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JELLYFISH PARTITION CATEGORIES

JONATHAN COMES

Abstract. For each positive integer n, we introduce a monoidal category
JP(n) using a generalization of partition diagrams. When the characteristic
of the ground field is either 0 or at least n, we show JP(n) is monoidally
equivalent to the full subcategory of Rep(An) whose objects are tensor powers
of the natural n-dimensional permutation representation of the alternating
group An.

1. Introduction

Let k denote a field with chark 6= 2. Classical Schur-Weyl duality, a staple in
representation theory, concerns the commuting actions of the general linear group
GLn(k) and the symmetric group Sk on the space V ⊗k where V = kn. In particular,
it says the map k[Sk] → EndGLn(k)(V

⊗k) is surjective for all k and n. If we replace
GLn(k) with its subgroup Sn of all permutation matrices, then the analog of the
group algebra k[Sk] is the partition algebra Pk(n) introduced by Martin [Mar].
Indeed, Martin’s partition algebras are equipped with an action on V ⊗k which
commutes with the action of Sk, and the maps Pk(n) → EndSn

(V ⊗k) are always
surjective. This result easily extends to maps between arbitrary (not necessarily
equal) tensor powers of V . More precisely, there is a k-linear monoidal category
P(n), the partition category (see §2.2), which is equipped with a full monoidal
functor Φ : P(n) → Rep(Sn) (see §2.4) and the image of Φ is precisely the full
subcategory of Rep(Sn) with objects V ⊗k for all k ≥ 0.

In this paper we describe a jellyfish partition category JP(n) which plays the
role of P(n) when we replace Sn with the alternating group An. The category
JP(n) is a k-linear monoidal category defined by adding one extra generator and
three extra relations to a known presentation of the partition category (see §3.2).
In particular, JP(n) is equipped with a monoidal functor P(n) → JP(n) which
allows us to view partition diagrams (morphisms in P(n)) as morphisms in JP(n).
We give a complete diagrammatic description of morphisms in JP(n) by associating
a “jellyfish diagram” to the additional generator (see §3.3). The category JP(n)
is also equipped with a monoidal functor Ψ : JP(n) → Rep(An), which makes the
following diagram commute:

P(n) Rep(Sn)

JP(n) Rep(An)

Φ

ResSn

An

Ψ

(1.1)

The first of two main results of this paper is the following:
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Theorem A. The functor Ψ is full.

In particular, we get a version of Schur-Weyl duality between the actions of the
alternating group An and the jellyfish partition algebra JPk(n) := EndJP(n)(k) on

the space V ⊗k. Our second main result requires some restrictions of the character-
istic of the ground field:

Theorem B. If n > 1 and either chark = 0 or chark ≥ n, then Ψ is faithful.
Hence, JP(n) is monoidally equivalent to the full subcategory of Rep(An) whose
objects are tensor powers of the natural n-dimensional permutation representation.

We note that this theorem does not have an analog for partition categories. In
fact, Φ is never faithful (see part (2) of Theorem 2.3). However, since the restriction

functor ResSn

An
is faithful, the commutative diagram (1.1) shows that the kernel of

Φ is precisely the kernel of the functor P(n) → JP(n). In other words, the three
defining relations of JP(n) are enough to see the entire kernel of Φ.

1.1. Jellyfish Brauer categories. Just as the partition category admits a full
functor to the category of representations of the symmetric group, the so-called
Brauer category B(n) is equipped with a full functor to the category of represen-
tations of the orthogonal group O(n) (see for instance [LZ1]). There is also a
jellyfish Brauer category JB(n), which can be defined by taking a known pre-
sentation of B(n) as a k-linear monoidal category (see [LZ1, Theorem 2.6] or
[BE, §1.1]) and adding to it a new generator (an n-legged jellyfish) and three
new relations (3.2)–(3.4). More concisely, JB(n) is the free k-linear symmetric
monoidal category generated by a self-dual object of dimension n which admits a
skew-symmetric n-form j satisfying (3.4). The category JB(n) is equipped with a
monoidal functor to the category of representations of the special orthogonal group
SO(n). Quite recently, Lehrer-Zhang showed that this functor is fully faithful when
k = C [LZ2, Theorem 6.1]. In particular, the corresponding jellyfish Brauer algebra
JBk(n) := EndJB(n)(k) is isomorphic to EndSO(n)(V

⊗k) where V is the natural
n-dimensional representation of SO(n). The desire for such a diagram algebra was
the motivation for the work that produced this paper. The existence of such a dia-
gram algebra was eluded to by Brauer in [Bra]. Brauer proposed a diagram algebra
consisting of the usual Brauer diagrams along with Brauer diagrams with n un-
connected dots. Translating these diagrams into jellyfish Brauer diagrams amounts
to adding a jellyfish whose n legs, read from left to right, are connected to the n

unconnected dots, reading the dots from left to right along the top row and then
along the bottom row. For example, here is one of Brauer’s diagrams alongside the
corresponding jellyfish diagram in JB5(4):

Brauer did not give a rule for multiplying his diagrams with unconnected vertices.
Instead, he wrote “The rule for the multiplication . . . can also be formulated. It
is, however, more complicated and shall not be given here.” A multiplication rule
for Brauer’s diagrams was formulated in [Gro]. The resulting even Brauer algebras
were studied further in [Neb]. The even Brauer algebras have a basis given by
Brauer’s proposed diagrams, however the multiplication rule is not associative. As



JELLYFISH PARTITION CATEGORIES 3

a consequence of [LZ2, Theorem 6.1], the jellyfish Brauer algebras are associative
quotients of the even Brauer algebras, with the quotient map given by adding
jellyfish in the manner prescribed above (compare with Remark 3.6).

