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ON RELATIVE AUSLANDER ALGEBRAS

JAVAD ASADOLLAHI AND RASOOL HAFEZI

Abstract. Relative Auslander algebras were introduced and studied by Beligiannis. In this
paper, we apply intermediate extension functors associated to certain recollements of functor
categories to study them. In particular, we study the existence of tilting-cotilting modules
over such algebras. As a consequence, it will be shown that two Gorenstein algebras of G-
dimension 1 being of finite Cohen-Macaulay type are Morita equivalent if and only if their
Cohen-Macaulay Auslander algebras are Morita equivalent.

1. Introduction

Let Λ be an artin algebra and mod-Λ denote the category of finitely generated right Λ-modules.
A subclass X of mod-Λ is called of finite type if the set of all iso-classes of indecomposable
modules of X is finite. If mod-Λ itself is of finite type, then Λ is called of finite representation
type. Let Λ be such algebra and X be an additive generator of mod-Λ, i.e. X is the direct
sum of representatives of the iso-classes of indecomposable Λ-modules. Auslander [A] studied
the algebra EndΛ(X), which is known as the Auslander Algebra of Λ. Beligiannis [Be, §6],
introduced a relative version of Auslander algebras, with respect to a contravariantly finite
resolving subcategory X of mod-Λ of finite type. The natural candidate for Aus(X ), the X -
relative Auslander algebra of Λ, is the endomorphism ring of an additive generator of X .

On the other hand, recently some authors study algebras admitting tilting-cotilting modules.
For instance, Crawley-Boevey and Sauter [CS, Lemma 1.1] showed that an artin algebra Γ is an
Auslander algebra if and only if its global dimension is at most 2 and the full subcategory CΓ of
mod-Γ consisting of all modules that are generated and are cogenerated by the direct sum of the
representatives of the isomorphism classes of all injective-projective Γ-modules contains a tilting
module. Moreover, they showed that in this case, there is a unique basic such module which is also
a cotilting module. Later on, without any assumption on the global dimension of Γ, the authors
of [NRTZ] showed that dominant dimension of Γ is at least 2 if and only if CΓ contains either a
tilting or a cotilting module, where by definition, dominant dimension of Γ is at least n if the first
n terms of the minimal injective resolution of the Γ-module Γ are projectives. They therefore,
provided a generalization of [CS, Lemma 1.1]. Moreover, they [NRTZ, Theorem 2.4.11] showed
that an artin algebra Γ is a 1-Auslander-Gorenstein algebra if and only if CΓ contains a tilting-
cotilting module. Recall that the notion of n-Auslander-Gorenstein algebras defined recently by
Iyama and Solberg [IS] as artin algebras Γ with the property that idΓΓ ≤ n + 1 ≤ domdimΓ.
The most recent attempt in this direction is the work of Pressland and Sauter that, among
other results, gave a characterization of n-Auslander-Gorenstein algebras as well as n-Auslander
algebras via shifted and coshifted modules [PS, Theorem 3.9].
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In this paper, we study the relative Auslander algebras, in the sense of Beligiannis, and use
functor categories methods to prove the existence of tilting-cotilting modules in certain cases.
To this end, we use the notion of intermediate extension functor associated to a recollement. Let
X be a contravariantly finite subcategory of mod-Λ containing projective Λ-modules. In [AHK],
a relative version of Auslander’s Formula with respect to X has been studied. More precisely, it
is shown that for such X , there exists a recollement

mod0-X
ℓ // mod-X

ϑ //

ℓρ

jj

ℓλ
tt

mod-Λ

ϑρ

ii

ϑλ

tt

of abelian categories, where mod-X is the abelian category consisting of all finitely presented
contravariant functors from X to Ab and mod0-X consists of all functors that vanish on Λ. We
use the intermediate extension functor associated to this recollement, denoted by ζX . If we
assume further that X is of finite type, then mod-X is equivalent to mod-Aus(X ) and hence we
get a recollement

mod0-Aus(X )
L // mod-Aus(X )

V //

Lρ

kk

Lλ

ss
mod-Λ

Vρ

kk

Vλ

ss

which is equivalent to the above one. We use this equivalence to transfer the problems from
Aus(X ) to mod-X , use functor categories methods there and then back to our own home.
Specializing our results to the class of Gorenstein projective modules over Gorenstein algebras
of finite Cohen-Macaulay type have interesting applications. For instance, we show that the
condition of being gentle in Theorem 3.10 of [CL] is redundant, see Corollary 3.15 below.

