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Abstract
The magnitude of the nitrogen (N) limitation of terrestrial carbon (C) storage over 
the 21st century is highly uncertain because of the complex interactions between 
the terrestrial C and N cycles. We use an ensemble approach to quantify and at-
tribute process-level uncertainty in C-cycle projections by analysing a 30-member 
ensemble representing published alternative representations of key N cycle pro-
cesses (stoichiometry, biological nitrogen fixation (BNF) and ecosystem N losses) 
within the framework of one terrestrial biosphere model. Despite large differ-
ences in the simulated present-day N cycle, primarily affecting simulated produc-
tivity north of 40°N, ensemble members generally conform with global C-cycle 
benchmarks for present-day conditions. Ensemble projections for two representa-
tive concentration pathways (RCP 2.6 and RCP 8.5) show that the increase in land 
C storage due to CO2 fertilization is reduced by 24 ± 15% due to N constraints, 
whereas terrestrial C losses associated with climate change are attenuated by 
19  ±  20%. As a result, N cycling reduces projected land C uptake for the years 
2006–2099 by 19% (37% decrease to 3% increase) for RCP 2.6, and by 21% (40% 
decrease to 9% increase) for RCP 8.5. Most of the ensemble spread results from 
uncertainty in temperate and boreal forests, and is dominated by uncertainty in 
BNF (10% decrease to 50% increase for RCP 2.6, 5% decrease to 100% increase 
for RCP 8.5). However, choices about the flexibility of ecosystem C:N ratios and 
processes controlling ecosystem N losses regionally also play important roles. The 
findings of this study demonstrate clearly the need for an ensemble approach to 
quantify likely future terrestrial C–N cycle trajectories. Present-day C-cycle obser-
vations only weakly constrain the future ensemble spread, highlighting the need 
for better observational constraints on large-scale N cycling, and N cycle process 
responses to global change.
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1  | INTRODUC TION

Over the last decades, the terrestrial biosphere has sequestered 
roughly a quarter of the CO2 emitted by anthropogenic activities 
(Le Quéré et al., 2018). The future evolution of this carbon (C) up-
take depends, among others, on the availability of nitrogen (N) to 
support this increase in terrestrial C (Hungate, Dukes, Shaw, Luo, & 
Field, 2003). Nitrogen is an essential nutrient for life, and therefore 
plant growth and soil microbial activity, but its availability is limited in 
most natural terrestrial ecosystems (Cleveland et al., 2013; Hyvönen 
et al., 2007; LeBauer & Treseder, 2008; Vitousek & Howarth, 1991). 
With the exception of two Earth System Models (ESMs), the Coupled 
Model Intercomparison Project Phase 5 (CMIP5; Jones et al., 2013) 
did not consider this N constraint, and thus likely overestimates the 
simulated future land C storage (Wieder, Cleveland, Smith, & Todd-
Brown, 2015; Zaehle, Jones, Houlton, Lamarque, & Robertson, 2015).

Terrestrial biosphere models (TBMs) that estimate the future 
C-uptake potential of land vegetation increasingly consider the dy-
namics of the global N cycle and its linkage to the C cycle (Arora 
et  al., 2019; Zaehle & Dalmonech,  2011). These models generally 
suggest that N constraints attenuate the land C response to global 
change (Sokolov et al., 2008; Thornton et al., 2009; Wårlind, Smith, 
Hickler, & Arneth,  2014; Zaehle, Friedlingstein, & Friend,  2010; 
Zhang, Wang, Matear, Pitman, & Dai, 2014). This is also the case in 
the new set of ESMs in the Coupled Model Intercomparison Project 
Phase 6 (CMIP6; Arora et al., 2019), where about half of the mod-
els include a N cycle representation. However, adequate ecosys-
tem-scale characterization of terrestrial N cycle processes remains 
a challenge because of the complexity of N cycle processes, their 
spatial heterogeneity and the long-term cumulative effect of com-
paratively small fluxes such as biological nitrogen fixation (BNF) on 
ecosystem N availability (Thomas, Brookshire, & Gerber, 2015). As a 
consequence, the inclusion of N cycling in complex ESMs has been 
associated with considerable uncertainty, making it difficult to quan-
tify the effect of N limitation in simulations of the biospheric C sink 
response to future global change (Zaehle & Dalmonech, 2011).

A better understanding of terrestrial N limitation in the 
Earth system requires the identification of the most important 
N-process mechanisms (Thomas et al., 2015). In the past, model 
comparisons that aimed to characterize the contribution of such 
N-related model uncertainties to model differences in future pre-
dictions were always confounded by alternative model structures 
not associated with the N cycle (Fleischer et al., 2019; Huntzinger 
et  al.,  2017; Medlyn et  al.,  2016; Thomas, Zaehle, Templer, & 
Goodale, 2013; Zaehle et al., 2014). Du et al. (2018) have recently 
highlighted the large difference in the simulated steady-state 
terrestrial N cycle by comparing selected components of the N 
cycle representation of three biosphere models within a common 
modelling environment. Here, we use an alternative approach 
that relies on the implementation and factorial combination of 
published strategies to represent N cycling in TBMs (Meyerholt 
& Zaehle, 2015, 2018; Meyerholt, Zaehle, & Smith, 2016; Table 1) 
into one common framework to provide a robust assessment of 

the likely range of future terrestrial C storage and attribution to 
underlying model assumptions.

We focus on the representation of processes that affect the long-
term trajectories of the  coupled land C and N cycles  in response to 
changing atmospheric CO2, climate and N deposition: processes that 
affect the ratio of C to N storage in the land biosphere, as well as the 
balance of ecosystem N in- and outputs (Gruber & Galloway,  2008; 
Hungate et al., 2003; Walker et al., 2015; Zaehle et al., 2014). Alternative 
assumptions about the dependence of BNF and N loss on plant N de-
mand can lead to diverging responses of the terrestrial N balance to 
global changes, and therefore change the amount of N available to store 
C (Du et al., 2018; Meyerholt & Zaehle, 2018; Meyerholt et al., 2016; 
Wieder, Cleveland, Lawrence, & Bonan, 2015). Alternative assumptions 
about the flexibility of the plant and soil organic matter (SOM) C:N ra-
tios affect the response of tissue-specific process rates (such as pho-
tosynthesis and respiration), the relative competitive strength of plants 
and SOM for N, and finally the amount of C that can be stored given a  
specific N amount (Meyerholt & Zaehle, 2015; Thomas et al., 2013).

We selected two C:N stoichiometry, five BNF and three N-loss 
algorithms, and used these to generate an ensemble of 30 facto-
rial combinations of these algorithms within the O-CN C–N cycle 
model (Zaehle, Ciais, Friend, & Prieur, 2011; Zaehle & Friend, 2010, 
see Section 2). Here, we first analyse the C–N cycle ensemble with 
respect to its ability to simulate the global contemporary C and 
N cycle commensurate with observations. We then analyse the 
trajectories resulting from historical (1850–2005) and projected 
(2006–2099) changes of atmospheric CO2, climate, and N deposi-
tion for two global change scenarios, specifically the representa-
tive concentration pathway (RCP) 2.6 (with an average global land 
air temperature (GLAT, but without Antarctica) increase of 2.4°C  
between 1850 and 2099) and 8.5 (GLAT increase of 8.0°C; Dufresne 
et al., 2013; Hempel, Frieler, Warszawski, Schewe, & Piontek, 2013; 
Meinshausen et al., 2011), and compare these to the C-only refer-
ence version of O-CN. We attribute model uncertainty to underlying 
process formulations and investigate to what extend a range of con-
temporary C-cycle benchmarks constrain the model spread. Based 
on this analysis, we estimate the anthropogenic emissions compati-
ble with each RCP scenario, given the RCP-specific atmospheric CO2 
trajectory, simulated oceanic uptake (Dufresne et al., 2013), as well 
as the projected land C uptake considering N constraints.