1.2. Outline. In §2 we give an exposition of the definitions and properties of the
partition category which are relevant to this paper. In particular, we give both a
diagrammatic description of P(n) in terms of partition diagrams as well as a pre-
sentation of P(n) as a k-linear symmetric monoidal category in terms of generators
and relations. We close §2 by proving the functor Φ mentioned above is full, and
giving an explicit description of its kernel. In §3 we define the category JP(n) in
terms of generators and relations, and then develop a diagrammatic calculus for
its morphisms in terms of jellyfish partition categories. In §4 we study the action
of the alternating group An on V ⊗n, which allows us to prove Theorem A in §4.2.
We close that section in §4.3 with a description of the dimensions of relevant Hom-
spaces in terms of Stirling and Bell numbers. The whole of §5 is devoted to the
proof of Theorem B.

1.3. Acknowledgments. I would like to thank Jonathan Kujawa for initiating
this project by pointing out the paper [Gro], and for several useful conversations
since. Part of this project was completed while I enjoyed a visit to the Max Planck
Institute in Bonn. I would like to thank the institute for their hospitality.

2. The partition category

In this section we review the properties of the partition category relevant to this
paper. The results here are not new, but proofs are provided since the majority
of the content will be needed in upcoming sections. We start with the definition
of the partition category, following the analogous treatment of partition algebras
found in [HR].

2.1. Partition diagrams. Given k, ℓ ∈ Z≥0, a partition diagram of type k → ℓ is
a simple graph whose vertices are labeled by

{i | 1 ≤ i ≤ k} ∪ {i′ | 1 ≤ i ≤ ℓ}.

For example, here is a partition diagram of type 7 → 5:

1 2 3 4 5 6 7

1′ 2′ 3′ 4′ 5′

We write D : k → ℓ to indicate that D is a partition diagram of type k → ℓ. As in
the example above, our partition diagrams will always be drawn with two horizontal
rows of vertices such that 1, . . . , k are below 1′, . . . , ℓ′. With this convention in
mind, we will omit the labels in partition diagrams for remainder of the paper.
The connected components of a partition diagram prescribe a partition of the set
of vertices into mutually disjoint nonempty subsets, which we will refer to as parts.
We say that two partition diagrams are equivalent if they give rise to the same set
partition. For example, the following partition diagram is equivalent to the one
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pictured above:

We put a partial order on the set of all equivalence classes of partition diagrams
of type k → ℓ by declaring D1 ≤ D2 whenever the set partition corresponding to
D2 is coarser than that of D1. In other words, D1 ≤ D2 if D1 can be obtained by
removing edges from D2.

Given partition diagrams D1 : k → ℓ and D2 : ℓ → m, we can stack D2 on
top of D1 to obtain a graph D2

D1

with three rows of vertices. Let β(D1, D2) denote

the number of connected components in D2

D1

whose vertices are all in the middle
row. Let D2 ⋆ D1 denote a partition diagram of type k → m with the following
property: vertices are in the same connected component of D2 ⋆ D1 if and only
if the corresponding vertices in the top and bottom rows of D2

D1
are in the same

connected component. Note that β(D1, D2) and the equivalence class of D2 ⋆ D1

are well-defined independent of the choice of equivalence class representatives for
D1 and D2. For example, if

D1 = and D2 =

then
D2

D1
= .

Thus, D2 ⋆ D1 = and β(D1, D2) = 2.

2.2. The category P(n). Given n ∈ k we define the partition category P(n) to
be the category with nonnegative integers as objects and morphisms HomP(n)(k, ℓ)
consisting of all formal k-linear combinations of equivalence classes of partition
diagrams of type k → ℓ. Composition of partition diagrams is defined by setting
D2 ◦ D1 = nβ(D1,D2)D2 ⋆ D1; it is easy to check that this is associative. There
is also a well-defined tensor product making P(n) into a strict monoidal category.
This is defined on diagrams so that D1 ⊗D2 is obtained by horizontally stacking
D1 to the left of D2.

The endomorphism algebras in P(n) are the partition algebras introduced in
[Mar]. We will write Pk(n) = EndP(n)(k).

The monoidal category P(n) can also be described via generators and relations.
It is easy to show that P(n) is generated as a monoidal category by the following
partition diagrams:

µ = , η = , ∆ = , ε = , s = .

The morphism s prescribes a symmetric braiding on P(n) and (1, µ, η,∆, ε) is a spe-
cial commutative Frobenius algebra. In fact, P(n) is equivalent to the free k-linear
symmetric monoidal category generated by an n-dimensional special commutative
Frobenius algebra. Translating this into a statement concerning generators and
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relations gives us the content of the following theorem, which is essentially a con-
sequence of a result of Abrams [Abr] on the category of 2-dimensional cobordisms.
We refer the interested reader to [Koc] for more details on the connection between
2-dimensional cobordisms and commutative Frobenius algebras.

