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ABSTRACT: We investigate the canonical structure of the bosonic sector of the unique
maximal supergravity theory in five dimensions that is manifestly invariant under the global
action of Eg) (R). Starting from the Lagrangian formulation of the theory we construct
the Hamiltonian formulation and the full set of canonical constraints. We determine all
gauge transformations and compute the algebra formed by the canonical constraints under
the Poisson bracket. We deduce the number of physical degrees of freedom and construct
the extended Hamiltonian, describing the most general time evolution of the theory, where
the full gauge freedom is manifest.
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1 Introduction

In this work we investigate the canonical structure of the bosonic sector of the unique un-

gauged maximal supergravity theory in five dimensions that is manifestly invariant under
the global action of Eg g (RR).

Toroidal compactification of eleven dimensional supergravity leads to symmetries de-

scribed by the exceptional Lie groups E,,,,)(R) (n = 6,7, 8) in the lower dimensional theories

in 11 — n dimensions. This fact was first discovered by Cremmer and Julia in 1979 [1] and

Cremmer went on to describe the five dimensional case with Eg() (R) symmetry in detail
in 1980 [2].1

LFor more information on the exceptional Lie groups see references [3, 4]



We choose to analyse the Egg) (R) invariant theory since it is one of the simplest ex-
amples of a theory with an exceptional symmetry. In five dimensions no self-dual forms
exist and the symmetries are symmetries of the Lagrangian itself, not just of the equations
of motion. Furthermore the group Eg)(IR) itself is easier to work with than the larger ex-
ceptional groups. Moreover we choose to analyse the bosonic sector of the theory since this
greatly reduces the complexity of the analysis, while still keeping many interesting features
intact.

Eg(6)(R) exceptional field theory is a Eg()(R) covariant extension of eleven dimensional
supergravity on a 5 4 27 dimensional generalised space-time with external and internal co-
ordinates (z#,Y™) [5-7]. The internal coordinates Y™ carry an index in the fundamental
representation of Eg(g)(R). The so called section condition of the theory is a Eg()(R) co-
variant constraint on the coordinate derivatives dps of the internal geometry, which requires
that only a subset of the 27 internal coordinates is physical.

The ungauged Eg(g) (R) invariant supergravity theory in five dimensions is related to
the Eg)(R) exceptional field theory by taking the trivial solution to the section condi-
tion dy; = 0, thus removing all traces of the exceptional generalised geometry [5]. This
procedure is equivalent to the compactification of eleven dimensional supergravity on a six
dimensional torus [5|. By analysing the Es(6) (R) supergravity theory, we also aim to gain
some insight into and facilitate the canonical analysis of the Egg) (R) exceptional field the-
ory.

We use the canonical formalism for this analysis because it is an algorithmic framework
that can be applied to virtually all gauge theories. The canonical analysis yields much of
the relevant information about a theory, such as its symmetries, gauge transformations,
gauge algebra and physical degrees of freedom. Furthermore it is the starting point for the
canonical quantisation of a theory and in its extended form the canonical formulation goes
beyond the Lagrangian framework by making the full gauge freedom manifest [8, 9]. We
aim to make this analysis as explicit and complete as possible, in order to provide a useful
reference for future work.

The outline of this work is as follows. In section 1.1 we clarify the notation and
conventions used in this work. In section 1.2 we review the necessary principles of the
Arnowitt-Deser-Misner formulation of general relativity. In section 1.3 we describe the
Lagrangian formulation of the Eg)(R) invariant supergravity theory.

We begin the construction of the canonical theory in section 2. In section 2.1 we com-
pute the canonical momenta and perform some redefinitions. We then state the canonical
Hamiltonian in section 2.2. The primary constraints are discussed in section 2.3. The com-
plete set of canonical constraints is constructed in section 2.4. The total Hamiltonian is
stated in section 2.5.

We begin the canonical analysis itself in section 3. We define the diffeomorphism weight
in section 3.1 and compute all gauge transformations of all canonical coordinates in section
3.2. The algebra of constraints is calculated in section 3.3. The extended Hamiltonian is



stated in section 3.4. In section 3.5 we calculate the number of physical degrees of freedom
of the theory.

We conclude with a summary of the results in section 4.

For a short review of the notation and basics of canonical analysis see appendix A. In
appendix B we list Poisson bracket relations that are needed and useful in computations.
In appendix C we discuss some other useful formulae needed in the computations.

1.1 Notation and conventions

We work in the 1 4 4 dimensional ADM decomposition (see subsection 1.2) of the five di-
mensional space-time and use the signature (— + + + +).? Indices from the middle of the
Greek alphabet, e.g. u, v, p,0,7,..., denote five dimensional curved space-time indices. We
use Greek indices from the beginning of the alphabet, e.g. «, 3,..., to denote five dimen-
sional flat indices. We use Latin letters from the middle of the alphabet, e.g. k,I,m,n,...,
for four dimensional curved spatial indices and Latin letters from the beginning of the al-
phabet, e.g. a,b,c,d,e, ..., for flat spatial indices.? The spatial flat indices are lowered and
raised by the four dimensional Euclidean metric and thus their placement is irrelevant. For
a simple reference of the types of space-time indices used see table 1.

In addition to the letters mentioned above we will reserve the indices 0 and ¢ to denote the
flat and curved time direction, meaning o = (0, a) and p = (t,m).

Furthermore we use capitalised Latin letters, e.g. K, L, M, N, ..., to denote indices of
the fundamental representation of the Eg(g)(IR) Lie group, these indices run from 1,.. ., 27.4
H flat ‘ curved
1 + 4 dimensional a,B,7y... Wy Vs PO, Ty
4 dimensional a,b,c,d,e,... k,l,m,n,...

Table 1. The types of letters used for space-time indices with regard to their dimension and
whether they are curved or flat.

The object e#*P°T is the totally antisymmetric Levi-Civita symbol and is independent

of the metric and coordinates. We choose the convention 1234 .= +1.

1.2 Arnowitt-Deser-Misner (ADM) formulation of general relativity

In this section we state the main results concerning the ADM decomposition which we
need for the canonical formulation of supergravity. For many more details on the topic see
references [10-13].

2We assume to work with a smooth, metric, Lorentzian and globally hyperbolic manifold.

3We exclude the letter ¢ from this list, since we use it to denote the curved time index.