Furthermore, we show that the surjective map Aus defined in [KZ] is injective when we
restrict it to the class of Gorenstein algebras of G-dimension 1. It is easy to see that it can not
be injective for Gorenstein algebras of higher G-dimension, see Remark 4.3 below. It is worth
noting that Gorenstein algebras of G-dimension 1 are playing an important role in representation
theory of finite dimensional algebras, which includes some important classes of algebras, e.g. the
cluster-tilted algebras [BMR1] and [BMR2], 2-CY-tilted algebras [KR], or more generally the
endomorphism algebras of cluster tilting objects in triangulated categories [KZh]. See also [GLS],
for more applications of the class of 1-Gorenstein algebras attached to symmetrizable generalized
Cartan matrices.

2. Preliminaries

In this section, we recall some basic facts we need throughout the paper. Let us begin by
recalling the notion of Gorenstein projective modules.

Let A be a ring. A totally acyclic complex of projectives is an acyclic complex P of projective
A-modules such that the induced complex HomA(P, Q) is acyclic, for every projective A-module
Q. Dually the notion of totally acyclic complex of injectives can be defined. The syzygies of a
totally acyclic complex of projectives, respectively of injectives, are called Gorenstein projective,
respectively Gorenstein injective, A-modules. The class of all Gorenstein projective, resp. Goren-
stein injective, modules is denoted by GPrj-A, resp. GInj-A. We set Gprj-A = GPrj-A∩mod-A.
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2.1. Recollements. Let A, A′ and A′′ be abelian categories. By [BBD] a recollement of A
with respect to A′ and A′′, denoted by R(A′,A,A′′) is a diagram

A′ ℓ // A
ϑ //

ℓρff

ℓλ

xx
A′′

ϑρ
ff

ϑλ

xx

of additive functors satisfying the following conditions:

(i) (ℓλ, ℓ), (ℓ, ℓρ), (ϑλ, ϑ) and (ϑ, ϑρ) are adjoint pairs.
(ii) ℓ, ϑλ and ϑρ are fully faithful.
(iii) Imℓ = Kerϑ.

2.2. Equivalence of recollements. Let R(A′,A,A′′) be the above recollement of A. We
say that it is equivalent to the recollement R(B′,B,B′′) below

B′ ι // B
ν //

ιρff

ιλ

xx
B′′

νρ
ff

νλ

xx

if there are equivalences Φ : A −→ B and Φ′′ : A′′ −→ B′′ such that the following diagram

A
ϑ //

Φ

��

A′′

Φ′′

��
B

ν // B′′

is commutative up to natural equivalences of functor. This is equivalent to say that there exists
natural equivalences Φ′ : A′ −→ B′ and Φ and Φ′′ above such that all six diagrams associated
to the six functors of the recollements commute up to natural equivalences. See Definition 4.1
and Lemma 4.2 of [PV].

2.3. Intermediate extension functor. Consider the recollement R(A′,A,A′′). Since
(ϑλ, ϑ) is an adjoint pair, for every A ∈ A and A′′ ∈ A′′ there exists an isomorphism

A(ϑλ(A
′′), A) = A′′(A′′, ϑ(A)),

of abelian groups. If we set A := ϑρ(A
′′), using the fact that the counit of adjunction η : ϑϑρ −→

idA′′ is an isomorphism, we get a natural transformation

γ : ϑλ −→ ϑρ.

The intermediate extension functor ζ : A′′ −→ A is defined by

ζ(A′′) := Im(γA′′) = Im(ϑλ(A
′′) −→ ϑρ(A

′′)).

We refer the reader to [CS, §2.1] for a list of the properties of this functor. In particular, it is
shown [CS, Lemma 2.2] that ζ is a fully faithful functor that preserves indecomposable objects.

2.4. TTF-triples. Let A be an abelian category. A pair (X ,Y) of subcategories of A is called
a torsion pair if HomA(X ,Y) = 0 and moreover, for every object A ∈ A, there exists a short
exact sequence

0 −→ XA −→ A −→ Y A −→ 0,

such that XA ∈ X and Y A ∈ Y. In this case, X is called a torsion class and Y is called a
torsion-free class. The torsion pair (X ,Y) is called hereditary if X is closed under subobjects
and is called cohereditary if Y is closed under quotients.
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If (X ,Y) and (Y,Z) are torsion pairs in A, then the triple (X ,Y,Z) is called a torsion
torsion-free triple, or simply a TTF-triple, of A, see [PV, Definition 2.2].

2.5. TTF-triples and recollements. By [PV, Corollary 4.4], if A has enough projective
and enough injective objects, then the equivalence classes of recollements of A, i.e. equivalence
classes of recollements with A as the middle term, are in bijection with the TTF-triples in
A. Based on this bijection associated to the recollement R(A′,A,A′′) there exists a TTF-triple
(Kerℓλ, ℓ(A

′),Kerℓρ) such that (Kerℓλ, ℓ(A
′)) is a cohereditary and (ℓ(A′),Kerℓρ) is a hereditary

torsion pair. On the other hand, a TTF-triple (T ,F ,L) in A induces a recollement

F
ℓ // A

v //

ℓρ

ff

ℓλ

xx A
F ,

vρ

ff

vλ

xx

where ℓ is the inclusion and v is the canonical quotient map. For the details of this bijection we
refer the reader to [PV].