Theorem 2.1. As a k-linear monoidal category, P(n) is generated by the object 1
and the morphisms µ : 2 → 1, η : 0 → 1,∆ : 1 → 2, ε : 1 → 0, s : 2 → 2 subject only
to the following relations:

s2 = 12, (2.1)

(11 ⊗ s) ◦ (s⊗ 11) ◦ (11 ⊗ s) = (s⊗ 11) ◦ (11 ⊗ s) ◦ (s⊗ 11), (2.2)

s ◦ (11 ⊗ η) = η ⊗ 11, (2.3)

(11 ⊗ µ) ◦ (s⊗ 11) ◦ (11 ⊗ s) = s ◦ (µ⊗ 11), (2.4)

(11 ⊗ ε) ◦ s = ε⊗ 11, (2.5)

(11 ⊗ s) ◦ (s⊗ 11) ◦ (11 ⊗∆) = (∆⊗ 11) ◦ s, (2.6)

µ ◦ (11 ⊗ η) = 11, (2.7)

(11 ⊗ ε) ◦∆ = 11 = (ε⊗ 11) ◦∆, (2.8)

(µ⊗ 11) ◦ (11 ⊗∆) = ∆ ◦ µ = (11 ⊗ µ) ◦ (∆⊗ 11), (2.9)

µ ◦ s = µ, (2.10)

µ ◦∆ = 11, (2.11)

ε ◦ η = n. (2.12)

Proof. By [Abr], the category 2Cob of 2-dimensional cobordisms is equivalent to
the free symmetric monoidal category generated by a commutative Frobenius al-
gebra (A, µA, ηA,∆A, εA). Let 2Cobk denote the k-linearization of 2Cob (i.e. the
category with the same objects but with morphisms given by formal k-linear com-
binations of morphisms in 2Cob). It is easy to see that P(n) is equivalent to the
category obtained from 2Cobk by factoring out by the relations µA ◦∆A = 1A (the
Frobenius algebra is special) and εA ◦ ηA = n (A has dimension n). Thus P(n) is
equivalent to the free symmetric monoidal category generated by an n-dimensional
special commutative Frobenius algebra. The result can now be deduced from the
presentation of 2Cob found in [Koc]. �

2.3. Tensor powers of the natural representation of Sn. Let V = kn with
standard basis of unit vectors v1, . . . , vn. The symmetric group Sn acts on V by
permuting those basis elements: σ ·vi = vσ(i) for all σ ∈ Sn and 1 ≤ i ≤ n. For each
tuple i = (i1, . . . , ik) we set vi := vi1 ⊗ · · · ⊗ vik . The set {vi : 1 ≤ i1, . . . , ik ≤ n}
is a basis for the tensor power V ⊗k. By convention we set v() = 1 in V ⊗0 = 1 (the

trivial representation). The induced action of the symmetric group Sn on V ⊗k also
permutes our chosen basis: σ · vi = vσ(i1) ⊗ · · · ⊗ vσ(ik).

Given a partition diagram D : k → 0 we let OD denote the set of all vi ∈ V ⊗k

such that iℓ = im if and only if the ℓth and mth vertices of D are in the same part.
For example, if

D =
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then OD = {vi ⊗ vℓ ⊗ vi ⊗ vi ⊗ vℓ : 1 ≤ i 6= ℓ ≤ n}. Given a partition diagram
D : k → 0, let fD : V ⊗k → 1 be the k-linear map defined by

fD(vi) =

{

1, if vi ∈ OD;

0, if vi 6∈ OD.

It is easy to see that the Sn-orbits of our chosen basis for V ⊗k are precisely the OD

with D : k → 0 having at most n parts. As a consequence, we have the following:

Proposition 2.2. The set of all fD with D : k → 0 having at most n parts is a
basis for the space HomSn

(V ⊗k,1).

2.4. The functor Φ. There is a monoidal functor Φ : P(n) → Rep(Sn) defined on
generators by setting Φ(1) = V and

Φ(µ) : V ⊗ V → V vi ⊗ vk 7→ δi,kvi
Φ(η) : 1 → V 1 7→

∑n
i=1 vi

Φ(∆) : V → V ⊗ V vi 7→ vi ⊗ vi
Φ(ε) : V → 1 vi 7→ 1

Φ(s) : V ⊗ V → V ⊗ V u⊗ w 7→ w ⊗ u

Indeed, it is easy to check that the linear maps above satisfy the corresponding
relations in Theorem 2.1 and commute with the action of Sn.

Alternatively, Φ can be described as follows: given a partition diagramD : k → ℓ,
the k-linear map Φ(D) : V ⊗k → V ⊗ℓ sends vi to the sum of all vi′ such that the
labeling of the bottom and top vertices of D by the entries of i and i

′ respectively
has the property the labels of any two vertices in the same part are equal. For
example, the vertices of the following partition diagram are labeled by arbitrary
tuples i and i

′:

i1 i2 i3 i4 i5

i′1 i′2 i′3

The corresponding map V ⊗5 → V ⊗3 sends vi 7→ δi1,i2δi3,i5
∑

1≤m≤n

vi4 ⊗ vi1 ⊗ vm.

In particular, given a partition diagram D : k → 0 we have

Φ(D) =
∑

D′≥D

fD′ . (2.13)

Motivated by the equation above, we recursively define a new basis {xD}D:k→ℓ for
HomP(n)(k, ℓ) by setting

xD = D −
∑

D′	D

xD′ . (2.14)

For example, if

D = then xD = − − − + 2 .