4These are taken from the middle of the Latin alphabet, however in this work there will be no other
types of capitalised Latin indices.



If we assume that the manifold is globally hyperbolic, we can foliate the manifold into
a set of space-like hypersurfaces and decompose the metric in the following way.

We write the metric in the vielbein formalism (also known as the tetrad- , local frame-
or Cartan formalism) as follows. FE, is the five dimensional frame field (or fiinfbein) and
N is the Minkowski metric with signature (— + + + +).5

G = E,°E,Pnag (1.1)
The following identities define the inverse vielbein.

B, E.” =&, (1.2)
Eg'E,* = 63 (1.3)

By introducing the lapse function N, the shift vector N* and the spatial vierbein (four
dimensional frame field) e,,* we can parametrise the fiinfbein (five dimensional frame field)

o [N Ne
E,* = (0 ema> (1.4)

Using equation (1.2) we find that the parametrisation of the inverse fiinfbein is given by

-1 _ ar—1amm
Bt = (N NoN ) (1.5)
0 €q

E,% in the following way.

equation (1.5).

The components of the metric that follow from these parametrisations are given in equation
(1.6) and following. The four dimensional metric on the spatial hypersurfaces is given by

Imn -

Goo = NN, — N?
Gon = N,, =: Nge,° (1.7)

. a_ b
Gmn = Imn =: Em €n dab

When decomposing the inverse metric one should note that the components of the inverse
metric are not the inverse of the components of the metric, in particular with respect to
the spatial metric inverse (see equation (1.11)). The inverse metric components are written
out as follows.

G%=-N" (1.9)
G = N72N" (1.10)
G = g™ — NT2NTN" (1.11)

SWe use the vielbein formalism because it makes the Lorentz symmetry manifest and this makes it
possible to include the symmetry in the canonical analysis. Furthermore this formalism is necessary when
coupling gravity to fermions. We will not be dealing with fermions in this work, but the vielbein formalism
makes it easier to extend the work to fermions.



The relation between the determinant of the five dimensional frame field E and the de-
terminant of the spatial four dimensional frame field e is given by a factor of the lapse
function.

E=N-e (1.12)

The determinant of the metric G can be expressed in the following form.
G =—E?=-N?? (1.13)

Other formulas relating to the geometry, that are useful in computations, can be found
in the appendix C.

When matter is coupled to the Einstein-Hilbert action we arrive at the ADM decom-
position by inserting the decomposition of the metric or vielbein fields and then separate
the matter field components by their space-time index structure. For example a one form
A, splits into A; and A,,, a two form B, into By, and B, and a scalar field remains
unchanged.

1.3  Eg()(R) invariant five dimensional (super-)gravity

We are interested in the bosonic sector of the maximal supergravity in five dimensions
that is manifestly Eg(g)(R) invariant. The bosonic field content of this theory is given by
{GW,Aljy,MMN} or in the ADM decomposition by {N, N% e, %, AM AM Mynd (2, 14].
The lapse function, the shift vector field and the spatial vielbein were already introduced
in section 1.2.

The fields A{Y are abelian vector gauge fields with one Lorentz index and one funda-
mental Egg)(R) index.

The fields My are Lorentz scalars and carry two fundamental Eg)(R) indices that
are symmetric. They are elements of the Eg(g) (R)/USp(8) coset which is 42 dimensional,
hence not all components of M,y are independent — we treat these relations as being
implicit [2]. Due to the coset structure M),y transforms covariantly under the global ac-
tion of Eg()(R) and is invariant under the local action of USp(8). The scalar fields can
be interpreted as an Eg()(R) metric and if one considers also the fermionic sector of the
theory it is in fact necessary to also rewrite the scalar fields in terms of the 27 dimensional
Eg)(R) vielbeine (see reference [2]). The Ege)(R) metric interpretation becomes much
clearer when one considers the full Eg)(R) exceptional field theory (see references [5, 6]).

In the Lagrangian formalism the theory is given by the action of equation (1.14) and the
Lagrangian density can be written in the form of equation (1.15). The Lagrangian density
was first described in reference [2]. Another way of obtaining equation (1.15) is to apply
the trivial (Jps = 0) solution of the section condition to the full Eg)(R) exceptional field
theory Lagrangian density, thus removing all terms related to the exceptional generalised
geometry [5].



S = /d z Lsp (1.14)
Lsp=+E ¢

+ ﬂE G" 9, Myn 0,MMY

1
_ZE Myn FM FN GHr Gve

p

+ K PT druN Aﬁ FV]\//)[ FU]Yr (1.15)

The gravitational part of the theory is described by the Einstein-Hilbert term and minimal
coupling to the other fields. 'R = (S)R/‘Ww G"? is the Ricci scalar in five dimensions.

The kinetic term of the scalar fields is a non-linear sigma model of the Egg)(IR)/USp(8)
coset. The inverse scalar fields MMY are defined by MyrpM PN — (5N )

The vector field kinetic term is described by a Maxwell theory type term with the
additional contraction of the Eg(g)(R) indices by the scalar fields. The abelian field strength
is given by Fu =2 9 AM E 6 The abelian gauge group is U(1)2” due to the fact that 27 is
the dimension of the fundamental representation of Eg)(R) and we have 27 copies of the
vector field.

In addition there is a metric independent topological term of the form AA F'AF — note
that this term is also second order in derivatives. The coefficient of the topological term
that is needed for the Eg)(R) invariance is x = —Pﬁ The precise value is not relevant
for this paper and we will keep the coefficient geneml.7

The symbols drasy and d“MN

are fully symmetric and carry three fundamental Eg ) (IR)
indices. They are the (up to factors) unique invariant symbols of the fundamental repre-
sentation of Eg(g) (R) and we use the normalisation given by dyng VNP = 55 [2, 5]. In
this work we only need the fact that they are fully symmetric. For more details and useful

identities regarding these symbols see reference [5].

All objects in the Lagrangian are in five dimensions and all objects in the following
sections are written in the 1 4+ 4 dimensional ADM decomposition of the five dimensional
fields as described in section 1.2.