3. X -intermediate extension functor

Let A be a right coherent ring and X be a subcategory of mod-A. An additive contravariant
functor F : X → Ab, where Ab denotes the category of abelian groups, is called a (right)
X -module. An X -module F is called finitely presented if there exists an exact sequence

X (−, X) → X (−, X ′) → F → 0,

with X and X ′ in X . All finitely presented X -modules and natural transformations between
them from a category that will be denoted by mod-X or sometimes fp(X op,Ab). It is known
that if X is a contravariantly finite subcategory of mod-A then mod-X is an abelian category,
see [AHK, §2].

3.1. Let A be a right coherent ring and X be a contravariantly finite subcategory of mod-A
containing prj-A. Let mod0-X denote the Serre subcategory of mod-X consisting of all objects
that vanish at Λ as a right Λ-module. By [AHK, Theorem 3.7] we have a recollement

mod0-X
ℓ // mod-X

ϑ //

ℓρ

jj

ℓλ
tt

mod-A

ϑρ

ii

ϑλ

tt

of abelian categories. As this recollement has a central role in this section, we recall explicitly
some functors appearing in this recollement. This recollement will be denoted by R(X , A).

- ϑ: By [AHK, Proposition 3.1], the functor Y A : (mod-X ,mod-A) −→ (X ,mod-A), that
is induced from the Yoneda embedding Y : X −→ mod-X , admits a left adjoint Y Aλ . We
set ϑ := Y Aλ (ι), where ι : X −→ mod-A is the inclusion functor. It is shown that ϑ is an

exact functor and if X (−, X1)
(−,d)
−→ X (−, X0) −→ F −→ 0 is a projective presentation

of F , then ϑ(F ) is the cokernel of the induced map X1
d

−→ X0.
- ϑλ: By [AHK, Proposition 3.6], ϑλ that is a left adjoint of ϑ, is defined as follows. Let

M ∈ mod-Λ and P
d

−→ Q
ε

−→ M −→ 0 be a projective presentation of M in mod-A.
Set

ϑλ(M) := Coker(X (−, P ) −→ X (−, Q)).
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- ϑρ: Let M ∈ mod-Λ. Set ϑρ(M) := HomA(−,M)|X = (−,M)|X . By Lemma 3.5 of
[AHK], ϑρ is a full and faithful functor and by Proposition 3.6 of [AHK] ϑρ is a right
adjoint of ϑ. In case M belongs to X , we simply write ϑρ(M) = X (−,M) without the |
sign.

3.2. Setup. Throughout, we assume that X is a contravariantly finite subcategory of mod-A
that contains prj-A.

Definition 3.3. As in 2.3, we can associate an intermediate extension functor to the recollement
R(X , A). Let us denote it by ζX and call it the X -intermediate extension functor. If X = mod-A,
we denote ζX by ζA.

3.4. Notation. Let M ∈ mod-A. For the ease of notation, we denote ζX (M) ∈ mod-X by ζXM .
Therefore, for X ∈ X , the action of ζXM on X will be denoted by ζXM (X).

Example 3.5. An important example is X = Gprj-Λ, where Λ is an artin algebra with the
property that Gprj-Λ is a contravariantly finite subcategory of mod-Λ. This include, in par-
ticular, the class of all virtually Gorenstein algebras [Be, Proposition 4.7] and also the class of
algebras of finite CM-type. Recall that virtually Gorenstein algebras introduced and studied in
deep by Beligiannis and Reiten [BR]. For simplicity, the relative intermediate extension functor
associated to the recollement R(Gprj-Λ,Λ) will be denoted by ζG .

For an A-module M , consider a short exact sequence 0 → Ω(M) → P → M → 0 with P
projective. The module Ω(M) is then called a syzygy module of M . Note that syzygy modules
of M are not uniquely determined. An nth syzygy of M will be denoted by Ωn(M), for n ≥ 2.

Lemma 3.6. Let M ∈ mod-A. Then there exits the following exact sequence

0 −→ KM −→ ϑλ(M) −→ ϑρ(M) −→ LM −→ 0,

in mod-X , where KM and LM belong to mod0-X .