Now given any D : k → 0, an easy induction argument using (2.13) shows

Φ(xD) = fD. (2.15)

In particular, Φ(xD) = 0 whenever D : k → 0 has more than n parts.
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Theorem 2.3. (Compare with [CO, Theorem 2.6])
(1) The functor Φ : P(n) → Rep(Sn) is full.
(2) The kernel of the map

Φ : HomP(n)(k, ℓ) → HomSn
(V ⊗k, V ⊗ℓ) (2.16)

is the span of all xD with D : k → ℓ having more than n parts. In particular, (2.16)
is an isomorphism if and only if k + ℓ ≤ n.

Proof. First we reduce the argument to studying (2.16) in the case ℓ = 0. Toward
that end, notice there is a k-linear isomorphism HomP(n)(k, ℓ) → HomP(n)(k+ ℓ, 0)
given on diagrams by

· · ·

· · ·

? 7→

· · · · · ·

? (2.17)

with inverse prescribed by

· · · · · ·

? 7→

· · ·

· · ·

? (2.18)

Note that this isomorphism preserves the number of parts in a diagram as well as the
partial order ≤ on partition diagrams. Hence, for each partition diagram D : k → ℓ

the isomorphism maps xD 7→ xD′ for some partition diagram D′ : k + ℓ → 0 with
the same number of parts as D.

Similarly, there is a k-linear isomorphismHomSn
(V ⊗k, V ⊗ℓ) → HomSn

(V ⊗k+ℓ,1)
given by

g 7→ Φ(⋓ℓ) ◦ (g ⊗ 1V ⊗ℓ)

with inverse

g 7→ (g ⊗ 1V ⊗ℓ) ◦ (1V ⊗k ⊗ Φ(⋒ℓ))

where

⋓ℓ =
· · · · · ·

1 ℓ ℓ+ 1 2ℓ

⋒ℓ =
· · · · · ·

1 ℓ ℓ+ 1 2ℓ

Since Φ is a monoidal functor the following diagram commutes:

HomP(n)(k, ℓ) −−−−→ HomP(n)(k + ℓ, 0)

Φ





y
Φ





y

HomSn
(V ⊗k, V ⊗ℓ) −−−−→ HomSn

(V ⊗k+ℓ,1).

(2.19)

Now, the vertical map on the right is surjective and its kernel is the span of all xD

with D : k+ ℓ → 0 having more than n parts thanks to Proposition 2.2 and (2.15).
The result follows. �
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3. The jellyfish partition category

In this section we define the jellyfish partition category JP(n) in terms of gener-
ators and relations, and develop a diagram calculus for JP(n) in terms of jellyfish
partition diagrams. First, however, we point out properties of the determinant map
which serve as motivation for the definition of JP(n).

3.1. Motivation: the determinant map. The determinant can be viewed as a
linear map

det : V ⊗n → k, vi1 ⊗ · · · ⊗ vin 7→ det[vi1 · · · vin ].

An easy, but crucial observation is that for any σ ∈ Sn we have

det(σ · vi) = (−1)σ det(vi). (3.1)

It follows that det ∈ HomAn
(V ⊗n,1) but det 6∈ HomSn

(V ⊗n,1). Thus, in order
to construct an An-analog of the partition category we must include an analog of
the determinant map into our diagrams. This is precisely what the jellyfish in the
forthcoming jellyfish partition diagrams are meant to do. On the other hand, it
follows from (3.1) that det⊗ det ∈ HomSn

(V ⊗2n,1). Thus, it follows from Theorem
2.3 that det⊗ det is in the image of Φ. In order to describe a morphism in P(n)
which is mapped to det⊗ det by Φ we will make use of a few special partition
diagrams. First, let n : 2n → 0 denote the following diagram:

n =

· · · · · ·
1 2 n n+ 1 n+ 2 2n

Also, whenever 1 ≤ i < k we let s
(k)
i : k → k denote the following:

s
(k)
i = · · · · · ·

1 i i+ 1 k

We simply write si = s
(k)
i if k is understood from the context. Note that for

each k ∈ Z>0 the elements s1, . . . , sk−1 generate a copy of the symmetric group
Sk ⊆ Pk(n). We refer to the corresponding partition diagrams as permutation
diagrams.

The following proposition serves as the motivation relations (3.2)–(3.4) in the
forthcoming definition of the jellyfish partition category. It also shows that the role
of det⊗ det in P(n) is played by the following:

∑

σ∈Sn

(−1)σ

· · ·
σ · · ·

Proposition 3.1. (1) det⊗1V = (1V ⊗ det) ◦ Φ(s1 ◦ · · · ◦ sn).
(2) det ◦Φ(si) = − det for all 1 ≤ i < n.
(3) det⊗ det = Φ

(
∑

σ∈Sn
(−1)σ n ◦ (σ ⊗ 1n)

)

.