2 Canonical formulation: Hamiltonian and canonical constraints

In this section we construct the Hamiltonian formulation of the theory, starting from the
Lagrangian formulation described in section 1.3. As a reminder or as a brief introduction

5The Bianchi identity O F5) = 0 is not a canonical constraint, since it does not put any constraints on
the canonical variables. The Blanchl identity simply follows from the commutativity of partial derivatives.
"One can consider other values of & if one is not interested in the Eg(g)(R) symmetry. In reference [15]

the ungauged minimal supergravity theory with the value x = + -2 is considered (without the scalar field

3v3
terms) and yields a G2 symmetry upon compactification to three dimensions.



we summarise the main definitions and notations of the canonical formalism and canonical
analysis in appendix A.

2.1 Canonical momenta

We will employ the notation that a capital II(X) — with appropriate indices — signifies
the canonical momentum associated to the field X. In many cases the specification of X
can be skipped since it is usually clear from the index structure of Il alone which field is
conjugate to it.

Calculating the canonical momenta (see equation (A.2) for the definition) of the lapse
function, shift vector and the time component of the gauge field we immediately find the
following primary constraints of the form II(X) = 0.

TI(N) =0 (2.1)
1%(N,) =0
(A7) =0

They vanish due to the fact that the Lagrangian density in equation (1.15) does not depend
on the time derivative of their conjugate fields. We refer to this type of constraint as a shift
type constraint since the gauge transformations generated by these constraints are shifts of
the conjugate fields (as we will see in section 3.2).

The remaining canonical momenta do not vanish since the Lagrangian does contain
time derivatives of their conjugate fields.

Hma(e) =+2ee” [QO(ab) - 5abQOCC] (24)
e
I5(A) =+ Ngl” Mry [FY + NFEN] + 4k €™ dpynr AN FLY (2.5)
1 )
75 (M) = + 6% [NMgp MOEMPS + N™ 9, M55 (2.6)
The component of the coefficient of anholonomy Qp. = N7!' - [e,"0; — N™Om)ene —

ep"encOmN"| in equation (2.4) follows from the ADM decomposition of the definition of
the coefficient of anholonomy Qs := 2 E|,* Eg” 0, E, [13].

It is useful to define the contractions I ,(e) and II(e) of the vielbein with the vielbein
momentum.

Hab(e) =+ €m(a Hmb) (6)
II(e) :==+ e, * I, (e)

To compare with the metric formulation of canonical general relativity (see e.g. refer-
ences |10, 11, 16]) one can use equation (2.9) to relate the canonical momenta of the spatial
vielbein to the canonical momenta of the metric.

™ (g) = eI () (2.9)



Starting from equation (2.5) we can redefine IT%.(A4) to simplify the Hamiltonian and
hence the gauge transformations. We define P!(A) as the canonical momentum II,.(A)
subtracted by the topological term contribution. This way P}J (A) takes the form expected
of the theory without topological term (see equation (2.11)).

PL(A) =TI} (A) — 4r ™ dpy v, AM EN (2.10)
€
:Ngl” Mpy [F + N*EN] (2.11)

One has to to careful with this redefinition however since it is not a canonical trans-
formation. This can be seen from the fact that PL(A) has a non-vanishing Poisson bracket
with itself {P!(A), PE(A)} # 0. If we explicitly compute this Poisson bracket we find
equation (2.12). The upper letter at the derivatives indicates the coordinate of differenti-
ation. We refrain from using this equation in the following calculations since it is rather
cumbersome. A more manageable approach to the calculations is to proceed order by order
in the coefficient of the topological term k.

{PL(A)(z), PE(A)(y)} =+ 8k €™ dpgnr 0YAM (y) 6(z —y
+ 8k € dppenr AM(y) 8%6(x —y
+ 8k €S dppeny OFAM (z) 6(x —y
+ 8k €S dppens AM(z) 9%5(z —y

z—y)
)
)
) (2.12)

Nonetheless the use of the momentum P! (A) greatly simplifies the Hamiltonian and it
has nice transformation properties as we will see in section 3.2.

The scalar momentum I (M) from equation (2.6) is computed using the part of the
variation of the Lagrangian given by equation (2.13). We furthermore assume equation
(3.7) as the definition of the fundamental Poisson bracket relation of TI*(M) with the
scalar fields. This treatment eliminates the need for any distinction between diagonal and
off-diagonal elements of the scalar fields and momenta. We assume that sums run over the
full index range.

SLsp = %HMN(M) SMuin + ... (2.13)

2.2 Canonical Hamiltonian

Having found all the canonical momenta in section 2.1, we can now calculate the Hamil-
tonian density associated to equation (1.15) by a Legendre transformation. To do so we
calculate the ADM decomposition of all terms of the Lagrangian density — as described in
section 1.2 — and then perform the Legendre transformation with respect to all canonical
momenta (see equation (A.3)).

The canonical Hamiltonian density is given in equation (2.14). Here we can factor out
the Lagrange multipliers — meaning the fields whose momenta are primary constraints of
shift type — thus already making the secondary constraints apparent.



1
4de
3

€
+ %HMN(M) 85 (M) Myp Mys — ﬂg’fl oMy O MMN

e 1
+ Mun g™ g™ Bl Fo + oogim MEE P PR

M) Tap(e) — ——TI(e)? — ¢ R

Hsp =+N'[+ 1%

+N"- [—l— 211" o (e) Onemia — ena OmIl™a(e)

1
+ 5HMN(M) O My N

+ M P}W]

nr

—|—Ai\/1 . [— 3lP]l\4 — 3k mnr dyNP Fl]),[1 FP
+ N -TI(N) + N, - TI%(N,) + AM - Ty, (A) (2.14)

We can see that there are just three terms that contain the redefined momentum P!, (A)
and only one topological term — just like in the Lagrangian density. Thus using P}W(A)

instead of 15 ,(A) gives a much simpler Hamiltonian — as can be seen from reinserting the
definition of P!, (A).

The terms in the last line of the Hamiltonian stem from the Legendre transformation
— since the Lagrangian does not depend on the time derivatives of the Lagrange multipliers
these terms stay as they are.

It is common to work on the surface of primary constraints — consequently removing
the last line from the Hamiltonian. However we aim to keep the setting as general as
possible and do not want to restrict the analysis to a subregion in phase space.

2.3 Primary constraints

Calculating the canonical momenta we have already seen that some of them vanish to yield
primary constraints of shift type (see section 2.1). There are six more primary constraints
— called the Lorentz constraints L., with Ly, = L[ab]. Since the Lorentz symmetry is
manifest in the vielbein formalism there are constraints associated to this symmetry. The
constraints Ly are not of shift type and are not obvious, but they do follow immediately
from the momenta of the spatial vielbein (see equation (2.4)) and take the explicit form of
equation (2.18) [13]. The complete list of all 38 primary constraints is as follows.



