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ON THE IRREDUCIBLE COMPONENTS OF SOME

CRYSTALLINE DEFORMATION RINGS

ROBIN BARTLETT

Abstract. We adapt a technique of Kisin to construct and study crystalline
deformation rings of GK for a finite extension K/Qp. This is done by consid-
ering a moduli space of Breuil–Kisin modules, satisfying an additional Galois
condition, over the unrestricted deformation ring. For K unramified over Qp

and Hodge–Tate weights in [0, p], we study the geometry of this space. As a
consequence we prove that, under a mild cyclotomic-freeness assumption, all
crystalline representations of an unramified extension of Qp, with Hodge–Tate
weights in [0, p], are potentially diagonalisable.
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1. Introduction

LetK/Qp be a finite extension, let F denote a finite field of characteristic p and let

VF denote a continuous representation of GK = Gal(K/K) on a finite dimensional
F-vector space. In [Kis08] Kisin constructs a quotient of the universal framed
deformation ring of VF, parametrising deformations which are crystalline (even
potentially semistable) with fixed Hodge–Tate weights.

The motivation for studying such deformation rings comes from the conjectures
of Fontaine–Mazur [FM95], and the desire to prove that many Galois represen-
tations arise from modular forms. The first considerable progress towards these
questions came with the modularity lifting theorem of Wiles [Wil95], where crucial
use was made of the fact that the deformation rings parametrising crystalline repre-
sentations of GQp

with Hodge–Tate weights either 0 or 1 are power series rings, and
so as simple as one could hope for. It was later shown by Kisin [Kis09b] that in fact
one could proceed in more general situations where the deformation rings were less
well-behaved, provided one could maintain some control on their irreducible com-
ponents. More recently still these ideas have coalesced into the notion of potential
diagonalisability. Roughly speaking a crystalline representation is potentially di-
agonalisable if it lies on the same irreducible component as a particularly simple
representation (e.g. a direct sum of characters). This condition was introduced in
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2 ROBIN BARTLETT

[BLGGT14] where a general modularity lifting theorem was proved under the local
assumption of potential diagonalisability at primes above p.

The aim of this paper is to extend the methods introduced by Kisin in [Kis09b]
to treat Hodge–Tate weights beyond the range [0,1]. In particular we are able to
prove the following.

Theorem. Suppose K is unramified over Qp and that V is a crystalline represen-

tation of GK on a finite dimensional Qp-vector space, with Hodge–Tate weights

contained in [0, p]. Assume the mod p semi-simplification V of V is strongly
cyclotomic-free1. Then V is potentially diagonalisable.

There are two new aspects of this result. The first is the range [0, p] which
we allow our Hodge–Tate weights to vary over; for unramified extensions of Qp

potential diagonalisability was previously only known for Hodge–Tate weights in
the range [0, p − 1]. See the work of Gao–Liu [GL14]. The second is with our
method, which opens the possibility of proving potential diagonalisability when
K is a possibly ramified extension of Qp (where potential diagonalisability is only
known for two dimensional representations with Hodge–Tate weights between 0 and
1, cf. [GK14, 3.4.1]). While we are unable to treat such K in this paper we hope
our methods will be useful in the more general situation.

As already mentioned, our starting point is with ideas originally employed by
Kisin. In [Kis06] Kisin identifies a collection of GK -representations on finite free Zp-
modules, those of finite E-height. This condition depends only upon the restriction
of the representation to GK∞ where K∞ =K(π1/p∞) for some choice of uniformiser
π ∈ K: a representation is of finite E-height if the etale ϕ-module associated to
its restriction to GK∞ admits a particular kind of lattice, what is now known as
a Breuil–Kisin module. Kisin proves that any Zp-lattice inside a crystalline (even
semi-stable) representation with Hodge–Tate weights in [0, h] is of E-height ≤ h. If
R◻VF

denotes the universal framed deformation ring of VF then the main construc-

tion of [Kis08] uses these Breuil–Kisin modules to build a projective R◻VF
-scheme

L≤h. The scheme-theoretic image of the morphism to SpecR◻VF
corresponds to a

quotient of R◻VF
parametrising deformations of E-height ≤ h. As not every finite

E-height representation is crystalline this quotient is, in general, too large. Instead
it provides an approximation to the crystalline quotient from which the desired
crystalline deformation ring is obtained as a further quotient. Unfortunately form-
ing this second quotient requires inverting p, obscuring the integral structure of the
deformation ring.

One exception is when h = 1. In this case any representation of E-height ≤ 1 is
crystalline. The E-height ≤ 1 quotient of R◻VF

is therefore precisely the crystalline

quotient, and so the geometry of L≤1, which may be understood through its defini-
tion in terms of semi-linear algebra, can then be used to study the geometry of the
crystalline deformation rings. This is the technique employed in [Kis09b].

Our aim is to refine the construction of L≤h so that something similar happens
for h > 1. For this we use results of Gee–Liu–Savitt and Ozeki (see Theorem 2.1.12)
which provide necessary and sufficient conditions for any representation of finite E-
height to be crystalline. In Section 2 we show this condition cuts out a closed sub-
scheme L≤hcrys of L

≤h. The scheme-theoretic image of the morphism L≤hcrys → SpecR◻VF

1See Definition 4.3.7.
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then corresponds to the quotient of R◻VF
parametrising crystalline deformations with

Hodge–Tate weights ≤ h (at least up to p-power torsion).
In general we do not understand the geometry of L≤hcrys. It is a closed subset

of an affine Grassmannian cut out by a seemingly complicated Galois condition.
However, if we restrict to the case in which K is unramified over Qp and h = p,
then we show that around the closed points of L≤pcrys this Galois condition is in fact
equivalent to a condition phrased solely in terms of semilinear algebra. This is the
main result of Section 3. In Section 4 we use this to describe the local geometry
of L≤pcrys. Provided VF is cyclotomic-free (a slightly weaker condition than that of
strongly cyclotomic-freeness appearing in the theorem above) we show that the Zp-
flat locus L○ ⊂ L≤pcrys is open and the completed local rings at closed points of L○

are power series rings.
In the last section we use all this to deduce consequences for crystalline defor-

mation rings. We prove the theorem above. We also make a conjecture (which
we prove in the two-dimensional case) on connectedness of the fibre of L○ over the
closed point of SpecR◻VF

for irreducible VF. We then explain, assuming this con-
jecture, how the cyclotomic-freeness assumption from the above theorem can be
weakened (but not removed). Finally we identify a good situation (when the fibre
of L○ over the closed point of SpecR◻VF

is zero-dimensional and reduced) in which
L○ can be used to show that each irreducible component of crystalline deforma-
tion rings is formally smooth. We conclude by illustrating this with some concrete
examples, recovering previous computations of [Kis09a] and [San14] in the case of
two-dimensional representation of GQp

.

Acknowledgements. I would like to thank Frank Calegari, Mark Kisin, Tong Liu
and James Newton for helpful conversations and correspondence. This work was
done at the Max Planck Institute for Mathematics, in Bonn, and it is a pleasure to
thank this institution for their support.

2. Crystalline deformation rings

2.1. Integral p-adic Hodge theory.

2.1.1. Let k be a finite field of characteristic p and let K0 = W (k)[ 1p ]. Fix K a

totally ramified extension of K0 of degree e. Also fix a uniformiser π of K and a
compatible system π1/p∞ of p-th power roots of π in an algebraic closure K of K.
Let E(u) ∈W (k)[u] denote the minimal polynomial of π over K0.

The ring S =W (k)[[u]] is equipped with a Frobenius ϕ which acts on W (k) as
the usual Witt vector Frobenius, and which sends u↦ up. This Frobenius extends
uniquely to a Frobenius on OE , the p-adic completion of S[ 1

u
], which we again

denote by ϕ.
Let C be the completion of K with integers OC . The inverse limit of the system

OC/p← OC/p←OC/p← . . .

(with transition maps given by x ↦ xp) is denoted OC♭ . By construction the p-th
power map on OC♭ is an automorphism. The obvious map lim

←Ðx↦xp
OC → OC♭ is a

multiplicative bijection which allows us to equip OC♭ with a valuation v♭ as follows.
If v denotes the valuation on OC normalised so that v(p) = 1 then v♭(x) ∶= v(x♯)
where x♯ ∈ OC is the image of x under the projection OC♭ = lim

←Ð

OC → OC onto

the first coordinate. This makes OC♭ into a complete valuation ring with field of



4 ROBIN BARTLETT

fractions C♭. The continuous GK-action on OC induces continuous GK-actions on
OC♭ and C

♭.
Let Ainf = W (OC♭). By functoriality of the Witt vector construction the GK -

action on OC♭ transfers to a GK-action on Ainf . Likewise we obtain a GK-action
on W (C♭). We also obtain Frobenius endomorphisms on Ainf and W (C♭) lifting
the p-th power maps on OC♭ and C♭. These endomorphisms commute with the
GK-actions.

The compatible system of p-th power roots of π ∈ K gives rise to an element
π♭ ∈ OC♭ with v

♭(π♭) = 1/e. The map of W (k)-algebras S → Ainf sending u ↦ [π♭]
(where [⋅] denotes the Teichmuller map) is an embedding compatible with the
Frobenius on either ring. This map extends to a Frobenius compatible embedding
OE →W (C♭) where OE denotes the p-adic completion of S[ 1

u
].

2.1.2. Let V be a finitely generated Zp-module equipped with a continuous Zp-
linear action of GK∞ . The results of [Fon90] assert that there exists a unique finitely
generated OE -submodule M ⊂ V ⊗Zp

W (C♭) such that

(2.1.3) M ⊗OE W (C♭) = V ⊗Zp
W (C♭)

and such that theW (C♭)-semilinear extension of the GK∞-action on V fixesM and
such that the restriction of the trivial W (C♭)-semilinear Frobenius on V induces

an isomorphism M ⊗OE ,ϕOE =∶ ϕ
∗M

∼
Ð→M . The construction of M is functorial in

V . In particular if V admits a GK∞ -equivariant Zp-linear action of a Zp-algebra A
then M can be viewed as a module over OE,A = OE ⊗Zp

A.

Definition 2.1.4. If V is a finite free Zp-module equipped with a continuous Zp-
linear action of GK , and if M is associated to V ∣GK∞

as in 2.1.2, then V has
E-height ≤ h if there exists a ϕ-stable finite free S-submodule M ⊂ M such that
(i) the induced map ϕ∗M =M ⊗S,ϕ S →M has cokernel killed by E(u)h and (ii)
there is an equality M⊗S OE =M .

The association of M to a representation of E-height ≤ h is a fully faithful
functor, cf. [Kis06, 2.1.12]. In particular there exists at most one M ⊂M as above;
we call this the Breuil–Kisin module associated to V .

2.1.5. As usual let Zp(1) denote the free rank one Zp-module consisting of com-

patible systems of p-th power roots of unity in K. Consider the ring of p-adic
periods B+dR defined in [Fon94]. There is a homomorphism Zp(1) → B+dR send-

ing ξ ↦ log([ξ]) ∶= ∑n≥1(−1)n+1 ([ξ]−1)nn
. Fix a Zp-generator ǫ of Zp(1) and set

t = log([ǫ]). We also write µ = [ǫ] − 1 ∈ Ainf .
As in [Col98, III.1] let Amax ⊂ B

+
dR be the subring of elements which can be

written as ∑n≥0 xn( [π♭]enpn ) ∈ B+dR with (xn)n≥0 a sequence in Ainf converging p-

adically to zero. Then B+max = Amax[ 1p ] and Bmax = B
+
max[1t ]. The Frobenius on

Ainf extends to each of these rings.
If V is a finite free Zp-module equipped with a continuous Zp-linear action of

GK then V ⊗Zp
Qp is crystalline if and only if the K0-vector space Dcrys(V ) ∶=(V ⊗Zp

Bmax)GK has dimension equal to rankZp
V .2

2The usual definition of a crystalline representation is made using the period ring Bcrys. If

Acrys ⊂ BdR consists of elements of the form ∑n≥0 xn
[π♭]en

n!
with xn ∈ Ainf converging p-adically

to zero, then B+crys = Acrys[ 1p ] and Bcrys = B+crys[ 1t ]. Since vp(n!) ≤ n and n ≤ vp((pn)!) we
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2.1.6. Suppose V is a representation of E-height ≤ h with corresponding Breuil–
Kisin module M. Set D = (M/uM)⊗W(k) K0. This is a K0-vector space equipped

with an bijective Frobenius ϕ∗D
∼
Ð→ D. We claim there exists ϕ,GK∞ -equivariant

identifications

(2.1.7) D ⊗K0
Bmax ≅M⊗S Bmax ≅ V ⊗Zp

Bmax

where GK∞ is made to act trivially on D. The right-hand identification follows
from the next lemma since Ainf[ 1µ] is a subring of Bmax.

Lemma 2.1.8. Let V be a representation of E-height ≤ h and M the corresponding
Breuil–Kisin module. Write Mϕ for the image of ϕ∗M →M. Then there exists a
ϕ,GK∞-equivariant identification

Mϕ
⊗S Ainf[ 1µ ] ≅ V ⊗S Ainf[ 1µ]

which recovers (2.1.3) after tensoring with W (C♭).
Proof. This follows by applying [BMS16, Lemma 4.26] to the Breuil–Kisin–Fargues
module Mϕ

⊗S Ainf = ϕ(M)⊗ϕ(S) Ainf .
3

�

For the left-hand side of (2.1.7), let Orig ⊂K0[[u]] denote the subring of power

series converging on the open unit disk, and consider λ =∏∞n=0 ϕn(E(u)
E(0)
) ∈ Orig. In

[Kis06, 1.2.6] a ϕ-equivariant inclusion

(2.1.9) D ⊗K0
Orig

↪Mϕ
⊗S O

rig

is constructed which is an isomorphism modulo u and which becomes an isomor-
phism after inverting ϕ(λ). It is also GK∞-equivariant, for the trivial GK∞-action
on both sides. Since the inclusion S→ Ainf extends to an embedding Orig

→ B+max,
which maps ϕ(λ) onto a unit in B+max, we obtain the left-hand side of (2.1.7).

We can now formulate the main result of [Kis06]. See also [Kis10, 1.2.1].

Proposition 2.1.10 (Kisin). If V is a GK-stable Zp-lattice inside a crystalline
representation with Hodge–Tate weights4 in [0, h] then V is of E-height ≤ h. Fur-
thermore:

(1) Dcrys(V ) ⊂ V ⊗Zp
Bmax is identified with D under (2.1.7).

(2) Tensoring (2.1.9) with the map Orig
→K given by u↦ π identifies Mϕ/E(u)Mϕ

with an OK-lattice inside Dcrys(V )K =Dcrys(V )⊗K0
K. Via the inclusion

Bmax ⊗K0
K → BdR we identify Dcrys(V )K = (V ⊗Qp

BdR)GK and, un-
der this identification, the surjection Mϕ

→ Dcrys(V )K induces a map of
Mϕ
∩E(u)iM into

F iDcrys(V )K ∶= (V ⊗Qp
tiB+dR)GK

which becomes surjective after inverting p.

see that ϕ(Amax) ⊂ Acrys ⊂ Amax. Thus ϕ(Bmax) ⊂ Bcrys ⊂ Bmax. Using this one see that

(V ⊗Zp
Bmax)GK = (V ⊗Zp

Bcrys)GK .
3Note that in loc. cit. S is viewed as a subring of Ainf via u↦ [π♭]p, which is different to our

embedding. This is the reason why Mϕ appears rather than M.
4Our Hodge–Tate weights are normalised so that the cyclotomic character has weight −1.
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Not every finite E-height representation is crystalline; indeed in [Gao19, 1.1.13]
it is shown that V has finite E-height if and only if V ∣GKm

is semi-stable where

Km = K(π1/pm) for a suitably large m. The starting point of this article is a
description identifying which finite E-height representations are crystalline. To
explain this fix a representation V of finite E-height with associated Breuil–Kisin
module M. Using Lemma 2.1.8, or simply (2.1.3), we obtain a ϕ,GK∞ -equivariant
identification

(2.1.11) M⊗SW (C♭) ≅ V ⊗Zp
W (C♭)

The GK-actions on V and W (C♭) therefore transfer to a ϕ-equivariant GK-action
on M⊗S W (C♭).
Theorem 2.1.12 (Gee–Liu–Savitt, Ozeki). Let V be a finite free Zp-module with
a continuous Zp-linear action of GK . Then the following are equivalent:

(1) V ⊗Zp
Qp is crystalline with Hodge–Tate weights in [0, h].

(2) V is of E-height ≤ h and the GK-action on M ⊗S W (C♭) induced from
(2.1.11) is such that (σ − 1)(m) ∈ M ⊗S [π♭]ϕ−1(µ)Ainf for every m ∈ M
and σ ∈ GK .

That (1) implies (2) is essentially [GLS14, 4.10], while the converse is proven in
[Oze14, Theorem 21]. As both these results are not formulated as we need (and
also because they assume that p > 2) we devote the rest of this section to a proof
of the theorem. Our argument that (1) implies (2) is essentially the same as that
in [GLS14], but our proof of the converse differs from Ozeki’s.