Proof. Part (1) follows from the fact that Φ(s) induces the usual symmetric braiding
on the category of finite dimensional vector spaces. Part (2) is true because det is
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a skew symmetric form. For part (3), first notice n ◦ (σ ⊗ 1n) = n ◦ (1n ⊗ σ−1)
for any permutation diagram σ : n → n, as illustrated below:

· · ·
σ · · · =

· · ·
σ−1· · ·

It follows that
∑

σ∈Sn
(−1)σ n◦(σ⊗1n) =

∑

σ∈Sn
(−1)σ n◦(1n⊗σ). In particular,

Φ
(
∑

σ∈Sn
(−1)σ n ◦ (σ ⊗ 1n)

)

: V ⊗n ⊗ V ⊗n → 1 is skew symmetric on the left
and right n tensors respectively. Since the same is true for det⊗ det, it suffices to
observe that both map v1 ⊗ · · · ⊗ vn ⊗ v1 ⊗ · · · ⊗ vn 7→ 1. �

3.2. Definition of JP(n). We define the jellyfish partition category JP(n) to be
the free k-linear monoidal category generated by a single object 1 and six morphisms
µ : 2 → 1, η : 0 → 1,∆ : 1 → 2, ε : 1 → 0, s : 2 → 2, and j : n → 0 subject to
relations (2.1)–(2.12) and the following:

j ⊗ 11 = (11 ⊗ j) ◦ s1 ◦ · · · ◦ sn, (3.2)

j ◦ si = −j (1 ≤ i < n), (3.3)

j ⊗ j =
∑

σ∈Sn

(−1)σ n ◦ (σ ⊗ 1n). (3.4)

The jellyfish partition algebra is defined to be JPk(n) = EndJP(n)(k).

Remark 3.2. More briefly, JP(n) is the free k-linear symmetric monoidal category
generated by an n-dimensional special commutative Frobenius algebra which admits
a skew-symmetric n-form j satisfying the jellyfish relation (3.4).

By Theorem 2.1 there is a monoidal functor P(n) → JP(n) mapping the gen-
erators of P(n) to those of the same name in JP(n). Let Ψ : JP(n) → Rep(An)
denote the monoidal functor which agrees with Φ on all generators of the same name
and with Ψ(j) = det. It follows from Theorem 2.1 and Proposition 3.1 that Ψ is
well-defined. Moreover, we get that (1.1) is a commutative diagram of monoidal
functors. We will have more to say about the functor Ψ in §4 and §5. First we will
develop a diagrammatic description of JP(n).

3.3. Jellyfish diagrams. By Theorem 2.1 we have a functor P(n) → JP(n)
mapping the generators of P(n) to those of the same name in JP(n). In particular,
we can interpret any partition diagram as a morphism in JP(n). We extend this
diagrammatic description to all of JP(n) by drawing j : n → 0 as a jellyfish with
n legs. For instance, in JB(5) we have:

j =

More generally, a jellyfish (partition) diagram refers to any diagram obtained by
stacking (horizontally and vertically) any finite number of partition diagrams and
n-legged jellyfish. Note that all jellyfish in a jellyfish diagram are required to have
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the same number of legs. For example, here is a jellyfish diagram when n = 2:

Every jellyfish diagram should be interpreted as a morphism in JP(n). For ex-
ample, the diagram above should be interpreted as the following morphism in
HomJP(2)(3, 1):

(j ⊗ 11) ◦ (11 ⊗ (∆ ◦ ε ◦ η ◦ µ)) ◦ (s⊗ 11).

Here is a more complicated jellyfish diagram, which corresponds to a morphism in
HomJP(3)(9, 5):

In the examples of jellyfish diagrams given above we have omitted any “middle
vertices” that arise when stacking partition diagrams and jellyfish so that we are
left with vertices in only the top and bottom rows. Moreover, all jellyfish legs have
ended at either a top or bottom vertex, or at another jellyfish. Now, attaching the
end of a jellyfish leg to any vertex in the same component gives rise to the same
morphism in JP(n):

= =

Thus, if a jellyfish leg is connected to a vertex a, and a connects to another jellyfish
or the top or bottom row of vertices, then the diagram can be drawn without vertex
a. In some cases, however, stacking a jellyfish atop a partition diagram will result in
a vertex which is connected to a jellyfish leg but not connected to another jellyfish
nor any top or bottom vertex. For example, if we stack j atop (η ⊗ 12) (which is
only allowed if n = 3) we get

In these cases we will draw the resulting jellyfish diagram with a dangling leg. For
example, we draw the diagram above as follows:

Allowing for dangling legs (which can always be interpreted as occurrences of η) we
can realize any morphism in JP(n) as a k-linear combination of jellyfish diagrams
with whose vertices are only in the top and bottom row. Moreover, all jellyfish legs
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can be drawn so that they are either dangling, connected to a vertex, or connected
to another jellyfish.

3.4. Some relations on jellyfish diagrams. In this subsection we will describe
some of the consequences of relations (3.2)–(3.4) in terms of jellyfish diagrams.
Relation (3.2) implies that jellyfish are allowed to freely swim across other strands:

=

In particular, the right and left dual of j are equal:

= = (3.5)

As a consequence, we can draw rotated jellyfish in our diagrams without ambiguity.
In particular, the following jellyfish diagram should be interpreted to be equal to
any of the expressions in (3.5):

j∗ =

· · ·

By relation (3.3) it costs a negative sign to uncross the legs of a jellyfish:

= −

Note that crossing two dangling legs does not change the morphism in JP(n). As
a consequence (since we assume chark 6= 2) we get that any jellyfish diagram with
more than one dangling leg is equal to zero. For example,

2 = + = − = 0.