2.4 Secondary constraints

In this section we follow the procedure for finding the complete set of constraints and guar-
anteeing their consistency — as outlined in appendix A.

In order for the primary constraints to be consistent we require that their time evo-
lution is constant — i.e. that their time derivative vanishes [9]. We are free to add the
primary constraints — with arbitrary phase space functions Cy, C1, Cy, C3 as parameters —
to the Hamiltonian, since we can arbitrarily extend the Hamiltonian away from the primary
constraint surface in phase space. We arrive at a preliminary total Hamiltonian given by
equation (2.19).

Hr :=Hsp + Co - TI(N) + (C1)q - 1*(No) + (Co)™ - T (Ar) + (C3)™ - Ly (2.19)

Using Hr we can now test the consistency of a primary constraint ® using equation (2.20)
(compare to equation (A.8)).

b= {0, Hr} =0 (2.20)

It is important to note here that the primary constraints all Poisson-commute amongst
each other — with the exception of the Lorentz constraints with themselves {Lqp, Leq} # 0,
since they form the Lorentz subalgebra, as we will see in section 3.3.

First we consider the consistency of the primary constraints of shift type — mean-
ing vanishing canonical momenta. Since the primary constraints of shift type appear as
Lagrange multipliers in the Hamiltonian and Poisson-commute with all other primary con-
straints, we find that their consistency requires that each shift type primary constraints
yields one secondary constraint. We call equation (2.21) the Hamilton constraint Hyam =
{#Hsp, II(N)}, equation (2.22) the diffeomorphism constraint (Hpig)n := {Hsp, Ha(Ng)} €%
and equation (2.23) the Gaup constraint (Hgau)nm = {Hsp, I (AY)}.8 We will see in
section 3.2 that these names are indeed justified.

1

Hitam =+ 5 Ta(6) T (6) — =5 TI(e)? — ¢ R
+ %HMN(M) TI75 (M) Myr Mys — igkl O My OMMN
n ZMMN g™ gm FM N Q%g,m MKEL plL pm (2.21)
(Hpit)n = + 2 1™ 4(€) Ipemla — €na Omll™a(e)
4 %HMN(M) Ou Mty
+FEMPpL, (2.22)

(Hgaug) v = — 0Py — 36 €™ dynp FY, FL

(2.23)

8The Gauf constraint is named due to the similarity to the constraint in Maxwell theory and Gau®’s
law. Note that we have chosen to include a vielbein in the definition of the diffeomorphism constraint in
order for the constraint to have a curved index.

~10 -



The secondary constraints restrict the canonical coordinates dynamically since we have
made use of the equations of motion to find them. The secondary constraints are equivalent
to the time components of the Lagrangian equations of motion. The Hamilton constraint is
the time-time-component of the Einstein equation, the diffeomorphism constraints are the
time-spatial-components of the Einstein equation. Similarly the Gaufs constraints are the
time-components of the analog of the Maxwell equation.

It is worth noticing that the Gaufs constraints Hgaug are independent of the metric and
scalar degrees of freedom.

The gravitational part of the diffeomorphism constraint Hpig can be rewritten using
equation (2.24) to reveal a term containing the Lorentz constraint with a field dependent
coefficient given by the spin connection wp® = eV, el The covariant derivative V,,
contains the Levi-Civita connection and D,, contains the spin connection.

+2 11" 4(e) Opemja — €na Omll™a(e) = —en® D™ o (e) + wn® Ly (2.24)

One can redefine the diffeomorphism constraint as in equation (2.25), which makes the new
diffeomorphism constraint ﬁDiﬁ and the Lorentz constraint Poisson-commute. However we
will see that the constraint of equation (2.22) gives the nicer and expected gauge trans-
formations (see equation (3.22)). We will thus continue to work with the diffeomorphism
constraint of equation (2.22). The redefinition would simply represent a different choice of
basis of the constraint algebra.

(-FIDiff)n = (HDiff)n - Wnab Lab (225)

The only primary constraints not of shift type are the Lorentz constraints. If we in-
sert the Lorentz constraints in equation (2.20) we find that no new constraints are being
generated. The consistency requirement does however restrict the coefficient (C3)® of the
Lorentz constraint term (C3)® L, in the total Hamiltonian. The coefficient has to be
(C3)® = —N™w,% for the constraints to be consistent. This is precisely the term found
in equation (2.25). This means that the total Hamiltonian does not contain an intrinsic
Lorentz constraint term. We will see in section 3.4 that there is a Lorentz constraint term
in the extended Hamiltonian.

To verify the consistency of the secondary constraints we also take equation (2.20) and
now insert the secondary constraints as ®. We find no tertiary constraints implying that the
set of constraints we have found so far is complete and consistent. There is no constraint
associated to the exceptional Egg) (R) symmetry of the theory since it is a global symmetry
of the theory and not a gauge symmetry.

It is beneficial to make use of the concept of integrated or smeared constraints in or-
der to avoid expressions that contain derivatives of the delta distribution. We define the
smeared constraints by contracting all indices of the constraints with a tensor of test func-
tions with the same symmetries and then integrating this expression over the entire spatial

— 11 —



hypersurface. We denote the integrated constraint by adjoining brackets with the name of
the test function to the constraint.

If we take the diffeomorphism constraint as an example, the smeared constraint is
defined by equation (2.26), where \"(z) is a vector of test functions on the spatial hyper-
surface.

HolA = / (Hpig)n(z) A" (z) d'z (2.26)

Note that no symmetry factors are inserted. The smeared version of the Lorentz constraints
is given by equation (2.27), where 4% = ~abl.

Ib) = [ Laf@) @) d's (2.27)

From equation (2.14) we can now moreover see that the Hamiltonian is weakly vanishing
Hsp ~ 0, demonstrating that the theory is generally covariant [9)].

2.5 Total Hamiltonian

The total Hamiltonian is given by equation (2.28). To arrive at the total Hamiltonian we
start with the canonical Hamiltonian of equation (2.14) and add all primary constraints
with coefficients that satisfy the consistency conditions derived in section 2.4.

