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Supplementary Table 1. Examples of optimality-based plant models 

Process/Trait Optimality hypothesis References Test 

Traditional 
approach in 
DGVMs 

Leaf scale optimality 

Photosynthetic 
capacity 

Fitness proxy: Leaf net carbon 
assimilation 
Optimized variables: leaf N allocation 
to the light and Rubisco limited 
photosynthetic capacities 
Benefits: Photosynthesis 
Costs: Respiration 
Constraints and drivers: Structural 
leaf N, light, Temperature (T), [CO2] 

Coordination 
hypothesis 
(Maire et al. 
2012) 

Gas exchange 
data 

PFT-dependent 
photosynthetic 
capacity 

Fitness proxy: Leaf net carbon 
assimilation 
Optimized variables: leaf N allocation 
to the light and Rubisco limited 
photosynthetic capacities and storage 
Benefits: Photosynthesis 
Costs: Respiration   
Constraints and drivers: light, T, [CO2] 

(Xu et al. 
2012, Ali et 
al. 2016, 
Quebbeman 
and Ramirez 
2016) 

Gas exchange 
data 

Leaf stomatal 
conductance and 
photosynthesis 

Fitness proxy: Minimized C cost per C 
assimilation 
Optimized variables: Photosynthetic 
capacity and water conducting 
capacity per C assimilation 
Benefits: Photosynthesis 
Costs: Construction and maintenance 
C costs of capacities 
Constraints and drivers: VPD, T, 
altitude 

Least cost 
hypothesis 
(Prentice et 
al. 2014), 
(Wang et al. 
2017) 
(Stocker et al. 
2019) 

Leaf 13C and 
flux tower 
measurement 
across a range 
of different 
environments 

PFT-dependent 
photosynthetic 
capacity and 
generic light- 
and temperature 
responses 

Stomatal 
conductance  

Fitness proxy: Daily C gain 
Optimized variable: stomatal 
conductance (gs) over time 
Benefits: Daily photosynthesis 
Constraint and driver: transpiration 
rate 

(Cowan and 
Farquhar 
1977, 
Manzoni et 
al. 2013) 

Gas exchange 
data 

Empirical model 
with 2 or 3 PFT 
specific 
parameters 

Fitness proxy: Net carbon gain  
Optimized variable: gs  
Benefits: Photosynthesis 
Costs: C costs of hydraulic damages 
Constraints and drivers: T, humidity, 
light, wind speed, [CO2], soil water 
potential 

(Sperry et al. 
2017) (Wolf 
et al. 2016, 
Anderegg et 
al. 2018) 

Leaf trait data 

Leaf life span Fitness proxy: C gain per unit time  
Optimized variable: Leaf lifespan 
Benefits: Photosynthesis (declines 
with leaf age) 
Costs: Respiration  

(Kikuzawa 
1991, Xu et 
al. 2017) 

Plant trait data PFT dependent 
Leaf longevity 
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Leaf thermo-
regulation 

Fitness proxy: Leaf C gain per leaf C 
invested 
Optimized variable: Leaf T 
Benefits: Photosynthesis  
Costs: Leaf C investment 
Constraints and drivers: LMA, T90, gs, 
LDMC, leaf temperature acclimation 
rate (τ) 

(Michaletz et 
al. 2016) 

Gas exchange 
data. 
Trait data: LMA, 
T90, gs, LDMC, τ 

Not considered 

Leaf angle Fitness proxy: Canopy photosynthesis 
Optimized variables: Leaf angle 
Benefits: Photosynthesis  
Costs: Respiration  
Constraint and driver: LAI 

(Hikosaka 
and Hirose 
1997) 

Herbaceous 
plant canopy 
data 

Not explicitly 
considered 

Leaf size Fitness proxy: Leaf water use 
efficiency of photosynthesis 
Optimized variables: Leaf size 
Benefits: Photosynthesis  
Costs: Water use  
Constraints and drivers: Light, T, 
humidity 

(Parkhurst 
and Loucks 
1972) 

Observed leaf 
sizes in tropical 
trees, herbs, 
and lianas  

Not considered 

SLA, and leaf N 
per area 

Fitness proxy: Canopy net C gain 
Optimized variables: LAI, N per leaf 
area 
Benefits: Photosynthesis  
Costs: Respiration  
Constraints and drivers: Canopy N and 
water use  

(McMurtrie 
and Dewar 
2011) 