In the computation above (3.3) was only used to permute the legs of the right
jellyfish. Similarly, any jellyfish diagram where two legs of the same jellyfish are
connected is also zero. For example,

2 = + = − = 0.
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The jellyfish relation (3.4) is a bit more complicated. Its diagrammatic version
is the following:

· · · · · ·
=

∑

σ∈Sn

(−1)σ

· · ·
σ · · ·

For example, when n = 2 we have

= −

The jellyfish relation explains how to reduce the number of jellyfish in any jellyfish
diagram with more than one jellyfish. Moreover, the product (horizontal or vertical)
of any two jellyfish diagrams each having exactly one jellyfish can be written in
terms of partition diagrams. For example, if n = 2 and we let

D1 = and D2 = then

D2 ◦D1 = = = − = −

Here is an example in JP(3):

=

=
∑

σ∈S3

(−1)σ σ

= + + − − −

Remark 3.3. A computation similar to the one above shows

j∗ ◦ j = (−1)⌊n/2⌋
∑

σ∈Sn

(−1)σσ,

which is a scalar multiple of the primitive idempotent corresponding to the sign
representation. The equation above could be used as an alternative to the jellyfish
relation (3.4) in the definition of JP(n).

We conclude this section with two examples that show partition diagrams are
not linearly independent when viewed as morphisms in JP(n). The first example
will appear again in the proof of Lemma 5.1 in more generality.
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Example 3.4. Let D : 3 → 0 denote the following jellyfish diagram in JP(2):

D =

Applying the jellyfish relation (3.4) to the top and bottom pairs of jellyfish respec-
tively gives

D = − − +

= 2 −2 −4 +4

= 2 −2

On the other hand, applying the jellyfish relation (3.4) to the left and right pairs
of jellyfish respectively gives

D = − − +

= − − +

Subtracting the two expressions for D computed above shows us that the following
linear combination of partition diagrams is zero in JP(2):

− − − + 2 (3.6)

Notice that (3.6) is equal to xY where

Y =

By Theorem 2.3, Φ(xY ) = 0 since Y has more than n = 2 parts. Indeed, since ResSn

An

is faithful and (1.1) commutes, any linear dependency among partition diagrams
in JP(n) must come from the kernel of Φ. It will follow from Theorem B that
if n > 1 and either chark = 0 or chark ≥ n, then all linear dependencies among
partition diagrams in JP(n) come from the kernel of Φ.

Example 3.5. Let α and β denote the following jellyfish diagrams:

α = β =
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Consider the following composition:

α ◦ β ◦ α = = −

We can reduce the number of jellyfish in the diagram above by using the jellyfish
relation on any of the three pairs of jellyfish:

α ◦ β ◦ α = − +

α ◦ β ◦ α = − +

α ◦ β ◦ α = − +

Simplifying the thee expressions for α ◦ β ◦ α above we conclude:

= − = − (3.7)

Remark 3.6. Let us compare the previous example with [Gro, Example 3.1], where
it is shown that even Brauer algebras are not associative. Grood sets

a = and b =

Note that adding jellyfish to a and b in the manner prescribed in §1.1 results in α

and β respectively. Grood computes1

(ab)a = − and a(ba) = − −

Adding jellyfish to the diagrams above and uncrossing a pair of legs results in the
right two expressions for α ◦ β ◦ α in (3.7).

1Grood uses the convention that ab is obtained by stacking a below b.
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4. Orbits for An and the fullness of Ψ

In this section we use jellyfish diagrams to classify the An-orbits of our basis for
V ⊗k. As a consequence of the manner in which those orbits are classified, we can
prove that Ψ is full (Theorem A). We also get a description of the dimensions of
the spaces HomAn

(V ⊗k, V ⊗ℓ) in terms of Bell and Stirling numbers in §4.3.

4.1. An-orbits. Let D : k → 0 denote a partition diagram with at most n parts
and recall the definition of the associated Sn-orbit OD from §2.3. Suppose for
a moment that D has at most n − 2 parts. Then for any vi ∈ D, there exist
distinct a, b ∈ {1, . . . , n} such that the transposition (a, b) fixes vi. In particular,
σ(a, b) · vi = σ · vi for every σ ∈ Sn. It follows that the Sn-orbit OD is also the An-
orbit of vi. On the other hand, if D has n− 1 or n parts, then the action of Sn on
OD is faithful. Indeed, this follows from the fact that a permutation of {1, . . . , n}
is completely determined by its action on n− 1 of the elements in {1, . . . , n}. Since
An is a subgroup of Sn of index 2, it follows that the Sn-orbit OD is the disjoint
union of two An-orbits whenever D has n− 1 or n parts. We will now use jellyfish
to distinguish between those two An-orbits.

To each partition diagram D : k → 0 with n or n−1 parts we associate a jellyfish
diagram jD : k → 0 in JP(n) as follows. First, mark the leftmost vertex in each
part of D. Now place a jellyfish above D. In the case that D has n− 1 parts make
the rightmost leg of the jellyfish dangling. Attach all of the other jellyfish legs to
the marked vertices of D in such a way that no two legs are crossing. For example,
suppose

D = and D′ =

If n = 4, then the corresponding jellyfish diagrams are

jD = and jD′ =

Proposition 4.1. Suppose D : k → 0 is a partition diagram with n or n− 1 parts
and fix a basis vector vi in V ⊗k.

