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Gravitational waves from a binary with a single dynamically significant spin, notably including
precessing black hole-neutron star (BH-NS) binaries, let us constrain that binary’s properties: the
two masses and the dominant black hole spin. Based on a straightforward fourier transform of
h(t) enabled by the corotating frame, we show the Fisher matrix for precessing binaries can be
well-approximated by an extremely simple semianalytic approximation. This approximation can be
easily understood as a weighted average of independent information channels, each associated with
one gravitational wave harmonic. Generalizing previous studies of nonprecessing binaries to include
critical symmetry-breaking precession effects required to understand plausible astrophysical sources,
our ansatz can be applied to address how well gravitational wave measurements can address a wide
range of astrophysical and fundamental questions. Our approach provides a simple method to assess
what parameters gravitational wave detectors can measure, how well, and why.

PACS numbers:

Introduction. – Ground-based instruments like LIGO
[1] and Virgo [2]) will soon identify and measure the
properties [3–18] of the relatively well-understood grav-
itational wave (GW) signal from the nearly adiabatic
and quasicircular inspiral of the lowest-mass coalescing
compact binaries (CBCs) [19–30]: binaries consisting of
either black holes or neutron stars with total masses
M = m1 + m2 ≤ 16M� and intrinsic spins S1,S2 that
satisfy the Kerr limit |Si|/m2

i ≤ 1. These measure-
ments’ accuracy determines the range of astrophysical
and fundamental questions that can be addressed via
gravitational waves, including but not limited to identi-
fying how coalescing compact binaries form [31–37]; how
the universe expands [38]; how high-density nuclear mat-
ter behaves and responds [39–48]; and even how reliably
general relativity describes the inspiral, coalescence, and
gravitational radiation from each event [49]. In general,
astrophysical formation channels [32, 50–55] will popu-
late generic spin orientations, not just high-symmetry,
nonprecessing configurations with S1,S2 parallel to L.
For these most likely sources, spin-orbit and spin-spin
couplings cause the misaligned angular momenta to pre-
cess [56–58], breaking degeneracies present in the high-
symmetry case and thus enabling higher-precision mea-
surements [3, 10, 12, 59–64]. While powerful analytic
techniques were developed to estimate the measurement
accuracy for nonprecessing binaries [65–68], then broadly
applied [31–37][38][39–48][49], for precessing binaries a
comparable theoretical tool has remained unavailable.
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Instead, the measurement accuracy has been evaluated
on a case-by-case basis numerically, usually by Bayesian
methods that systematically compare the data with all
possible candidate signals [3–18].

The main result of this work is a generalization of the
classic analytic approach used to approximate measure-
ment accuracy [65] to the case of precessing binaries with
a single significant spin undergoing an extended adia-
batic, quasicircular inspiral. We restrict to a single signif-
icant spin both for convenience – this limit is well-studied
[56, 69, 70] – and without significant loss of generality –
the smaller body’s spin often has little dynamically signif-
icant impact on the angular momentum budget, orbit, or
precessional dynamics (|S2| ≤ m2

2 � |S1, |L|), allowing
a single-spin model to adequately reproduce the dynam-
ics and posterior [15]. To highlight the broad utility of
our approach, we defer concrete but arbitrary implemen-
tation details until we evaluate numerical results. Our
result is important because it provides the first powerful
analytic tool to assess what can be measured using grav-
itational waves and why, includes the critical symmetry-
breaking effects of spin precession.