Hr =+ N - Hygam + N - (Hpig)n + AM - (Hgaw) 1
+ Co - TI(N) + (C1)g - TT%(N,) + (Co)M - T, (Ay)
— N"w, ™ Lo (2.28)

The coefficients Cp, (C1), and (C2)™ are arbitrary phase space functions. The coeffi-
cient of the Lorentz constraint term is restricted to this particular form containing the spin
connection as explained in the previous subsection.

The time evolution of a phase space function F', generated by the total Hamiltonian,
via equation (2.29) is equivalent to the original Lagrangian time evolution [9]. Note that the
equality in equation (2.29) is weak — this means that after evaluating the Poisson bracket
the equation holds only on the phase space surface where the constraints are satisfied (see
appendix A).

F =~ {F Hr} (2.29)

In section 3.4 we construct the extended Hamiltonian and find that the exact coefficients
in the total Hamiltonian are irrelevant to the most general time evolution since they are all
replaced by arbitrary coefficient functions in the extended Hamiltonian.

In practice it is often easiest to determine the time evolution by first computing all the

gauge transformations. We compute all gauge transformations of all fields and momenta in
section 3.2.

- 12 —



3 Canonical analysis: Gauge transformations and gauge algebra

In this section we analyse the constraints we found in section 2. We calculate the gauge
transformations generated by the constraints, compute the algebra that is formed by the
constraints under the Poisson bracket, determine the number of physical degrees of freedom
and discuss the extended Hamiltonian.

3.1 Diffeomorphism weight and the Lie derivative

We briefly define the diffeomorphism weight in this section, as the concept is required for
the following sections.

The Lie derivative of a tensor T" with parameter £ is denoted by LT The diffeomor-
phism weight A(T) is defined as the coefficient of the weight term in the Lie derivative. For
example if T is a vector, we write equation (3.1) for the components of the Lie derivative.

(LT = €40, — 98T + A 9,8 (3.1)
— —
transport term  rotation term  weight term

Table 2 lists the diffeomorphism weights of all the relevant fields and momenta. The

vielbein determinant is a tensor density and since the Lagrangian includes a vielbein deter-
minant the canonical momenta have diffeomorphism weight one too.

’ Object ‘ Weight A
em”, AN Myn 0
Hmfl(e) ’ P](/]n(A) ’ HRS(M) 1
e 1

Table 2. The diffeomorphism weights of the most important objects.

When Lie derivatives are used in the following sections they always include the weight
term appropriate for the object that the derivative is applied to.

3.2 Gauge transformations

In this section we compute the explicit form of all infinitesimal gauge transformations. To
do so we calculate the Poisson brackets of all the constraints ®[A] with all the canonical
coordinates X via dX = {X,®[A]} (see equation (A.12)). We use the notion of smeared
constraints in the following sections as explained in section 2.4. We only state the non-
vanishing gauge transformations.

To compute Poisson brackets of the canonical coordinates we define the fundamental
Poisson brackets as follows.
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Note that the redefinition of the momentum of AY from equation (2.10) does not affect
the fundamental Poisson bracket, since the term that is subtracted in the redefinition only
depends on the field AM.

In appendix B we list many other useful Poisson bracket identities that are needed in
the computation of the gauge transformations.

To keep the expressions as simple as possible we omit the notation of the coordinate
dependence in the following. It is understood that the gauge transformation only depends
on the coordinate of the field that the constraint acts upon.

We begin with the primary constraints of shift type. The only gauge transformations
that one can generate using these constraints are shift transformations on the fields canon-
ically conjugate to the vanishing momenta.

{NIO(N) ]} =M (3.8)
{Na, II(Np) [A2]} =(A2)a :
{AY, TI(AM) 3]} =(As) ™Y (3.10)

The Lorentz constraints generate Lorentz transformations on the spatial vielbein and its
canonical momentum. The vielbein determinant is Lorentz invariant — as are all quantities
that can be expressed solely through the metric tensor. The transformations take the form
of a rotation of the flat index by the smearing tensor.

{en”, LI} =+ enp 7™ (3.11)
{I1"4(e), L[Y]} = + () v B (3.12)

The Hamilton constraint generates time evolution, which we can interpret as a gauge trans-
formation [9]. The time evolution generated by just the Hamilton constraint — unlike the
total Hamiltonian — does not capture any other gauge freedom. However without the
Hamilton constraint time evolution is not possible at all. The time evolution of the fields
generated by the Hamilton constraint is essentially given by the canonically conjugate mo-
menta. The time evolution of the canonical momenta is more complicated and captures
most of the dynamics. Since the vielbein — or equivalently the spatial metric — contracts
all terms in the Lagrangian — with the exception of the topological term — its conjugate
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canonical momentum II",(e) has a particularly complicated time evolution (see equation
(3.14)).% In the third line of equation (3.14) we see the spatial Einstein equation in the
vielbein form.

The time evolution of I1",(e) can be compared to the time evolution of the canonical
momentum of the metric in pure general relativity (see references [10, 11]) using equation

(2.9).

{enaa HHam[(b]} =+ % Imn Hma(e) - % H(e) €na (313)
{I1"a(e), Haam[®]} = + % e (e) Mpe(e) eq" — %Hkb(e) 1"y (€) ekq (3.14)
¢ n, @ n
~ 198 T%(e) eq" + 6o II(e) 1", (e)

— 2¢e (R”k Cha — %R ea”>

42 (vav% AV ea”>

+ 2200 () TS (M) Mg Mo ea”

+ %akMMN O MMN gkt e,m — %akMMN O MMN gt e,k
oe

_ ZMMN FT]\S4 Fli\r[n grk gsm ean+¢e MMN FTJ\S/[ Flgn grk gmn eas

¢

2 MFE PL(A) PE(A) g e — MR PR(A) PL(A)

M Hitom ]} =+ g¢ 9% (x) Muq Myp (3.15)
(N (M), Hyam[ 6]} = — 0 (dg.e g 8kMMN>

- % g* O My, O MEM prEN

=59 1PN () TVR(A) M

e
oe

-5 9" " FY R,
o)

+ “gim Pp PR MEM MY (3.16)
e
(AN Hi 6]} = + & gt MY P (3.17)
[P, Hiam[9]} =+ O (e & Mys g™ g FY) (3.18)
12k¢

KL I M ok
Gmk M7 dspar €™ Fry Py

(3.19)

Tt is useful to first compute the Poisson brackets of equation (B.2) and the following equations.
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The Gauk constraint generates abelian U(1)?7 gauge transformations on the one form
gauge field AY. The conjugate momentum Py is invariant under these transformations —
like it is in the free theory — which is a nice property of the redefinition from equation
(2.10). Since the constraint is independent of the metric and scalar fields they do not
transform.