Proof. Consider a projective presentation P −→ Q −→ M −→ 0 of X in mod-A. In view of the
Yoneda Lemma we have the following commutative diagram

0

��
0 // (−,Ω2(M))|X // (−, P ) // (−,Ω(M))|X //

��

KM // 0

0 // (−,Ω2(M))|X // (−, P ) // (−, Q)

��

// ϑλ(M) //

γMww

0

(−,M)|X

��
LM

��
0
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Applying Snake lemma to the diagram

0 // (−, P )

��

(−, P ) //

��

0 //

��

0

0 // (−,Ω(M))|X // (−, Q) // (−,M)|X

and using the fact that ϑρ(M) = (−,M)|X , we get the exact sequence

0 // KM // ϑλ(M)
γM // ϑρ(M) // LM // 0.

It follows from definition that KM and LM both belong to mod0-A. Hence the proof is complete.
�

Remark 3.7. By definition of ζX (X), we get the following two short exact sequences

0 // KM // ϑλ(M) // ζXM
// 0,

and

0 // ζXM
// ϑρ(M) // LM // 0.

Remark 3.8. The sequence of the above lemma also can be obtained using the units and counits
of adjunctions of the functors appearing in the recollement R(X , A), see [PV, Proposition 2.8].
In fact, for every functor F in mod-X , we have the following exact sequence

0 −→ ℓℓρ(F ) −→ F
δ
ϑρϑ

F−→ ϑρϑ(F ) −→ Cokerδ
ϑρϑ

F −→ 0,

where in view of the definition of the functors involved, this sequence has the following simpler
form

0 −→ F0 −→ F −→ (−, ϑ(F ))|X −→ F1 −→ 0,

where F0 and F1 are in mod0-X . In particular, for every M ∈ mod-Λ, if we set F = ϑλ(M), we
get the following exact sequence

0 −→ KM −→ ϑλ(M) −→ (−, ϑ(ϑλ(M)))|X −→ LM −→ 0.

But (−, ϑ(ϑλ(M)))|X = ϑρ(M), because ϑ(ϑλ(M)) =M . So we get the desired sequence.

Lemma 3.9. Let X be as in Setup 3.2.

(i) If X is closed under syzygies, then for every X ∈ X , projective dimension of ζXX as an

object of mod-X is at most one. In particular, if X ∈ prj-A, then ζXX = ϑρ(X) = (−, X)
is projective in mod-X .

(ii) If X is closed under submodules, then for every M ∈ mod-Λ, projective dimension of

(−,M)|X as an object of mod-X is at most one.

Proof. (i). Let X ∈ X and consider a projective presentation P
d
→ Q → X → 0 of X . The

commutative diagram of the proof of Lemma 3.6 for M = X yields the exact sequence

0 −→ (−,Ω(X)) −→ (−, Q) −→ ζXX −→ 0.

Since X contains projectives and is closed under syzygies, we deduce that projective dimension
of ζXX is at most one.

Now assume that X ∈ prj-A. Then the argument above implies that ζXX = (−, X) and so is
a projective object of mod-X .
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(ii). Pick M ∈ mod-Λ. Since X is contravariantly finite in mod0-Λ, there is a right X -
approximation f : X →M . This induces the short exact sequence

0 → (−,Ker(f)) → (−, X) → (−,M)|X → 0

in mod-X . Since X is closed under submodules, (−,Ker(f)) is a projective object and so
pd(−,M)|X ≤ 1. �

Lemma 3.10. Let X be as in Setup 3.2 which is also closed under syzygies and is contained in
⊥A. Then for every X1 and X2 in X ,

Ext1(ζXX1
, ζXX2

) = 0.

In particular, for every X ∈ X , ζXX is rigid.

Proof. Fix X1 and X2 in X . Consider the projective resolution

0 −→ (−,Ω(X1)) −→ (−, Q) −→ ζXX1
−→ 0,

of ζXX1
in mod-X , where P −→ Q −→ X1 −→ 0 is a projective presentation of X1. To prove the

result, we should show that the morphism

((−, Q), ζXX2
) −→ ((−,Ω(X1)), ζ

X
X2

)

is surjective. Let P ′ −→ Q′ −→ X2 −→ 0 be a projective presentation of X2. Since X is closed
under syzygies, the morphism ϕ : (−,Ω(X1)) −→ ζXX2

lifts to a morphism ϕ′ : (−,Ω(X1)) −→
(−, Q′). The Yoneda Lemma now induces the following diagram

0 // Ω(X1) //

��

Q

Q′

Since X ⊆ ⊥Λ, the morphism Ω(X1) −→ Q′ extends to a morphism Q −→ Q′. This in turn
induces a morphism

(−, Q) −→ (−, Q′).

It is now plain that the composition (−, Q) −→ (−, Q′) −→ ζXX2
maps to ϕ. This completes

the proof. �

Lemma 3.11. Let X be as in Setup 3.2 which is also closed under submodules and is contained

in ⊥A. Then for every X in X , the injective dimension of ζXX is at most one.