Inference from GW. – Bayes theorem provides an un-
ambiguous expression for the posterior CBC parameter
distribution given instrumental data {d}; see, e.g, PBOO
[71] for a review. The signal and network response to a
quasicircular CBC inspiral is characterized by eight in-

trinsic parameters ~λ [= (m1,m2,S1,S2)] that uniquely
specify the binary’s dynamics and seven extrinsic param-
eters θ [four spacetime coordinates and three Euler an-
gles] that specify where, when, and with what orientation
the coalescence occurred. Each detector responds to an
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imposed strain as dk = nk + ReFk(N̂)∗h(t+ N̂ · xk|λ, θ),
where xk are the detector positions, Fk are antenna re-
sponse functions, N̂ is the line of sight to the source,

(a member of ~θ), h(t|λ, θ) is the strain derived from far-
field solution to Einstein’s equations for the CBC; and
nk is some random realization of detector noise. The dis-
tribution of stationary gaussian noise nk(t) in the kth
detector is completely characterized by its covariance
or power spectrum 〈ñk(f)∗ñk(f ′)〉 = 1

2Sk(|f |)δ(f − f ′).
Let us define inner products 〈·|·〉k on arbitrary com-

plex functions a, b as 〈a|b〉k ≡ 2
∫∞
−∞ df a

∗(f)b(f)
Sk(|f |) . The

log likelihood ratio L(θ, θ) favoring one signal with pa-
rameters λ, θ versus no signals is 2 lnL =

∑
k 〈dk|dk〉k −

〈dk − hk(θ, λ)|dk − hk(θ, λ)〉. If the data is known to con-
tain a signal with parameters Λ0 ≡ (λ0, θ0), we will de-

note the parameters by Λ = (~λ, ~θ) and the likelihood by
L(Λ|Λ0, {n}). The signal amplitude ρ is set by the ex-
pected value of the log likelihood (ρ2 = 2 lnL(Λ|Λ0, 0)).
Using 15-dimensional posterior distribution ppost(λ, θ) =
Lp(θ)p(λ)/

∫
dλdθp(θ)p(λ)L(λ, θ), the measurement ac-

curacy in some parameter λ1 follows from the 90% con-
fidence interval derived from a one-dimensional marginal
distribution ppost(λ1) =

∫
dθdλ2 . . . dλ8ppost(λ, θ).

While straightforward but expensive numerical tech-
niques exist to estimate the marginal posterior distri-
bution and hence measurement accuracy for concrete
sources Λ0 and noise realizations nk [3–18], an equally
straightforward analytic approximation to the (average)
log likelihood exists at high signal amplitude, the Fisher
matrix [65–68, 72–74] Γab. The Fisher information ma-
trix arises in a quadratic-order approximation to the log-
likelihood [lnL(Λ|Λo) ' − 1

2Γab(Λ−Λ∗)a(Λ−Λ∗)b+const,
with Λ∗ the location of the noise-realization-dependent
maximum]; often depends weakly on the specific noise
realization used, particularly at high amplitude; and can
be evaluated by a simple expression involving inner prod-
ucts of derivatives. For example, for a source directly
overhead a network with equal sensitivity to both polar-
izations [75], the Fisher matrix is

Γab =

〈
dh

dλa
| dh
dλb

〉
(1)

The Fisher matrix can always be evaluated numerically
via direct differentiation [62–64], henceforth denoted
Fisher-D. For nonprecessing binaries, however, Poisson
and Will [65] introduced a powerful analytic technique,
denoted here as Fisher-SPA: express the signal using
a single dominant harmonic, with a necessarily-simple
form; evaluate the fourier transform h̃ via a stationary
phase approximation; thereby evaluate the derivatives
∂ah analytically ; and, by reorganizing the necessary in-
tegrals analytically, reduce the evaluation of Eq. (1) to
an analytic expression and a handful of tabulated inte-
grals. Despite its limitations, this method remains the
most powerful and widely-used theoretical tool to esti-
mate what can be measured and why. In the remainder
of this work, we will review and generalize Fisher-SPA to

precessing binaries.
As a matrix in at least 11 dimensions (15 with two

precessing spins), the Fisher matrix is both difficult
to interpret and highly prone to numerical instability.
For nonprecessing binaries, several studies have demon-
strated that the intrinsic and extrinsic posterior distri-
butions largely seperate [75, 76] and that the intrin-
sic distribution depends weakly if at all on the spe-
cific network geometry. Hence, to quantitatively as-
sess what can be measured and why for a nonprecess-
ing binary, it suffices to consider a source directly over-
head and optimally aligned with a fiducial detector net-
work [34, 75–77]. In the high-amplitude limit where
the likelihood is well-approximated by a gaussian, the
event time tc and polarization ψc can be marginal-
ized out analytically. Using this approximation, the
log likelihood is approximated using an “overlap” P
P (λ, λ′) ≡ maxtψ 〈h(λ|tc, ψc)|h(λ|0, 0)〉 /||h(λ)||||h(λ′)||
where ||h|| ≡