(1) Ψ(jD)(σ · vi) = (−1)σΨ(jD)(vi) for any σ ∈ Sn.

(2) Ψ(jD) : vi 7→

{

±1, if vi ∈ OD;

0, otherwise.

Proof. Let D̂ denote the partition diagram of type k → n obtained from jD by
cutting the jellyfish legs just below the body. Then we have Ψ(jD) = det ◦Φ(D̂).

Now (1) follows from the fact that Φ(D̂) commutes with the action of Sn along
with (3.1).

To prove (2) let D′ : k → 0 denote the partition diagram with vi ∈ OD′ . If

D′ 6≥ D, then Φ(D̂)(vi) = 0. If D′ 	 D, then the terms appearing in Φ(D̂)(vi)
will all have the form vi′ with at least two of i′1, . . . , i

′
n equal, and det(vi′) = 0 for

all such i
′. Finally, if D′ = D then there will be a unique term of Φ(D̂)(vi) of the

form vi′ with i′1, . . . , i
′
n pairwise distinct, and det(vi′) = ±1 for such an i

′. �

Given a partition diagram D : k → 0 having n or n− 1 parts we set

O+
D = {vi | jD(vi) = 1}, O−

D = {vi | jD(vi) = −1}.
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It follows from part (2) of Proposition 4.1 that OD = O+
D∪O−

D. Moreover, it follows

from part (1) of Proposition 4.1 that O+
D and O−

D are precisely the two An-orbits

inside OD. Let f±
D : V ⊗k → 1 denote the k-linear maps defined by

f+
D (vi) =

{

1, if vi ∈ O+
D;

0, if vi 6∈ O+
D.

f−
D (vi) =

{

1, if vi ∈ O−
D;

0, if vi 6∈ O−
D.

We get the following An-analog of Proposition 2.2:

Proposition 4.2. The set {fD}D ∪ {f±
D}D is a basis for HomAn

(V ⊗k,1) where
the first (resp. second) set is indexed by all partition diagrams D : k → 0 having at
most n− 2 parts (resp. having n or n− 1 parts).

4.2. Proof of Theorem A. To prove that Ψ is full, consider the following com-
mutative diagram:

HomJP(n)(k, ℓ) −−−−→ HomJP(n)(k + ℓ, 0)

Ψ





y
Ψ





y

HomAn
(V ⊗k, V ⊗ℓ) −−−−→ HomAn

(V ⊗k+ℓ,1).

(4.1)

The horizontal maps in (4.1) are the k-linear isomorphisms defined in the exact
same way as their counterparts in (2.19). Since (4.1) commutes, it suffices to prove

HomJP(n)(k, 0)
Ψ
−→ HomAn

(V ⊗k,1) is surjective for each k. Suppose D : k → 0 is
a partition diagram. It follows from (2.15) and the definition of Ψ that Ψ(xD) = fD.
Moreover, if D has n or n− 1 parts, it follows from part (2) of Proposition 4.1 that
Ψ : 1

2 (xD ± jD) 7→ f±
D . Hence, we are done by Proposition 4.2. �

4.3. Dimension formulae. The so-called Stirling number of the second kind, de-
noted S(k, p), is the number of partitions of a set with k elements into p mutually
disjoint nonempty subsets. Note that S(k, p) = 0 whenever k < p, S(k, 0) = 0 when-

ever k > 0, and (by convention) S(0, 0) = 1. The Bell number B(k) =
∑k

p=0 S(k, p)
is the total number of set partitions of a set with k elements. In particular, by the
definition of P(n) we have

dimk HomP(n)(k, ℓ) = B(k + ℓ).

It follows from the bottom isomorphism in (2.19) along with Proposition 2.2 that

dimk HomSn
(V ⊗k, V ⊗ℓ) =

n
∑

p=0

S(k + ℓ, p).

In particular, dimk HomSn
(V ⊗k, V ⊗ℓ) = B(k+ ℓ) if and only if k+ ℓ ≤ n. Similarly,

it follows from the bottom isomorphism in (4.1) along with Proposition 4.2 that

dimk HomAn
(V ⊗k, V ⊗ℓ) =

n−2
∑

p=0

S(k + ℓ, p) + 2S(k + ℓ, n− 1) + 2S(k + ℓ, n). (4.2)

In particular,

dimk HomAn
(V ⊗k, V ⊗ℓ) =











B(k + ℓ), if k + ℓ ≤ n− 2;

B(n− 1) + 1, if k + ℓ = n− 1;

B(n) + S(n, n− 1) + 1, if k + ℓ = n.

In the special case when k = ℓ the dimension formulae above can be found in [Blo].
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By Theorem A we know dimk HomJP(n)(k, ℓ) ≥ dimk HomAn
(V ⊗k, V ⊗ℓ). In §5

we will show that under certain constraints on chark the reverse inequality also
holds. We will do so by showing morphisms in JP(n) are spanned by a set of size
(4.2). In particular, this will imply that Ψ is also faithful.

5. The faithfulness of Ψ

From now on we assume n > 1 and that chark = 0 or chark ≥ n. In this
section we first prove three lemmas which result in a description of a basis for
HomJP(n)(k, 0) (see Proposition 5.4). As a consequence we obtain a proof of The-
orem B in §5.2.