Proof that (2) implies (1) in Theorem 2.1.12. In fact we prove something stronger.
Namely consider V and M as in 2.1.6 and suppose the GK -action on V is such that,
when transferred to M⊗S Bmax via (2.1.7),

(2.1.13) (σ − 1)(m) ∈M⊗S [π♭]Ainf

for every m ∈ M and σ ∈ GK . Then we show V ⊗Zp
Qp is crystalline. For this it

suffices to show the GK -action is trivial on D. To this end let Smax ⊂ O
rig denote

the subring W (k)[[u, ue

p
]] ∩ Orig. Clearly the inclusion Orig

→ B+max maps Smax

into Amax. Recall that a power series ∑aiui with ai ∈ K0 lies in Orig if and only
if vp(ai) + ir → 0 for any r > 0. This series is contained in Smax if furthermore
v(ai) + i/e ≥ 0. By taking r = 1

e
we see Smax[ 1p ] = Orig, and so we can choose a

W (k)-lattice D○ ⊂ D so that every d ∈ D○ can be written as ∑ simi with si ∈ Smax

and mi ∈ M. If s ∈ Smax and σ ∈ GK then (σ − 1)(s) ∈ [π♭]
p
Amax since GK acts

trivially on the constant term. From this and (2.1.13) we deduce that

(σ − 1)(d) =∑(σ(si) − si)σ(mi) +∑ si(σ(mi) −mi) ∈M⊗S
[π♭]
p
Amax

for any d = ∑ simi ∈ D
○. There exists an m ∈ Z such that ϕ−1(D○) ⊂ 1

pmD
○. Thus

ϕ−n(D○) ⊂ 1
pnmD

○ for n ≥ 1. Since the GK-action is ϕ-equivariant we have

(σ − 1)(d) = ϕn ((σ − 1)(ϕ−n(d))) ∈ ϕn(M⊗S
[π♭]

pnm+1Amax) ⊂M⊗S
[π♭]p

n

pnm+1Amax

whenever d ∈ D○. However [π
♭]p

n

pnm+1 ∈ p
pn−nm−1Amax and so, since Amax is p-adically

complete, it must be that (σ − 1)(d) = 0. �
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Now we show (1) implies (2). One of the advantages of using B+max is that its
topology is better behaved than that of B+crys. In particular we have:

Lemma 2.1.14. Equip B+max with the topology making (pnAmax)n≥0 a basis of open
neighbourhoods of 0. Then B+max is complete and any principal ideal aB+max ⊂ B

+
max

is closed.

Proof. Completeness is immediate since Amax is p-adically complete. To check
aB+max is closed consider a sequence bi ∈ aB

+
max converging to b ∈ B+max. We must

show b ∈ aB+max. Since B+max is a domain it suffices to show bi
a

converges in B+max.
This follows from [Col98, III.2.1] which asserts that if ∣∣x∣∣ = infn∣pnx∈Amax

pn then

p−1∣∣x∣∣∣∣y∣∣ ≤ ∣∣xy∣∣. Hence ∣∣ bi
a
−

bj
a
∣∣ ≤ p

∣∣a∣∣
∣∣bi − bj ∣∣, and so as B+max is complete bi

a

converges. �

For σ ∈ GK consider ǫ(σ) ∈ Zp(1) defined by ǫ(σ)n = σ(π1/pn)/π1/pn

.

Lemma 2.1.15. Suppose V ⊗Zp
Qp is crystalline and that M is the Breuil–Kisin

module associated to V . Define a differential operator N over ∂ = u d
du

on M ⊗S

Orig[ 1
λ
] =D ⊗K0

Orig[ 1
λ
] by asserting N (d) = 0 for all d ∈ D. Then

σ(m) = ∑
n≥0

Nn(m)⊗ (− log([ǫ(σ)]))n
n!

for m ∈Mϕ
⊗S O

rig[ 1
ϕ(λ)
] and σ ∈ GK .

Proof. Since Mϕ
⊗S O

rig[ 1
ϕ(λ)
] = D ⊗K0

Orig[ 1
ϕ(λ)
] it is enough to consider m =

fd with d ∈ D and f ∈ Orig[ 1
ϕ(λ)
]. By definition Nn(fd) = ∂n(f)d. By (1) of

Proposition 2.1.10 we identify D = Dcrys(V ) and the GK-action on V fixes D;
hence σ(fd) = σ(f)d. The lemma therefore reduces to checking that

(2.1.16) ∑
n≥0

(− log([ǫ(σ)]))n
n!

∂n(f)
converges in B+max to σ(f). It suffices to consider f = ui. Then σ(f) = [ǫ(σ)i]ui. On
the other hand, using that ∂n(ui) = (−i)nui, we see (2.1.16) equals exp(log([ǫ(σ)]i))ui.
If this sum converges it will do so to [ǫ(σ)]iui which proves the lemma.

To show convergence it is enough to show log([ǫ(σ)])n

n!
lies in Amax and in this ring

converges p-adically to zero. Note that log([ǫ(σ)]) = αt for some α ∈ Zp. The proof
of [Col98, III.3.9] shows that t ∈ pAmax if p > 2 and t ∈ p2Amax if p = 2. Convergence

of log([ǫ(σ)])n

n!
then follows because pn

n!
∈ Zp converges p-adically to zero when p > 2,

and p2n

n!
converges p-adically to zero when p = 2. �

Proof that (1) implies (2) in Theorem 2.1.12. It suffices to prove, for m ∈
ϕ(M) and σ ∈ GK , that (σ − 1)(m) ∈ Mϕ

⊗S [π♭]pµAinf . Since Ainf[ 1µ ] is GK -

stable, Lemma 2.1.8 ensures that (σ − 1)(m) ∈Mϕ
⊗S Ainf[ 1µ].

On the other hand we know from the previous lemma that

(2.1.17) (σ − 1)(m) = ∑
n≥1

Nn(m)⊗ (− log([ǫ(σ)]))n
n!

Since ∂ ○ ϕ = pϕ ○ ∂ the operator N satisfies Nϕ = pϕN , and so

Nn(m) ∈ ϕ(N (M⊗S O
rig[ 1

λ
]))
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for n ≥ 1. By the definition of N we have N (M ⊗S O
rig[ 1

ϕ(λ)
]) ⊂M ⊗S uOrig[ 1

λ
].

Therefore Nn(m) ∈ Mϕ
⊗S [π♭]pB+max. Since log([ǫ(σ)]) ∈ tAmax = µAmax (the

equality follows from [Col98, III.3.9]) each term of (2.1.17) is contained in Mϕ
⊗S[π♭]pµB+max. Lemma 2.1.14 implies the entire sum (2.1.17) is contained in Mϕ
⊗S[π♭]pµB+max.

To complete the proof it suffices to show that Ainf[ 1µ]∩[π♭]pµB+max = [π♭]pµAinf .

This follows from the next two facts. The first is that if a ∈ Ainf ∩ [π♭]pB+max then
a ∈ [π♭]pAinf . This is proven with B+max replaced by B+crys in [Liu13, Lemma 3.2.2].
Using that ϕ(B+max) ⊂ B+crys we deduce the same applies for B+max. The second
fact is that if a ∈ Ainf ∩ µ

nB+max then a ∈ µnAinf . It suffices to prove this when
n = 1. The homomorphism θ ∶ Ainf → OC given by ∑[xi]pi ↦ ∑x♯ipi extends
to θ ∶ B+max → C and, since θ(ϕn(µ)) = 0, we must have θ(ϕn(a)) = 0 for all
n ≥ 0. The claim then follows from [Fon94, Proposition 5.1.3] which states that{a ∈ Ainf ∣ ϕn(a) ∈ ker θ for all n ≥ 0} = µAinf . �

2.2. The locus of crystalline Breuil–Kisin modules.

2.2.1. Let A be an Artin local ring with finite residue field F of characteristic p.
Suppose VA is a finite free A-module equipped with a continuous A-linear GK∞ -
action.

Since A is a finite Zp-module, as in 2.1.2 we obtain an OE,A = OE ⊗Zp
A-module

MA equipped with an isomorphism ϕ∗MA
∼
Ð→MA such that there exists a ϕ,GK∞ -

equivariant identification (2.1.3). Since VA is A-free MA is OE,A-free, cf. [Kis09b,
1.2.7]. For any A-algebra B set MB =MA ⊗A B and VB = VA ⊗A B.

Definition 2.2.2. For any A-algebra B define L≤h(VB) to be the set of finite
projective SB =S⊗AB-submodules MB ⊂MB satisfying MB ⊗SOE =MB and, if
Mϕ

B denotes the image of ϕ∗MB under ϕ∗MB →MB, satisfying

E(u)hMB ⊂M
ϕ
B ⊂MB

If B → B′ is a map of A-algebras and MB ∈ L
≤h(VB) then MB ⊗B B′ is a finite

projective SB′-submodule5 ofMB′ and ϕ
∗(MB⊗BB

′)→ (MB⊗BB
′) has cokernel

killed by Eh. Since OE ⊗S (MB ⊗B B′) ≅ MB ⊗B B′ we have that MB ⊗B B′ ∈
L≤h(VB′). Thus B ↦ L≤h(VB) is a functor on A-algebras.

The functor L≤h was introduced by Kisin. In [Kis08, 1.3] he proves:

Proposition 2.2.3 (Kisin). The functor B ↦ L≤h(VB) is represented by a pro-
jective A-scheme L≤hA . If A → A′ is a map of Artin local rings with finite residue

field then there are functorial isomorphisms L≤hA ⊗A A
′ ≅ L≤hA′ . Furthermore, L≤hA is

equipped with a very ample line bundle which is similarly functorial in A.

2.2.4. Now suppose VA is a finite free A-module equipped with a continuous A-
linear action of GK . Apply the previous discussion to VA∣GK∞

. If B is an A-algebra

and MB ∈ L
≤h(VB) then (2.1.3) induces a ϕ,GK∞ -equivariant isomorphism

(2.2.5) MB ⊗SW (C♭) ≅MB ⊗OE W (C♭) ≅ VB ⊗Zp
W (C♭)

The GK -action on VB and W (C♭) provides an action of GK on MB ⊗SW (C♭).
5Note MB ⊗SB

SB′ =MB ⊗SB
(SB ⊗B′ B) =MB ⊗B′ B.
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Definition 2.2.6. For any A-algebra B let L≤hcrys(VB) denote the set of MB ∈

L≤h(VB) such that the GK -action on MB ⊗SW (C♭) given by (2.2.5) satisfies

(σ − 1)(m) ∈MB ⊗S [π♭]ϕ−1(µ)Ainf

for all m ∈MB and all σ ∈ GK . Again B ↦ L≤hcrys(VB) is a functor on A-algebras.

We shall prove that B ↦ L≤hcrys(VB) is represented by a closed subscheme of L≤h.
First we need some lemmas.

Lemma 2.2.7. Let Q be a flat Zp-module and A a Zp-algebra with pnA = 0 for
some n ≥ 0. For any x ∈ A ⊗Zp

Q there exists a smallest ideal I(x) ⊂ A such that
x ∈ I(x)⊗Zp

Q.

Proof. We shall show there exists a smallest Zp-submodule M(x) ⊂ A such that
M(x)⊗Zp

Q contains x. Then I(x) will be equal to the ideal generated by M(x)
over A; if J ⊂ A is an ideal such that x ∈ J ⊗Zp

Q then M(x) ⊂ J and so I(x) ⊂ J .
We use that ⊗Zp

Q commutes with finite intersections, since Q is Zp-flat. Choose
a finitely generated Zp-submodule M ⊂ A with x ∈M ⊗Zp

Q. Since pnA = 0, M has
finite length and so contains only finitely many Zp-submodules. Thus, if M(x) is
the intersection of all M ′ ⊂M with x ∈M ′

⊗Zp
Q then x ∈M(x)⊗Zp

Q. If M ′′ ⊂ A
is any other Zp-submodule with x ∈ M ′′

⊗Zp
Q then x ∈ (M ′′

∩M) ⊗Zp
Q and so

M(x) ⊂ (M ′′
∩M) ⊂M ′′. Therefore M(x) is as desired. �

In the proof of the following lemma we use that both [π♭] and ϕ−1(µ) are units
in W (C♭). This can be seen by observing that modulo p both are non-zero in C♭.

Lemma 2.2.8. Let B be an A-algebra and MB ∈ L
≤h(VB). There exists a unique

ideal I ⊂ B such that, for any A-algebra homomorphism B → B′, MB ⊗B B′ ∈
L≤hcrys(VB′) if and only if B → B′ factors through B → B/I.
Proof. Consideration of Teichmuller expansions shows that if x ∈W (C♭) and px ∈
Ainf then x ∈ Ainf . Therefore the S-module Q ∶=W (C♭)/Ainf is Zp-flat, and so

0→ B′ ⊗Zp
Ainf → B′ ⊗Zp

W (C♭)→ B′ ⊗Zp
Q→ 0

is exact. Since MB′ ∶=MB ⊗B B
′ is finite projective over SB′ , applying MB′⊗SB′

to the above exact sequence yields a sequence

0→MB′ ⊗S Ainf →MB′ ⊗SW (C♭) →MB′ ⊗S Q→ 0

which is again exact. Thus MB′ ∈ L
≤h
crys(VB′) if and only if, for every m ∈MB′ and

every σ ∈ GK , the image of
(σ−1)(m)
[π♭]ϕ−1(µ)

∈MB′ ⊗SW (C♭)
in MB′ ⊗SQ is zero. In fact, since MB′ is generated over B′ by the image of MB,
we need only consider m contained in the image of MB →MB′ .

As MB is finite projective overSB there is an isomorphismMB⊕Z ≅ (B⊗Zp
S)r

for some SB-module Z. Thus we obtain an inclusion MB ⊗S Q ↪ (B ⊗Zp
Q)r. If

ei denotes the standard basis of (B ⊗Zp
Q)r then, for every m ∈MB and σ ∈ GK ,

the image of (σ−1)(m)
[π♭]ϕ−1(µ)

under MB ⊗S W (C♭) → MB ⊗S Q ↪ (B ⊗Zp
Q)r can be

written as

∑α(m,σ, i)ei
for some α(m,σ, i) ∈ B ⊗Zp

Q. Let I(m,σ, i) ⊂ B be the smallest ideal such that
α(m,σ, i) ∈ I(m,σ, i)⊗Zp

Q (which exists by Lemma 2.2.7) and let I = ∑m,σ,i I(m,σ, i).
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The discussion from the previous paragraph shows that I is as required by the
lemma. �

Proposition 2.2.9. There exists a closed A-subscheme L≤hA,crys of L≤hA which rep-

resents the functor B ↦ L≤hcrys(VB).
Proof. To any morphism SpecB → L≤h of A-schemes we associate MB ∈ L

≤h(VB)
and so an ideal IB ⊂ B as in Lemma 2.2.8. The uniqueness in Lemma 2.2.8 implies
that if B → B′ is an A-algebra homomorphism then IB′ is the ideal of B

′ generated
by the image of IB . Thus the association B ↦ IB defines a coherent sheaf of ideals
on L≤h. Let L≤hA,crys be the corresponding closed A-subscheme of L≤h. Since a

morphism SpecB → L≤h of A-schemes factors through L≤hA,crys if and only if IB = 0,

and this occurs if and only if MB ∈ L
≤h
crys(VB) it follows that L≤hA,crys represents

B ↦ L≤hcrys(VB). �

2.2.10. Now let A be a complete local Noetherian ring with residue field F and
maximal ideal mA. Let VA be a finite free A-module equipped with a continuous
action of GK .

Corollary 2.2.11. There exists a projective A-scheme L≤hA,crys which, for each i ≥ 1

represents the functor B ↦ L≤hcrys(VA ⊗A B) on A-algebras B with mi
AB = 0.

Proof. Set Ai = A/mi
A. The projective schemes L≤hAi,crys

form an inverse system of
schemes over Ai, and so a formal scheme over A. The very ample line bundles on
each L≤hAi

restrict to an inverse system of very ample line bundles on the L≤hAi,crys
.

As a consequence of [Gro61, Théorème 5.4.5] this formal scheme arises from a
projective A scheme as required. �

2.2.12. Suppose C is a local finite flat Zp-algebra and VC is a finite free C-
module equipped with a continuous C-linear action of GK . Then there is an
OE,C = OE ⊗Zp

C-module MC equipped with an isomorphism ϕ∗MC → MC and

a ϕ,GK∞ -equivariant identification MC ⊗OE W (C♭) ≅ VC ⊗Zp
W (C♭). In the obvi-

ous way we make sense of the sets L≤h(VC) and L≤hcrys(VC). Thus MC ∈ L
≤h(VC) if

MC ⊂MC is a ϕ-stable projective SC =S⊗Zp
C-module so that MC ⊗SOE =MC

and so that ϕ∗MC →MC has cokernel is killed by E(u)h. Further MC ∈ L
≤h
crys(VC)

if the GK-action on MC ⊗S W (C♭) ≅ VC ⊗Zp
W (C♭) is such that

(σ − 1)(m) ∈MC ⊗S [π♭]ϕ−1(µ)Ainf

for all σ ∈ GK and m ∈MC .