√
〈h|h〉, via Eq. (18) of [75]; the Fisher

matrix arises as a quadratic approximation to the over-
lap. This approach and its relatives, denoted here by
Fisher-O and in the literature by overlap, mismatch, or
ambiguity function methods, has been widely adopted
when analyzing numerical simulations [78–82] and cir-
cumvents the numerical challenges that plague brute-
force 11-dimensional calculations.

Even for precessing binaries, several studies have sug-
gested that the four spacetime coordinates decouple from
intrinsic parameters and the binary’s three Euler angles
[59, 83]. To simplify subsequent analytic calculations,
following prior work [75, 76] we will therefore adopt the
ansatz that the source can be assumed directly overhead
a network with equal sensitivity to both polarizations.
Stationary-phase approximation. – The outgoing GW
signal h(t, n̂, λ) is modeled using a stationary phase ap-
proximation of the leading-order (corotating) quadrupole
emission, assuming a single significant spin. Specifically,
adopting the conventions of [69] and PBOO, we express
the strain for a source with intrinsic parameters λ as a
spin-weighted spherical harmonic expansion h(t|λ, θ) =
h+ − ih× = e−2iψJ (M/dL)

∑
lm hlm(t − tc|λ)Y (−2)(n̂),

relative to a cartesian frame ẑ′ = Ĵ, x̂′, ŷ′ defined by
the total angular momentum J, where dL is the lumi-
nosity distance to the source, M is the binary mass, n̂
is the propagation direction away from the source, tc is
the coalescence time, and ψJ is the angle of J on the
plane of the sky. Within the post-Newtonian approxi-
mation, both the amplitude and phase of these functions
hlm(t) and their (stationary-phase) fourier transforms are
slowy-varying and analytically-tractable functions [30].
For a nonprecessing binary, the sum is dominated by a
single pair of complex-conjugate terms h22 = h∗2,−2 =

|h22|e−2iΦ, enabling efficient calculation of Eq. (1) [65]
for an optimally-aligned source directly overhead a single
detctor (Fisher-O).

A generic quasicircular binary will orbit, precess, and
inspiral on three well-seperated timescales 1/forb, tprec,
and tinsp. For this reason, to a good approximation,
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the gravitational radiation from a precessing, inspi-
ralling binary [84, 85] can be approximated as if from
an instantaneously nonprecessing binary: hlm(t|λ) =∑
m̄ h

(C)
lm̄ (t, λ)Dl

mm̄(R(t)), where R(t) is a minimal ro-

tation transforming ẑ into L̂ [69, 70, 86], where h
(C)
lm

are available in the literature [29, 84, 87] in terms of
the spins, the orbital phase Φorb, and a post-Newtonian
expansion parameter v = (MdΦorb/dt)

1/3. The quanti-
ties appearing in these expressions (L,Si,Φorborb, v) are
determined by post-Newtonian approximations that pre-
scribe the evolution of both spins [∂tSi = Ωi × Si and

the orbital phase [dvdt = −F+Ṁ
E′(v) ], [30, 88, 89], where Ṁ is

the rate at which the black holes’ mass changes [90, 91],
henceforth neglected; F(v) is the rate at which energy is
radiated to infinity; and E(v) is the energy of an instanta-
neously quasicircular orbit; all of which are provided in
the literature. At leading amplitude order, corotating-

frame strain satisfies h
(C)
lm (t|λ) = |hlm(t)| exp(−iΦorb),

where |hlm| is a slowly-varying function of v; substitut-
ing this form into the general expression implies

hlm(t|λ) =
∑
m̄

e−im̄(Φorb+γ)e−imαdlmm̄(β)|hlm(v)| (2)