2  | METHODS

2.1 | Model description

Model simulations were performed with the O-CN model (Zaehle 
et al., 2011; Zaehle & Friend, 2010), an extension of the ORCHIDEE 
model (Krinner et  al., 2005), the land surface component of the 
Institute Pierre Simon Laplace (IPSL) climate model (Dufresne 
et al., 2013). O-CN describes a fully prognostic N cycle that accounts 
for ecosystem N input from atmospheric deposition and biologi-
cal fixation, and N losses due to leaching of dissolved organic and 
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inorganic N, as well as gaseous losses associated with volatilization, 
nitrification and denitrification. Once soil mineral N is taken up by 
plants, it cycles as organic N between different plant, litter and SOM 
pools, where its tissue-specific concentration affects among others 
plant photosynthesis and respiration, plant allocation to fine roots 
and vegetation growth. Soil mineral N availability also affects litter 
and SOM decomposition rates, as well as the rate of net N minerali-
zation, which depends further on the difference in C:N stoichiom-
etry of decomposing litter and SOM pools. Overall, the O-CN model 
has shown good performance against a range of global biosphere 
benchmarks (Le Quéré et al., 2018; Zaehle, Friend, et al., 2010, 2011).

To isolate the effect of N-cycle parameterization from other 
model structural assumptions of O-CN, we generated a C-only ver-
sion of O-CN. This version assumes for each plant tissue-type or 
soil biogeochemical pool, vegetation-type specific, time-invariant  
N concentrations constrained by observed estimates (Kattge et al., 
2011). In this model version, N is added to the plant labile N pool 
(soil mineral NH4 pool) whenever limiting N availability would re-
duce plant growth (SOM decomposition). As a result, this model 
version responds to changes in atmospheric CO2, temperature, 

precipitation and so on as the model without a full N cycle would. In 
particular, the response of terrestrial C gain to CO2 is driven by the 
biochemical response embedded in the leaf-photosynthesis model 
(Kull & Kruijt, 1998), and only modulated due to the scaling from 
leaf to canopy, and the response of vegetation dynamics and turn-
over to changes in production (Zaehle & Friend, 2010). In a similar 
manner, other ecosystem processes, such as autotrophic and het-
erotrophic respiration respond to temperature and soil moisture, 
and are unaffected by N availability (Zaehle & Friend, 2010).

For the purpose of this study, the N cycle representation in O-CN 
was expanded to include alternative algorithms to represent the 
key N mechanisms of C:N ratio flexibility, BNF and N loss (Table 1; 
Sections 2.1.1–2.1.3). Each of the added algorithms was previously 
published and applied in N-enabled land C cycle models. The details 
of the equations, parameters and the implementation into the O-CN 
code are described by Meyerholt and Zaehle (2015; C:N flexibil-
ity), Meyerholt et al. (2016; BNF) and Meyerholt and Zaehle (2018; 
N losses). We combined these algorithms in a factorial manner to 
generate an ensemble of 30 C–N models (O-CN revision 295, see 
Meyerholt, Sickel, & Zaehle, 2019).

TA B L E  1   Overview on the alternative nitrogen cycle algorithms employed in this study to represent carbon:nitrogen ratio (C:N) flexibility, 
biological nitrogen fixation (BNF) and ecosystem-level nitrogen losses. All algorithms, including their parameterizations are described in full 
in Meyerholt and Zaehle (2015; M1; C:N flexibility), Meyerholt et al. (2016; M2; BNF) and Meyerholt and Zaehle (2018; M3; nitrogen losses)

Model Description Reference Documentation

C:N flexibility, see Section 2.1.1

R1 PFT- and tissue-specific, time-invariant C:N in organic plant  
and soil pools

Sokolov et al. (2008), Thornton et al. (2009) FIX in M1

R2 C:N in organic plant and soil pools flexible within prescribed, 
PFT-specific bounds

Zaehle and Friend (2010) FLX in M1

Biological nitrogen fixation (BNF), see Section 2.1.2

F1 Linear relationship with time-invariant climatology of actual 
evapotranspiration, set to zero above an soil inorganic  
N pool of 2 g N/m2

Cleveland et al. (1999), Zaehle, Friedlingstein, 
et al. (2010)

FOR in M2

F2 Monotonically increasing, saturating function of the  
simulated time-variant annual net primary production

Cleveland et al. (1999), Goll et al. (2012), 
Thornton et al. (2009)

NPP in M2

F3 Linear relationship with the simulated time-variant annual  
actual evapotranspiration

Cleveland et al. (1999), Wårlind et al. (2014), 
Yang, Wittig, Jain, and Post (2009)

AET in M2

F4 Function of simulated plant N limitation and light limitation 
outside the tropics

Gerber et al. (2010) NDS in M2

F5 Function of an optimality criterion based on the C cost of 
investment into root N uptake and the C cost of BNF

Rastetter et al. (2001) OPT in M2

Ecosystem nitrogen losses, see Section 2.1.3

L1 Explicit representation of the main gaseous and leaching  
N-loss pathways, depending each on the soil inorganic  
N pool size, temperature, moisture and water leaching

Li, Aber, Stange, Butterbach-Bahl, and Papen 
(2000), Xu-Ri and Prentice (2008), Zaehle 
et al. (2011)

NL1 in M3

L2 Fixed fraction of gaseous loss and leaching, based on the 
N mineralization flux and the soil inorganic N-pool size 
respectively

Wang et al. (2010) NL2 in M3

L3 Sequential treatment of loss pathways of (a) net N 
mineralization-dependent denitrification; (b) volatilization  
and denitrification depending on the size of the mineral N 
pool; (c) leaching based on the mineral N pool

Thornton and Rosenbloom (2005), Thornton 
et al. (2009)

NL3 in M3

Note: Abbreviation: PFT, plant functional type.
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2.1.1 | Carbon:nitrogen ratios

Carbon:nitrogen ratios influence, for instance, leaf-specific photo-
synthetic efficiency through its dependence on foliar N content 
(Field & Mooney, 1986). They also affect the net N mineralization 
rate through its dependence on the difference between the C:N 
ratios of plant litter and SOM (e.g. Manzoni, Trofymow, Jackson, & 
Porporato, 2010). Finally, they affect the overall amount of N re-
quired for C storage (Hungate et al., 2003). Some models represent 
C:N ratios as time-invariant, tissue type-dependent constants, 
assuming that the observed difference of, for example, needle-
leaved and broad-leaved foliage C:N ratio result from a tissue type-
specific stoichiometric homeostasis of leaf growth and N supply 
(e.g. Sokolov et al., 2008; Thornton et al., 2009; C:N algorithm R1). 
However, ample experimental evidence suggests that foliar (and 
litter) C:N ratios decline under elevated CO2, and increase with 
N fertilization (e.g. Ainsworth & Long,  2005; Magill et  al.,  2004; 
McNulty, Boggs, Aber, Rustad, & Magill,  2005). Although the 
exact mechanistic cause of these changes is uncertain, this has 
been represented empirically in a number of models (e.g. Wårlind 
et al., 2014; Zaehle, Friedlingstein, et al., 2010 C:N algorithm R2). 
The implications of flexible stoichiometry with increased N avail-
ability are on the one hand increased biochemical rates (photosyn-
thesis, respiration, gross N mineralization and immobilization), and 
on the other hand decreased the ability to sequester C per unit 
plant or soil N.

2.1.2 | Biological nitrogen fixation

Biological nitrogen fixation through asymbiotic or symbiotic path-
ways is the most important form of N input in many natural eco-
systems (Vitousek et  al.,  2002). Reflecting the lack of consensus 
about the mechanisms that control ecosystem-level BNF, there is 
a large range of published approaches ranging from a global, time-
invariant map of BNF to process-oriented formulations that allow 
BNF to adjust to ecosystem N requirements. This choice does not 
only affect the geographic patterns of BNF, but also the response 
to ecosystem productivity, and therefore both the N capital of eco-
systems in equilibrium and their response to global change. The 
simplest strategy, BNF algorithm F1, assumes that the  large-scale 
pattern of BNF corresponds to patterns in long-term average climate 
conditions (Cleveland et  al.,  1999), but does not respond to envi-
ronmental change at timescales considered in land surface models 
(as used e.g. in Zaehle, Friend, et al., 2010). BNF algorithm F2 re-
lates BNF to net primary productivity as a saturating function (e.g. 
Thornton, Lamarque, Rosenbloom, & Mahowald, 2007), which, while 
derived from the study of Cleveland et  al.  (1999) has limited sup-
port from the data presented in that paper. BNF algorithm F3 (e.g. 
Goll et al., 2012; Smith et al., 2014), based on correlating BNF with 
simulated evapotranspiration (as in Cleveland et al., 1999), suggests 
that BNF increases with foliar coverage and productivity, but is re-
duced by water limitation or increasing atmospheric CO2. In contrast 

to these phenomenological strategies, BNF algorithm F4 formulates 
BNF as a time-lagged response to vegetation N demand (or deficit 
to sustain growth), which furthermore considers a light limitation 
factor for non-tropical plants, reducing BNF in closed-canopy eco-
systems (Gerber, Hedin, Oppenheimer, Pacala, & Shevliakova, 2010). 
BNF algorithm F5 is based on the principle of optimality of resource 
investment into nutrient acquisition, where BNF is regulated by the 
relative C cost of N uptake through BNF or root uptake, indirectly 
responding to plant N demand and supply (Meyerholt et al., 2016; 
Rastetter et al., 2001).