Proof. Let F ∈ mod-X be an arbitrary object. Since X is closed under submodules, we have a
projective resolution

0 −→ (−, X2) −→ (−, X1) −→ (−, X0) −→ F −→ 0,

of F . For the proof, it is enough to show that the induced map

((−, X1), ζ
X
X ) −→ ((−, X2), ζ

X
X )

is surjective, or in other words, Ext2(F, ζXX ) = 0. This follows easily using the same argument
as in the proof of the above lemma. �

Let T ∈ mod-Λ be a Λ-module, where as usual Λ is an artin algebra. T is called a tilting
module if it satisfies the following conditions.

(a) The projective dimension of T is at most 1;
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(b) T is rigid, i.e. Ext1Λ(T, T ) = 0;
(c) T has n indecomposable summands, where n is the number of indecomposable direct

summands of Λ.

Dually T ∈ mod-Λ is called a cotilting module if its injective dimension is at most 1 and it
satisfies the conditions (b) and (c) above.

Remark 3.12. Let Λ be an artin algebra and X be a contravariantly finite subcategory of mod-Λ
of finite type that contains projectives. Let X be an additive generator of X , i.e. X = add(X),
where add(X) denotes the set of all direct summands of finite direct sums of copies of X . Then
EndΛ(X) is called the X -Auslander algebra of Λ and is denoted by Aus(X ), see Definition 6.3 of
[Be]. A well known fact is that Aus(X ), up to Morita equivalence, is independent of the choice
of the additive generator of X . Moreover, there is an equivalence of abelian categories

eX : mod-X → mod-Aus(X )

defines for F ∈ mod-X by the evaluation of F at X , denoted by F (X). It is in a obvious way a
right Aus(X )-module.

In case X = mod-Λ, Λ is called of finite representation type and Aus(X ) is called the Auslan-
der algebra of Λ, denoted by Aus(Λ). In case X = Gprj-Λ, Λ is called of finite Cohen-Macaulay
type (CM-finite, for short). Aus(Gprj-Λ) is then called the Cohen-Macaulay Auslander algebra
of Λ.

Theorem 3.13. Let Λ be an artin algebra and X be a contravariantly finite subcategory of

mod-Λ such that prj-Λ ⊆ X ⊆ ⊥Λ. Assume further that X = add(X) is of finite type. Set

Γ = Aus(X ) and T = ζXX (X). The following statements then hold true.

(i) If X is closed under syzygies, then T is a tilting module over Γ.
(ii) If, furthermore, X is closed under submodules, then T is a cotilting module over Γ.

Proof. We just prove part (i). Part (ii) follows similarly. Conditions (a) and (b) of the definition
of a tilting module follows from Lemmas 3.9 and 3.10, respectively. To see condition (c), note that
similar to the proof of Lemma 2.2 of [CS], we can deduce that ζX is a full and faithful functor that
preserves indecomposable objects. Hence (c) follows from the fact that for an indecomposable
summand M of X , (−,M) is an indecomposable projective object of mod-X . �

Let Λ be an artin algebra such that both idΛΛ and idΛΛ are finite. It is known [Z] that in this
case, idΛΛ = idΛΛ, say n. Then n is called the Gorenstein dimension of Λ, denoted by Gdim(Λ),
and Λ is called the Iwanaga-Gorenstein algebra of Gorenstein dimension n, see [NRTZ, Remark
2.4.6]. Throughout the paper, we call such algebras Gorenstein of G-dimension n.

Corollary 3.14. Let Λ be a Gorenstein algebra of G-dimension 1 which is of finite CM-type.

Let G be an additive generator of Gprj-Λ. Then ζGG(G) is both a tilting and a cotilting module

over Aus(Gprj-Λ), the Cohen-Macaulay Auslander algebra of Λ.

Proof. In the above theorem set X = Gprj-Λ. Just note that since Λ is of G-dimension 1, Gprj-Λ
is closed under submodules. �

Crawley-Boevey [C-B] and later Schofield [S] introduced the notion of quiver Grassmannians
as varieties parametrizing subrepresentations of a quiver representation, in order to study the
generic properties of representations of a quiver Q. Let K be an algebraically closed field. By
[CFR], if the quotient algebra KQ/I of global dimension at most 2, admits a representation
M which is rigid and has both the injective and the projective dimension at most one, then
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the quiver Grassmannian Gre(M) is smooth and reduced, with irreducible and equidimensional
connected components, where e is a dimension vector for Q. See also [CL, Theorem 2.9]. Using
this result, Chen and Lu [CL, Theorem 3.10], showed that if KQ/I is a gentle algebra which is
Gorenstein of G-dimension 1, then its Cohen-Macaulay Auslander algebra is of global dimension
at most two and admits a module M with the above mentioned properties, and hence the quiver
Grassmannian Gre(M) is smooth and reduced, where e is a dimension vector for QAus. Our
next corollary provides a generalization of this result. In particular, we remove the assumption
that Λ is gentle.