In this expression, we have expanded the rotation R(t)
using Euler angles, set by the orbital angular momen-
tum direction L̂ expanded relative to the (assumed

fixed) total angular momentum direction Ĵ as L̂ =

sinβJL cosαJLx̂
′ + sinβJL sinαJLŷ

′ + cosβJLĴ; the re-
maining Euler angle γ = −

∫
cosβJLdαJL. In this

work, we restrict to the leading-order gravitational-wave

quadrupole h
(C)
2,±2 = −8

√
π/5ηv2 exp(∓iΦorb), so this

sum has only two terms.

For a binary with a single dynamically significant
spin, the spin-precession equations imply that the or-
bital angular momentum precesses simply around the
total angular momentum: β changes slowly, on the in-
spiral timescale, while α and γ evolve on the precessional
timescale [56, 69].

Because of seperation of timescales, because of the sim-
ple form of Eq. (2), and particularly because the phase
terms m̄(Φ + γ) + mα are monotonic and well-behaved,
the stationary-phase approximation to the fourier trans-
form h̃lm(ω) =

∫
dthlm exp iωt can be carried out term

by term [69]. For each term, the stationary-phase con-
dition defines an m, m̄-dependent time-frequency trajec-
tory τmm̄(ω) set by solving

ω ≡ m̄(Φ̇orb − α̇ cosβJL) +mα̇ (3)

or, equivalently, v = (MΦ′orb)1/3 =[
M ω−m̄γ̇(τmm̄)−mα̇(τmm̄)

m̄

]1/3
. Using this time-frequency

relationship to evaluate Ψm,m̄ ≡ ωt− m̄(Φorb + ζ)−mα
and the slowly-varing coefficients in each term in Eq.
(2), the stationary-phase approximation is

h̃lm(ω) ≡
∑
m̄


dlmm̄(β(τmm̄(ω)))|hROT

lm̄ (τmm̄(ω))|eiΨmm̄(ω)

√
i(m̄(Φ′′orb+ζ′′)+mα′′)/2π

m̄ω > 0

0 m̄ω < 0
(4)

This expression for the SPA had been previously de-
rived in the restricted PN approximation by precisely
this method [69], for simplicity neglecting the distinct
time-frequency trajectories implied by τm,m̄.
Inner products via a time-frequency ansatz. – Most of
the terms in Eq. (2) are mutually orthogonal. For ex-
ample, the modes with m̄ > 0 and m̄ < 0 have different
helicity and have almost no overlap, indepdendent of the
precession state [75, 92–95]. Additionally, for binaries
with more than a few precession cycles in band (see, e.g.,
[96] for suitable conditions on |S1|,m1,m2), each term in
Eq. (2) is associated with a unique time-frequency tra-
jectory and hence is orthogonal to all others. Using this
ansatz, the inner product 〈h(Λ)|h(Λ′)〉 for Λ ' Λ′ can be
approximated using a sum over 10 terms: 5 for each of

the l = 2 modes m = −2,−1, . . . 2 and, for each mode,
one term for each helicity.

By contrast, to evaluate the overlap of terms that are
not orthogonal, the specific time-frequency trajectory
has relatively little impact. We therefore approximate
τmm̄ ' τ0m̄ henceforth.

Fisher matrix. – We now use the time-frequency ansatz
and the restricted PN approximation to evaluate a Fisher
matrix for a source directly overhead an idealized net-
work of two interferometers oriented to have equal sensi-
tivity to both polarizations [Eq. (1)]. Because of the
time-frequency ansatz, the overall Fisher matrix is a
weighted sum of 10 individual Fisher matricies, associ-
ated with each harmonic:
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Γab =

2∑
m=2

∑
s=±1

ρ2
2msΓ̂

ms
ab (5)

ρ2
2ms ≡ |Y

(−2)
2m (θJN )d2

m,2s(β)|2
∫ ∞

0

df

Sh(f)