2.2.13. Let C be an A-algebra which is finite flat over Zp. A morphism SpecC →

L≤hA,crys gives morphisms L≤hA,crys → SpecCi, where Ci = C/piC. For any i ≥ 1 there is

a j such that mj
AC ⊂ p

iC, and so, by Corollary 2.2.11, such a system of morphisms

gives rise to MCi
∈ L≤hcrys(VCi

) with MCi
=MCi+1⊗Ci+1Ci. The limit MC = lim

←Ð

MCi

is a projective SC-submodule of MC = lim
←Ð

MCi
defining an element of L≤h(VC).

Under the identification

MC ⊗SW (C♭) = VC ⊗Zp
W (C♭)
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the GK action on MC ⊗SW (C♭) is such that, for each i ≥ 1 and each m ∈MC , σ ∈
GK , the images of the elements

(σ−1)(m)
[π♭]ϕ−1(µ)

in MCi
⊗S W (C♭) are contained in MCi

⊗S Ainf . Since C is finite free as a Zp-
module MC is projective, and hence free, over S. This implies these elements
are contained in MC ⊗S Ainf : since MC is free over S it suffices to show that if
x ∈W (C♭) is congruent to an element of Ainf modulo pi for every i ≥ 1 then x ∈ Ainf .
Considering the Teichmuller expansion of x shows this statement holds.

Conversely any MC ∈ L
≤h
crys(VC) gives rise to a unique C-point of L≤hA,crys.

Lemma 2.2.14. The morphism L≤hA,crys → SpecA becomes a closed immersion after
inverting p.

Proof. One argues exactly as in [Kis08, 1.6.4]. As explained in loc. cit., any point
of L = L≤hA,crys valued in a finite local Qp-algebra B is induced from a C-valued point

for a finite flat Zp-algebra C ⊂ B. We claim this implies L(B) → (SpecA)(B) is
injective. Indeed given two B-valued points of L inducing the same B-valued point
of SpecA the above produces a finite flat Zp-algebra C ⊂ B so that both B-valued

points factor through SpecB → SpecC. The last sentence of 2.1.4 implies L≤hcrys(VC)
consists of at most one element, and so 2.2.13, implies both B-valued points of L
are induced from the same C-valued point.

Taking B = E for any finite extension E/Qp shows that the proper morphism

L≤hA,crys⊗Zp
Qp → SpecA[ 1

p
] is injective on closed points, and at these closed points

induces an isomorphism of residue fields. Taking B = E[ǫ]/(ǫ2) shows that at
these closed points this morphism also induces an injection of tangent spaces. We
conclude it is a closed immersion. �

Proposition 2.2.15. Let A≤hcrys denote the quotient of A corresponding to the

scheme-theoretic image of L≤hA,crys → SpecA. Then

(1) The morphism L≤hA,crys → SpecA≤hcrys becomes an isomorphism after inverting
p.

(2) For any finite Qp-algebra B, a map A → B factors through A≤hcrys if and
only if VB = VA ⊗A B is crystalline with Hodge–Tate weights contained in[0, h].

Proof. Part (1) follows from Lemma 2.2.14. As a consequence, is B is a finite
Qp-algebra, a map A → B factors through A≤hcrys if and only if A → B is induced

from a B-valued point of L≤hA,crys.

In proving (2) we may assume B is local. As in the proof of Lemma 2.2.14, any
B-valued point of L≤hA,crys is induced from a C-valued point with C finite flat over

Zp. This in turn gives rise to an MC ∈ L
≤h
crys(VC). The fact that the GK-action on

MC⊗Zp
W (C♭) satisfies our usual condition implies, after Theorem 2.1.12, that VC =

VA ⊗A C is a Zp-lattice inside the crystalline representation VC[ 1p ] whose Hodge–

Tate weights are contained in [0, h]. Thus the same is true for VB = VC[ 1p ]⊗C[ 1
p
]B.

For the converse, suppose A → B is such that VB = VA ⊗A B is crystalline
with Hodge–Tate weights contained in [0, h]. Then there is a finite flat Zp-algebra
C ⊂ B so that A → B factors through C. As VC ⊗Zp

Qp is a GK -stable Qp-
subspace of VB , VC ⊗Zp

Qp is also crystalline with Hodge–Tate weights contained



12 ROBIN BARTLETT

in [0, h]. Theorem 2.1.12 implies there exists a Breuil–Kisin module MC and a
ϕ,GK∞ -equivariant identification

MC ⊗SW (C♭) ≅ VC ⊗Zp
W (C♭)

such that (σ−1)(m) ∈MC ⊗S [π♭]ϕ−1(µ)Ainf for every σ ∈ GK and every m ∈MC .
By functoriality MC is an SC-module, but it need not be projective. However, in
the second to last paragraph of the proof of [Kis08, 1.6.4] it is shown that, at the
cost of enlarging C, one can arrange that MC is projective over SC . Thus A → B

arises from a C-point of L for some C ⊂ B finite flat over Zp, and therefore from a

B-point of L. We conclude that A→ B factors through A≤hcrys. �

Remark 2.2.16. (1) The fact thatMC need not beSC -projective, even though
VC is projective as a C-module is related to the fact that the functor from
finite E-height representations to Breuil–Kisin modules is not exact.

(2) There is one instance in which VC being C-projective implies MC is SC -
projective. This is when C is the ring of integers of a finite extension of
Qp. See for example [GLS14, Proposition 3.4] for a proof. In particular, if
E/Qp is finite and V is a GK-stable OE-lattice inside a crystalline represen-
tation of GK then the Breuil–Kisin module associated to V is an element
of L≤pcrys(V ).

3. Strong divisibility

For the rest of the paper we assume K is an unramified extension of Qp.

3.1. Strong divisibility.

3.1.1. Let F be a finite field of characteristic p and VF a finite free F-module
equipped with a continuous F-linear action of GK∞ .

Definition 3.1.2. Let L≤pSD(VF) denote the set of M ∈ L≤p(VF) for which there
exists a k[[u]]-basis (mi) of M and integers ri such that (urimi) forms a k[[up]]-
basis of ϕ(M). We call M satisfying this condition strongly divisible.

We are going to relate L≤pSD(VF) with L≤pcrys(VF).6 Before doing so we record how

some basic operations on VF respect L≤pSD(VF) and L≤pcrys(VF).
Lemma 3.1.3. Let VF be as above and suppose WF is another continuous repre-
sentation of GK∞ on an F-vector space. Suppose M ∈ L≤pSD(VF) and N ∈ L≤p(WF).

(1) Suppose there exists a surjective ϕ-equivariant map of k[[u]]-modules f ∶M→
N. Then N ∈ L≤pSD(WF).

(2) Suppose there exists an injective ϕ-equivariant map of k[[u]]-modules f ∶N →
M with u-torsionfree cokernel. Then N ∈ L≤pSD(WF).

Proof. This follows from part (1) of [Bar18a, 5.4.6]. �

Lemma 3.1.4. For any finite extension F′ of F the rule M ↦M ⊗F F
′ defines a

map
L≤h(VF) → L≤h(VF ⊗F F

′)
Further, M ∈ L≤pSD(VF) if and only if its image lies in L≤pSD(VF⊗F F

′). If VF admits a

GK-action then likewise M ∈ L≤hcrys(VF) if and only if its image lies in L≤hcrys(VF⊗FF).
6Note that the latter set only makes sense when the GK∞ -action on VF extends to a continuous

GK-action.
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Proof. The only part which does not follow immediately from the definitions is
that M⊗FF

′ ∈ L≤pSD(VF⊗FF
′) implies M ∈ L≤pSD(VF). For this note that the inclusion

M →M⊗F F
′ is ϕ-equivariant with u-torsionfree cokernel. Thus we can apply (2)

of Lemma 3.1.3. �

Lemma 3.1.5. For any unramified F-valued character ψ of GK there is a bijection

L≤h(VF) ∼Ð→ L≤h(VF ⊗F F(ψ))
which identifies L≤p

SD
(VF) with L≤p

SD
(VF ⊗F F(ψ)) and, if VF admits a GK-action,

identifies L≤hcrys(VF) with L≤hcrys(VF ⊗F F(ψ)).
Proof. First we note there exists a y ∈ (k ⊗Fp

F)× such that σ(y) = ψ(σ)−1y for
all σ ∈ GK , due to the assumption ψ is unramified. Using y we can describe the
etale ϕ-module associated to VF(ψ) ∶= VF⊗F F(ψ) in terms of that associated to VF.
To do this consider the F-linear map VF → VF(ψ) given by v ↦ v ⊗ 1. Applying
⊗Zp

W (C♭) induces an identification

(3.1.6) VF ⊗Zp
W (C♭) ∼Ð→ VF(ψ)⊗Zp

W (C♭)
which is ϕ-equivariant when both sides are equipped with the Frobenius which is
trivial on VF and VF(ψ). If M ⊂ VF ⊗Zp

W (C♭) is the etale ϕ-module associated
to VF then its image M(ψ) under this map is a finitely generated OE -submodule
of (VF ⊗F F(ψ)) ⊗Zp

W (C♭) on which Frobenius acts by an isomorphism and on

which GK∞ acts on by the character ψ. Via the inclusion k → C♭ we can view y as
an element of C♭ ⊗Fp

F and so have yM(ψ) ⊂ VF(ψ)⊗Zp
W (C♭). The GK∞-action

on yM(ψ) is then trivial and, since ϕ(y)/y ∈ (k ⊗Fp
F)× ⊂ S×F, the Frobenius on

yM(ψ) is still an isomorphism. Hence yM(ψ) equals the etale ϕ-module associated
to VF(ψ).

Using this we can describe a map L≤h(VF) → L≤h(VF(ψ)) sending M ⊂M onto
yM(ψ) ⊂ yM(ψ) where M(ψ) equals the image of M under (3.1.6). Clearly this is
a bijection. When h = p it also identifies L≤p

SD
(VF) and L≤pSD(VF(ψ)) when when M

admits a basis as in Definition 3.1.2 then so does yM(ψ), and vice-versa. Finally, if
VF admits a GK -action and M ∈ L≤h(VF) then the GK-action on yM(ψ)⊗SW (C♭)
identifies with the GK-action onM⊗SW (C♭) twisted by ψ. It follows that identifies
L≤hcrys(VF) and L≤hcrys(VF(ψ)) are also identified. �

3.1.7. Note that for any F-algebra B the argument above shows that, for any
finite free B-module VB equipped with a continuous GK-action, there are functorial
bijections L≤hcrys(VB) ≅ L≤hcrys(VB ⊗B B(ψ)) and L≤h(VB) ≅ L≤h(VB ⊗B B(ψ)).

Finally let L/K be an unramified extension corresponding to a finite extension
l/k of residue fields. Set L∞ = LK∞. If SL ∶=W (l)[[u]] is embedded into W (C♭)
as with S, by mapping u onto [π♭], then we can make sense of L≤h(VF∣GL∞

) as in
Definition 2.2.2, replacing K and K∞ by L and L∞. It’s elements are modules over
SL,F = SL ⊗Zp

F. We write f ∶S → SL for the inclusion induced by the inclusion
k ⊂ l.

Lemma 3.1.8. (1) There is a map

f∗∶L≤h(VF) → L≤h(VF∣GL∞
)
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sending M ∈ L≤h(VF) onto M⊗S,f SL. If M ∈ L≤p(VF) then M ∈ L≤pSD(VF)
if and only if f∗M =M⊗S SL ∈ L

≤p
SD(VF∣GL∞

). If VF admits a GK-action

then this map sends L≤hcrys(VF) into L≤hcrys(VF∣GL
).

(2) If VF is a GL∞-representation then restriction of scalars along f describes
a map

f∗∶L
≤h(VF) → L≤h(IndGK∞

GL∞
VF)

Proof. The fact that there are maps f∗ and f∗ is explained in [Bar18a, 6.2.1 and
6.2.4]. The additional statements regarding the image of f∗ are all clear (for the
observation that M⊗S SL strongly divisible implies M is strongly divisible argue
as in Lemma 3.1.4 by considering the inclusion M →M ⊗S SL whose cokernel is
torsionfree). �

3.2. Strong divisibility in the irreducible case.

3.2.1. If Kt denotes the maximal tamely ramified extension of K then, since
K∞ is totally ramified over K, Kt

∩ K∞ = K. Thus the restriction map from
Gal(K∞Kt/K∞) to the tame quotient Gal(Kt/K) of GK is an isomorphism. As
such, any tamely ramified GK -representation is uniquely determined by its restric-
tion to GK∞ and conversely, any tamely ramified representation of GK∞ (i.e. one

which factors through Gal(K/K∞Kt)) extends uniquely to a tame representation
of GK . In particular this applies to irreducible representations of GK and GK∞ on
F-vector spaces, since both are tamely ramified.

Proposition 3.2.2. Suppose that VF is irreducible as a GK -representation. Then
L≤p
SD
(VF) = L≤pcrys(VF).

Before giving a proof we make the following observation:

3.2.3. As we are working with p-torsion coefficients, the condition for M ∈ L≤h(VF)
to lie in L≤hcrys(VF) can be simplified. The v♭-valuation of [π♭] modulo p is 1/e while
the v♭-valuation of ϕ−1(µ) modulo p is 1/(p − 1). Thus M ⊗S [π♭]ϕ−1(µ)Ainf =
M⊗k[[u]] I where I ⊂ OC♭ is the ideal u

1/e+1/(p−1)OC♭ . As K/Qp is assumed unram-

ified e = 1 and so M ∈ L≤h(VF) is contained in L≤hcrys(VF) if and only if the induced

GK-action on M⊗S W (C♭) =M⊗k[[u]] C
♭ is such that

(σ − 1)(m) ∈M⊗k[[u]] u
p/(p−1)OC♭

for every σ ∈ GK and m ∈M.

Proof of Proposition 3.2.2. Using Lemma 3.1.4 we can assume F is sufficiently
large so that [Bar18a, 2.1.2] applies. Thus there is an unramified extension L/K
such that VF ≅ Ind

GK

GL
WF for a one-dimensionalGL-representationWF. In particular

VF∣GK∞
≅ Ind

GK∞

GL∞
WF∣GL∞

.

3.2.4. We claim that if M ∈ L≤p(VF) then there exists an N ∈ L≤p(WF) so that
M ⊂ f∗N with M[ 1

u
] = (f∗N)[ 1u ]. This is essentially [Bar18a, 6.3.1] except that in

loc. cit. M is assumed to be strongly divisible, an assumption which turns out to
be unnecessary. To prove the claim consider the map VF∣GL∞

→WF corresponding

to VF ≅ Ind
GK

GL
WF under Frobenius reciprocity. Lemma 3.2.5 below produces a ϕ-

equivariant surjection f∗M → N for some N ∈ L≤p(WF). Via the usual adjunction
between f∗ and f∗ we obtain a non-zero map

M → f∗f
∗M → f∗N
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which is easily checked to be ϕ-equivariant. This map must be injective since
a non-zero kernel would induce a non-zero GK∞-subspace of VF. It must be an
isomorphism after inverting u because both M and f∗N have the same rank as
k[[u]]-modules.

Lemma 3.2.5. Let 0 →WF → VF → ZF → 0 be a GK∞-equivariant exact sequence.
If M ∈ L≤h(VF) then there exists W ∈ L≤h(WF) and Z ∈ L≤h(ZF) together with
ϕ-equivariant exact sequence

0→W→M→ Z → 0

which identifies with 0→WF → VF → ZF → 0 after base-changing to W (C♭).
Proof. Since the equivalence between GK∞-representations and etale ϕ-modules is
exact there is a ϕ-equivariant exact sequence 0 → NF → MF → PF → 0 of etale ϕ-
modules which identifies with 0→WF → VF → ZF → 0 after base-change to W (C♭).
Take W = M ∩ NF and Z = Im(M) ⊂ PF. It clear both are ϕ-stable projective
SF-modules. It is also clear that uhZ ⊂ Zϕ since the the same is true of M, and
so Z ∈ L≤h(ZF). Since Z is u-torsionfree, uhW = uhM ∩NF. As Wϕ =Mϕ

∩NF we
conclude uhW ⊂Mϕ. �

3.2.6. Return to the proof of Proposition 3.2.2 and fix N ∈ L≤p(WF) as in 3.2.4.
Since WF is one-dimensional we can describe N explicitly. We may suppose that l,
the residue field of L, admits an embedding into F. In this case SL,F = l[[u]] ⊗Fp

F = ∏θ∈HomFp(l,F)
F[[u]], where the identification is such that l acts on the θ-th

component of the product through θ∶ l → F. Viewing N as an F[[u]]-module via
the diagonal embedding into SL,F, it follows from [Bar18a, 6.1.1] that N admits an
F[[u]]-basis (eθ)θ∈HomFp(l,F)

satisfying

(3.2.7) ϕ(eθ○ϕ) = xurθeθ
for some x ∈ l ⊗Fp

F and integers rθ ≥ 0. Since N ∈ L≤p(WF) we have rθ ∈ [0, p].
This basis is chosen so that l acts on eθ through θ.