5.1. Spanning sets for jellyfish diagrams. For this subsection let Y : n+1 → 0
denote the unique partition diagram with n+ 1 parts. In other words,

Y = · · ·
1 2 3 n+ 1

The following lemma and its proof generalize Example 3.4, the n = 2 case.

Lemma 5.1. The partition diagram Y defined above is equal to a linear combina-
tion of partition diagrams each having at most n parts in JP(n).

Proof. Consider the following jellyfish diagram:

· · · · · ·

· · ·

· · · · · ·

1 2 n n+ 1

(5.1)

Applying the jellyfish relation to the left and right pair of jellyfish respectively
results in the following:

∑

σ,τ∈Sn

(−1)σ(−1)τ σ τ

· · · · · ·

· · ·

· · · · · ·

1 2 n n+ 1

The terms in the sum above with partition diagram having more than n parts are
precisely

∑

σ∈Sn−1

σ σ

· · ·

· · · · · ·

· · · · · ·

1 2 n n+ 1

= (n− 1)!Y.
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On the other hand, applying the jellyfish relation to the top and bottom pair of
jellyfish in (5.1) respectively results only in partition diagrams having at most n

parts. Since (n − 1)! is not divisible by chark, we can solve for Y in terms of
partition diagrams each having at most n parts. �

Lemma 5.2. In JP(n) every partition diagram is equal to a linear combination
of partition diagrams each having at most n parts.

Proof. Since the assignments (2.17) and (2.18) preserve the number of parts in a
partition diagram, and prescribe a bijection HomJP(n)(k, ℓ) → HomJP(n)(k+ ℓ, 0),
it suffices to prove the lemma for partition diagrams of type k → 0. Suppose
D : k → 0 has p > n parts. We will show that D is equal to a linear combination of
partition diagrams with fewer than p parts, and the lemma will follow by induction.
Let D : k → n+ 1 denote any partition diagram obtained from D by adding a row
of n+ 1 vertices above D and connecting each of those vertices to a different part
of D (which can be done since p > n). For example, if n = 3 and

D = then we can take D =

Note that by construction Z ◦ D is a partition diagram with fewer than p parts
whenever Z : n+ 1 → 0 is a partition diagram with fewer than n+ 1 parts. Thus,
it follows from Lemma 5.1 that D = Y ◦ D is a linear combination of partition
diagrams with fewer than p parts. �

Lemma 5.3. Suppose D : k → n is a partition diagram with at most n parts.
Then, in JP(n), j ◦D is either zero or equal to ±jD′ for some partition diagram
D′ : k → 0 having either n or n− 1 parts.

Proof. If two of the top vertices of D are in the same part, then j ◦ D will have
two connected jellyfish legs, whence j ◦D = 0. Thus it suffices to consider the case
where each of the n top vertices of D is in a separate part. Since we assume D

has at most n parts, it follows that D has exactly n parts. Now, if two of the top
vertices of D are isolated (i.e. not connected to any other vertex), then j ◦D will
have two dangling legs, which implies j ◦D = 0. Hence we may assume that D has
at most one isolated vertex in the top row. In this case the bottom vertices of D
must be partitioned into n or n− 1 parts, each of which is connected to one of the
non-isolated top vertices of D. Let D′ : k → 0 denote the partition diagram whose
vertices are in the same part precisely when the corresponding bottom vertices of D
are in the same part. Then D′ has n or n− 1 parts. Moreover, jD′ can be obtained
from j ◦D by permuting some of the jellyfish legs. Thus j ◦D = ±jD′ by (3.3) �

Proposition 5.4. The set {D}D ∪ {jD}D is a basis for the space HomJP(n)(k, 0)
where the first (resp. second) set is indexed by all partition diagrams D : k → 0
having at most n parts (resp. having n or n− 1 parts).

Proof. By Proposition 4.2, the set {D}D ∪{jD}D described in this proposition has
size dimk HomAn

(V ⊗k,1). Moreover, dimk HomJP(n)(k, 0) ≥ dimk HomAn
(V ⊗k,1)

by Theorem A. Thus, it suffices to show {D}D ∪{jD}D spans HomJP(n)(k, 0). Ev-
ery morphism in HomJP(n)(k, 0) equals a linear combination of jellyfish diagrams.
By (3.4) it suffices to show that every jellyfish diagram with at most one jellyfish is
in the desired span. By Lemma 5.2 all partition diagrams are in the desired span.



JELLYFISH PARTITION CATEGORIES 19

On the other hand, every jellyfish diagram of type k → 0 with exactly one jellyfish
can be written as j ◦D for some partition diagram D : k → n. By Lemma 5.2, D is
equal to a linear combination of partition diagram having at most n parts. Thus,
it suffices to show j ◦D is in the desired span whenever D : k → n is a partition
diagram with at most n parts. This follows from Lemma 5.3. �

5.2. Proof of Theorem B. As a consequence of Propositions 4.2 and 5.4 we have

dimk HomJP(n)(k, 0) = dimk HomAn
(V ⊗k,1)

for all k ≥ 0. Using the k-linear isomorphisms given by the horizontal maps in (4.1)
it follows that

dimk HomJP(n)(k, ℓ) = dimk HomAn
(V ⊗k, V ⊗ℓ)

for all k, ℓ ≥ 0. Thus, the fullness of Ψ (Theorem A) implies Ψ is also faithful. �
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