{Arjy’ HGauﬁ[d} =+ anCN (3.20)
{PﬁvHGauﬁ[C]} =0 (321)

The diffeomorphism constraint generates diffeomorphisms on the spatial hypersurface via
the Lie derivative (including the appropriate weight terms). If we were to use the rede-
fined diffeomorphism constraint from equation (2.25) we would see additional terms in the
transformation of the vielbein and its conjugate momentum.

{en, Hpig[¢]} = + Leen” (3.22)
{II"a(e), Hpig[¢]} = + LTI a(e) (3.23)
{Myn, Hoigl€]} = + LeMun (3.24)
{ITMN (M), Hoig[€]} =+ EéﬂMN(M) (3.25)
{AY, Hpigl¢]} = — €™ F, (3.26)
=+ LeAY + S(gma,) AN
{P§, Hoig[€]} = + LcPs + € (Heaus)s (3.27)
~ + LePh

Due to the parametrisation of the Lagrangian the transformation of the one form gauge
field is a Lie derivative only up to a U(1)?" gauge transformation generated by the Gauf
constraint Hgaug. The notation is taken to mean dem 4,,) AN = {AN Ha.g[¢mAM]) =
+0, (€™ AX). In the case of its conjugate canonical momentum P the transformation is a
Lie derivative up to the Gauf constraint Hgaug and thus weakly equal to the Lie derivative.

The Schouten identity from appendix C has to be used repeatedly to compute the
transformation of the one form field and its momentum.

3.3 Algebra of constraints

The algebra that is spanned by the canonical constraints under the Poisson bracket is equiv-
alent to the algebra of gauge transformations. We can interpret a Poisson bracket of two
canonical constraints as the commutator of two infinitesimal gauge transformations.

In general it is easiest to explicitly write out the simpler looking constraint and then
make use of the gauge transformations from section 3.2 to compute the algebra. For relations
that involve the diffeomorphism constraint it is easiest to make use of the fact that all
fields — except the one form gauge field and its conjugate momentum — transform as Lie
derivatives under the diffeomorphism constraint.

The primary constraints of shift type Poisson-commute with all the other constraints
and are therefore not listed below. The full constraint algebra can be written as follows.
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{Huam[0], Httam|[7]} = Hpig[(0 VT — 7V 0) g™"]

— L0V —7V0) g™ wnab) (3.28)

{Hpig[\], Haam[0]} = Huam[£20] + Haaug gAp gpr. PF MM (3.29)
{Huam[0], Hcaus [€]} = (3.30)
{Hpig[\], Hpigt[x]} = Hlef[[)\ k|"] = Hpig [LAK"] (3.31)
{Hpig[ A, Heaug €]} = (3.32)
{Hcaus[¢], Haug [C]} = (3.33)
{L0], L]} = L[ 2yl 41l¢] (3.34)
{Huam[¢], L[7]} = (3.35)
{Hpig[Al, L[]} = L[ﬁx( ")l (3.36)
{Hcaus[], L[V} = (3.37)

From equation (3.28) we see that two different orderings of time evolutions (as gen-
erated by the Hamilton constraint) can only differ by a diffeomorphism and a Lorentz
transformation. This means that the time evolution with the Hamilton constraint is unique
up to these gauge transformations.

Due to the use of the vielbein formalism and the choice of diffeomorphism constraint
(see the discussion in section 2.4) the equation (3.28) contains a Lorentz constraint term
whose smearing function depends on the spin connection. Nonetheless Lorentz invariance is
preserved since both the spin connection and the Lorentz constraint itself transform under
a Lorentz transformation to cancel out the transformation of the diffeomorphism constraint

term.19

In equation (3.29) we see that the Poisson bracket of a diffeomorphism and time evo-
lution is the time evolution with a smearing function given by the Lie derivative of the pa-
rameter. There is furthermore a Gauf constraint term, which is due to the transformation
property of the one form gauge field and its conjugate momentum under the diffeomorphism
constraint.

The equations (3.28) and (3.29) moreover show that the algebra is actually an open-
or pseudo-algebra, since the smearing functions on the right hand side depend on canonical
coordinates — see references [9, 14| for more information. Nonetheless the term algebra is
commonly used in such cases.

Note that even in pure general relativity the smearing function of the diffeomorphism
constraint in equation (3.28) contains the inverse metric. The constraint algebra of pure

10 From equation (2.25) one can moreover see that this additional term disappears when using the
redefined constraint. However the redefinition has many other consequences which are not nice, including
the introduction of additional terms in the algebra and in the gauge transformations as we have already
mentioned.

17 -



general relativity has been discussed in the references [16-18]. In addition the canonical
formulation and constraint algebra of 11 dimensional supergravity has been discussed in
references [19, 20].

The equations (3.31), (3.33) and (3.34) show that diffeomorphisms, U(1)? gauge trans-
formations and Lorentz transformations each form a proper subalgebra of their own. Equa-
tion (3.33) thus also proves that the gauge field is indeed abelian.

Equation (3.36) tells us that the Poisson bracket of the diffeomorphism constraint and
the Lorentz constraint is given by a Lorentz transformation with the Lie derivative of the

parameter. 1

We now know the full algebra of constraints and see that it does indeed close under the
Poisson bracket. This fact implies that all canonical constraints Poisson-commute weakly
— i.e. up to constraint terms the Poisson brackets of any two constraints vanish — or
equivalently that all constraints are first class.'?

3.4 Extended Hamiltonian

The extended Hamiltonian is constructed from the total Hamiltonian (equation (2.28)) by
adding all first class constraints with arbitrary coefficients. Since all the constraints are
first class the extended Hamiltonian is the linear sum over all constraints with arbitrary
coefficient functions (see equation (3.38)). The difference between the total and the ex-
tended Hamiltonian is in this case that the parameters of the secondary constraints and
the Lorentz constraints become completely arbitrary, hence allowing for more general gauge
transformations than the Lagrangian time evolution.