3.2.8. By twisting VF, and so WF, by an unramified character, which is harmless
by Lemma 3.1.5, we may assume that x in (3.2.7) equals 1. Under this assumption,
[Bar18a, 6.5.1] says that a finite free SF-submodule M ⊂ f∗N satisfying M[ 1

u
] =

(f∗N)[ 1u ] is an element of L≤pSD(VF) if and only if:

(1) If m ∈M then ϕ(m) ∈M, and if ϕ(m) ∈ up+1M then m ∈ uM.
(2) For every F-linear combination ∑αθeθ which is contained in M, and every

0 < r ≤ p, the F-linear combination

∑
rθ≡r modp

αθeθ

is contained in M also.

Observe that upM ⊂Mϕ ⊂M implies (1). Indeed, if ϕ(m) ∈ up+1M then ϕ(m) ∈
uMϕ. If ei is a k[[u]]-basis of M then m = ∑αiei for αi ∈ k[[u]] and ϕ(m) =
∑ϕ(αi)ϕ(ei); by definition the ϕ(ei) form a k[[u]]-basis of Mϕ so if ϕ(m) ∈ uMϕ

we must have each ϕ(αi) divisible by u. This implies each αi is also divisible by u.
Another consequence of (1) is that ueθ ∈ M for every θ ∈ HomFp

(l,F). This is
explained in the second paragraph after [Bar18a, 6.5.1].
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3.2.9. To finish the proof we have to show that, if M ∈ L≤p(VF) is contained in
f∗N, then (2) is satisfied if and only if M ∈ L≤pcrys(VF). The GK -action on VF

induces a continuous C♭⊗Fp
F-semilinear ϕ-equivariant action of GK on VF⊗Fp

C♭ =

M⊗k[[u]]C
♭. Conversely any such semilinear GK-action induces a GK -action on VF

extending the GK∞-action. Thus 3.2.1 implies there is at most one such semilinear
GK-action. This semilinear action of GK can be written explicitly as follows:

(3.2.10) σ(eθ) = η(σ)Θθeθ, σ ∈ GK

where Θθ = ∑[l∶Fp]−1
i=0 pirθ○ϕi and η(σ) ∈ OC♭ is the unique p

[l∶Fp]−1-th root of σ(u)/u
whose image in the residue field of OC♭ is 1. To verify this it suffices to check this
does indeed define a group action, that this action is continuous, that it induces the
trivial action of GK∞ on (f∗N)[ 1u ] = M[ 1u ], and is ϕ-equivariant. The first three
are straightforward to check, and checking the ϕ-equivariance comes down to the
identity

σ(urθ)η(σ)Θθ = urθη(σ)pΘθ○ϕ

which follows since

pΘθ○ϕ =
[l∶Fp]−1∑

i=0

pi+1rθ○ϕi = (p[l∶Fp]−1
− 1)rθ +

[l∶Fp]−1∑
i=0

pirθ○ϕi

Therefore this must be the GK-action coming from that on VF. To check the
condition from 3.2.3 we shall need:

Lemma 3.2.11. For σ ∈ GK let m = m(σ) be such that σ(u)/u ∈ Zp(1) is a
Zp-generator of pmZp(1). Then, for n ≥ 0,

v♭(η(σ)n − 1) = p1+m+vp(n)
p − 1

Proof. This easily reduces to the well-known calculation that v♭(ǫ − 1) = p/(p − 1)
for any Zp-generator ǫ ∈ Zp(1), cf. for example [Fon94, §5.1.2]. �

We have to show that (2) is equivalent to asking that (σ − 1)(m) ∈ M ⊗k[[u]]

up/p−1OC♭ for every m ∈M and σ ∈ GK (cf. 3.2.3). When m = uieθ for i ≥ 1 this

follows easily from Lemma 3.2.11 since (σ − 1)(uieθ) = ((σ(u)u
)iη(σ)Θθ − 1)(uieθ) =

(η(σ)Θθ+(p
[l∶Fp]−1)i

−1)(uieθ). To complete the proof we consider elements ∑αθeθ ∈
M with αθ ∈ F. We compute that

(σ − 1)(∑αθeθ)
η(σ) − 1 =∑(η(σ)Θθ − 1

η(σ) − 1 )αθeθ

=∑(1 + η(σ) + . . . η(σ)Θθ−1)αθeθ

=∑ rθαθeθ +∑βθueθ for some βθ ∈ OC♭

The last equality follows because η(σ) − 1 ∈ up/p−1OC♭ by Lemma 3.2.11, and so

1+ η(σ)+ . . . + η(σ)Θθ−1 ≡ Θθ ≡ rθ modulo up/p−1OC♭ . Since ueθ ∈M for every θ, it

follows that (σ−1)(∑αθeθ)
η(σ)−1

∈M⊗k[[u]] OC♭ if and only if

∑ rθαθeθ ∈M

Since v♭(η(σ) − 1) ≥ p/(p − 1), with equality when σ is chosen so that σ(u)/u is a

Zp-generator of Zp(1), we conclude that (σ − 1)(∑αθeθ) ∈M⊗k[[u]] u
p/p−1OC♭ for

every m ∈M and σ ∈ GK if and only if for every F-linear combination ∑αθeθ ∈M
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we have ∑ rθαθeθ ∈ M. It is easy to check the latter condition is equivalent to
(2). �

3.3. Strong divisibility in general.

Proposition 3.3.1. Suppose VF admits a continuous F-linear GK-action. Then
L≤pcrys(VF) ⊂ L≤pSD(VF).7

To prove this we will need to understand how L≤pSD and L≤pcrys behave in short
exact sequences.

3.3.2. Let 0 → WF → VF → ZF → 0 be a GK∞ -equivariant exact sequence and let
M ∈ L≤p(VF). Lemma 3.2.5 provides a ϕ-equivariant exact sequence

(3.3.3) 0→W→M→ Z → 0

with W ∈ L≤h(WF) and Z ∈ L≤h(ZF). Choosing an SF-splitting of (3.3.3) allows us
to identify M =W⊕ Z as SF-modules so that

ϕM = (ϕW + f ○ϕZ, ϕZ)
for some f ∈ Hom(Z,W)[ 1

u
]. Here Hom(Z,W) denotes the module of SF-linear

homomorphisms Z → W. Since Mϕ ⊂ M we must have f(Zϕ) ⊂ W and so, as
upZ ⊂ Zϕ, it follows that f ∈ 1

up Hom(Z,W).
We equip Hom(Z,W) with the Frobenius ϕ given by ϕ(g) = ϕW ○ g ○ϕ

−1
Z . Since

any two splitting of (3.3.3) differ by an element g ∈ Hom(Z,W), by choosing a
different splitting we replace f by f + (ϕ − 1)(g). If as usual Hom(Z,W)ϕ denotes
the SF-submodule of Hom(Z,W)[ 1

E
] generated by ϕ(Hom(Z,W)) then

(3.3.4) upHom(Z,W) ⊂ Hom(Z,W)ϕ ⊂ 1
up Hom(Z,W)

Furthermore, we canGK-equivariantly identify (Hom(Z,W)⊗k[[u]]C
♭)ϕ=1 = Hom(ZF,WF)

(the GK-action on Hom(ZF,WF) being given by f ↦ σ ○ f ○ σ−1) via the identifica-
tions (Z⊗k[[u]] C

♭)ϕ=1 = ZF and (W⊗k[[u]] C
♭)ϕ=1 =WF.

Proposition 3.3.5. In the situation of 3.3.2:

(1) If M ∈ L≤pSD(VF) then W ∈ L≤pSD(WF) and Z ∈ L≤pSD(ZF).
7Unlike in the irreducible case this inclusion is not always an equality. The problem arises

from the possibility that VF may admit two different GK-actions extending a given GK∞ -action.
Here is an example: suppose VF admits an F-basis (f1, f2) so that

σ(f1, f2) = (f1, f2)( 1 c(σ)

0 χ−1cyc(σ)
)

for a 1-cocycle c(σ). We compute that

σ(f1, u1/p−1f2) = (f1, u1/p−1f2)⎛⎝
1 σ(u1/p−1)c(σ)

0
σ(u1/p−1)

u1/p−1
χ−1cyc(σ)

⎞
⎠

There exists cocycle c such that c(σ) = 0 for σ ∈ GK∞ ; this occurs when VF is a tres ramifie

extension (cf. [GLS15, 5.4.2]). In this case the matrix representing σ on (f1, u1/p−1f2) is the

identity when σ ∈ GK∞ so M, the SF-span of f1 and u1/p−1f2, is contained in the etale ϕ-module

associated to VF. Since ϕ(f1, u1/p−1f2) = (f1, u1/p−1f2)( 1 0
0 u ) it is easy to see that M ∈ L≤1

SD
(VF).

However M /∈ L≤1crys(VF) since u1/p−1c(σ) is not contained in up/p−1OC♭ . The point is that VF does
not arise as the reduction modulo p of a crystalline representation with Hodge–Tate weights in
[0,1].
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(2) If W ∈ L≤pSD(WF) and Z ∈ L≤pSD(ZF) then M ∈ L≤pSD(VF) if and only if there
exists g ∈ Hom(Z,W) such that

f + (ϕ − 1)(g) ∈ Hom(Z,W)
Proof. Part (1) is a consequence of Lemma 3.1.3, while (2) follows from [Bar18b,
Lemma 4.1.3]. �

3.3.6. Now suppose 0 → WF → VF → ZF → 0 is an exact sequence of GK -
representations. As in 3.3.2, for any M ∈ L≤p(VF), there is an exact sequence
0→W →M → Z→ 0 so that, after choosing a splitting of this sequence and identi-
fying M =W⊕ Z, we have ϕM = (ϕW + f ○ϕZ, ϕZ) for some f ∈ 1

up Hom(Z,W).
As 0 → WF → VF → ZF → 0 and 0 → W → M → Z → 0 become identified after

applying ⊗k[[u]]C
♭ we obtain compatible ϕ-equivariant GK-actions on M ⊗k[[u]]

C♭,W♭
⊗k[[u]] C

♭ and Z♭ ⊗k[[u]] C
♭. Under the identification M =W⊕ Z the action

of σ ∈ GK can be written as

σM = (σW + fσ ○ σZ, σZ)
for some fσ ∈ Hom(Z,W)⊗k[[u]] C

♭ satisfying the following conditions:

(1) Since σM is a group action we must have fστ = fσ + σW ○ fτ ○ σ
−1
Z . If we

equip Hom(Z,W)⊗k[[u]]C
♭ with the GK -action given by σ(f) = σW○f ○σ−1Z

then this says that σ ↦ fσ is a 1-cocycle valued in Hom(Z,W) ⊗k[[u]] C
♭.

Since the GK-action on VF is continuous σ ↦ fσ must also be a continuous
cocycle.

(2) Since the GK∞ -action on VF is induced by the trivial action on M, we must
have σM(m) = m for every m ∈ M and σ ∈ GK∞ . Thus we must have
fσ(m) = 0 whenever m ∈ Z and σ ∈ GK∞ .

(3) Since σM is ϕ-equivariant we must have (ϕ − 1)(fσ) = (σ − 1)(f) for any
σ ∈ GK .

Proposition 3.3.7. In the situation of 3.3.6:

(1) If M ∈ L≤pcrys(VF) then W ∈ L≤pcrys(WF) and Z ∈ L≤pcrys(ZF).
(2) If W ∈ L≤pcrys(WF) and Z ∈ L≤pcrys(ZF) then M ∈ L≤pcrys(VF) if and only if

fσ ∈ Hom(Z,W)⊗k[[u]] u
p/p−1OC♭ for every σ ∈ GK .

Proof. For the second statement combine 3.2.3 with 3.3.6. For the first, as 0 →
W → M → Z → 0 becomes GK-equivariant after applying ⊗SW (C♭), it is clear

that (σ − 1)(z) ∈ Z ⊗k[[u]] u
p/p−1OC♭ for z ∈ Z. Thus Z ∈ L≤pcrys(VF). If n ∈W then

(σ − 1)(n) ∈M ⊗k[[u]] u
p/p−1OC♭ ∩W ⊗k[[u]] C

♭; this intersection equals W ⊗k[[u]]

up/p−1OC♭ because Z is u-torsionfree, and so W ∈ L≤pcrys(VF) also. �

Proof of Proposition 3.3.1. Using Lemma 3.1.4 we can replace F by a finite ex-
tension. As explained in the beginning of the proof of Proposition 3.2.2, this allows
us to assume each Jordan–Holder factor of VF is induced from a one-dimensional
representation over an unramified extension of K. Using (1) of Lemma 3.1.8 we
may then replace K by a suitably large (but finite) unramified extension so that
every Jordan–Holder factor of VF is one-dimensional. Under this assumption we
argue by induction on the length (equivalently the dimension) of VF.

The base case of the induction is handled by Proposition 3.2.2. Thus we can
assume VF fits into a GK-equivariant exact sequence 0 →WF → VF → ZF → 0 with
ZF one-dimensional over F and WF ≠ 0.
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As in 3.3.2 if M ∈ L≤p(VF) we obtain an exact sequence 0 → W → M → Z → 0
with W ∈ L≤p(WF) and Z ∈ L≤p(ZF). By choosing a splitting of this sequence we
identify M =W⊕ Z as SF-modules, with Frobenius given by

ϕM = (ϕW + f ○ϕZ, ϕZ)
for some f ∈ 1

up Hom(Z,W). As in 3.3.6 the GK -action on M⊗k[[u]] C
♭ induced by

the GK-action on VF may be written as

σM = (σW + fσ ○ σZ, σZ)
for some fσ ∈ Hom(Z,W) ⊗k[[u]] C

♭ satisfying (ϕ − 1)(fσ) = (σ − 1)(f). If M ∈
L≤pcrys(VF) then W ∈ L≤pcrys(WF), Z ∈ L≤pcrys(ZF), and
(3.3.8) fσ ∈ Hom(Z,W)⊗k[[u]] u

p/p−1OC♭

by Proposition 3.3.7. By induction W ∈ L≤pSD(WF) and Z ∈ L≤pSD(ZF). By Proposi-

tion 3.3.5, M ∈ L≤pSD(VF) if and only if

f ∈ Hom(Z,W) +ϕ(Hom(Z,W))
Using (3.3.4) and (3.3.8) we see (ϕ − 1)(fσ) = (σ − 1)(f) ∈ Hom(Z,W) ⊗k[[u]]

up/p−1OC♭ . Thus the proposition follows from the following claim. �

Claim. Any f ∈ 1
up Hom(Z,W) satisfying (σ−1)(f) ∈ Hom(Z,W)⊗k[[u]]u

p/p−1OC♭

must be contained in Hom(Z,W) +ϕ(Hom(Z,W)).
Proof of claim. We argue by a further induction, this time on the length of WF.
Recall that by assumption every Jordan–Holder factor of WF is one dimensional.
Thus the base case is when both WF and ZF is one dimensional. In this case, as
explained in 3.2.6, W and Z respectively admit F[[u]]-bases (wτ )τ∈HomFp(k,F)

and

(zτ)τ∈HomFp (k,F)
so that

ϕ(wτ○ϕ) = xurτwτ , ϕ(zτ○ϕ) = yusτ zτ
for x, y ∈ (k ⊗Fp

F)× and rτ , sτ ∈ [0, p]. The F[[u]]-linear homomorphism Fτ ∶

Z →W sending zτ ′ ↦ 0 for τ ′ ≠ τ and zτ ↦ wτ is SF-linear since it is compatible
with the k-action on Z and W (by construction k-acts on zτ and wτ by τ). Thus
Fτ ∈ Hom(Z,W) and together the Fτ form an F[[u]]-basis of Hom(Z,W) satisfying
ϕ(Fτ○ϕ) = xy−1utτFτ for tτ = rτ − sτ ∈ [−p, p]. Since the GK-actions on Z⊗k[[u]] C

♭

and W⊗k[[u]] C
♭ are as in (3.2.10) we also have that

σ(Fτ ) = η(σ)ΘτFτ , Θτ =
[k∶Fp]−1∑

i=0

tτ○ϕipi

To prove the claim it suffices to consider f = (∑i≥−p aiu
i)Fτ . Then (σ−1)(f) equals

∑
i≥−p

aiu
i(η(σ)Θτ+(p

[k∶Fp]−1)i
− 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(1)

)Fτ

(recall that η(σ) is a p[k∶Fp] − 1-th root of σ(u)/u). Choose σ so that σ(u)/u is a
Zp-generator of Zp(1). Since

Θτ + (p[k∶Fp]
− 1)i ≡ tτ − i modulo p
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Lemma 3.2.11 implies the v♭-valuation of (1) is p/(p− 1) if tτ − i is not divisible by
p, and is ≥ p2/(p − 1) otherwise. Hence

v♭ (ui (η(σ)Θτ+(p
[k∶Fp]−1)i))⎧⎪⎪⎨⎪⎪⎩

= p/(p − 1) + i if p does not divide tτ − i

≥ p2/(p − 1) + i otherwise

Since p2(p−1)+i ≥ p/(p−1) for i ≥ −p it follows that (σ−1)(f) ∈ Hom(Z,W)⊗k[[u]]

up/p−1OC♭ if and only if ai = 0 except possibly if i = tτ . In other words, if and only
if f ∈ Hom(Z,W) + ϕ(Hom(Z,W)).