2.1.3 | Ecosystem nitrogen losses

Ecosystem nitrogen losses occur due to leaching of inorganic N 
or gaseous losses during volatilization, nitrification and denitrifica-
tion (Gruber & Galloway, 2008). Some models simulate these pro-
cesses explicitly (e.g. Xu-Ri & Prentice, 2008; Zaehle, Friend, et al., 
2010, represented by loss algorithm L1). These models predict that 
plant N demand and net mineralization control N losses indirectly 
via changes in soil inorganic N concentrations. Thereby plants can 
affect the openness of the terrestrial N cycle, that is, the ratio of 
N loss to internal N turnover, in these models, which can increase 
plant available N in periods of N shortage through reduced N 
losses. A different strategy that requires fewer assumptions about 
uncertain subgrid soil processes (e.g. Wang, Law, & Pak,  2010; 
loss algorithm L2) is to hypothesize that the majority of N loss is 
directly related to soil N turnover, that is gaseous losses are cal-
culated as a fixed fraction of the mineralization flux. In these mod-
els, plant N demand has limited control on N-cycle openness and 
therefore plant N availability. An intermediate strategy (Thornton 
et al., 2007), described by loss algorithm L3, applies a hierarchical 
structure, removing a fixed fraction of excess N left by soil immo-
bilization, plant uptake and turnover-based denitrification losses to 
represent volatilization of reactive N species, further denitrifica-
tion and leaching loss.

2.2 | Simulation setup

All model versions (30 C–N  ensemble members and the  one 
C-only version) were applied to run identical global simulation runs 
on a 2° by 2° spatial grid. The model C and N pools were spun up to 
equilibrium for conditions taken as representative for pre-industrial 
conditions, using 1850 N deposition rates (Lamarque et al., 2011), 
1850 ambient CO2 concentrations (Meinshausen et al., 2011) and 
randomly chosen climate forcing from the period 1901–1930. The 
climate data were taken from the CMIP5 projection of the IPSL 
general circulation model IPSL-CM5A-LR (Dufresne et  al.,  2013), 
bias-corrected according to the Inter-Sectoral Impact Model 
Intercomparison Project (Hempel et al., 2013). Land cover and min-
eral N input from artificial fertilizers were kept constant at year 
2000, values taken from Hurtt et al. (2006) and Zaehle et al. (2011) 



MEYERHOLT et al.3982  |    

respectively. From 1850, we performed a number of simulations 
for the 1850–2099 period that varied in the applied transient forc-
ing of atmospheric CO2 (Meinshausen et al., 2011), N deposition 
(Lamarque et al., 2011) and climate (see also Figure S2a–c). Since 
the climate data were only available from 1901, for the period 
1850–1900 climate of the years were randomly chosen as during 
the spin-up period (see Table 2).

2.3 | Model analyses

2.3.1 | Ensemble evaluation

We evaluated the simulated terrestrial productivity from the s3 
experiment against two alternative estimates: a direct comparison 
against independent data-driven estimates based on the upscaling 
of site-based eddy-covariance measurements (Jung et al., 2011). As 
an alternative metric, we evaluated the long-term mean (1982–2011) 
polewards increase in the seasonal cycle amplitude of atmospheric 
CO2. Although this increase reflects the balance of terrestrial pro-
ductivity and respiration, it is strongly correlated with the large-
scale latitudinal distribution of terrestrial productivity (Dalmonech 
& Zaehle,  2013; Heimann et  al.,  1998). As a simplified metric, we 
diagnosed the polewards increase in the seasonal cycle by regressing 
the detrended seasonal amplitude against the sine of latitude at the 
13 long-term monitoring stations (Ωlat, ppm/sin(lat)).

For comparison to atmospheric CO2 measurements, the simu-
lated monthly net land–atmosphere CO2 fluxes for the years 1982 to 
2011 from our 30 + 1 model versions were transported to 13 long-
term atmospheric monitoring stations (Dalmonech & Zaehle, 2013; 
see Table S3 for the list of stations used) using the Jacobian repre-
sentation of the TM3 atmospheric transport model, version 3.7.22 
(Kaminski, Heimann, & Giering, 1999; Rödenbeck, Houweling, Gloor, 
& Heimann,  2003), with interannually varying wind fields (Kalnay 
et al., 1996, updated), together with estimates of the net ocean–at-
mosphere C flux (Jacobson, Mikaloff Fletcher, Gruber, Sarmiento, & 
Gloor, 2007; Mikaloff Fletcher et  al., 2006; 2007), as well as esti-
mated global fossil fuel emission fluxes (Boden, Marland, & Andres, 
2013). We further evaluated the sensitivity of the atmospheric 
CO2 growth rate to interannual climate variability (γIAV, ppm/K) by 

correlating the observed or simulated interannual CO2 growth rate 
anomaly at the Mauna Loa station with interannual variations of the 
global land temperature. The temperature anomalies were derived 
from CRU-NCEP (Viovy,  2016) for the observed CO2 record, and 
from the model forcing (bias-corrected IPSL-CM5A-LR; Dufresne 
et al., 2013; Hempel et al., 2013) for the simulations. Note that in the 
simulations, the atmospheric growth rate of CO2 seen by the land 
models was derived from Meinshausen et al. (2011).

2.3.2 | Attribution of model spread to a 
particular algorithm

In order to characterize the effect of a particular model algorithm on 
the ensemble mean, we grouped ensemble members according to 
the algorithm used, for example model group R1 includes all ensem-
ble members that employ the C:N algorithm R1. We then calculated 
the mean for this group (Mgroup) and compared it to the mean of the 
entire ensemble (Mensemble). For comparability across different model 
outputs and regions, we calculated a normalized z-score as

where SDensemble is the standard deviation of the entire ensemble. Note 
that the number of ensemble members (n) for the calculation of Mgroup 
differs across the process groups of C:N (n = 15), BNF (n = 6) and N loss 
algorithms (n = 10; see Table 1).

2.3.3 | Carbon-cycle sensitivities

For a better understanding of the N-cycling effect on projected land 
C storage (vegetation, litter and soil C) in the year 2099, we decom-
posed the change in land C into C-cycle sensitivities to changes in 
atmospheric CO2 (βL, Pg C/ppm) and climate change (γL, Pg C/K), as 
in Arora et  al.  (2013). Because our simulations consider transient 
changes in N deposition, an additional term to describe the carbon–
nitrogen sensitivity (ηL, Pg C/Pg N), that is the change in land C in 
response to the cumulated amount of atmospheric N deposition was 
added to the framework.

where ΔCL is the simulated change in land C storage, CA is atmospheric 
CO2 (ppm), T is the global 30-year mean land air temperature (exclud-
ing Antarctica) and 

∑

N is the cumulative N deposition on land, all be-
tween 1850 and 2099. These C-cycle sensitivities were derived from 
the factorial simulations s0–s3 as follows: The C–concentration sensi-
tivity (βL = ΔCL/ΔCA) was derived from the s1 to s0 difference in land C 
storage in the year 2099 and solely reflects the effects of atmospheric 

(1)zgroup =

Mgroup − Mensemble

SDensemble

,

(2)

ΔCL = �L ∗ (CA,2099 − CA,1850) + �L ∗ (T2070−2099 − T1850−1879)

+ �L ∗

2099
∑

i=1850

(Ni − N1850),

TA B L E  2   Overview of the simulations performed

Simulation CO2 Climate N deposition Scenario

s0 — — — n.a.

s1 X — — RCP 8.5

s2 X X — RCP 8.5

s3 X X X RCP 8.5

s4 X X X RCP 2.6

Note: X, transient forcing from 1850 to 2099; —, 1850 conditions for 
CO2 and N deposition, or randomly chosen years of the climate forcing 
from year 1901 to 1930. s3 and s4 are identical until the year 2005.
Abbreviation: RCP, representative concentration pathway.
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CO2. The C–N sensitivity (�L=ΔCL∕
∑

N) was derived from the s2 to s1 
difference in land C storage in the year 2099, and therefore accounts 
for potential synergistic interactions between the C-concentration 
and C–N sensitivities. The C–climate sensitivity (�L=ΔCL∕ΔT) was de-
rived as the difference between s3 and s2 land C storage in 2099 and 
therefore accounts for potential synergistic interactions between the 
C-concentration, C–N and C–climate sensitivities. The comparison of 
these sensitivities across studies needs to consider that these proper-
ties are known to be scenario dependent (Arora et al., 2013).

