
	defense			
	Benefits: Net growth			
	Costs: C cost of defense			
	Constraints and drivers: Grazing			
	intensity			
Xylem/phloem	Fitness proxy: energy export from	(Huang et al.	Theoretical	Not considered
transport	loading phloem (proportional to	2018)	model	
	square of net C gain)	,		
	Optimized variable: canopy water			
	potential			
	Benefits: sucrose export to plant			
	tissues			
	Costs: maintenance of phloem flow			
	Constraints and drivers: Limited			
	transpiration rate			
	u anspiration rate	1	1	

Abbreviations: , $[CO_2]$ = atmospheric CO₂ concentration, E = evapotranspiration, ESS = evolutionary stable strategy, GPP = gross primary productivity, g_s =Stomatal conductance, LAI = leaf area index, , LDMC = leaf dry matter content, LMA = leaf mass per area, N = nitrogen, NPP = net primary productivity, PFT = plant functional type, T = temperature, T90 = temperature range with photosynthesis >90% of photosynthesis at optimal T, τ = leaf temperature acclimation rate, VPD = vapor pressure deficit, WUE = water use efficiency

References

Ågren, G. I., and O. Franklin. 2003. Root : shoot ratios, optimization and nitrogen productivity. Annals of Botany **92**:795-800.

- Ali, A. A., C. Xu, A. Rogers, R. A. Fisher, S. D. Wullschleger, E. C. Massoud, J. A. Vrugt, J. D. Muss, N. G. McDowell, J. B. Fisher, P. B. Reich, and C. J. Wilson. 2016. A global scale mechanistic model of photosynthetic capacity (LUNA V1.0). Geosci. Model Dev. 9:587-606.
- Anderegg, W. R. L., A. Wolf, A. Arango-Velez, B. Choat, D. J. Chmura, S. Jansen, T. Kolb, S. Li, F. C. Meinzer, P. Pita, V. Resco de Dios, J. S. Sperry, B. T. Wolfe, and S. Pacala. 2018. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecology Letters 21:968-977.
- Bartlett, M. K., M. Detto, and S. W. Pacala. 2019. Predicting shifts in the functional composition of tropical forests under increased drought and CO2 from trade-offs among plant hydraulic traits. Ecology Letters **22**:67-77.
- Baskaran, P., R. Hyvönen, S. L. Berglund, K. E. Clemmensen, G. I. Ågren, B. D. Lindahl, and S. Manzoni. 2017. Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems. New Phytologist **213**:1452-1465.
- Caldararu, S., D. W. Purves, and P. I. Palmer. 2014. Phenology as a strategy for carbon optimality: A global model. Biogeosciences **11**:763-778.
- Cowan, I., and G. Farquhar. 1977. Stomatal function in relation to leaf metabolism and environment: Stomatal function in the regulation of gas exchange. Symposia of the Society for Experimental Biology **31**:471-505.
- Dybzinski, R., C. Farrior, A. Wolf, P. B. Reich, and S. W. Pacala. 2011. Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: An analytically tractable, individual-based model and quantitative comparisons to data. American Naturalist **177**:153-166.
- Fagerstrom, T., S. Larsson, and O. Tenow. 1987. On Optimal Defence in Plants. Functional Ecology 1:73-81.
- Farrior, C. E., I. Rodriguez-Iturbe, R. Dybzinski, S. A. Levin, and S. W. Pacala. 2015. Decreased water limitation under elevated CO2 amplifies potential for forest carbon sinks. Proceedings of the National Academy of Sciences, USA **112**:7213-7218.
- Farrior, C. E., D. Tilman, R. Dybzinski, P. B. Reich, S. A. Levin, and S. W. Pacala. 2013. Resource limitation in a competitive context determines complex plant responses to experimental resource additions. Ecology 94:2505-2517.
- Franklin, O., and G. I. Ågren. 2002. Leaf senescence and resorption as mechanisms of maximizing photosynthetic production during canopy development at N limitation. Functional Ecology **16**:727-733.
- Franklin, O., R. E. McMurtrie, C. M. Iversen, K. Y. Crous, A. C. Finzi, D. T. Tissue, D. S. Ellsworth, R. Oren, and R. J. Norby. 2009. Forest fine-root production and nitrogen use under elevated CO2: Contrasting responses in evergreen and deciduous trees explained by a common principle. Global Change Biology 15:132–144.
- Franklin, O., T. Näsholm, P. Högberg, and M. N. Högberg. 2014. Forests trapped in nitrogen limitation an ecological market perspective on ectomycorrhizal symbiosis. New Phytologist **203**:657-666.
- Givnish, T. J. 2002. Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox. Silva Fennica **36**:703-743.
- Guswa, A. J. 2010. Effect of plant uptake strategy on the water- optimal root depth. Water Resources Research 46.
- Hikosaka, K., and T. Hirose. 1997. Leaf angle as a strategy for light competition: Optimal and evolutionarily stable light-extinction coefficient within a canopy. Ecoscience **4**.
- Huang, C.-W., J.-C. Domec, S. Palmroth, W. T. Pockman, M. E. Litvak, and G. G. Katul. 2018. Transport in a coordinated soil-root-xylem-phloem leaf system. Advances in Water Resources **119**:1-16.
- Iwasa, Y. 2000. Dynamic optimization of plant growth. Evolutionary Ecology Research 2:437-455.
- Kikuzawa, K. 1991. A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. The American Naturalist **138**:1250-1263.
- King, D. A. 1990. The adaptive significance of tree height. American Naturalist **135**:809-828.
- Maire, V., P. Martre, J. Kattge, F. Gastal, G. Esser, S. Fontaine, and J.-F. Soussana. 2012. The Coordination of Leaf Photosynthesis Links C and N Fluxes in C3 Plant Species. PLoS ONE **7**:e38345.
- Manzoni, S., G. Vico, G. Katul, S. Palmroth, and A. Porporato. 2014. Optimal plant water-use strategies under stochastic rainfall. Water Resources Research **50**:5379-5394.
- Manzoni, S., G. Vico, S. Palmroth, A. Porporato, and G. Katul. 2013. Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture. Advances in Water Resources **62**:90-105.
- McMurtrie, R. E., and R. C. Dewar. 2011. Leaf-trait variation explained by the hypothesis that plants maximize their canopy carbon export over the lifespan of leaves. Tree Physiology **31**:1007-1023.
- Michaletz, S. T., M. D. Weiser, N. G. McDowell, J. Zhou, M. Kaspari, B. R. Helliker, and B. J. Enquist. 2016. The energetic and carbon economic origins of leaf thermoregulation. Nature Plants **2**:16129.
- Parkhurst, D. F., and O. L. Loucks. 1972. Optimal Leaf Size in Relation to Environment. Journal of Ecology **60**:505-537.