Now we prove the inductive step. Let 0 →W 1
F →WF →W 2

F → 0 be an exact se-
quence of GK-representations. As in 3.3.2 and 3.3.6 we can writeW =W1

⊕W2 with
Wi ∈ L≤pcrys(W i

F), so that ϕW = (ϕW1+g○ϕW2 , ϕW2) for some g ∈ Hom(W2,W1), and
so that σW = (σW1 + gσ ○ σW2 , σW2) for some gσ ∈ Hom(W2,W1)⊗k[[u]] u

p/p−1OC♭ .

Applying Hom(Z,−) this allows us to identify H ∶= Hom(Z,W) with H1
⊕H2 where

Hi = Hom(Z,Wi), so that

ϕH = (ϕH1 + g̃ ○ϕH2 , ϕH2), σH = (σH1 + g̃σ ○ σH2 , σH2)
where g̃ ∈ Hom(H2,H1) sends h ↦ g ○ h, and where g̃σ ∈ Hom(H2,H1) ⊗k[[u]]

up/p−1OC♭ sends h ↦ gσ ○ h. If we write f = (f1, f2) ∈ 1
up (H1

⊕ H2) then, as

(σH − 1)(f) ∈ H⊗k[[u]] u
p/p−1OC♭ , we have

(σH2 − 1)(f2) ∈ H2
⊗k[[u]] u

p/p−1OC♭

(σH1 − 1)(f1) + g̃σ ○ σH2(f2) ∈ H1
⊗k[[u]] u

p/p−1OC♭

By our inductive hypothesis we deduce f2 = f
′
2 + f

′′
2 with f ′2 ∈ H

2 and f ′′2 ∈ ϕ(H2).
Thus, we can write

f = (f1 − g̃(f ′′2 ), f ′2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=y

+ (g̃(f ′′2 ), f ′′2 )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=z

with z ∈ ϕ(H). Since ϕ(H) ⊂ u−pH we have (σ − 1)(z) ∈ H ⊗k[[u]] u
p/p−1OC♭ .

Thus (σ − 1)(y) ∈ H ⊗k[[u]] u
p/p−1OC♭ . We also see y ∈ u−pH. This means that

to prove the result for f it suffices to do so for y, i.e. we can assume in the
above that f ′′2 = 0. Thus, f2 ∈ H

2 and so σH2(f2) ∈ H2
⊗k[[u]] OC♭ . Since g̃σ ∈

Hom(H2,H1) ⊗k[[u]] u
p/p−1OC♭ it follows that g̃σ ○ σH2(f2) ∈ H1

⊗k[[u]] u
p/p−1OC♭ .

Thus (σH1 − 1)(f1) ∈ H1
⊗k[[u]] u

p/p−1OC♭ and so f1 ∈ H
1
+ϕ(H1) by induction also.

We conclude that f ∈ H + ϕ(H1) ⊂ H +ϕ(H). �

4. Local structure of L≤pcrys in the unramified case

4.1. Commutative algebra.

Lemma 4.1.1. Let A be a local Noetherian Zp-algebra with A[ 1
p
] ≠ 0 and residue

field of characteristic p.

(1) If p ⊂ A[ 1
p
] is a maximal ideal and q denotes its preimage in A then dimAq ≤

dimA − 1.
(2) If the residue field of A is finite then A/q is finite over Zp and the residue

field of Aq is finite over Qp.

Proof. The inclusion A/q→ A[ 1
p
]/p becomes an isomorphism after inverting p, and

so dimA/q ≤ 1 by [Gro67, 10.5.1]. Since A/q is a domain and not a field (its residue
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field has characteristic p) it must be that dimA/q = 1. Thus dimAq ≤ dimA − 1.
For (2), by the above A/(q, p) is zero-dimensional. Thus A/(q, p) is an Artin local
ring with finite residue field; so it is finite over Fp. As such A/q is finite over Zp

(cf. [Sta17, Tag 031D]) and so A[ 1
p
]/p = Aq/qAq is Qp-finite. �

Lemma 4.1.2. Let A be a Noetherian local Zp-algebra with finite residue field.
Suppose that A is reduced, Zp-flat, and Nagata (cf. [Sta17, Tag 032E]). If mA

denotes the maximal ideal of A and j ≥ 1 then there exists a finite flat Zp-algebra

C such that A→ A/mj
A factors through a map A→ C.

Proof. If A is Zp-flat then so is its mA-adic completion. If A is Nagata and reduced
then its mA-adic completion is reduced, cf. [Sta17, Tag 07NZ]. Thus we may assume
A is mA-adically complete.

For every maximal ideal p ⊂ A[ 1
p
], Lemma 4.1.1 shows that A/(p ∩ A) is finite

flat over Zp. As A[ 1
p
] is Jacobson (cf. [Sta17, Tag 02IM]), the intersection of its

maximal ideals equals its nilradical, and this is zero because A is reduced and Zp-
flat. Thus ⋂(p ∩A) = 0, the intersection running over all maximal ideals in A[ 1

p
].

The same is true if the intersection runs over a suitably chosen countable subset{p1,p2, . . .} of all maximal ideals in A[ 1
p
].8 The qi = ⋂i

i=1(pi ∩ A) then form a

decreasing sequence of closed ideals in A whose intersection is zero. It follows from
[Bou61, III, §2, Proposition 8] that there exists an n such that qn ⊂ m

j
A. Setting

C = A/qn proves the lemma. �

4.2. Hodge types and connected components.

4.2.1. Let B be an arbitrary Zp-algebra and MB a finite projective SB-module

equipped with a map ϕ∗MB → MB with cokernel killed by E(u)h. For any B-
algebra B′ set MB′ =MB ⊗B B

′. For i ≥ 0 define

Ki(MB) = coker(Mϕ
B →MB/E(u)iMB)

This S⊗Zp
B-module is finite over B. On M

ϕ
B we define a filtration

F i(MB) =Mϕ
B ∩E(u)iMB

with graded piece gri(MB). Note that multiplication by E(u) induces an injection
gri−1(MB) → gri(MB). We let Gi(MB) denote its cokernel. Thus Gi(MB) is the
i-th graded piece of the filtered OK⊗Zp

B-module Mϕ
B/E(u)Mϕ

B whose i-th filtered

piece is the image of F i(MB). It follows from (2) of Proposition 2.1.10 that, for B
a finite Qp-algebra,

(4.2.2) Gi(MB) = gri(DdR(VB))
whenever MB is the Breuil–Kisin module associated to a crystalline representation
VB.

Lemma 4.2.3. (1) Ki(MB) is B-flat if and only if F i(MB)⊗BB
′
→ F i(MB′)

is surjective for every quotient B′ = B/I.
(2) Each Gi(MB) is OK ⊗Zp

B-finite and for every B-algebra B′ there are

natural OK ⊗Zp
B-module homomorphisms Gi(MB)⊗B B

′
→ Gi(MB′).

8The Artin–Rees lemma implies p = ⋂n≥1(p + mn
A) and so the intersection of the ideals in

{p+mn
A}p,n, which consists of countably many distinct ideals, equals the intersection of the p. Thus

there exists a countable subset {pi}i≥1 of the p’s, and integers ni ≥ 1, such that ⋂ p = ⋂i(pi+mni
A
).

Since pi ⊂ pi +mni
A

we have ⋂ p = ⋂ pi.
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(3) If (1) holds for all i ≥ 0 then the maps in (2) are isomorphisms, and each
Gi(MB) is B-flat.

This lemma does not require K to be unramified over Qp.

Proof. The kernel of MB/E(u)iMB → Ki(MB) is equal to M
ϕ
B/F i(MB). Thus

M
ϕ
B/F i(MB) is B-finite. As Ki(MB) is of formation compatible with base-change,

being the cokernel of a map between modules compatible with base-change, there
are surjective maps

(Mϕ
B/F i(MB))⊗B B

′
→M

ϕ
B/F i(MB′)

whose kernel is TorB1 (Ki(MB),B′). Since this kernel can be identified with the
cokernel of F i(MB)⊗B B

′
→ F i(MB′) we deduce (1). Since gri(MB) is the kernel

of the obvious surjection M
ϕ
B/F i+1(MB) →M

ϕ
B/F i(MB) we see each gri(MB) is

B-finite. We also obtain maps

gri(MB)⊗B B
′
→ gri(MB′)

If both TorB1 (Ki(MB),B′) and TorB1 (Ki+1(MB),B′) are zero then we also have

TorB1 (Mϕ
B/F i(MB),B′) = 0, and so these maps are isomorphisms. As Gi(MB) is

the cokernel of gri−1(MB)→ gri(MB) we deduce (2), and the first part of (3). For
the last part of (3); consider the following diagram for B′ and B-algebra.

gri−1(MB)⊗B B
′ gri(MB)⊗B B

′ Gi(MB) 0

0 gri−1(MB′) gri(MB′) Gi(MB′) 0

α

The rows are exact and one easily checks the squares commute. If the Ki(MB) are
B-flat for all i ≥ 0 then the vertical arrows in the diagram are isomorphism. Hence
α is injective and so, since the kernel of α identifies with TorB1 (Gi(MB),B′), we
deduce each Gi(MB) is B-flat. �

4.2.4. Let A be a complete Noetherian ring with finite residue field F of character-
istic p. Let VA be a finite free A-module equipped with a continuous A-linear action
of GK . To ease notation we write L for the A-scheme L≤pA,crys from Corollary 2.2.11.

Lemma 4.2.5. For i ≥ 0 there is a coherent sheaf Ki on L with the following
property: For any morphism SpecB → L of A-schemes, with B either finite free
over Zp or such that mn

AB = 0 for some n ≥ 1, let MB ∈ L
≤p
crys(VB) be the associated

Breuil–Kisin module. Then the global sections of the pullback of Ki to SpecB are
computed by Ki(MB).
Proof. Since the formation of Ki(−) is compatible with base-change (being the
cokernel of a map between modules compatible with base-change) we obtain a
compatible system of coherent sheaves on L ⊗A A/mn

A for n ≥ 1. Grothendieck’s
existence theorem [Gro61, 5.1.6] (see also [Sta17, Tag 088C]) produces the sheaf Ki

on L with the desired properties. �

The following is the key lemma and, unlike the previous results of this section,
crucially uses the assumption that K/Qp is unramified and that we restrict to
weights ≤ p.
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Lemma 4.2.6. Let L○ → L denote the closed immersion defined by the ideal con-
sisting of sections which are either nilpotent or p-power torsion. If p = 2 assume
that K∞ ∩K(µp∞) =K.9 Then the pull-back of Ki to L○ is flat.

Proof. It suffices to prove flatness at the closed points of L○. Thus, for a closed
point x ∈ L, it suffices to show Ki(MB) is B-flat whenever B = OL,x/mn

L,x for

some n ≥ 1 and any MB ∈ L
≤p
crys(VB). By definition OL,x is Zp-flat and reduced.

It is also Nagata (since it is a localisation of a finite type algebra over a complete
local ring, cf. [Sta17, Tag 032E]). Therefore Lemma 4.1.2, applied with A = OL,x,
reduces the problem to that of showing Ki(MC) is C-flat whenever C is a finite flat
Zp-algebra. This is the case by Lemma 4.2.7 below (this is where the assumption
that K∞ ∩K(µp∞) =K when p = 2 is used). �

Lemma 4.2.7. Let C be a local finite flat Zp-algebra, and suppose MC ∈ L
≤p
crys(VC)

for some continuous representation VC of GK on a finite free C-module. If p = 2
assume that K∞ ∩K(µp∞) =K. Then Ki(MC) is C-flat.
Proof. It suffices to showKi(MC) is Zp-flat and thatKi(MC⊗CC/pC) =Ki(MC)⊗C

C/pC is C/pC-flat, cf. [Sta17, Tag 00ML]. If p > 2 then, since VC[ 1p ] is crys-

talline, [GLS14, Theorem 4.20] ensures the existence of an S-basis (ej) of MC such
that M

ϕ
C is generated over S by E(u)riei for certain integers ri. If p = 2 and

K∞ ∩K(µp∞) =K then the same is true, as explained in [Wan17, Section 4]. This
implies Ki(MC) is p-torsion free.

To show flatness modulo p set B = C/pC and let B → B′ be a surjective ho-
momorphism. After Lemma 4.2.3 it suffices to show the natural map F i(MB) →
F i(MB′) is surjective. Proposition 3.3.1 implies MB is a strongly divisible. It
follows from [Bar18a, 5.4.6] and [Bar18a, 5.4.2] that if M is any strongly divisible
Breuil–Kisin module and M → N is a ϕ-equivariant surjection into a Breuil–Kisin
module which is free as a k[[u]]-module then F i(M) → F i(N) is surjective. Ap-
plying this with M =MB and N =MB′ proves the lemma. �

Remark 4.2.8. Note the second paragraph in the proof of Lemma 4.2.7 implies
Ki is flat on L⊗A A/mA. Thus it seems possible that Ki is flat on the whole of L,
though we do not know how to prove this.

Corollary 4.2.9. In the situation of Lemma 4.2.6 there is, for each i ≥ 0, a
coherent sheaf Gi on L○ with the following properties. For any morphism SpecB →
L○ of A-schemes, with B either finite free over Zp or such that mn

AB = 0 for some
n ≥ 1, let MB ∈ L

≤p
crys(VB) be the associated Breuil–Kisin module. Then the global

sections of the pullback of Gi to SpecB are computed by Gi(MB). Furthermore, Gi

is flat on L○.

Proof. Since Ki is flat on L○, Lemma 4.2.3 implies that on each L○ ⊗A A/mn
A the

formation of Gi(−) is compatible with base-change. Thus we obtain a compatible
system of coherent sheaves Gi on the L○ ⊗A A/mn

A. By (3) of Lemma 4.2.3 we
also know these sheaves are flat on L○⊗AA/mn

A. Grothendieck’s existence theorem
[Gro61, 5.1.6] produces a sheaf Gi as desired; that it is flat follows because each
Gi ⊗A A/mn

A is flat. �

9In [Wan17, Lemma 2.1] it is shown that the compatible system π1/p∞ from 2.1.1 can always
be chosen so that K∞ ∩K(µp∞) =K.
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4.2.10. Let E be a finite extension of Qp such that A is an OE-algebra. Let us fix a
p-adic Hodge type v, i.e. a finite free K⊗Qp

E-module Dv equipped with a grading

gri(Dv) by K ⊗Qp
E-submodules.10 Assume this grading is concentrated in degree[0, p]. If B is a finite local E-algebra then we say a crystalline representation VB

has p-adic Hodge type v if there are isomorphisms

gri(Dcrys(VB)) ∼Ð→ gri(Dv)⊗E B

for all i ∈ Z. Since we are assuming that K is unramified over Qp, p-adic Hodge
types can be described integrally: there exists a finite free OK ⊗Zp

OE-module D○
v

with a grading gri(D○
v
) by OK ⊗Zp

OE -submodules, so that Dv ≅ D
○
v
⊗OK

K as
graded modules. This is because OK is unramified over Zp and so OK ⊗Zp

OE is a
product of unramified extensions of OE .

4.2.11. Let B be a Zp-algebra. Since OK is unramified over Zp, a finite OK⊗Zp
B-

module which is flat over B is flat over OK⊗Zp
B (cf. [Sta17, Tag 00MH]). Provided

K∞ ∩K(µp∞) = K if p = 2, this implies that the flat coherent sheaf Gi on L○ is
a flat sheaf of OK ⊗Zp

OL○-modules. As such, if for each p-adic Hodge type v we
define Lv to be the set of x ∈ L○ with

Gix ≅ gr
i(D○

v
)⊗OE

OL○,x

as OK⊗Zp
OL,x-modules for each i ≥ 0, then Lv is a union of connected components

of L○.

Proposition 4.2.12. If p = 2 assume that K∞∩K(µp∞) =K. Let Av

crys denote the
quotient of A corresponding to the scheme-theoretic image of Lv → SpecA. Then

(1) The morphism Lv → SpecAv

crys becomes an isomorphism after inverting p.
(2) For any finite reduced Qp-algebra B, a map A→ B factors through Av

crys if
and only if VB = VA ⊗A B is crystalline with p-adic Hodge type v.

By construction Av

crys is reduced and Zp-flat and so (2) uniquely determines this
quotient.