Estimates of the C-cycle response to C and N perturbations at 
global scale are scarce. In an attempt to provide an indication of 
plausibility of the simulations, we evaluate the ensemble by com-
parison of meta-analyses on plant growth responses of elevated 
CO2 (Baig, Medlyn, Mercado, & Zaehle, 2015) and N addition exper-
iments (Schulte-Uebbing & de Vries, 2018).

2.3.4 | Implied RCP-compatible emissions

In order to diagnose the N-related imprint on the anthropogenic 
C emissions compatible with the atmospheric CO2 concentration 
pathways for the RCP2.6 and RCP8.5 scenarios (‘RCP-compatible 
emissions’ hereafter; Meinshausen et al., 2011; Zaehle et al., 2015), 
we followed a previously described approach (Jones et  al.,  2013): 
compatible emissions (Ercp

i
) for the 2006–2099 scenario period were 

determined from (a) the change of C content in the atmosphere, de-
rived from the change in atmospheric CO2 concentrations associated 
with the respective RCP (Meinshausen et  al.,  2011); (b) the previ-
ously published C exchange between ocean and atmosphere from 
IPSL-CM5A-LR RCP simulations (Frcp

ocean,ipsl
; Dufresne et  al.,  2013; 

Jones et al., 2013), which correspond to the modelled climate and 
CO2 forcing used for the land model simulations (with the exception 
of a bias correction of the climatological mean); as well as (c) the 
land–atmosphere C exchange determined by the simulations s3 (RCP 
8.5) and s4 (RCP 2.6; Frcp

land,i
).

where k (=2.12  Pg  C/ppm) is the conversion factors of atmospheric 
CO2 abundance to mass (Jones et al., 2013), and i is one particular en-
semble member.

3  | RESULTS

3.1 | Present-day model performance

First we evaluate the ensemble with respect to its capacity to 
predict the present-day global C and N cycles in terms of overall 
stocks, gross fluxes and the net land–atmosphere C flux over the 
recent period (1996–2005 mean). The magnitude of the simulated 
net land–atmosphere C flux during the 1990s and 2000s, as well 
as the increment from the 1990s to the 2020s is within the range 

described in Le Quéré et  al.  (2018; GCP; see Figure  1), despite a 
somewhat stronger net C uptake of the ensemble compared to the 
Global Carbon Project (GCP) budget's multimodel mean and resid-
ual sink estimates. This net C uptake is associated with a simulated 
increase in terrestrial N storage of 23 ± 5 Tg N/year during 1996–
2005 (unless otherwise stated numbers reported as mean and SD 
across ensemble members). At the global level, N constraints only 
slightly reduce gross primary production (GPP: 133 ± 9 Pg C/year vs. 
138 Pg C/year for the C:N ensemble and C-only model respectively) 
and net primary production (NPP: 61 ± 4 Pg C/year vs. 62 Pg C/
year). These numbers are broadly consistent with independent es-
timates (Beer et al., 2010; Saugier & Roy, 2001). Simulated global 
BNF ranges from 37 to 117 Tg N/year and thus accounts for most 
of the large literature range of plausible BNF estimates (Cleveland 
et al., 2013; Vitousek, Menge, Reed, & Cleveland, 2013), although 
one other study has suggested significantly larger rates (Xu-Ri 
& Prentice, 2017). The range of global N-use efficiency of veg-
etation production, that is the ratio of NPP to plant N uptake, is 
46–66 g C/g N. A detailed overview of the model estimates is given 
in the Supporting Information (Table S1).

The limiting effect of N availability on C cycling in the ensemble 
is most prevalent polewards of 40° latitude, where the C–N ensem-
ble shows lower productivity. For the Northern Hemisphere, this is 
in general terms in better agreement with independent data-driven 
estimates of gross primary productivity (Jung et al., 2011) than the 
C-only reference (Figure  2a,b). This finding is consistent with the 
comparison to atmospheric CO2 observations (Figure 2c). Most en-
semble members simulate the observed polewards increase of the 
seasonal cycle amplitude of atmospheric CO2 concentrations (Ωlat) 
better than the C-only reference. All ensemble members simulate 
the seasonal phasing and amplitude, as well as the sensitivity of 

(3)E
rcp
i

= k∗ΔC
rcp

A
− F

rcp

ocean,ipsl
− F

rcp

land,i
,

F I G U R E  1   Comparison of simulated decadal land–atmosphere 
carbon exchange by the carbon–nitrogen ensemble (C–N) and the 
C-only reference (C-only) to estimates using a top-down budget 
estimate (Global Carbon Project [GCP]) and a bottom-up model 
ensemble (TRENDY) by the GCP (Le Quéré et al., 2018). Given are 
means, the error bars represent the range of the estimates
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atmospheric CO2 to interannual climate variations (γIAV) largely in 
agreement with observations (Supporting Information, Figure  S1 
and Table S2).

The range of simulated present-day GPP and land C storage in 
tropical and temperate zones is affected by alternative assumptions 
about stoichiometry, where flexible stoichiometry (R2) generally al-
lows for higher productivity and C storage. In mid- to high latitudes, 
where most of the model spread occurs, it is associated with the ef-
fect of alternative BNF algorithms (Figures 2b,d and 3), in particular 
by the effects of BNF algorithms F3 and F4 (Table 1). When BNF is 
calculated as a function of simulated evapotranspiration (BNF algo-
rithm F3), low evapotranspiration in cold environments causes low 
rates of BNF. In turn, this reduces soil inorganic N availability and 

contributes to the underestimation of northern gross primary pro-
ductivity. Conversely, when BNF is simulated primarily as a function 
of vegetation N demand (BNF algorithm F4), it occurs at a rate that 
mitigates the effects of N limitation on plant growth in cold envi-
ronments. The resulting lack of a N constraint on leaf area develop-
ment causes an overestimation of northern productivity similar to 
the C-only model.

3.2 | Future projections

Compared to the model spread during much of the 20th century, the 
spread in the ensemble predictions of the net land–atmosphere C flux 

F I G U R E  2   Comparison of contemporary mid- to high-latitude carbon cycle observations and ensemble predictions. (a) Average latitudinal 
gross primary productivity (GPP) between 40°N and 80°N (1982–2011 mean) based on empirical upscaling (multitree ensemble [MTE]; Jung 
et al., 2011, grey area indicates SD), the carbon–nitrogen ensemble members (‘C–N’) and the carbon-only reference (‘C-only’). (b) Average 
error of model GPP predictions from panel (a). (c) 1982–2011 mean observed (black) and simulated seasonal CO2 amplitudes (markers). Line 
fits indicate the latitudinal gradient of the seasonal CO2 amplitudes (Table S2). (d) Modelled and measured (dashed black line and grey area, 
mean and SD) gradients of the northern hemispheric seasonal CO2 amplitude (Ωlat). In panels (b) and (d), boxes indicate quartiles around the 
median, and whiskers are the minimum and maximum values calculated by the carbon–nitrogen ensemble, with different shading indicating 
model groups. The dashed turquoise line shows the C-only prediction. See Supporting Information, Figure S1 for results of individual models. 
BNF, biological nitrogen fixation, C, carbon, N, nitrogen
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increases under both RCP scenarios during the first half of the 21st 
century (Figure 4a,b). The spread then declines again under RCP 2.6 
as atmospheric CO2 levels stabilize, whereas it continues to increase 
in the RCP 8.5 scenario with continuously growing atmospheric CO2 
levels (compare also Figure  S2a). Integrated over the scenario pe-
riod (2006–2099), N effects generally, but not always, reduce land C 
storage projections by 35 Pg C (70 Pg C decrease to 8 Pg C increase) 
for RCP 2.6 and by 72 Pg C (138 Pg C decrease to 31 Pg C increase) 
for RCP 8.5, compared to the C-only reference (195 Pg C for RCP 
2.6; 336 Pg C for RCP 8.5). The effect of N on future C storage is 
strongest polewards of 40°N latitude in both hemispheres, where 
on average future C storage is reduced by 33 ± 18% (Figure 4c,d), 
and even stronger north of 55°N (46 ± 21%), whereas the effect is 
small in tropical latitudes (reduction of 4 ± 11%). As already shown 
in Figure 3, the uncertainty in mid- to high latitudes is dominated 
by the choice of BNF algorithms, in particular schemes F3 and F4. 
In tropical regions, the spread is further determined by the choice 
of C:N ratio algorithm. Flexible stoichiometry (scheme R2) generally 
allows for a stronger increase in future C storage (Figure 4e). The 