Plant trait data PFT-dependent 

Whole plant scale optimality 

Rooting depth Fitness proxy: Net C gain 
Optimized variable: Rooting depth 
Benefits: C gain = WUE × water use 
Costs: Root respiration 
Constraint: Precipitation that 
predicts evapotranspiration (E) 

(Guswa 2010, 
Yang et al. 
2016) 

Water balance-
based 
observations of 
E 

PFT-dependent 

Root and shoot C 
allocation 

Fitness proxy: Balanced growth 
(target plant C:N ratio) 
Optimized variable: Fraction of 
productivity allocated to roots or 
shoots 
Benefits: None explicit 
Costs: None explicit 

(Reynolds 
and Chen 
1996) 

Theoretical 
model (not 
statistically 
tested against 
data) 

Fixed fractions of 
NPP, PFT 
dependent 

Fitness proxy: Net growth 
Optimized variable: ESS for root 
biomass 
Benefits: C gain  
Costs: Leaf and root turnover, 
respiration 
Constraints and drivers: Soil water 
and N, light 

(Farrior et al. 
2013) 

Field trials in 
grassland 

Fitness proxy: Net C gain 
Optimized variables: Root:shoot ratio, 
leaf N concentration  
Benefits: C gain  
Costs: respiration 

(Ågren and 
Franklin 
2003) 

Experiments 
with birch 
seedlings and 
tomato plants 
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Leaf phenology Fitness proxy: Net C gain  
Optimized variable: LAI 
Benefits: C gain 
Costs: Respiration, leaf growth 
Constraints and drivers: Light, T, soil 
moisture 
*Not strictly optimization, but 
dynamic adjustment of LAI to increase 
productivity 

(Caldararu et 
al. 2014) 

Satellite-based 
LAI from the 
MODIS 

Empirical 
function of 
climate 
variables, PFT-
dependent 

Fitness proxy: Long-term mean net C 
gain  
Optimized variable: LAI during the dry 
season 
Benefits: C gain 
Costs: Respiration, leaf growth 
Constraints and drivers: Soil moisture 
under stochastic rainfall, N availability 

(Vico et al. 
2017) 

Satellite-based 
fraction of 
drought-
deciduous 
vegetation 

Fitness proxy: Growth per leaf 
biomass  
Optimized variable: Leaf habit – 
evergreen or deciduous 
Benefits: Growth 
Costs: C costs of respiration and 
transpiration 
Constraints and drivers: Length of 
growing season, seasonality, soil 
fertility 

(Givnish 
2002) 

Qualitative 
patterns of leaf 
habit and 
climate 

Leaf mass per 
area and leaf life 
span  

Fitness proxy: Net C gain 
Optimized variable: ESS for leaf mass 
per area 
Benefits: C gain 
Costs: C for leaf construction and 
respiration 
Constraints and drivers: Soil N 
mineralization 

(Weng et al. 
2017) 

Plant trait data Fixed PFT 
dependent  

C allocation in 
trees 

Fitness proxy: Life-time reproductive 
production 
Optimized variable: ESS for leaf, stem 
and root biomass 
Benefits: Reproductive production 
Costs: biomass turnover, respiration, 
mortality 
Constraints and drivers: Light and 
water availability 

(Farrior et al. 
2015) 

Theoretical 
model 

Fixed fractions of 
NPP, PFT 
dependent 

Fitness proxy: Life-time reproductive 
production 
Optimized variable: ESS for leaf, stem 
and root biomass 
Benefits: Reproductive production 
Costs: biomass turnover, respiration, 
mortality 
Constraints and drivers: Light and 
nutrient availability 

(Dybzinski et 
al. 2011) 

Fluxnet data on 
NPP 
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C and N 
allocation in 
trees 

Fitness proxy: Net C gain 
Optimized variables: Fine roots, 
canopy N, Vertical distribution of leaf 
N, LAI 
Benefits: C gain 
Costs: Turnover of leaves and roots, 
respiration 
Constraints and drivers: Soil N 
availability, [CO2] 

(Franklin et 
al. 2009) 

FACE 
experiments 

Fixed fractions of 
NPP, PFT 
dependent 

Dynamic C 
allocation 

Fitness proxy: Life-time reproductive 
production 
Optimized variables: Roots, Shoot, 
Storage, Reproduction over time 
Constraints and drivers: Soil moisture, 
light 