Corollary 3.15. Let Λ be an artin algebra over an algebraically closed field. Let X be as in

Setup 3.2 which is also closed under submodules, is contained in ⊥Λ and is of finite type. Let Q
denote the quiver of Aus(X ) and e be a dimension vector of it. Then the quiver Grassmannian

Gre(ζ
X
X (X)) is smooth and reduced.

Proof. First note that since X is closed under submodules, it is easily seen that the global
dimension of Aus(X ) is at most two. Now the result follows from [CL, Theorem 2.9], in view of
Lemmas 3.9, 3.10 and 3.11. �

We end this section by some examples. To this end we need to recall the following notions.
Let M and N be Λ-modules. We say that N is generated, respectively cogenerated, by M if
there is an epimorphismMn → N , respectively a monomorphism N →Mn, for some n ∈ N. Let
gen(M), respectively cogen(M), denote the full subcategory of mod-Λ consisting of all modules
that are generated, respectively cogenerated, by M .

Example 3.16. (1) Let Λn = k[x]/(xn), where k is an algebraically closed field. Then

Λn is a self-injective algebra of finite representation type. In this case, ζΛn

M (M) is the
characteristic tilting module for the quasi-hereditary algebraAus(Λ), whereM is a basic
additive generator for mod-Λn. See [RZ, §2] for more details.

(2) Let Q̂ be the direct sum of representatives of the isomorphism classes of all indecompos-

able projective-injective modules. Let CΛ := gen(Q̂) ∩ cogen(Q̂) be the subcategory of
mod-Λ consisting of all modules generated and cogenerated by CΛ. Crawley-Boevey and
Sauter [CS] proved that if gldim(Λ) = 2, then the algebra Λ is an Auslander algebra if
and only if there exists a tilting module T in CΛ. Furthermore, T is the unique tilting
module in CΛ and it is also a cotilting module. If Λ is a self-injective algebra of finite
type, for basic addetive generator module M let Γ = EndΛ(T) denote the associated
Auslander algebra. Then T ≃ ζΛM (M) is the unique tilting and cotilting module in CΓ.

(3) Let Λ be a basic hereditary artin algebra of finite type. Then in this case for basic
additive generator M of mod-Λ, ζΛM (M) is just the trivial tilting module, i.e. M = Λ as
a right Λ-module.

4. Relative Auslander algebras

Assume, as before, that Λ is an artin algebra and X is a contravariantly finite subcategory
of mod-Λ that contains projectives. Furthermore, assume that X is of finite type with X as an
additive generator of it. In view of the equivalence mod-X ≃ Aus(X ) induced by the evaluation
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functor, Remark 3.12, we get the following recollement of mod-Aus(X )

mod0-Aus(X )
L // mod-Aus(X )

µ=ϑe−1

//

Lρ

kk

Lλ

ss
mod-A

µρ

kk

µλ

ss

where mod0-Aus(X ) denotes the kernel of ϑe−1.
The following commutative diagram

mod-X
ϑ //

e

��

mod-Λ

1

��
mod-Aus(X )

ϑe−1

// mod-Λ

in view of 2.2, implies that this recollement is equivalent toR(X ,Λ). Let us denote it byR(X ,Γ),
where Γ = Aus(X ).

By 2.5 a TTF-triple is associated to this recollement. In our next theorem, we plan to study
this TTF-triple. Our strategy for this study is to transfer the problems related to mod-Aus(X )
to mod-X , that has nicer homological properties, via the above mentioned equivalence, and then
translate the results back to mod-Aus(X ).

Throughout, let P≤1(Γ), resp. I≤1(Γ), denote the full subcategory of mod-Γ consisting of all
objects of projective dimension, resp. injective dimension, at most 1.

Theorem 4.1. Let X be as in Setup 3.2 which is of finite type, is closed under submodules

and is contained in ⊥Λ. Set T = ζXX (X), where X is an additive generator of X . Consider the

recollement R(X ,Γ), where Γ = Aus(X ). Then the following statements hold.

(i) cogen(T ) ⊆ KerLρ = P≤1(Γ). Moreover, if Λ is self-injective then the inclusion becomes

equality.

(ii) KerLλ = gen(T ) ⊆ I≤1(Γ). Moreover, if Λ is self-injective then the inclusion becomes

equality.

Proof. By [PV, Corollary 4.4] we have a TTF-triple (KerLΛ, L(mod0-Γ),KerLρ) associated to
the recollement R(X ,Γ).