Proof. For (1) use that, after Lemma 2.2.14, L○ → SpecA becomes a closed immer-
sion after inverting p. For (2) argue as in Proposition 2.2.15, the point being that if
C is a reduced finite flat Zp-algebra then any MC ∈ L

≤p
crys(VC) induces a C-valued

point of L○, and this point factors through Lv if and only if Gi(MC) ≅ gri(D○v) for
each i ≥ 0. �

4.3. Cyclotomic-freeness.

4.3.1. For this subsection let F be a finite field of characteristic p and consider
ZF and WF, both finite dimensional F-vector spaces equipped with a continuous
F-linear action of GK . Further let Z ∈ L≤pcrys(ZF) and W ∈ L≤pcrys(WF). It will be
useful to consider the following hypothesis:

Hypothesis 4.3.2. (1) Every continuous cocycle GK → Hom(Z,W) ⊗k[[u]]

up/p−1OC♭ given by σ ↦ Fσ from with (i) (ϕ − 1)(Fσ) = 0 for all σ ∈ GK ,
and (ii) Fσ = 0 for all σ ∈ GK∞ , is zero.

(2) If VF is a continuous representation of GK on a finite dimensional F-vector
space, and M ∈ L≤pcrys(VF) then (1) is satisfied when Z =W =M.

10Below, when we speak of a p-adic Hodge type v, the field E will be implicit in the data of v.
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Lemma 4.3.3. Suppose (1) of Hypothesis 4.3.2 is satisfied. Then

(1) Under the identification Hom(Z,W)⊗k[[u]]C
♭ = Hom(ZF,WF)⊗Fp

C♭ there

are inclusions Hom(Z,W)ϕ=1 ⊂ Hom(ZF,WF)GK .
(2) Let 0 → WF → Y → ZF → 0 be an exact sequence of GK∞-representations

and let Y ∈ L≤pSD(Y ) be such that Lemma 3.2.5 induces an exact sequence
0 →W → Y → Z → 0. Then there exists at most one way of extending the
GK∞-action on Y to a GK-action so that Y ∈ L≤pcrys(Y ) and 0→WF → Y →

ZF → 0 is GK-equivariant.

Proof. For (1) note that in general Hom(Z,W)ϕ=1 ⊂ Hom(ZF,WF)GK∞ . As a
consequence, if f ∈ Hom(Z,W)ϕ=1 then the 1-cocycle σ ↦ (σ − 1)(f) satisfies the
conditions of Hypothesis 4.3.2. Thus (σ − 1)(f) = 0 and so f is GK-equivariant.

For (2) recall from 3.3.6 that, after choosing an SF splitting of 0 →W → Y →

Z → 0 so that ϕY = (ϕW + f ○ ϕZ, ϕZ), the possible ways of extending the GK∞ -
action on Y to a GK -action as required by the lemma are in bijection with the set
of 1-cocycles σ ↦ fσ taking values in Hom(Z,W) ⊗k[[u]] u

p/p−1OC♭ and satisfying(ϕ − 1)(fσ) = (σ − 1)(f) and fσ = 0 for σ ∈ GK∞ . As the difference of two such
cocycles is a cocycle as in Hypothesis 4.3.2 we obtain (2). �

Lemma 4.3.4. Let 0→ ZF,1 → ZF → ZF,2 → 0 be a GK-equivariant exact sequence,
and suppose 0→ Z1 → Z → Z2 → 0 is the corresponding ϕ-equivariant exact sequence
from Lemma 3.2.5. If (1) of Hypothesis 4.3.2 is satisfied when Z is replaced by Z1

and Z2 then (1) of Hypothesis 4.3.2 is satisfied itself.

Proof. Applying Hom(−,W) to 0→ Z1 → Z → Z2 → 0 yields a ϕ-equivariant exact
sequence

(4.3.5) 0→ Hom(Z1,W) → Hom(Z,W)→ Hom(Z2,W)→ 0

which is GK-equivariant after applying ⊗k[[u]]C
♭. Thus, if σ ↦ Fσ is a 1-cocycle as

in Hypothesis 4.3.2 then so is its image in Hom(Z2,W)⊗k[[u]] u
p/p−1OC♭ . We con-

clude that if (1) of Hypothesis 4.3.2 is satisfied with Z replaced with Z2 then this im-

age must be zero. The sequence 4.3.5 remains exact after applying ⊗k[[u]]u
p/p−1OC♭

since each of its terms is k[[u]]-free. Therefore Fσ ∈ Hom(Z1,W)⊗k[[u]] u
p/p−1OC♭

for each σ. If (1) of Hypothesis 4.3.2 is satisfied with Z replaced with Z1 then we
must have Fσ = 0. Hence (1) of Hypothesis 4.3.2 itself is satisfied. �

Proposition 4.3.6. (1) of Hypothesis 4.3.2 is satisfied when either of the following
two conditions hold:

(1) Z ∈ L≤p−1crys (ZF).
(2) Every Jordan–Holder factor of ZF is absolutely irreducible and if Z is a

Jordan–Holder factor of ZF so that Z⊗FF(1) is unramified, then Z⊗FF(1)
is not a Jordan–Holder factor of WF ⊗F F.

11

Proof. By inducting on the length of ZF, and using Lemma 4.3.4, we can reduce to
the case that ZF is irreducible. Let σ ↦ Fσ be as in Hypothesis 4.3.2 and suppose
σ ∈ GK is such that Fσ ≠ 0. Let J be the kernel of the restriction of Fσ to Z. Since
Fσ is ϕ-equivariant, J is a ϕ-stable SF-submodule of Z. Since the image of Fσ is
u-torsionfree, J ⊗k[[u]] C

♭ = Z ⊗k[[u]] C
♭ only if J = Z, and this does not happen

11Here F(1) denotes the one-dimensional representation of GK over F on which GK-acts by

the cyclotomic character. Likewise for F(−1), but for the inverse of the cyclotomic character.
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since Fσ ≠ 0. Since ZF is irreducible as a GK -representation it is irreducible as a
GK∞-representation, cf. 3.2.1. Therefore J = 0 and Fσ is injective, otherwise the
GK∞-representation (J⊗k[[u]]C

♭)ϕ=1 ⊂ ZF contradicts the GK∞ -irreducibility of ZF.
For each z ∈ Z ∖ uZ and each n ≥ 1 there exists δn ∈ Z and zn ∈ Z ∖ uZ such that

ϕn(z) = upn
+...+p−δnzn

Using that upZ ⊂ Zϕ we deduce that δn ≥ 0 (the point being that ϕ(z) /∈ up+1Z, if
it was then ϕ(z)/u ∈ Zϕ which implies z ∈ u1/pZ ⊗k[[u]] OC♭ , a contradiction). In

particular there is a δ′ ≥ 0 such that ϕ(zn) = up−δ′zn+1 and so, since

ϕn+1(z) = upn+1
+...+p2

−pδnϕ(zn) = upn+1
+...+p2

+p−pδn−δ
′

zn+1

we see that δn+1 = pδn + δ
′ ≥ pδn. In particular, if δN > 0 for some N then δn →∞

as n→∞. As Fσ is injective and Z is finitely generated there exists γ > 0 such that
Fσ(z) /∈W⊗k[[u]] u

γ+p/(p−1)OC♭ for any z ∈ Z ∖ uZ. This implies

Fσ(ϕn(z)) = upn
+...+p−δnFσ(zn) /∈W⊗k[[u]] u

pn
+...+p−δn+γ+p/(p−1)OC♭

for any z ∈ Z ∖ uZ and n ≥ 0. As Fσ is ϕ-equivariant and Fσ ∈ Hom(Z,W) ⊗k[[u]]

up/(p−1)OC♭ we also deduce

Fσ(ϕn(z)) = ϕn(Fσ(z)) ∈W⊗k[[u]] u
pn+1/(p−1)OC♭

Note that pn + . . . + p − δn + γ − p/(p − 1) = pn+1/(p − 1) − δn + γ. If δN > 0 for some
N then, by choosing n large enough that −δn + γ < 0, we obtain a contradiction.
We conclude that Fσ = 0 unless, for all z ∈ Z ∖ uZ, ϕ(z) = upz′ for some z′ ∈ Z ∖ uZ.
Equivalently Fσ = 0 unless Zϕ = upZ.

This completes the proof when Z ∈ L≤p−1crys (ZF) since then up−1Z ⊂ Zϕ. Therefore
assume we are as in (2). If Zϕ = upZ then ϕ induces a semilinear automorphism

of u−p/p−1Z, and hence a k-semilinear automorphism of Z̃ ∶= (up/p−1Z) ⊗k[[u]] k.

Via the ϕ-equivariant section of OC♭ → k given by Teichmuller representatives, we
ϕ-equivariantly view Z̃ as a subset of Z ⊗k[[u]] C

♭. Since k is algebraically closed

Z̃ is generated by ϕ-invariant elements, and so Z̃ϕ=1 = ZF. It is a straightforward
exercise so show that, as a GK∞-representation, Z̃

ϕ=1 is a twist of an unramified

representation by the inverse of the cyclotomic character. Thus Z̃ϕ=1 has the same
description as a GK -representation, cf. 3.2.1. As ZF is absolutely irreducible it
follows that ZF is one-dimensional.

We have shown that if a non-zero cocycle σ ↦ Fσ exists as in Hypothesis 4.3.2
then ZF⊗FF(1) is an unramified character. Since Fσ ∣GK∞

= 0 this cocycle represents

a class in H1(GK ,Hom(ZF⊗FF,WF⊗FF)) which is killed by restriction to GK∞ . If

ZF⊗FF(1) is not a Jordan–Holder factor ofWF⊗FF then [Bar18b, 2.3.5] implies this

restriction map is injective, so Fσ = (σ−1)(F ) for some F ∈ Hom(ZF⊗FF,WF⊗FF)
which is fixed by GK∞ . Applying [Bar18b, 2.3.5] again then implies F is fixed by
GK , so Fσ = 0. We conclude (1) of Hypothesis 4.3.2 is satisfied. �

This motivates the following definition.

Definition 4.3.7. (1) We say VF is cyclotomic-free if every Jordan–Holder fac-
tor of VF is absolutely irreducible, and if Z is a Jordan–Holder factor of VF
such that Z ⊗F F(1) is unramified then Z ⊗

F
F(1) is not a Jordan–Holder

factor of VF ⊗F F.
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(2) We say VF is strongly cyclotomic-free is VF∣GL
is cyclotomic-free for all finite

unramified extensions L/K. Equivalently VF is strongly cyclotomic-free if
each Jordan–Holder factor is absolutely irreducible, and if an unramified
twist of F(−1) is a Jordan–Holder factor of VF then no Jordan–Holder factor
of VF is unramified.

Most of our results will only require us to assume cyclotomic-freeness. However,
to prove potential diagonalisability it will be necessary to replace a representation
VF by the restriction VF∣GL

for some sufficiently large unramified extension L/K so
that VF∣GL

has every Jordan–Holder factor one-dimensional. To apply our results
we will need VF∣GL

to be cyclotomic-free. The following example indicates why we
therefore require VF to be satisfy a stronger property than cyclotomic-freeness.

Example 4.3.8. Assume p = 2 and let ψ be a non-trivial character of GK which
becomes trivial when restricted to GL for L/K a finite unramified extension. Let
VF be an irreducible representation of GK of dimension [L ∶K]. Assuming F to be
sufficiently large, L/K is then the smallest unramified extension such that VF∣GL

has
every Jordan–Holder factor one-dimensional. However if V ′F = VF⊕F(ψ) then V ′F ∣GL

is not cyclotomic-free since F(ψ)∣GL
is trivial and, because p = 2, the cyclotomic

character is also trivial.

Corollary 4.3.9. If VF is cyclotomic-free then (2) of Hypothesis 4.3.2 holds for all
M ∈ L≤pcrys(VF).
Proof. This follows from Proposition 4.3.6 applied with Z =W =M. �

4.4. Local analysis of L≤pcrys.

4.4.1. With notation as in 4.3.1, a deformation of VF to a complete local W (F)-
algebra A, with residue field F, is a finite free A-module VA equipped with a
continuous A-linear action of GK together with a GK-equivariant isomorphism
VA ⊗A F ≅ VF.

Fix an F-basis ξF of VF. Then a framed deformation of VF is a deformation VA
together with an A-basis ξA which gets identified with ξF after applying ⊗AF. The
functor

D◻VF
(A) = {isomorphism classes of framed deformations of VF}

is representable by a complete local Noetherian W (F)-algebra R = R◻VF
. Let VR

denote the universal framed deformation. Applying Corollary 2.2.11 to R and VR
gives a projective R-scheme L ∶= L≤pR,crys.

Lemma 4.4.2. Let F′ be a finite extension of F and x an F′-valued point of L.
Suppose the corresponding Mx ∈ L

≤p
crys(VF′) satisfies (2) of Hypothesis 4.3.2. Then12

dimF′ OL,x(F′[ǫ]) ≤ d2 +∑
i>0

∑
n−m=i

dimF′ G
n(Mx) − dimF′ G

m(Mx)
Here F′[ǫ] is the ring of dual numbers over F′.

12It would be better to write ∑n+m=i dimF Gn(Mx)−dimF Gm(Mx) as Gi(Hom(Mx,Mx)), but
we have only defined Gi(−) for finite projective SF-modules equipped with maps ϕ∗M→M. The
image of the Frobenius on Hom(Mx,Mx) will not, in general, be contained in Hom(Mx,Mx).
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Proof. Replacing VF by VF⊗FF
′ we may suppose F = F′. An element of OL,x(F[ǫ])

give rise to a map R → F[ǫ], and so a framed deformation VF[ǫ] of VF to F[ǫ], and
an element MF[ǫ] ∈ L

≤p
crys(VF[ǫ]) satisfying MF[ǫ] ⊗F[ǫ] F =Mx. When viewed as an

SF-module MF[ǫ] fits into an exact sequence

0→Mx
ǫ
Ð→MF[ǫ] →Mx → 0

As explained in Proposition 3.3.5, an SF-splitting of this sequence can be chosen
so that ϕMF[ǫ]

= (ϕMx
+ f ○ϕMx

, ϕMx
) for some f ∈ Hom(Mx,Mx). Since choosing

a different splitting replaces f by f + (ϕ − 1)(g) for some g ∈ Hom(Mx,Mx) we
obtain a well-defined map

(4.4.3) OL,x(F[ǫ])→ Hom(Mx,Mx)/F 0Hom(Mx,Mx)
where F 0Hom(Mx,Mx) consists of those g ∈ Hom(Mx,Mx) for which ϕ(g) ∈
Hom(Mx,Mx). We remark that the target of (4.4.3) can be identified with Ext1SD(Mx,Mx),
the first Yoneda extension group in the exact category of strongly divisible Breuil–
Kisin modules, cf. [Bar18b, §4.1]. It is easy to check this map is F-linear.

If W is the multiset of integers containing i with multiplicity equal to the F-
dimension of Gi(Mx) then [Bar18b, 4.2.5] implies the right-hand side of (4.4.3) has
F-dimension equal to

dimFHom(Mx,Mx)ϕ=1 +Card{i − j > 0 ∣ i, j ∈ W}
Clearly the value of the double sum in the statement of the lemma equals the
cardinality of {i − j > 0 ∣ i, j ∈ W}, and so it remains to compute the dimension of
the kernel of (4.4.3). To do this we first claim this kernel is contained in the kernel
of the composite

OL,x(F[ǫ]) → R(F[ǫ])→ Ext1(VF, VF)
Here the last maps sends A→ F[ǫ] onto the exact sequence 0→ VF

ǫ
Ð→ VR⊗R F[ǫ]→

VF → 0. If MF[ǫ] corresponds to an element in the kernel of (4.4.3) then the
surjection MF[ǫ] →Mx admits a ϕ-equivariant SF-linear splitting s. Since MF[ǫ] →

M becomes GK-equivariant after applying ⊗k[[u]]C
♭ it follows that (σ − 1)(s) ∶=

σ ○ s ○ σ−1 − s is an element of Hom(Mx,Mx) ⊗k[[u]] u
p

p−1OC♭ for each σ ∈ GK .
Using Hypothesis 4.3.2 we deduce that s is GK -equivariant, and so s induces a
GK-equivariant splitting of VF[ǫ] → VF. This proves the claim.

To finish the proof it therefore suffices to show that the kernel of OL,x(F[ǫ]) →
R(F[ǫ])→ Ext1(VF, VF) has dimension equal to

≤ d2 −Hom(Mx,Mx)ϕ=1
We claim that the kernel of the first map in the this composite is a torsor for

Hom(VF, VF)GK /Hom(Mx,Mx)ϕ=1
(note this makes sense since by Lemma 4.3.3 we do have Hom(Mx,Mx)ϕ=1 ⊂
Hom(VF, VF)GK ). Since the kernel of the second map in this composite is clearly a
torsor for Hom(VF, VF)/Hom(VF, VF)GK , proving this claim will complete the argu-
ment.