Hg =+ CHam - Haam + (Coig)" - (Hpit)n + (Caut)™ - (Hgaur)
+ Co - TI(N) + (C1)a - TT*(N,) + (Co)™ - T (Ay)
+(C3)™ Lap (3.38)

The most general time evolution of a phase space function F' is then given by equation
(3.39). Since we already know all the gauge transformations we can use this to efficiently
compute the time evolution of any function using equation (3.38) and the linearity of the
Poisson bracket.

F(q,p) = {F, HE} (3.39)

The time evolution described by the extended Hamiltonian and the canonical Hamiltonian

are equivalent for observables, since they are by definition gauge invariant.

" Using the redefinition of equation (2.25) one can make this term vanish, however with the same unin-
tended consequences as mentioned before.
12This is no longer true once one considers the full theory including fermions.
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3.5 Counting the degrees of freedom

With the full set of constraints as well as the constraint algebra known we can calculate
the number of physical degrees of freedom of the theory. In table 3.5 we list all the field
degrees of freedom and the primary and secondary constraints.

H Fields ‘ 7 H Primary constraints ‘ 7 H Secondary constraints ‘ 7 H
N 1 II(N) 1 Hamilton constraint 1
N, 4 TI(V,) 4 || Diffeomorphism constraints | 4
ema 16 Lorentz constraints 6 - 0
M(MN) 42 - 0 - 0
AY 27 (A7) 27 Gauf§ constraints 27
Al ] 108 - 0 - 0

H Total: ‘ 198 H Total: ‘ 38 H Total: ‘ 32 H

Table 3. A counting of the number of fields and the number of primary and secondary canonical
constraints in the bosonic sector of Eg()(R) invariant five dimensional supergravity. The distinc-
tion between primary and secondary constraints is irrelevant to the number of physical degrees of
freedom, but illustrates where the constraints came form.

We count a total of 198 field variables — or 396 = 2 - 198 canonical coordinates in
phase space. We also count a total of 70 = 38 4 32 canonical constraints, all of which
are first class constraints and hence have to be counted twice [9]. Thus the theory has
396 — 270 = 256 physical dimensions in phase space or equivalently 128 physical (bosonic)
degrees of freedom. This is in agreement with the well-known result that — at each point
in space — maximal supergravity has 128 bosonic degrees of freedom [2, 14, 21, 22|.

4 Summary and outlook

Starting from the Lagrangian formulation of the bosonic sector of the Eg() (R) invariant
supergravity theory in five dimensions we have constructed the Hamiltonian formulation of
that theory. We then constructed the complete set of 70 canonical constraints. We calcu-
lated the gauge transformations generated by the canonical constraints and found that they
generate time evolution, diffeomorphisms, Lorentz transformations, U(1)?7 gauge transfor-
mations and shift transformations. We saw that the Eg)(IR) symmetry is not generated by
canonical constraints since it is a global symmetry and not a gauge symmetry. We found
that the algebra of gauge transformations closes and that all constraints of the bosonic
theory are first class. Hence the extended Hamiltonian — describing the most general time
evolution of the theory, where the full gauge freedom is manifest — was constructed by
summing over the complete set of constraints with fully arbitrary coefficient functions. We
finally arrived at the well-known result that the number of physical degrees of freedom of
the theory is 128.

The canonical analysis of the theory is the foundation for the canonical quantisation
procedure and a potential starting point for many further directions of research.
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Due to the theory’s close relation to the Egg) (R) exceptional field theory we aim to incor-
porate the results of this work in the canonical analysis of the exceptional field theory. We
expect to find that for the exceptional field theory the Eg)(R) generalised diffeomorphisms
— given by the generalised Lie derivative — are generated by the equivalent of the Gaufs
constraint. It would furthermore be interesting to see how the section condition fits into
the canonical formulation of exceptional field theory.

A Basics of canonical analysis

In this section we briefly review the basics of how to analyse a theory using the canonical
formalism.'3 A full introduction to this subject is far beyond the scope of this work and
we omit many details in this section. For an in depth treatment please see references [8, 9].14

The starting point of the canonical analysis is most often the Lagrangian formulation
of a theory. Starting from an action functional S, given by the d-dimensional space-time
integral over some Lagrangian density £(q,q), which in turn depends only on some fields
q"(x) and their time derivatives ¢"(z) (see equation (A.1)). The space-time coordinates
are x* with indices 4 = 0,...,d — 1. Note that in this section the Latin indices are used to
label fields and constraints of the theory.

The canonical formalism aims to treat the fields and their conjugate canonical momenta
on an equal footing. We introduce the canonical momenta p,, as defined by equation (A.2).
In the case of a field theory the derivative is to be understood as a functional derivative. We
define the Hamiltonian density H(q,p) as the Legendre transformation of the Lagrangian
density with respect to the time derivatives of the fields (see equation (A.3)). One can then
rewrite the action functional as in equation (A.4).

S = /dda: L(q,4q) (A1)

Pn = W (A2)
H(q,p) = ¢"pn — L(q,4) (A.3)
S = / d'z (¢"pn — H(q,p)) (A4)

Due to the Legendre transformation we have now found a function #(q, p) that depends on
two sets of variables which we call the canonical variables ¢"(x) and the canonical momenta
pn(x). We call the tuple (g, p) the canonical coordinates or phase space coordinates and the
space that they describe phase space.

We can think of gauge theories as theories where, at any given time, the dynamical
content of the theory is relative to an arbitrary reference frame [9]. Hence the general

13Canonical analysis is a synonym for Hamiltonian analysis.
!4 This section is mainly based on the first chapters of reference [9].
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solution of a gauge theory necessarily contains arbitrary functions of time, since it is al-
ways permitted to transform the reference frame. This arbitrariness leads to the canonical
coordinates not being completely independent and therefore it is equivalent to the exis-
tence of constraints on the phase space. In a gauge theory, we will always find constraints
{®(q,p) =0, m=1,..., M} that only depend on the canonical coordinates and not on
their time derivatives.

The first type of constraint follows directly from the definition of the canonical momenta
(equation (A.2)), which is why we call them primary constraints. The simplest primary
constraint is given by a vanishing canonical momentum ®(g,p) = p, = 0, however more
complicated types are also common. Since we have not made use of the time evolution the
primary constraints do not restrict the kinematics and are true identities.