(i) Since KerLρ is a torsion-free class, it is closed under subobjects. Also obviously it is
closed under finite direct sums. Hence to show that cogen(T ) ⊆ KerLρ it is enough to show that
T ∈ KerLρ. But this is equivalent to show that ζXX ∈ Kerℓρ. We prove this later statement. To
this end, take a projective presentation P → Q → X → 0 of X in mod-Λ. Then as in the proof
of Lemma 3.9, we obtain the following short exact sequence

0 → (−,Ω(X)) → (−, Q) → ζXX → 0,
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which is a projective resolution of ζXX in mod-X . In view of this short exact sequence we get the
following diagram

0

��

0

��
0 // 0 // (−,Ω(X)) (−,Ω(X)) //

��

0

��

// 0

0 // 0 // (−,Ω(X)) // (−, Q)

��

// ζXX
//

xx

0

ϑρ(X) = (−, X)

��
LX

��
0 .

In particular, we get a short exact sequence

η : 0 → ζXX → ϑρ(X) → LX → 0.

Now we apply the left exact functor ℓρ on the short exact sequence η and use the fact that
ℓρϑρ = 0, to deduce that ℓρ(ζ

X
X ) = 0. So we are done.

Now we prove that KerLρ = P≤1(Γ). This is equivalent to prove that Kerℓρ = P≤1(mod-X ).
To this end, let F ∈ Kerℓρ. Part (ii) of Lemma 3.9 implies that (−, ϑ(F ))|X has projective
dimension at most 1. So the exact sequence

0 // F // (−, ϑ(F ))|X // F1
// 0 ,

implies that pdF ≤ 1, because pdF1 ≤ 2. On the other hand, let F ∈ mod-X be such that
pdF ≤ 1. The argument as in the previous part shows that F ∈ Kerℓρ. So we have the equality.

Finally, assume that Λ is a self-injective algebra and let M ∈ KerLρ. We show that M ∈
cogen(T ). Equally, we can show that F = e−1(M) ∈ Kerℓρ belongs to cogen(ζXX ). This we do.
Since Λ is self-injective, ϑ(F ) can be embedded into a projective module P ∈ mod-Λ. So there
exists a monomorphism

(−, ϑ(F ))|X // (−, P ),

in mod-X . Combining with the exact sequence

0 // F // (−, ϑ(F ))|X // F1
// 0,

of Remark 3.8, we get an exact sequence 0 −→ F −→ (−, P ) in mod-X . This implies that
F ∈ cogen(ζXX ), because (−, P ) = ζXP .

(ii) To prove this part, it is equivalent to prove that Kerℓλ = gen(ζXX ) ⊆ I≤1(mod-X ). We
prove this. Let F ∈ mod-X and let P −→ Q −→ ϑ(F ) −→ 0 be a projective presentation of
ϑ(F ). By definition, we get a projective presentation

(−, P ) // (−, Q) // ϑλϑ(F ) // 0,

of ϑλϑ(F ) in mod-X . Since ζXQ = (−, Q) and prj-Λ ⊆ add(X), we get ϑλϑ(F ) ∈ gen(ζXX ).
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Now let F ∈ Kerℓλ. By [CS, Lemma/Definition 2.4] it is a costable object and hence the
natural map ϑλϑ(F ) −→ F is an epimorphism. Therefore F ∈ gen(ζXX ).

For the converse, note that since Kerℓλ is a torsion class, it is closed under quotients. Hence
to show that gen(ζXX ) ⊆ Kerℓλ, it is enough to show that ζXX ∈ Kerℓλ. Let P −→ Q −→ X −→ 0
be a projective presentation of X . Consider the commutative diagram

(−, P ) //

��

(−, Q) // ϑλϑ(ζ
X
X ) //

��

0

0 // (−,Ω(X)) // (−, Q) // ζXX
// 0.

Note that by [CS, Lemma 2.1(i)] ϑζXX
∼= X . Hence the natural map ϑλϑ(ζ

X
X ) −→ ζXX is an

epimorphism. This in turn implies that ζXX ∈ Kerℓλ.
To see the inclusion, let F ∈ gen(ζXX ). By [ASS, Corollary VI.2.6] there exists exact sequence

ζ1
Ψ
−→ ζ0 −→ F −→ 0, with ζ1 and ζ0 in add(ζXX ) = ζX (add(X)), as ζX commutes with direct

sums [CS, Lemma 2.1(5)].