latitudinal distribution of the model spread and its attribution to dif-
ferent N-cycle algorithms is similar for both RCP scenarios, despite 
the differences in projected atmospheric CO2 and climate change 
and the projected magnitude of C storage change (data not shown).

Underlying the projected changes in terrestrial C storage are 
changes in the terrestrial N cycle. Terrestrial C:N ratios are projected to 
increase by 11 ± 2% under RCP 2.6 and by 19 ± 3% under RCP 8.5, and 
thereby contribute to the future increase in land C storage (Figure 5a). 
This change in terrestrial stoichiometry results largely from an increased 
contribution of vegetation, mostly forest biomass with high C:N com-
pared to forest soils, to total land C storage. For ensemble members 
with flexible C:N ratios (C:N algorithm R2), there is an additional but 
smaller decrease in tissue N concentrations due to elevated CO2, lead-
ing to a small increase in terrestrial C:N ration (<1%) and a small ef-
fect in terms of overall C storage. Projections of changes in BNF range  
from a 5  Tg/year (10%) decrease to a 30  Tg  N/year (50%) increase 
under RCP 2.6 and from a 3 Tg N/year (5%) decrease to a 60 Tg N/
year (100%) increase under RCP 8.5 (Figure 5b). Ensemble members 
applying BNF algorithm F4 show by far the strongest increases in BNF 

F I G U R E  3   Simulated 1996–2005 
average (a) gross primary productivity 
(GPP) and (c) land carbon storage along 
latitude. Panels (b) and (d) show the 
attribution of the effect of the different 
nitrogen-cycle algorithms as z-score (see 
Section 2.3.2 for details) on latitudinal 
GPP and land carbon storage respectively. 
Each model group includes all ensemble 
members with a particular nitrogen-cycle 
algorithm as described in Table 1
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as N availability declines due to elevated CO2. Consequently, the group 
of models that apply this algorithm predicts by far the largest amount 
of C sequestration between 2006 and 2099 (350 ± 20 Pg C SD within 

model group; 272 ± 34 Pg C for the group of all other models under 
RCP 8.5). These differences play out strongly under RCP 8.5 with con-
tinuously rising atmospheric CO2, whereas near-constant atmospheric 

F I G U R E  4   Projected net land–atmosphere carbon exchange under representative concentration pathways (RCPs) 2.6 and 8.5 scenarios 
of atmospheric CO2 concentration, climate and nitrogen deposition. (a) 10-year running mean of the exchange for carbon–nitrogen ensemble 
projections as the mean (lines) and range (shaded area), as well as the predictions by the carbon-only reference. (b) Change in land carbon 
stock between 1850 and 2099. (c, d) Latitudinal mean change in land carbon between 2006 and 2099 under the RCP 2.6 and RCP 8.5 
scenarios respectively. (e) Attribution of the effect of the different nitrogen-cycle algorithms as z-score (see Section 2.3.2 for details) on 
change in land carbon storage in the RCP 8.5 scenario. Each model group includes all ensemble members with a particular nitrogen-cycle 
algorithm as described in Table 1
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F I G U R E  5   Projected globally integrated changes in (a) biosphere (soil organic matter, litter, vegetation) C:N ratio; (b) biological nitrogen 
fixation (BNF); and (c) nitrogen loss between the 1850s and the 2090s. Shown are simulation results over the common historical period 
(1850–2005), as well as the scenario periods (2006–2099) for representative concentration pathway (RCP) 2.6 (blue) and RCP 8.5 (red), 
with different shading indicating model groups. Note that N deposition increases in RCPs 2.6 and 8.5 contribute to the increased N losses 
independent of changes in BNF or internal nitrogen cycling. Model groups (n = 15, 6, 10 for the groups of carbon:nitrogen, BNF and N loss 
models) comprise all models in Table 1. See Figure S2 for time series of these changes
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CO2 after the year 2030 in RCP 2.6 causes the model spread in net 
land–atmosphere CO2 exchange to slowly decrease, as ensemble 
members with stronger N limitation gradually acquire the ‘missing’ N 
through increased BNF that outpaces N losses.

3.3 | Carbon-cycle sensitivities

To further understand the cause of the model spread in projected 
land C change from 1850 to 2099 under RCP 8.5, we decompose 
the projections in terms of their sensitivity to atmospheric CO2 
concentration increase, climate change and increased N deposi-
tion. The change in land C due to increasing atmospheric CO2 con-
centrations, that is the C–concentration sensitivity βL (Figure 6a,b) 
is the primary cause for the spread in projected land C storage 
change (Figure 4a). We find that N constraints reduce βL in 29 out 
of 30 models (0.78 ± 0.15 Pg C/ppm, mean and SD across all CN 
models) compared to the C-only reference of 1.02 Pg C/ppm. This 
corresponds to an average reduction of βL by 24 ± 15%. Ensemble 
members with a flexible stoichiometry (C:N algorithm R2) show a 
consistently larger response than members using fixed stoichiom-
etry. Compared to a CO2-related increase of only 5 ± 1% (mean ± SD 
difference between 1850 and 2099) simulated with assuming 
fixed C:N ratios (C:N algorithm R1), resulting from the increased 
contribution of woody vegetation to land C storage, allowing for 
flexible C:N ratios (C:N algorithm R2) increases vegetation C:N by 
36 ± 12% in our ensemble. Another key factor in the model range 
is the spread in BNF responses to elevated CO2. On average, the 

ensemble shows a sensitivity of BNF to increasing atmospheric CO2 
of 0.04 Tg N year−1 ppm−1 (range: −0.01 to 0.21 Tg N year−1 ppm−1) 
for a CO2 increase from 285 to 927 ppm between 1850 and 2099, 
with the lowest change in BNF scheme F3 and the largest change 
in scheme F4.

There is a tight correlation between the response of NPP to 
elevated levels of CO2 and βL (r2  =  .83, p  <  .01; Figure  S3), be-
cause in the models, NPP is the primary driver of land C stock 
changes. An evaluation of the simulated, transient global NPP re-
sponse to elevated CO2 is challenging, because most experiments 
were done in artificial setting, for a short time and following a 
step-increase. It is nevertheless interesting to note that most 
C–N ensemble members show a global increase in NPP associ-
ated with the increase of atmospheric CO2 from 350 to 550 ppm 
of 20.7 ± 3.6% (mean ± SD; C-only: 25.3%), which is consistent 
with a recent meta-analysis of total biomass responses to CO2 
enrichment experiments (22.3 [13.9%–31.4% 95% confidence 
range]; Baig et al., 2015), with only few C:N ensemble members 
showing a notably lower response.