4(πMc
2)2

3d2
L

(πMcf)−7/3 (6)

Γ̂
(ms)
ab =

∫∞
0

df
Sh(f) (πMcf)−7/3∂a(Ψ2 − 2ζ −msα)∂b(Ψ2 − 2ζ −msα)∫∞

0
df

Sh(f) (πMcf)−7/3
(7)

H9.167M
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�

L

H11.06M
�
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FIG. 1: Comparison: Comparison between marginalized
Fisher matrix in Mc, η for a precessing binary evaluated us-
ing the ansatz in this paper (red solid curve: Fisher-SPA); via
full 15-dimensional MCMC (thin curves); and via a quadratic
approximation to the 7-dimensional overlap (Fisher-O). The
latter two results, previously presented O’Shaughnessy et al.
[59], used with permission.

In this expression, Ψ2 = ωt − 2Φorb is the stationary-
phase approximation derived via ω = 2 ˙Φorb. The weights
ρms are associated with the relative contribution of each
model m and sign s to the detected amplitude, along this
line of sight. The 10 individual Fisher matrices Γ̂ab re-
flect the Fisher matrix implied by a single harmonic, with
a modified phase versus time to reflect that harmonic’s
precession-induced secular phase change; each one re-
duces trivially to the well-known nonprecessing Fisher
matrix in the absence of precession.

Because measurements often cannot tightly constrain
all parameters, whether computed directly (Fisher-O) or
via our approximation, the Fisher matrix is often degen-
erate, particularly in phase angles. Following prior work,
when evaluating the Fisher matrix to produce our final
numerical results, we adopt a very weak (regularizing)
prior to break degeneracy: Γfinal = Γ + K where K re-
flects a multivariate gaussian distribution with standard
deviation 2π in phase angles, 1M� in total mass, 1 second
in time, and 1/4 in mass ratio.
Implementation and results. – Figure 1 shows a compar-

ison beteween our approximation; a Fisher-O approxima-
tion; and a full MCMC posterior distribution. In our cal-
culation, to minimize superfluous differences associated
with uncontrolled post-Newtonian remainders, we eval-
uated the phase functions Ψ2(v), γ(v), α(v) needed for
our Fisher-SPA approximation numerically, using pre-
cisely the same post-Newtonian evolution model adopted
in the other calculations shown [59] to evaluate t(v)
and Φ2(t), α(t), γ(t); see that work for the specific post-
Newtonian approximation used. Despite not including
the prior p(λ) and despite adopting highly simplifying
assumptions, our expression shows good agreement with
the multidimensional posterior and previous numerical
estimates of the marginalized Fisher-O matrix. Though
not shown here, similar results follow by using the explicit
expressions for Ψ2(v), γ(v), α(v) available the literature
[69].

Future directions. – While only approximating the re-
sults of detailed Bayesian parameter estimation [18, 97,
98], Fisher-matrix calculations provide a powerful and
analytically-tractable tool to assess what can be mea-
sured and why. Extending the Fisher-SPA method to in-
clude a single precessing spin will help rapidly interpret
of real gravitational wave data, via improved methods to
explore the model space and interpret the posterior; as-
sess the impact of systematic errors from the waveform
model; quantify the accuracy to which tidal effects and
modifications of general relativity can be detected; and
otherwise understand what can be measured and why.

Further investigation is needed to generalize our ap-
proach to account for a second significant spin, using
recently-developed analytic solutions [12, 57, 58]; and
to perform a large-scale comparison between our calcu-
lations and detailed Bayesian parameter estimates. Fi-
nally, to facilitate the immediate use of our approach and
enhance its similarity to prior work, we have adopted ex-
tremely simple assumptions (e.g., the neglect of τm,m̄;
the neglect of all but 10 overlaps; and the restricted PN
expansion). These assumptions can easily be relaxed if
more detailed calculations are required, since the simple
form of Eq. (4) insures a theoretically-tractable analysis.

Acknowledgements. – ROS acknowledges support from
NSF PHY-1505629 and PHY-0970074.
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