To do this, note that any h ∈ Hom(VF, VF)GK produces an automorphism a+bǫ↦

a+h(b)ǫ of VF⊗FF[ǫ] which, when viewed as an automorphism of VF⊗FF[ǫ]⊗Fp
C♭,

acts on the set X ⊂ L≤pcrys(VF⊗FF[ǫ]) containing those elements corresponding to el-
ements in the kernel of OL,x(F[ǫ])→ R(F[ǫ]). This action is also transitive. To see
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this note that any two elements ofX are abstractly isomorphic as Breuil–Kisin mod-
ules by a ϕ-equivariant map inducing the identity modulo ǫ. By Lemma 4.3.3 this
isomorphism induces an automorphism of VF⊗FF[ǫ] which, being the identity mod-
ulo ǫ, comes from some h ∈ Hom(VF, VF)GK . Finally we note that Hom(Mx,Mx)ϕ=1
is the stabliser of any point of X under this action. �

Proposition 4.4.4. If p = 2 assume that K∞ ∩K(µp∞) = K. Let x ∈ L be an
F′-valued closed point of L with OL,x[ 1p ] ≠ 0, and assume that the corresponding

element of L≤pcrys(VF′) satisfies (2) of Hypothesis 4.3.2. Then OL,x is Zp-flat and
OL,x/p is regular. The completion of OL,x is a power series over W (F′).
Proof. Let p ∈ OL,x[ 1p ] be a maximal ideal and let q be its preimage in OL,x. Set

B equal to the residue field of (OL,x)q and C = OL,x/q ⊂ B. By Lemma 4.1.1 we
know B is a finite extension of Qp and C is finite flat over Zp.

Let y ∈ L denote the image of SpecB → L. Since L[ 1
p
] is Jacobson and B is finite

over Qp, y is closed in L[ 1
p
], cf. [Sta17, Tag 01TB]. The map SpecC → L corre-

sponds to MC ∈ L
≤p
crys(VC) with MC ⊗C F′ the Breuil–Kisin module corresponding

to x. Lemma 4.2.7 and Lemma 4.2.3 imply that Gi(MC ⊗C F′) ≅ Gi(MC) ⊗C F′.
If VB = VC ⊗C B is the representation of GK induced by y then VB is crystalline
and we also have Gi(MC) ⊗C B ≅ gri(DdR(VB)), cf. 4.2.2. If Mx ∈ L

≤p
crys(VF)

corresponds to x then we deduce

dimF′ G
i(MC ⊗C F′) = dimB gri(DdR(VB))

From Proposition 2.2.15 we know L[ 1
p
] = SpecR≤pcrys[ 1p ]. By [Kis08, 2.6.2] and

[Kis08, 3.3.8] the connected component of R≤pcrys[ 1p ] containing y is equidimensional

of dimension

d2 +∑
i>0

dimF gr
i(DdR(Hom(VB , VB)) =
d2 +∑

i>0

∑
n−m=i

dimF gr
n(DdR(VB)) − dimF gr

m(DdR(VB))
Since y is a closed point of L[ 1

p
] this is the dimension of OL,y = (OL,x)q. From

Lemma 4.4.2 we deduce

dimFOL,x(F[ǫ]) ≤ dimOL,y
On the other hand

dimOL,y ≤ dimOL,x − 1 ≤ dimOL,x/p
We’ve used Lemma 4.1.1 for the first inequality and [Sta17, Tag 00OM] for the
second. Hence OL,x/p is regular and these two displayed inequalities are equalities.

To show OL,x is Zp-flat, note that p is in the maximal ideal of OL,x, and so
dimOL,x[ 1p ] ≤ dimOL,x − 1 = dimOL,y. As OL,y is obtained from OL,x[ 1p ] by
localisation dimOL,y ≤ dimOL,x[ 1p ] and we have equality. Let I ⊂ OL,x be the

ideal of elements killed by a power of p. Then OL,x[ 1p ] = (OL,x/I)[ 1p ] and so

dimOL,x/p = dimOL,x − 1 = dimOL,x[ 1p ] ≤ dimOL,x/I − 1 ≤ dimOL,x/(I, p)
We conclude OL,x/p and OL,x/(I, p) have the same dimension. Since OL,x/p is
regular the image of I in OL,x/p must be zero, and so I ⊂ pOL,x. As such any x ∈ I
can be written as x = py; by the definition of I we see y ∈ I and so I ⊂ ∩pnOL,x = 0.



30 ROBIN BARTLETT

We conclude OL,x is Zp-flat. That the completion of OL,x at its maximal ideal is
a power series ring is then a standard consequence of the fact that OL,x is Zp-flat
and OL,x/p is regular. �

Corollary 4.4.5. Assume that VF is cyclotomic-free and that K∞ ∩K(µp∞) = K
if p = 2. The closed subscheme of L defined by the ideal of p-power torsion sections
is equal to a union of connected components of L, and is regular. This closed
subscheme therefore coincides with L○ defined in Lemma 4.2.6.

Proof. Since VF is cyclotomic-free, Proposition 4.4.4 implies that a closed point
x ∈ L is contained in L○ if and only if OL,x is Zp-flat. Further, if this is the case
then OL,x is regular. Flatness implies L○ ⊂ L is open, cf. [Sta17, Tag 00RC]. We
see L○ is regular as it is regular at closed points. �

5. Applications to deformation rings

5.1. Potential diagonalisability.

5.1.1. Now consider a finite extension E of Qp, with residue field F, and a finite
free OE-module V equipped with a continuous OE-linear action of GK . Assume
that V [ 1

p
] is crystalline of p-adic Hodge type v. Let VF = V ⊗OE

F and let Rv

crys

denote the quotient of R◻VF
from Proposition 4.2.12 (or more generally the quotient

defined in [Kis08] if v is not concentrated in degrees [0, p]). If ξ is an OE -basis
of V , we say (V, ξ) is diagonalisable if the corresponding point of Rv

crys lies on the

same irreducible component13 of Rv

crys as an OE
-valued point (here O

E
denotes the

ring of integers in an algebraic closure of E) whose corresponding representation is
a direct sum of crystalline characters. Say V is potentially diagonalisable if V ∣GL

is diagonalisable for some finite extension L of K. These notions were introduced
in [BLGGT14, 1.4].

Lemma 5.1.2. (1) Whether or not V is potentially diagonalisable is indepen-
dent of the choice of ξ.

(2) If V ′ is a GK -stable OE-lattice inside V [ 1
p
] then V is potentially diagonal-

isable if and only if V ′ is.
(3) If V [ 1

p
] admits a GK-stable filtration then V is potentially diagonalisable

if and only if each graded piece is potentially diagonalisable. In particular
this is the case if each graded piece is one-dimensional.

Proof. Both (1) and (2) follow from [BLGGT14, 1.4.1]. For (3) we refer to [GL14,
2.1.2]. �

We now prove the theorem from the introduction. Recall the definition of
strongly cyclotomic-free is given in Definition 4.3.7.

Theorem 5.1.3. Assume F is sufficiently large and that the p-adic Hodge-type v is
concentrated in degree [0, p]. If VF is strongly cyclotomic-free then V is potentially
diagonalisable.

13Since Rv

crys is Zp-flat, this is equivalent to asking that the image of their generic fibres lie on

the same irreducible component of Rv

crys[ 1p ].
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Proof. First, if p = 2 then we choose our compatible system of p-th-power roots
of a uniformiser of K so that K∞ ∩K(µp∞) = K. This can always be done, cf.
[Wan17, Lemma 2]. As is VF strongly cyclotomic-free, VF∣GL

is strongly cyclotomic-
free for any finite unramified extension L/K. As F is sufficiently large we may
therefore assume each Jordan–Holder factor of VF is one-dimensional. Under these
assumptions we claim there exists another deformation V ′ of VF such that:

● V ′[ 1
p
] is crystalline with Hodge–Tate weights in [0, p].

● Every Jordan–Holder factor of V ′[ 1
p
] is one-dimensional.

● If M and M′ are the Breuil–Kisin modules associated to V and V ′ respec-
tively, then M⊗OE

F =M′
⊗OE

F in L≤pcrys(VF).
Such a V ′ is constructed below, cf. Corollary 5.1.6 below.

Assuming for now that V ′ can be constructed we now explain how this implies
potential diagonalisability of V . Let L = L≤pR,crys and L○ ⊂ L be the Zp-flat locus

from Corollary 4.4.5. Then it follows that M and M′ induce OE-valued points of L○

(cf. (2) of Remark 2.2.16). The image of the closed point in SpecOE under these
two maps coincide, and so both OE-points lie on the same connected component of
L○. By Corollary 4.4.5, L○ is normal, and so these points lie on the same irreducible
component. Hence their images in Rv

crys lie in the same irreducible component. By
(3) of Lemma 5.1.2 we know V ′ is potentially diagonalisable, and so V is potentially
diagonalisable also. �

To complete proof of Theorem 5.1.3 we must construct a V ′ as above. Thus we
make the following definition:

Definition 5.1.4. Let MF ∈ L
≤p(VF). We say MF admits a crystalline lift if there

exists a finite extension E/Qp with residue field F′ containing F and a finite free

OE-module V equipped with a continuous OE-linear action of GK so that (i) V [ 1
p
]

is crystalline with Hodge–Tate weights in [0, p], (ii) V ⊗OE
F′ = VF ⊗F F

′, and (iii)
if M denotes the Breuil–Kisin module associated to V then M⊗OE

F′ =MF ⊗F F
′

in L≤p(VF′)
For the next lemma consider a GK∞-equivariant exact sequence 0→WF → VF →

ZF → 0 of finite dimensional F-vector spaces. If MF ∈ L
≤p(VF) then Lemma 3.2.5

produces an exact sequence 0→WF →MF → ZF → 0.

Lemma 5.1.5. Assume that W ∈ L≤pcrys(W ) and Z ∈ L≤pcrys(Z) are crystalline lifts
of WF and ZF respectively. Assume that WF ⊕ ZF satisfies (2) of Hypothesis 4.3.2,
and that MF from the previous paragraph is strongly divisible. Then there exists a
crystalline lift M ∈ L≤pcrys(V ) of MF such that

(1) M fits into a ϕ-equivariant exact sequence 0 →W →M → Z → 0 of SOE
-

modules which recovers 0 →WF →MF → ZF → 0 after applying basechang-
ing to F′.

(2) V fits into a GK-equivariant exact sequence 0 → W → V → Z → 0 which
recovers 0→W→M → Z → 0 after basechanging to W (C♭).

In particular if both ZF and WF are cyclotomic-free then ZF⊕WF is cyclotomic-
free also, and so in this case (1) of Hypothesis 4.3.2 is satisfied for WF ⊕ ZF. We
remark also that a similar result is proven [Bar18b, 5.3.1] but with a different notion
of cyclotomic-free.
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Proof. The element WF ⊕ ZF ∈ L
≤p
crys(WF ⊕ ZF) defines a closed point x of the

R = R◻WF⊕ZF
-scheme L = L≤pR,crys from Corollary 2.2.11. Also W ⊕ Z defines an

OE-valued point y of L through which x factors.
View the extension 0 → WF → MF → ZF → 0 as an extension of WF ⊕ ZF by

itself. By assumption MF is strongly divisible so we obtain an element of the set
Ext1SD(WF⊕ZF,WF⊕ZF) described in the proof of Lemma 4.4.2. It follows from the

proof of Proposition 4.4.4 that the map OL,x(F[ǫ])→ Ext1SD(WF ⊕ZF,WF ⊕ZF) in
(4.4.3) is surjective. Thus there is a tangent vector x′∶SpecF[ǫ]→ L mapping onto
this extension class. Since the completion of OL,x is a power series ring over W (F)
the point y factors through a morphism SpecOE[ǫ] → L lifting x′ (here OE[ǫ]
denotes the ring of dual numbers over OE). This morphism induces an extension
0 → W ⊕ Z → V ′ → W ⊕ Z → 0 as well as an M′ ∈ L≤pcrys(V ′) fitting into an exact
sequence

0→W⊕ Z →M′
→W⊕ Z → 0

From this we obtain the representation V and M ∈ L≤pcrys(V ) as desired. �

Corollary 5.1.6. Suppose VF is cyclotomic-free and every Jordan–Holder factor is
one-dimensional. Let MF ∈ L

≤p
SD
(VF). Then MF admits a crystalline lift V so that

every Jordan–Holder factor of V [ 1
p
] is one-dimensional.

Proof. If VF is one dimensional then the result is easy (see for example part (1)
of [GLS14, Lemma 6.3]). For the general case induct on the length of VF using
Lemma 5.1.5. �

In particular we see M ∈ L≤pcrys(VF).
5.2. A possible improvement. We would now like to explain how Theorem 5.1.3
can be strengthened, assuming a conjectural statement regarding the fibre of L over
the closed point of SpecR.

5.2.1. As usual let F denote a finite field of characteristic p and let VF denote a
finite-dimensional F-vector space equipped with a continuous F-linear action of GK .
Let R = R◻VF

and L = L≤pR,crys. We also let LF = L ⊗R F be the fibre of L over the

closed point of SpecR.

5.2.2. Let us first assume VF is absolutely irreducible and F is sufficiently large,
so that VF = IndGK

GL
WF with L/K unramified and WF one-dimensional. We also

assume that the residue field l of L embeds into F. Recall from Lemma 3.1.8 that
there is a map f∗∶L

≤p(WF) → L≤p(VF). It follows from 3.2.9 and Lemma 3.2.11
that the image of this map lies in L≤pcrys(VF).
Conjecture 5.2.3. With VF as in 5.2.2, every closed point of LF lies in the same
connected component as a closed point arising from f∗N for some N ∈ L≤p(WF).

We are going to prove this when VF is 2-dimensional. Before doing so we record
some consequences of this conjecture.

Lemma 5.2.4. Suppose Conjecture 5.2.3 holds, and if p = 2 that K∞∩K(µp∞) =K.
Then any M ∈ L≤pcrys(VF) admits a crystalline lift.

In particular we deduce L○ = L in this situation.
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Proof. We have to show the local ring of L at the closed point corresponding
to M is non-zero after inverting p. After Corollary 4.4.5 it suffices to show every
connected component of L contains at least one closed point admitting a crystalline
lift. Using the conjecture we are reduced to proving that, if N ∈ L≤p(WF), f∗N
admits a crystalline lift, and this is easy. Choose a crystalline character lifting N

and consider the induction of that character from GL to GK . �

Lemma 5.2.5. Suppose Conjecture 5.2.3 for all absolutely irreducible VF, and if
p = 2 that K∞ ∩ K(µp∞) = K. Then any M ∈ L≤pSD(V ′F) with V ′F cyclotomic-free
(but not necessarily irreducible) admits a crystalline lift V such that every Jordan–
Holder factor of V [ 1

p
] has irreducible reduction modulo p.

Proof. Using Lemma 5.2.4 this follows as in Corollary 5.1.6, by inductively apply-
ing Lemma 5.1.5. �

Corollary 5.2.6. Suppose conjecture 5.2.3 holds for all absolutely irreducible VF.
Then Theorem 5.1.3 holds with strong cyclotomic-freeness replaced by cyclotomic-
freeness.

Proof. First suppose the V ⊗OE
F = VF is irreducible. Conjecture 5.2.3 then implies

V lies in the same irreducible component of Rv

crys as a point obtained by inducing a
crystalline character over an unramified extension. Since such points are potentially
diagonalisable (after a finite extension they become a sum of crystalline characters)
this proves the result in the irreducible case.

For the general case, we know after Lemma 5.2.5 that V lies in the same com-
ponent as a point whose Jordan–Holder factors are all irreducible modulo p. The
previous paragraph implies each of these Jordan–Holder factors is potentially diag-
onalisable, and so Lemma 5.1.2 implies the point itself is potentially diagonalisable.
We conclude V is also. �

Proposition 5.2.7. Conjecture 5.2.3 holds if VF is two-dimensional.

Proof. Replacing VF by an unramified twist (which is allowable by Lemma 3.1.5
and the comment made in 3.1.7) we can assume the situation is as in the proof of
Proposition 3.2.2, cf. in particular 3.2.4 and 3.2.6. Thus there is an N ∈ L≤p(WF)
with generators (eθ)θ∈HomFp(l,F)

satisfying

ϕ(eθ○ϕ) = urθeθ, 0 ≤ rθ ≤ p

together with an inclusion M ⊂ f∗N (where f∗N denotes N viewed as an SF-
module). For M to be contained in L≤pcrys(VF) it is necessary and sufficient that:

● If m ∈M then ϕ(m) ∈M. If ϕ(m) ∈ up+1M then m ∈ uM.
● If ∑αθeθ ∈M with αθ ∈ F then ∑rθ≡rmodp αθeθ ∈M.

(cf. 3.2.8). Recall that the first condition is implied by upM ⊂ Mϕ ⊂ M, and it
implies ueθ ∈M for every θ.

For τ ∈ HomFp
(k,F) we write Mτ for the summand ofM on which k acts through

τ (with M viewed as an F[[u]]-module). If θ ∈ HomFp
(l,F) is such that θ∣k = τ

then elements of Mτ have the form αeθ + βeθ○ϕh where h = [K ∶ Qp]. In particular
the possible shapes of the Mτ can be divided into two:

(i) Either there is an α ∈ F× so that eθ + αeθ○ϕh and ueθ generate Mτ over
F[[u]] (for some θ with θ∣k = τ).
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(ii) Or no such α exists. Thus Mτ is generated by uxθeθ and uxθ○ϕh eθ○ϕh for
some xθ, xθ○ϕh ∈ [0,1] (again θ is some embedding with θ∣k = τ).