The change of land C due to N deposition, that is the C–N sen-
sitivity (ηL) averages 4.1 ± 2.2 Pg C/Pg N (Figure 6e,f). The range 
of this response is strongly affected by the choice of the stoichi-
ometry algorithm. With flexible stoichiometry (algorithm R2), in-
creasing N availability increases tissue N concentrations, leading 
on the one hand to higher photosynthesis and respiration rates 
per unit biomass, and on the other hand a higher N requirement 
for growth (see Meyerholt & Zaehle, 2015, for a more detailed dis-
cussion), which in combination reduces the C storage response to 

F I G U R E  6   Sensitivity of simulated 
land carbon storage change (1850–
2099) to changes in atmospheric CO2 
concentration (βL), climate change (γL) 
and nitrogen deposition (ηL) under the 
representative concentration pathway 
8.5 scenario. (a, c and e) The ensemble 
predictions of βL, γL and ηL respectively. 
Boxes indicate median, quartiles and 
extreme values calculated by the 
carbon–nitrogen ensemble, with the 
shading indicating model groups. The 
blue line indicates the ensemble mean, 
dashed turquoise line the carbon-only 
reference. (b, d and f) The frequency 
distribution of βL, γL and ηL, respectively, 
from the carbon–nitrogen ensemble and 
the carbon-only reference (turquoise 
block). The blue line indicates the 
carbon–nitrogen ensemble mean. Model 
groups (n = 15, 6, 10 for the groups of 
carbon:nitrogen, biological nitrogen 
fixation [BNF] and N loss models) 
comprise all models in Table 1
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added N deposition. The simulated effect of increasing N deposi-
tion on vegetation C storage in the ensemble ranges 4.0 ± 7.8 Pg C/
Pg N in tropical ecosystems, 8.2 ± 4.9 Pg C/Pg N in temperate for-
est ecosystems, and 16.6 ± 6.6 Pg C/Pg N in boreal ecosystems. 
This pattern broadly corresponds to that from the meta-analy-
sis by Schulte-Uebbing and de Vries (2018; tropics: 1.3 [−1.3 to 
3.9] Pg C/Pg N; temperate: 12.7 [10.6–14.9] Pg C/Pg N; boreal: 14.1 
[10.6–17.5] Pg C/Pg N).

The change of land C due to climate change, that is the  
C–climate sensitivity (γL) averages −20  ±  5  Pg  C/K (mean  ±  SD; 
Figure  6c,d), corresponding to a 19  ±  20% attenuation of the C 
losses simulated by the C-only reference (γL = −25 Pg C/K). This 
attenuation is primarily the result of N fertilization of vegetation 
due to enhanced soil N mineralization, which partially compen-
sates increased for soil C losses as a result of increased soil respi-
ration in a warmer world. Such an effect has been observed by one 
large-scale forest soil warming experiment (Magill et al., 2004), but 
the number of studies on full ecosystem warming effect on N cy-
cling is too small to corroborate this effects at large scales. The 
attenuation is strongest with fixed stoichiometry (C:N algorithm 
R1) and N loss scheme L1. In the other two loss schemes, increased 
net mineralization directly results in an increase in ecosystem N 
losses through the assumption that a significant fraction of these 
losses are coupled to the net N mineralization rate, which prevents 
a larger fertilization effect.

A correlation between the C–climate sensitivity at centennial (γL) 
timescales and interannual (γIAV), apparent in the CMIP5 ESM en-
semble (Cox et al., 2013), does not exist in our ensemble (Figure 7). 
The γIAV is similar between the C–N ensemble and the C-only refer-
ence, suggesting that the direct effects of interannual temperature 

variations on C cycle processes drive γIAV in the ensemble. Indirect 
effects resulting from temperature-related anomalies in N mineral-
ization and plant uptake appear to play a lesser role at this timescale. 
The contribution of C:N and loss algorithms to the uncertainty in 
γL clearly indicates that these processes contribute notably to the 
long-term climate response of the biosphere (Figure  6). This find-
ing suggests that the correlation in the CMIP5 ensemble may be a 
result of the simplified model structure considered, and may be al-
tered when the long-term effects of nutrient-related soil-vegetation 
feedbacks on the response of ecosystems to perturbations are taken 
into account.

In the ensemble, βL is highly anti-correlated with the sensitivity 
of terrestrial C storage to N deposition ηL (r

2 = .89, p < .01; Figure 8). 
This correlation reflects the differing degree of N limitation in the 
ensemble: ensemble members with low present-day N availability 
and therefore low productivity (Figure  2) are more sensitive to N 
added from deposition, and at the same time also more limited in 
their ability to respond to CO2 fertilization with increased produc-
tion and C storage. Ensemble members with strong simulated N lim-
itation (low response to elevated CO2) also retain more ecosystem C 
in a warmer climate through a larger fertilization effect from warm-
ing-induced increases in net N mineralization. Consequently, γL in 
the C–N ensemble is weakly anti-correlated with βL (r

2 = .56, p < .01) 
and positively correlated with the sensitivity of land C storage to N 
deposition ηL (r

2 = .65, p < .01).
The correlation between the C cycle sensitivities suggest that 

there is a compensation of uncertainty in terms of future land 
C storage in N-enabled models. To assess the magnitude of this 
effect, we evaluated Equation (3) for the range of βL, γL and ηL in 
the ensemble, but assuming no correlation between them. This 
simple propagation of errors of the mean yields a change in total 
land C between 1850 and 2099 of 382 ± 109 Pg C, compared to 
the spread in the ensemble (382 ± 53 Pg C). This reduction in the 
model spread by more than half through the interactions of N cycle 

F I G U R E  7   Correlation between the land climate sensitivity 
γL and the response of the atmospheric CO2 growth rate to 
interannual climate variability γIAV
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processes highlights the need to account explicitly for these pro-
cesses and their effect on C cycling in assessments of future bio-
sphere dynamics.

3.4 | RCP-compatible anthropogenic CO2 emissions

We lastly assess the impact of the projected land C uptake on future 
anthropogenic CO2 emission pathways that are compatible with the 
representative CO2 concentration pathways of the RCP scenarios. 
When the N effect is taken into account, the predicted compatible 
emissions for the 2006–2099 period are reduced to 342 ± 18 Pg C 
(mean ± SD) for RCP 2.6 and 1,805 ± 42 Pg C for RCP 8.5, compared 
to the C-only reference of 371 Pg C for RCP 2.6 and 1,863 Pg C for 
RCP 8.5 (Figure 9).

The estimates of RCP-compatible emissions are strongly correlated 
with the present-day latitudinal distribution of productivity (Figure 9), 
as measured by Ωlat (as defined in Figure 2; RCP 2.6: r2 = .92; RCP 8.5: 
r2 =  .91). Using the Ωlat constraint to weight ensemble member pre-
dictions (see Supporting Information) slightly decreases the mean esti-
mate and range of RCP-compatible emissions (Figure 9), but the effect 
is much lower than in a previous study based on C-cycle-only models 
owing to the larger spread in their ensemble (Booth et al., 2017). For 
RCP 2.6, our ensemble estimate of RCP-compatible emissions under N 
constraints is 339 ± 11 Pg C (mean ± SD), a reduction from the C-only 
estimate by 32 Pg C or 9%. For RCP 8.5, we predict RCP-compatible 

emissions of 1,796 ± 28 Pg C, a reduction relative to the C-only refer-
ence by 67 Pg C or 4%.

4  | DISCUSSION

In this paper, we analysed future projections of the terrestrial C cycle 
using an ensemble of 30 C–N cycle models with alternative repre-
sentations of C–N stoichiometry, BNF and N losses. We find that the 
ensemble is generally within or at least close to the range of observa-
tions with respect to contemporary global C-cycle benchmarks. Our 
consistent framework combining alternative model process represen-
tation elucidates the otherwise hidden consequence of model assump-
tions and thereby provides a more robust estimate of the N constraints 
on future C budget compared to previous studies (Wieder, Cleveland, 
Smith, et al., 2015; Zaehle et al., 2015; Zhang et al., 2014). Based on this 
analysis, we find that N dynamics reduce the global CO2 fertilization 
effect under the RCP 8.5 scenario by 24 ± 15% and reduce the C loss 
associated with global warming by 19 ± 20%. In combination, the result 
is a reduction of projected land C storage under the RCP 8.5 scenario 
of 21% (−9% to +41%). The relative reduction in future land C uptake 
is slightly lower in the climate change stabilization scenario RCP 2.6, 
where it averages 19% (−3% to 40%). Integrated assessment models 
that are used to calculate the compatible emissions based on ocean 
and land C uptake do currently not account for terrestrial N dynamics. 
The results of our study suggest that an additional mitigation effort is 

F I G U R E  9   Estimates of anthropogenic 
CO2 emissions (2006–2099) compatible 
with the representative concentration 
pathway (RCP) 2.6 and RCP 8.5 climate 
change scenarios. (a) Probability 
distribution functions representing the 
carbon–nitrogen ensemble predictions 
(orange curve) under RCP 2.6, as well as 
the distribution constrained by ensemble 
member performance against the 
atmospheric constraint Ωlat (blue curve). 
The turquoise line indicates the prediction 
of the carbon-only reference. (b) Same as 
panel a for RCP 8.5. (c, d) The correlation 
between RCP-compatible emissions 
and the slope of the increase in the CO2 
seasonal cycle with latitude Ωlat, used 
for model weighting. See Figure S4 for 
derivation of the frequency distributions 
for the unconstrained ensemble, and the 
Supporting Information for the model 
weighting to derive the constrained 
probability distribution
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required to maintain atmospheric CO2 at levels prescribed in the RCP 
scenarios of 9 ± 3% (RCP 2.6) and 4 ± 2% (RCP 8.5).