(Iwasa 2000) Theoretical 
model 

Fixed fractions of 
NPP, PFT 
dependent 

Foliage cover 
and 
photosynthetic 
capacity, canopy 
conductance, 
rooting depth 
and fine root 
distribution 

Fitness proxy: Net C gain 
Optimized variables: projected cover, 
photosynthetic capacity, canopy 
conductance, fine root distribution 
(dynamic); rooting depth, tree cover 
(static) 
Benefits: Access to water and light for 
photosynthesis 
Costs: Respiration, leaf and root 
turnover 
Constraints and drivers: light, [CO2] 
and water availability  

(Schymanski 
et al. 2009, 
2015) 

Eddy 
covariance, 
FACE 
experiments 

PFT-dependent, 
static or 
prescribed 

LAI of crop 
plants 

Fitness proxy: Net C gain 
Optimized variable: LAI (dynamic) 
Benefits: Photosynthesis per LAI 
increase including N resorption from 
senescing leaves 
Costs: Respiration, senescing leaves 
Constraints and drivers: Canopy N, 
Fraction N resorbed at leaf 
senescence  

(Franklin and 
Ågren 2002) 

Crop 
experiments 

Empirical 
function of 
degree-days 

Tree height Fitness proxy: ESS for net C gain 
Optimized variable: height 
Benefits: C gain 
Costs: C for construction and 
respiration 

(King 1990, 
Valentine and 
Mäkelä 2012) 

 Allometric 
function of stem 
diameter 

Mycorrhizal C 
allocation 

Fitness proxies: ESS for net growth of 
trees and ESS for N uptake strategy of 
mycorrhizal fungi 
Optimized variable: C export to 
mycorrhiza, leaves and stem, fungal 
allocation to N uptake 
Benefits: C gain 
Costs: C use for N uptake and tissue 
turnover 
Constraints and drivers: Soil N 
availability, [CO2], connectivity among 
trees and fungi 

(Franklin et 
al. 2014) 

Experimental 
forest plots 

Not considered 
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Fitness proxies: Tree biomass 
Optimized variable: C export to 
mycorrhiza 
Benefits: C and N gain 
Costs: C allocation to mycorrhiza 
Constraints and drivers: Soil N 
availability and soil organic matter 
decomposability 

(Baskaran et 
al. 2017) 

Experimental 
forest plots 

Not considered 

Hydraulic traits 
and stomatal 
conductance 

Fitness proxies: long-term mean 
transpiration rate (assumed 
proportional to GPP)  
Optimized variable: responses of 
xylem hydraulic conductivity and gs to 
dry conditions 
Benefits: C gain (assumed 
proportional to GPP)  
Costs: reduced C gain due to 
inefficient water use 
Constraints and drivers: Soil moisture 
under stochastic rainfall 

(Manzoni et 
al. 2014) 

Global 
hydraulic trait 
datasets 

Trait values are 
PFT dependent 

Fitness proxies: C gain over a year 
Optimized variable: Variable gs over 
time 
Benefits: C gain over time 
Costs: Loss in C gain due to reduced 
plant water potential 
Constraints and drivers: Drought 
length and frequency, [CO2] 

(Bartlett et al. 
2019) 

Inter-trait 
relationships in 
tropical 
evergreen 
forest 

Defense Fitness proxies: Net growth  
Optimized variable: C allocation to 
defense 
Benefits: Net growth 
Costs: C cost of defense 
Constraints and drivers: Grazing 
intensity 

(Fagerstrom 
et al. 1987) 

Theoretical 
model 

Not considered 

Xylem/phloem 
transport 

Fitness proxy: energy export from 
loading phloem (proportional to 
square of net C gain) 
Optimized variable: canopy water 
potential 
Benefits: sucrose export to plant 
tissues 
Costs: maintenance of phloem flow 
Constraints and drivers: Limited 
transpiration rate 

(Huang et al. 
2018) 

Theoretical 
model 

Not considered 

Abbreviations: , [CO2] = atmospheric CO2 concentration, E = evapotranspiration, ESS = evolutionary stable 
strategy, GPP = gross primary productivity, gs =Stomatal conductance, LAI = leaf area index, , LDMC = leaf dry 
matter content, LMA = leaf mass per area, N = nitrogen, NPP = net primary productivity, PFT = plant functional 
type, T = temperature, T90 = temperature range with photosynthesis >90% of photosynthesis at optimal T, τ = leaf 
temperature acclimation rate, VPD = vapor pressure deficit, WUE = water use efficiency 
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