Since ζX is full and faithful [CS, Lemma 2.2], we deduce that there exists morphismX1
ψ

−→ X0

in mod-Λ such that X0, X1 ∈ add(X) = X , ζXXi
= ζi, i = 0, 1, and ζX (ψ) = Ψ. Since X is closed

under submodules, ψ can be written as ψ = iπ, where X1
π

−→ X ′ is an epimorphism and X ′ i
−→

X0 is a monomorphism with X ′ ∈ X . But ζX preserves epimorphisms and monomorphisms [CS,

Lemma 2.1(4)], hence it follows that Ψ also has an epi-mono decomposition ζ1
ζX (π)
−→ ζ′

ζX (i)
−→ ζ0

with ζ′ = ζXX′ . So we get a short exact sequence 0 −→ ζ′ −→ ζ0 −→ F −→ 0. By Lemma 3.11,
the injective dimension of ζ′ and ζ0 are at most 1. Hence idF ≤ 1.

Finally assume that Λ is self-injective and F ∈ mod-X is of injective dimension at most 1.
By Remark 3.8 we have an exact sequence associated to the recollement R(X ,Λ),

0 // F0
// ϑλϑ(F ) // F // F1

// 0,

such that F0, F1 ∈ mod0-X . Let K denote the Ker(F −→ F1). We have seen that ϑλϑ(F ) ∈
gen(ζXX ). Hence K ∈ gen(ζXX ) and so idK ≤ 1. Therefore, since idF ≤ 1, we deduce that
idF1 ≤ 1. Let

0 // D(X0,−)
D(f,−)

// D(X1,−) // 0

be an injective resolution of F1, with X0, X1 ∈ X ⊆ ⊥Λ = mod-Λ. Since F1 vanishes on
projectives, for every P ∈ prj-Λ, the map D(X0, P ) −→ D(X1, P ) is an isomorphism. Since Λ is
self-injective, prj-Λ = inj-Λ and so X1 −→ X0 is an isomorphism. Therefore F1 = 0 and hence
F ∼= K ∈ gen(ζXX ). This completes the proof. �

Now we are ready to prove our main theorem in this section.

Theorem 4.2. Let Λ and Λ′ be Gorenstein algebras of G-dimension 1 which are of finite CM-

type. Then Λ and Λ′ are Morita equivalent if and only if their Cohen-Macaulay Auslander

algebras, Γ = Aus(Gprj-Λ) and Γ′ = Aus(Gprj-Λ′), are Morita equivalent.

Proof. By 2.5,
(mod0-Gprj-Λ,Kerℓρ) and (mod0-Gprj-Λ′,Kerℓ′ρ)

are torsion pairs. This, in view of the above theorem implies that

mod0-Gprj-Λ = 0P≤1(mod-Gprj-Λ) and mod0-Gprj-Λ′ = 0P≤1(mod-Gprj-Λ′),
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where for a class Y of abelian category A, 0Y stands for the class of all M ∈ A such that
HomA(M,Y) = 0. Now assume that Γ and Γ′ are Morita equivalent, or equivalently mod-Gprj-Λ
and mod-Gprj-Λ′ are equivalent, say via Φ. Since Φ is an exact functor, it maps P≤1(mod-Gprj-Λ)
to P≤1(mod-Gprj-Λ′) and hence maps 0P≤1(mod-Gprj-Λ) to 0P≤1(mod-Gprj-Λ′). Therefore it
induces an equivalence

mod0-Gprj-Λ
Φ|
−→ mod0-Gprj-Λ′.

This, in turn, implies that there exists an equivalence mod-Λ −→ mod-Λ′. Conversely, if Λ and
Λ′ are Morita equivalent, then Gprj-Λ ≃ Gprj-Λ′. Hence mod-Gprj-Λ ≃ mod-Gprj-Λ′, and so
equivalently Γ and Γ′ are Morita equivalent. �

Remark 4.3. An artin algebra Λ is called CM-free if the inclusion prj-Λ ⊆ Gprj-Λ is an equality.
Kong and Zhang [KZ] introduced a map Aus from the class of all CM-finite artin algebras up to
Morita equivalence to the class of all CM-free artin algebras up to Morita equivalence. This map
sends Gorenstein CM-finite algebras to algebras of finite global dimension. They showed that
this map is surjective. Above theorem, in particular, implies that restricted to the Gorenstein
algebras of G-dimension 1, this map is injective.

However, it can not be injective on the class of Gorenstein algebras of G-dimension more than
one. To see this, let Λ be a self-injective and non-semisimple artin algebra of finite type. Let
M be an additive generator of mod-Λ. Since Λ is self-injective, Gprj-Λ ≃ mod-Λ. Moreover,
Gprj-EndΛ(M) ≃ prj-EndΛ(M), because EndΛ(M) is an algebra of global dimension 2 or a
Gorenstein algebra of G-dimension 2. Then Aus(Gprj-Λ) and Aus(Gprj-EndΛ(M)) are Morita
equivalent but Λ and EndΛ(M) are not Morita equivalent.
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