Previous studies (Sokolov et  al.,  2008; Thornton et  al., 2009; 
Zaehle, Friedlingstein, et al., 2010) have suggested ranges for the  
C–concentration sensitivity (βL) in N-enabled models between 0.6 
and 1.2 Pg C/ppm, which includes our best estimate of 0.75 ± 0.13 Pg  
C/ppm (mean ± SD). A direct comparison of these estimates is challeng-
ing as they are known to be scenario dependent (Arora et al., 2013). 
In terms of the relative reduction of βL compared to a C-only model 
version, which ranged 50% and 80% (Sokolov et al., 2008; Thornton 
et  al., 2009; Wårlind et  al.,  2014), we find a smaller reduction due 
to the inclusion of N cycling (24  ±  15%). Our quantification of the  
C–climate sensitivity (γL) is also consistent with previous studies  
(Sokolov et al., 2008; Thornton et al., 2009; Wårlind et al., 2014; Zaehle, 
Friedlingstein, et al., 2010). In all these models, N interactions partly 
mitigated the positive C–climate feedback because N mineralization 
from SOM decomposition fertilizes plant growth in N-limited eco-
systems and thus leads to enhanced vegetation C storage. However, 
none of the ensemble members showed a shift to a negative feedback, 
as suggested by the CLM4 model (Thornton et al., 2009).

4.1 | Process attribution

One advantage of our ensemble approach is that it enables direct at-
tribution of ensemble uncertainty to process formulations (Figures 2–
6). The comparison demonstrates that alternative model choices of 
each of the processes considered have characteristic and important 
implications for the simulated level of present-day and future N limi-
tation. Our analysis demonstrates further that in combination, these 
three process formulations capture a wide range of C–N cycle in-
teractions: for instance, assuming a combination of a vegetation N 
demand-driven BNF (BNF algorithm F4), a flexible stoichiometric con-
straint on growth (C:N algorithm R2), as well as a hierarchical N loss 
scheme (L3) leads to a model with prognostic N cycle that has little 
constraining effect on the decadal to centennial C-cycle projections. 
Conversely, assuming tight stoichiometric constraints (C:N algorithm 
R1), direct dependence of BNF on N-limited plant production or CO2-
sensitive evapotranspiration (BNF algorithms F2 and F3 respectively), 
as well as a concentration-based N loss scheme (L1) results in a com-
paratively strong N limitation effect, but still does not reproduce 
the very strong N limitation suggested initially by CLM4 (Thornton  
et al., 2009). Our regional analysis further reveals that different pro-
cesses are important in different locations/climates, illustrating the 
regional nature of simulated N limitation.

In the ensemble, the BNF response to elevated CO2 is the 
largest source of uncertainty. This reflects the relatively poor un-
derstanding of the processes, and their representation in models, 
affecting BNF at large scale. Increases in response to CO2 have 
been observed in controlled experiments (e.g. between 30% and 
62% in a recent meta-analysis by Liang, Qi, Souza, & Luo, 2016), but 
the responses were low or declining over time due to other limit-
ing factors (Hofmockel & Schlesinger, 2007; Hungate et al., 2003, 

2004). Two BNF schemes stand out in their CO2 response: cou-
pling BNF to evapotranspiration (BNF algorithm F3) leads to the 
geographically wide-spread prediction that BNF decreases in re-
sponse to CO2 by about 7  Tg  N/year or 7% globally, despite in-
creasing N limitation of plant growth. Such a behaviour does not 
appear to be supported by the available evidence. Conversely, as-
suming a BNF dependence on instantaneous vegetation N demand 
and light availability (BNF algorithm F4) leads to a large projected 
increase of BNF (on average by 126 Tg N/year or 208% between 
1850 and 2099) in response to increasing CO2, particularly in tem-
perate and boreal regions. While such a demand-driven approach 
appears to be appealing from a process understanding perspec-
tive, its current implementation lacks sufficient representation of 
other limiting factors for the BNF response. Removing these two 
BNF algorithms F3 and F4 from the ensemble changes projected 
1860–2099 land C storage only slightly, although it reduces the 
uncertainty in the ensemble: the projected land C storage for RCP 
8.5 (RCP2.6) of 384 ± 52 (265 ± 28) Pg C is reduced to 379 ± 39 
(263 ± 21). Understanding the global patterns of BNF, as well as 
its environmental controls in response to changing C and nutrient 
availability should therefore be a priority in reducing N-related 
uncertainty (see e.g. Zheng, Zhou, Luo, Zhao, & Mo,  2019). 
Furthermore, all algorithms considered in our study have in com-
mon that they do not consider community assembly and dynamics 
as part of the processes that constrain BNF responses and only 
relate BNF to instantaneous changes in ecosystem N properties. It 
will likely be necessary to explicitly represent the effects of com-
munity dynamics and assembly to represent the timescale of BNF 
shifts at ecosystem level (Menge, Hedin, & Pacala, 2012; Menge, 
Levin, & Hedin, 2008; Thomas et al., 2015).

The choice of fixed versus flexible C:N ratios contribute to vari-
ations in our estimates of both βL and γL. Assuming fixed stoichi-
ometry leads to a tighter N constraint and thus a more profound 
impact on the CO2 and climate response. With flexible stoichiometry 
(algorithm R2) increasing N availability increases tissue N concentra-
tions, and vice versa. Increased tissue N concentrations lead on the 
one hand to higher photosynthesis and respiration rates per unit bio-
mass, and on the other hand a higher N requirement for growth (see 
Meyerholt & Zaehle,  2015, for a more detailed discussion), which 
in combination reduces the C storage response to added N. While 
some flexibility has been observed (Ainsworth & Long, 2005; Magill 
et al., 2004; McNulty et al., 2005), recent model-data intercompari-
son studies have suggested that it is overestimated by current model 
formulations (Meyerholt & Zaehle, 2015; Zaehle et al., 2014), clearly 
demonstrating the need for a better representation of this process. 
However, the impact of stoichiometric flexibility on overall land C 
sequestration considering all forcings is attenuated because of the 
compensating effects of climate warming and N deposition on plant 
N availability, and the large share of low C:N SOM pools with lim-
ited stoichiometric flexibility in the total land C storage. Therefore, 
although important from a process representation point of view, the 
overall contribution to land C storage trends is small compared to 
that of BNF in our study.
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The N loss formulation does not have a clear effect on the bio-
spheric response to elevated CO2, but shows a strong impact on 
the climate sensitivity of the C cycle (γL, Figure 6c). The assumption 
that ecosystem N loss is primarily controlled by the rate of soil N 
turnover (loss algorithms L2 and L3) leads to higher predicted soil 
N losses in response to warming. In these cases, vegetation has 
limited potential to act as a N sink, leading to a lower fertilization 
effect compared to loss algorithm L1 (Figure 6c). In particular, we 
found that a combination of flexible stoichiometry and the hier-
archical N loss scheme (algorithm L3) leads to climate-induced C 
losses that are comparable to those simulated by the C-cycle only 
version of the model. The effect of increased N availability leads 
to a decline in vegetation C:N with C:N algorithm R2, compared 
to a slight increase when assuming time-invariant C:N (C:N algo-
rithm R1), and thereby attenuates the fertilization response. Thus 
far, N-loss algorithms in TBMs are largely unconstrained by obser-
vations, despite some attempts to evaluate simulated N2O fluxes 
(e.g. Tian et al., 2019; Xu-Ri & Prentice, 2008; Zaehle et al., 2011). 
When assessing different loss algorithms, feedbacks in the sim-
ulated C and N cycles can lead to equifinality with respect to C 
cycle observations (Meyerholt & Zaehle,  2018). In order to bet-
ter constrain N loss process parameterization, there is a need for 
ecosystem-scale experiments or monitoring studies that focus on 
quantification of the relevant N-loss pathways and their system-
atic use for model evaluation. An alternative source of information 
may be linked to the use of 15N abundance data, which could be 
used both in a process-based manner by comparison to 15N en-
richment studies providing insight into the fate of N in terrestrial 
ecosystems (Goodale, 2017), or by attempting to interpret spatial 
and or temporal trends of 15N abundance in terms of changes in the 
terrestrial N cycle (Craine et al., 2018, 2019; Hiltbrunner, Körner, 
Meier, Braun, & Kahmen, 2019; Houlton, Marklein, & Bai, 2015).