- Prentice, I. C., N. Dong, S. M. Gleason, V. Maire, and I. J. Wright. 2014. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecology Letters **17**:82-91.
- Quebbeman, J. A., and J. A. Ramirez. 2016. Optimal Allocation of Leaf-Level Nitrogen: Implications for Covariation of V c m a x and J m a x and Photosynthetic Downregulation: Covariation of V c m a x and J m a x. Journal of Geophysical Research: Biogeosciences **121**.
- Reynolds, J. F., and J. Chen. 1996. Modelling whole-plant allocation in relation to carbon and nitrogen supply: Coordination versus optimization: Opinion. Plant and Soil **185**:65-74.
- Sperry, J. S., M. D. Venturas, W. R. L. Anderegg, M. Mencuccini, D. S. Mackay, Y. Wang, and D. M. Love. 2017. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant, Cell & Environment 40:816-830.
- Stocker, B. D., H. Wang, N. G. Smith, S. P. Harrison, T. F. Keenan, D. Sandoval, T. Davis, and I. C. Prentice. 2019. Pmodel v1.0: An optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. Discuss. 2019:1-59.
- Valentine, H. T., and A. Mäkelä. 2012. Modeling forest stand dynamics from optimal balances of carbon and nitrogen. New Phytologist **194**:961-971.
- Vico, G., D. Dralle, X. Feng, S. Thompson, and S. Manzoni. 2017. How competitive is drought deciduousness in tropical forests? A combined eco-hydrological and eco-evolutionary approach. Environmental Research Letters 12:065006.
- Wang, H., I. C. Prentice, T. F. Keenan, T. W. Davis, I. J. Wright, W. K. Cornwell, B. J. Evans, and C. Peng. 2017. Towards a universal model for carbon dioxide uptake by plants. Nature Plants **3**:734-741.
- Weng, E., C. E. Farrior, R. Dybzinski, and S. W. Pacala. 2017. Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework. Global Change Biology **23**:2482-2498.
- Wolf, A., W. R. L. Anderegg, and S. W. Pacala. 2016. Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proceedings of the National Academy of Sciences **113**:E7222-E7230.
- Xu, C., R. Fisher, S. D. Wullschleger, C. J. Wilson, M. Cai, and N. G. McDowell. 2012. Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics. PLoS ONE **7**:e37914.
- Xu, X., D. Medvigy, S. Joseph Wright, K. Kitajima, J. Wu, L. P. Albert, G. A. Martins, S. R. Saleska, and S. W. Pacala.
 2017. Variations of leaf longevity in tropical moist forests predicted by a trait-driven carbon optimality model. Ecology Letters 20:1097-1106.
- Yang, Y., R. J. Donohue, and T. R. McVicar. 2016. Global estimation of effective plant rooting depth: Implications for hydrological modeling. Water Resources Research **52**:8260-8276.