A consequence of the existence of primary constraints is that the Hamiltonian becomes
non-unique in phase space since we are free to add primary constraints with arbitrary
coefficients v (g, p) to the Hamiltonian. We call this function the total Hamiltonian (see
equation (A.5)). The phase space hypersurface described by {®,, = 0, Vm} is called the
primary constraint surface and on this surface the Hamiltonian is still uniquely defined.

Hr :=H+u"(q,p) P (A.5)

For two phase space functions F, G we define the Poisson bracket by equation (A.6).

(F,G} =22 2 00 (A.6)

Using the Poisson bracket we can write the time evolution of a phase space function F,
that follows from the total Hamiltonian of equation (A.5) as equation (A.7). At this point
this is the most general time evolution we can write down.

F={F H}+u"{F,®,} (A7)

Since we need the primary constraints to hold for all times — in order for the formalism
to be consistent — we arrive at equation (A.8). If equation (A.8) yields a relation that is
independent of the arbitrary parameters v and independent of the primary constraints,
then we call it a secondary constraint. Since we need to make sure it is also conserved in
time we iterate this procedure for all secondary constraints and potentially end up with
more constraints.'?

Oy = { D, HY + 0" { @y, @} = 0 (A.8)

The only difference between primary and secondary constraints is that secondary constraints
do restrict the kinematics, since we have made use of the time evolution in order to find
them. Note that this means that we are not allowed to add the secondary constraints to
the Hamiltonian in the manner that we have done with the primary constraints in equation

15The consistency requirements that stem from secondary constraints are sometimes also referred to as
tertiary, quaternary, etc. constraints. For reasonable physical theories the termination of this procedure is
guaranteed.
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(A.5). Since further distinction between primary and secondary constraint is not needed
we denote the complete set of constraints by {®;, j=1,...,J}.

If we apply the time evolution equation (A.7) to the full set of constraints we will not
find any new constraints. However the set of time evolution equations can be seen as a
set of differential equations for the — a priori — arbitrary phase space functions v (g, p).
Solving this system we can write the general solution using the homogenous solution V"
and a particular solution U™ as in equation (A.9). The coefficients of the homogeneous
solution v* are then truly arbitrary.

Wt = U™+ 0% V" (A.9)

We write the ~ sign to indicate an equality that holds on the constraint surface, e.g.
Hr ~ H, we call this relation weak equality. The time evolution generated by the total
Hamiltonian via F' & {F,Hr} is equivalent to the Lagrangian time evolution.

An important property of the constraints is whether they are first class (see equation
(A.10)) or second class constraints (see equation (A.11)).' Note that the definition of the
class relies on the weak equality, meaning that first class constraints Poisson-commute with
all other constraints up to terms proportional to constraints. This also implies that if all the
constraints are first class the Poisson bracket algebra of the constraints closes automatically.

Py, first class constraint & Vj: {®y, ®;} =0 (A.10)
@, second class constraint < 35 : {Py, P} £ 0 (A.11)

First class constraints can be interpreted an generators of gauge transformations.” Gauge
transformations 0 F' on a phase space function F' are generated as in equation (A.12), where
b, =9, V"

§F = {F,®,} v° (A.12)

We can add all first class constraints to the total Hamiltonian to describe the time evolution
with the full gauge freedom accounted for. We call this the extended Hamiltonian, see
equation (A.13), where {,} is the set of all first class constraints.

HEe == Hr +uv, (A.13)

The extended Hamiltonian generates time evolution via equation (A.14). This can be seen
as an extension of the Lagrangian framework since the full gauge freedom is now manifest
in the time evolution.

F(q,p) ~{F\Hg}, &;=0 (A.14)

16Second class constraints require further treatment, since they do not occur in the theory being analysed
in this work we again refer the reader to reference [9].

'"Mathematically this is only guaranteed for first class primary constraints, however for reasonable phys-
ical theories this is also true for first class secondary constraints. This is also known as the Dirac conjecture.
Counterexamples exist and are known. [9]
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This only concerns gauge variant quantities, since for gauge invariant quantities (0b-
servables) all the Hamiltonian time evolutions are equivalent Hg < Hp < H.

Furthermore it is a general feature of generally covariant theories, that the Hamiltonian
vanishes weakly H ~ 0 — implying that the Hamiltonian consists of a linear combination
of constraints. In particular general relativity and thus also all supergravity theories are
generally covariant theories. In this form the time evolution is interpreted as a yet another
gauge transformation.

B Poisson bracket relations

In this appendix we list some Poisson bracket relations that are intermediate results or
otherwise useful for for computations.

(MMN TIPQ(M)} = (= MMP MON — MMQ N PN W (2 — ) (B.1)

/d41: P(z) {—e R(x),II"4(e)(y)} =+ 2e ¢ (R”a _ ;Rean>

Yy (vav% - ea“v’fvm) (B.2)

(", T (e)} = — e ey (B.3)

{e, 1" (e)} =+ ee” (B.4)
{i,nna(@} = % (B.5)

{gr, I1"a(e)} =+ 2 &) enq (B.6)

{gkl, H”a(e)} =—-2 g"(k eq” (B.7)
(Hytaml6], €} = + ¢H6,(e) (B.S)
{HHam[¢]7 (13} = ¢1(;Ie(2€) (B.9)
{HHam[(z)]v ebk} =+ %Hab(e) eak - (;%H<e) ebk (BlO)
{Htam[0], g™} = + % eI, (e) — %H(e) g™ (B.11)
(o], MY} =+ D610 (a1 (B.12)
(B.13)

{L[’YL eak} = +Yab ebk (B.14)
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C Other useful formulae

In this appendix we discuss some general formulae that are needed for the computations of
the main sections.

From the definition of the (vielbein) determinant and the fact that its variation can be
expressed as de = e e, de,” we find the following identity.

o Open® = et Ope = —edpe " (C.1)

Furthermore we can exploit the fact that we can over-antisymmetrise a tensor to make
it vanish — e.g. we take an object with D+1 indices in D dimensions and antisymmetrise
them to get zero — this is sometimes called the Schouten identity. One can think of this
identity as the fact that there cannot be D+1 linearly independent vectors in D dimensions.
Equation (C.2) states the identity in four dimensions, where € is the Levi-Civita symbol in

four dimension and v* are vector components.
eltmnr o,k — (C.2)
If we expand this expression we arrive at equation (C.3).

6lmnr ’Uk — 4 Ek[lmn UT] (CB)
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