4.2 | Limitations of the study

Further alternative process representations in current N-enabled 
TBMs exist, for example the competition of plants and soil organ-
isms for N or the downregulation of photosynthesis (Zaehle & 
Dalmonech, 2011). These additional processes would likely increase 
the effect of the internal (C:N) versus external N cycle (N in- and 
output) uncertainty, but are unlikely to affect our conclusions on the 
importance of BNF and N loss process representations, given the 
magnitude of the projected change particularly in BNF and the long 
timescale at which these changes occur. One process only implicitly 
considered in the ensemble of this study is nutrient mining in re-
sponse to increased below-ground C allocation under elevated CO2. 
In the ensemble, models with flexible C:N stoichiometry allow for a 
redistribution of N from soil to vegetation under N stress, because 
of increasing SOM C:N ratios. However, this process has been insuf-
ficient to explain the observed redistribution of soil N to the veg-
etation in free-air CO2 enrichment experiments at Duke and ORNL 
forest (Zaehle et al., 2014). Increased below-ground C allocation has 

been found to increase SOM turnover (Drake et al., 2013; Hungate 
et al., 2009), and has been hypothesized to contribute to the sus-
tained response of N-limited forests to elevated CO2 in ecotomycor-
rhizal-dominated forests (Norby et al., 2017; Terrer, Vicca, Hungate, 
Phillips, & Prentice, 2016). One recent global model accounting for 
this effect suggested a substantial redistribution effect of N, essen-
tially increasing land C storage, as increased soil C losses are more 
than compensated by increased above-ground C storage following 
this indirect fertilization effect (Sulman et al., 2019). This could po-
tentially alter our conclusion about the importance of BNF in de-
termining future N limitation in favour of processes determining 
ecosystem internal N cycling.

The absolute values of land C uptake and its sensitivities to en-
vironmental drivers depend on the C cycle assumptions built into 
O-CN. Nevertheless, we believe that the insights into sign and mag-
nitude of the N cycle process contributions (Figure 6) will be trans-
ferrable to other TBMs. Each of the N process algorithms applied 
in this study (Table 1) relies on few, insufficiently constrained pa-
rameters. We chose the parameter values in accordance with previ-
ous work (Meyerholt & Zaehle, 2015, 2018; Meyerholt et al., 2016), 
which resulted in flux and stock magnitudes after model spin-up 
commensurate with current understanding (Supporting Information, 
Table  S1). The simulated process responses to perturbations may 
be sensitive to the precise parameterization of the algorithms. 
Therefore our ensemble range may be a conservative estimate of 
the full N cycle uncertainty range. Considering that most algorithms 
respond linearly to small parameter perturbations (e.g. Meyerholt 
et al., 2016), it is unlikely that this uncertainty will affect the general 
conclusions drawn here about the relative importance and sign of 
the individual process contributions or the overall sign and range of 
the N effect.

As many other studies (Arora et al., 2019), this study does not 
consider the limitation of the terrestrial C cycle by the phospho-
rus (P) cycle. A first field-scale free-air CO2 enrichment experiment 
in an Australian Eucalypt forest with low P availability has shown 
that P limitation can severely constrain the response (Ellsworth 
et al., 2017). Model simulations made for this and a planned exper-
iment in the P-limited Amazon rain forests have demonstrated that 
the effect of P availability can be much stronger than N effects in 
P-limited ecosystems, but large uncertainties persist in these simu-
lations (Fleischer et al., 2019; Medlyn et al., 2016). Considering P in 
addition to N dynamics in our ensemble would likely result in attenu-
ated CO2 responses in predominantly P-limited ecosystems, such as 
the Amazon rain forest or large parts of Australia.

4.3 | Model evaluation

We evaluated the model ensemble against a range of contemporary 
C-cycle observations, and demonstrated good, but varying perfor-
mance of the ensemble members. In our ensemble, the difference 
in high-latitude productivity results directly from N cycle pro-
cesses, as the C-cycle only reference considered all other climate 



MEYERHOLT et al.3992  |    

constraints but the N cycle. The larger than observed high-latitude 
productivity of the C-cycle control may be O-CN specific, and could 
likely be corrected without necessarily including a fully prognostic 
N cycle. The variable performance of current C-cycle models and 
C–N cycle models (Le Quéré et  al.,  2018) suggest that currently, 
these benchmarks cannot be conclusively used to demonstrate that 
N cycle representations are necessary to match contemporary ob-
servations. However, they do allow us to state that all ensemble 
members in our study represent terrestrial C–N dynamics to a de-
gree comparable to other state-of-the-art in biosphere models and 
that they are therefore valid candidates to assess potential future 
biosphere dynamics.

Despite the good present-day performance, substantial spread 
remains in the projected N effect on future land C sequestration. 
These results support the concept of an ensemble approach to make 
a more robust assessment about the likely effect of N on projections 
of the global C cycle. The results further imply that advanced global 
C-cycle benchmarking systems (Collier et al., 2018; Righi et al., 2019) 
may insufficiently constrain long-term dynamics of the terrestrial 
biosphere, as they do not sufficiently constrain N availability and 
its effect on terrestrial C cycling. However, we note that we have 
not fully exploited the available observations. In our ensemble, some 
of the uncertainty resides in high-latitude ecosystems. Applying re-
gionally explicit benchmarks, such as satellite-derived estimates of 
vegetation C (Liu, Dijk, McCabe, Evans, & Jeu,  2013) would likely 
help to constrain the model spread better. However, these data 
would not directly constrain simulated N dynamics, but other model 
features more directly affecting vegetation turnover.

Reducing uncertainty in the N effect requires the development 
of adequate and robust constraints on the terrestrial N cycle and 
its effect on vegetation growth and SOM decomposition, which 
necessarily requires a multifaceted approach. There is a need to im-
prove the general understanding of ecosystem N dynamics and their 
covariation with C and water fluxes through a systematic observa-
tion and reporting of relevant N cycle characteristics in ecosystem 
monitoring to fully make use of the available C cycle observations 
to constrain coupled C–N cycle models (e.g. Vicca et  al.,  2018). A 
complementary source of information could be obtained by testing 
the simulated covariation of plant stoichiometry with climate and 
soils within plant functional types using existing plant trait data-
bases (e.g. Kattge et al., 2011). The increasing availability of hyper-
spectral remote sensing will provide a new tool to better evaluate 
regional trends in foliar N content or related leaf properties (Croft 
et al., 2020; Knyazikhin et al., 2013; Ollinger et al., 2008; Townsend, 
Serbin, Kruger, & Gamon, 2013).

However, the evaluation of biosphere models with observations 
from monitoring networks will always and unavoidably be con-
founded by co-occurring effects of global change which obscure 
the effects of C–N coupling. It will therefore remain important to 
perform hypothesis-driven model evaluation against manipulation 
experiments to test model formulations with respect to those pro-
cesses that determine the mid- to long-term response of ecosys-
tems to perturbations (Medlyn et  al.,  2015), potentially involving 

new field experimentation dedicated to understanding the long-
term response of ecosystems to changes in C or N availability 
(Norby et  al., 2016). Even with improved constraints on current 
terrestrial N dynamics, the divergence of simulation results over 
the 21st century suggests that the long-term effect of N dynamics 
will remain to some extend unconstrained by current observations. 
This highlights the need for an ensemble approach to adequately 
reflect uncertainties in our process understanding in projections of 
the future C cycle.
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