Set d(M) equal to the number of τ as in case (i). Note that if d(M) = 0 then
M = f∗N

′ where N′ ∈ L≤p(WF) is the SF-submodule of N generated by uxθeθ.
Arguing by induction it therefore suffices to show M lies in the same connected
component of LF as an M′ ⊂ f∗N with d(M′) < d(M). For this we will need a
lemma.

Lemma 5.2.8. Suppose Mτ and Mτ○ϕ are as in (i) and θ ∈ HomFp
(l,F) with

θ∣k = τ . Then Mτ is generated by eθ +αeθ○ϕh and ueθ, for some α ∈ F×, if and only
if Mτ○ϕ is generated by eθ○ϕ + αeθ○ϕh+1 and ueθ○ϕ. Furthermore, rθ = rθ○ϕh .

Proof. The second bullet point above implies rθ ≡ rθ○ϕh modulo p, so we have
equality except possibly if rθ = 0 or p. Suppose rθ = 0 so that rθ○ϕh equals 0 or p. As
such, if eθ○ϕ +αeθ○ϕh+1 ∈Mτ○ϕ, then applying ϕ shows that eθ +αu

r
θ○ϕh eθ○ϕh ∈Mτ .

If rθ○ϕh = p then eθ ∈ Mτ which contradicts the fact that Mτ is as in (i). Thus
rθ○ϕh = 0 and eθ + αeθ○ϕh ∈Mτ . This proves the lemma when rθ = 0.

Now suppose rθ > 0. Then rθ○ϕh = rθ except possibly if rθ = p and rθ○ϕh = 0.

Applying the previous paragraph with θ replaced by θ ○ ϕh shows the exceptional
case is impossible. Suppose α ∈ F is such that eθ + αeθ○ϕh ∈ Mτ . The first bullet
point above implies that eθ○ϕ + αeθ○ϕh+1 ∈Mτ○ϕ (since ϕ maps u(eθ○ϕ + αeθ○ϕh+1)
onto up+rθ(eθ + αeθ○ϕh)). This proves the lemma when rθ > 0. �

If MF is the etale ϕ-module associated to VF set MF[T ] = MF ⊗F F[T ], for a
formal variable T . We are going to construct MF[T ] ∈ L

≤p
crys(VF ⊗F F[T ]) with

MF[T ] ⊂ (f∗N) ⊗F F[T ], which at T = 1 recovers M and which at T = 0 produces

M′ with d(M′) < d(M). As MF[T ] induces a morphism A1
→ LF connecting M and

M′ this will complete the proof.
To produce MF[T ] choose τ ∈ HomFp

(k,F) so that J = {τ ○ϕn, τ ○ϕn−1, . . . , τ} is
such that Mτ○ϕj is as in (i) for 0 ≤ j ≤ n and as in (ii) for j = −1 and n + 1. We
can assume such a τ exists for the following reasons. We can always assume there
is a τ with Mτ as in (i) as otherwise d(M) = 0. If Mτ is as in (i) for every τ then
Lemma 5.2.8 would imply rθ = rθ○ϕh for every θ ∈ HomFp

(l,F). In this case the
submodule of f∗N generated by the eθ + eθ○ϕh for all θ ∈ HomFp

(l,F) is ϕ-stable
and so corresponds to a GK∞ -subrepresentation of VF, contradicting irreducibility.

Choose θ ∈ HomFp
(l,F) so that θ∣k = τ ; there is an α ∈ F× such that Mτ is

generated over F[[u]] by eθ +αeθ○ϕh and ueθ. Using Lemma 5.2.8 we see Mτ○ϕj is
generated by eθ○ϕj + αeθ○ϕh+j and ueθ○ϕh+j for 0 ≤ j ≤ n. For 0 ≤ j ≤ n we define

MF[T ],τ○ϕj = the F[[u]][T ]-linear span of eθ○ϕj + Tαeθ○ϕh+j and ueθ○ϕj

(note this is well-defined; for 0 ≤ j, j′ ≤ n if τ ○ ϕj = τ ○ ϕj′ then j = j′, otherwise
J = HomFp

(k,F) which we’ve shown in th paragraph above is impossible). For τ ′ /∈ J
we set MF[T ],τ ′ =Mτ ′ ⊗F F[T ]. Define MF[T ] = ⊕τ ′∈HomFp (k,F)

MF[T ],τ ′ . This is a

projective SF[T ]-module inside MF[T ], which by construction equals M at T = 1.
The scheme from Proposition 2.2.3 is described as a closed subscheme of the affine
Grassmannian, and so LF is also closed in the affine Grassmannian. Thus to show
MF[T ] ∈ L

≤p
crys(VF⊗FF[T ]) it suffices to show that Mλ ∈ L

≤p
crys(VF⊗FF

′) whenever F′
is a finite extension of F and Mλ is obtained from MF[T ] by evaluating T at λ ∈ F′.
This means verifying the two bullet points above for Mλ. The second bullet point
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is clear from the construction of MF[T ]. To show the first we only have to check
upMλ ⊂M

ϕ
λ ⊂Mλ. If τ

′ is such that both τ ′ and τ ′ ○ϕ are not in J then

upMλ,τ ′ ⊂M
ϕ
λ,τ ′ ⊂Mλ,τ ′

since Mλ,τ ′○ϕ =Mτ ′○ϕ (so that Mϕ
λ,τ ′ =M

ϕ
τ ′) and Mλ,τ ′ =Mτ ′ . For the remaining

τ ′ we choose F[[u]]-bases ξτ ′ of Mλ,τ ′ as follows:

(1) If τ ′ = τ ○ϕj ∈ J , so that 0 ≤ j ≤ n, then ξτ ′ = (eθ○ϕj + λαeθ○ϕh+j , ueθ○ϕh+j).
(2) If τ ′ = τ ○ϕ−1 or τ ○ϕn+1 not in J , then ξτ ′ = (uδjeθ○ϕj , uδj+heθ○ϕj+h) where

δj and δj+h respectively equal xθ○ϕj and xθ○ϕj+h as defined in (ii) above. In
particular, both δj and δj+h are integers in [0,1].

There are matrices Aτ ′ valued in F[[u]] so that ϕ(ξτ ′○ϕ) = (ξτ ′)Aτ ′ . If τ ′ = θ ○ ϕj

with τ ′ ○ϕ and τ ′ ∈ J (i.e. 0 ≤ j ≤ n − 1) then we compute

Aτ ′ = (urθ○ϕj 0

0 u
p−1+r

θ○ϕh+j
)

This doesn’t depend upon λ so we deduce that upMλ,τ ′ ⊂M
ϕ
λ,τ ′ ⊂Mλ,τ ′ from the

fact that it holds when λ = 1. If τ ′ = τ , so τ ′ ∈ J but τ ′ ○ϕ−1 /∈ J , then we compute

Aτ ′ = ( urθ○ϕ−1−δ−1 0

λαurθ○ϕh−1−δh−1 up+rθ○ϕh−1−δh−1)
As such, in order that upMλ,τ ′ ⊂ M

ϕ
λ,τ ′ ⊂ Mλ,τ ′ , we need both rθ○ϕ−1 − δ−1 =

rθ○ϕh−1 − δh−1 = 0. Setting λ = 1 we see this is the case, so it is the case for any λ.
Finally we consider the case τ ′ = τ ○ϕn so that τ ′ ○ϕ /∈ J and τ ′ ∈ J . Then

Aτ ′ = ( upδn+1+rθ○ϕn 0

−λαupδn+1+rθ○ϕn−1 upδn+h+1+rθ○ϕn+h−1)
Again whether or not upMλ,τ ′ ⊂ M

ϕ
λ,τ ′ ⊂ Mλ,τ ′ is a condition on the powers of u

appearing in this matrix (we must have pδn+1+rθ○ϕn ∈ [1, p] and pδn+h+1+rθ○ϕn+h −

1 ∈ [0, p − 1]). As these conditions holds with λ = 1 they hold for general λ. �

Example 5.2.9. While it seems plausible that the same kind of strategy could
be used to give a full proof of Conjecture 5.2.3, in higher dimensions the situation
is more complicated. Below we give an example which illustrates this difficulty.
Suppose K = Qp and that L/K is the unramified extension of degree 7. For an
appropriate one-dimensional representation WF of GL there is an N ∈ L≤p(WF) so
that N is generated by (e6, e5, . . . , e1, e0) with

ϕ(e6, . . . , e0) = (e5, ue4, e3, ue2, e1, u2e0, ue6)
If M ⊂ f∗N is the F[[u]]-submodule generated by

e6 + e4 + e2, e5 + e3, ue4, ue3, ue2, e1, e0

then one easily checks that M ∈ L≤pcrys(VF) where VF = IndGK

GL
WF. If we define MF[T ]

to be generated over F[[u]][T ] by
e6 + T

2e4 + Te2, e5 + Te3, ue4, ue3, ue2, e1, e0

then one also checks by hand that this defines an element of L≤pcrys(VF ⊗F F[T ]).
Thus we obtain a morphism A1

→ LF connecting M with f∗N
′ where N′ ⊂ N is

generated by e6, e5, ue4, ue3, ue2, e1, e0.
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5.3. Final remarks.

5.3.1. So far we’ve seen that the scheme L○ describes the irreducible components
of Rv

crys (they correspond to the connected components of L○). In some specific
situations we can do better. As usual let F be a finite field of characteristic p and
VF a representation of GK on an F-vector space. Assume that VF is cyclotomic-free,
and if p = 2 that K∞∩K(µp∞) =K. We also fix a p-adic Hodge type v concentrated
in degree [0, p].

The following notation is taken from [BM02, 5.1.3]. For complete local Noe-
therian Zp-algebras R,R1, . . . ,Rr write R ∼ ∏r

i=1Ri if there exists a Zp-algebra
homomorphism R → ∏Ri which becomes an isomorphism after inverting p and is
such that each projection R →∏Ri → Rj is surjective.

Proposition 5.3.2. Suppose that the fibre of Lv over the closed point of SpecR is
reduced and zero-dimensional and assume F is sufficiently large. Then

Rv

crys ∼∏OL,x
where the product runs over the closed points of Lv.14

Proof. The fibre of Lv → SpecR over the closed point being zero-dimensional im-
plies this map is quasi-finite and therefore finite since it is projective. In particular
Lv = SpecS is affine and the induced finite map R → S becomes surjective after in-
verting p. By definition Rv

crys is the quotient of R by the kernel of this map. Clearly
S is a product of the local rings of Lv at its closed points; all that remains is to
show the maps Rv

crys → OLv,x are surjective. Since F is assumed to be sufficiently
large we may assume this map is an isomorphism on residue fields, so we only need
to show that mRv

crys
OLv,x = mLv,x (i.e. that Rv

crys → OLv,x is unramified). This
follows from the assumption that the fibre of Lv at the closed point of SpecR is
reduced. �

5.3.3. We now show how to verify the hypotheses of Proposition 5.3.2 in explicit
cases. Let M ∈ L≤pcrys(VF) and suppose MF[ǫ] ∈ L

≤p
crys(VF ⊗F F[ǫ]) is such that

MF[ǫ] ⊗F[ǫ] F = M. As in the proof of Lemma 4.4.2 we can view MF[ǫ] as fit-
ting into an exact sequence 0 →M →MF[ǫ] →M → 0. If ξ is an F[[u]]-basis of M
(viewed as a row vector) then any SF-splitting corresponds to an X ∈Mat(F((u)));
the splitting sends ξ onto ξ(1+ ǫX). As explained in 3.3.2, any such splitting gives
rise to an f ∈ 1

up Hom(M,M) such that

ϕMF[ǫ]
= (ϕM + f ○ϕM, ϕM)

Writing ϕM(ξ) = ξA for some matrix A we compute that the matrix of f with
respect to ξ is given by Aϕ(X)A−1 −X . As MF[ǫ] is strongly divisible, Proposi-

tion 3.3.5 implies that X can be chosen so that Aϕ(X)A−1−X ∈Mat(F[[u]]). Any
such MF[ǫ] corresponds to a tangent vector, around the closed point corresponding
to M, mapping onto the zero tangent vector at the closed point of SpecR. Such
tangent vectors fit into the diagram

SpecF[ǫ] L

SpecF SpecR

14In particular we are asserting that each OL,x is complete.
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and so describe the tangent vectors of L⊗RF at closed points. If every such tangent
vector is zero then it will follow that L⊗RF is zero-dimensional and smooth, and so
verifies the hypothesis of Proposition 5.3.2. In other words, to verify the hypothesis
of Proposition 5.3.2, it suffices to show that MF[ǫ] =M⊗F F[ǫ] if X ∈Mat(F((u)))
is such that Aϕ(X)A−1 −X ∈Mat(F[[u]]) then X ∈Mat(F[[u]]).

We conclude with some in examples in which Proposition 5.3.2 can be applied.

Example 5.3.4. Suppose K = Qp and suppose F is sufficiently large. A p-adic
Hodge type v concentrated in degree [0, p] then corresponds to a pair of integers

0 ≤ a ≤ b ≤ p. Suppose VF = IndGK

GL
WF is two-dimensional and irreducible, with

WF one-dimensional. In this case we shall show Rv

crys is either zero, or is formally
smooth over Zp.

● First, using the discussion from 3.2.8 it is easy to verify that any M ∈
L≤pcrys(VF) is of the form f∗N for an N ∈ L≤p(WF). Of course this is only
true because K = Qp. Thus there exists an F[[u]]-basis of M with respect

to which the matrix of ϕ is given by A = ( 0 xus

xur
0
) with r, s ∈ [0, p] not

equal and x ∈ F×.
● Next take X = ( a b

c d ) and compute

Aϕ(X)A−1 −X = ( ϕ(d) − a us−rϕ(c) − b
ur−sϕ(b) − c ϕ(a) − d )

We want to verify the condition in 5.3.3, so assume Aϕ(X)A−1 − X ∈
Mat(F[[u]]). It is easy to see this implies a, d ∈ F[[u]]. For c and b we
may assume that r > s, otherwise interchange c and b in our argument. Let
xc and xb denote the u-adic valuations of c and b respectively and assume
xc < 0. Then r−s+pxb = xc, and so xb < 0 also. This implies s−r+pxc = xb
and so p(xb + xc) = (xc + xb), a contradiction. Now assume xc ≥ 0 and
xb < 0. We still have s − r + pxc = xb and so, as s − r ≥ −p, we must have
xc = 0. Thus s− r = xb. On the other hand we see that r − s+ pxb ≥ 0 which
is another contradiction. We conclude that X ∈Mat(F[[u]]), and so in this
case L⊗R F is zero-dimensional and reduced.
● Finally we argue that Lv contains at most one closed point. One computes
that for M as above Gi(M) is zero unless i = r or s, in which case it is one-
dimensional. This implies that the Breuil–Kisin modules associated to two
closed point of Lv must be abstractly isomorphic as Breuil–Kisin modules;
they must therefore be equal since an abstract ϕ-equivariant isomorphism
induces a GK∞-equivariant automorphism of VF, and these are all given by
scalar multiplication, since VF is irreducible.

Example 5.3.5. Continue to assume that K = Qp and that F is sufficiently large.

We can then also treat the two dimensional reducible case VF ∼ (χ1 c
0 χ2
), at least as

long as χ1χ
−1
2 ≠ χcyc so that VF is cyclotomic-free. We can compute that Rv

crys is
either zero or is formally smooth over Zp, except in the following exceptional cases:

● When v = (a, a + p − 1) and VF is a split extension with χ1χ
−1
2 equal to a

non-trivial unramified character, Rv

crys is either zero or has two irreducible
components, each of which is formally smooth.
● When v = (a, a+ p− 1), χ1χ

−1
2 = 1 and the cocycle c(σ) is ramified, Rv

crys is
either zero or formally smooth. If c(σ) is unramified then we are only able



38 ROBIN BARTLETT

to deduce that Rv has a single irreducible component ([San14] computes
these rings directly in this case; they are not formally smooth, in fact they
are not even Cohen–Macaulay).

Let us only explain the claims in the last bullet point. We leave the rest as an
exercise for the interested reader (the arguments are more straightforward). Af-

ter twisting we may suppose VF admits an F-basis ξF so that σ(ξF) = ξF ( 1 c(σ)
0 1

).
Then the etale ϕ-module associated to VF, viewed as a sub-module of VF ⊗Fp

C♭, is

generated by ξ ∶= ξF ( 1 α
0 1 ) where α ∈ C♭ is such that σ(α) − α = c(σ) for σ ∈ GK∞ .

● Note that ϕ(α) − α ∈ F((u)). Note also that α is only well-defined up to
translation by elements of F((u)). This allows us to assume that ϕ(α)−α =
α0+α−1u

−1
+ . . .+α−nu

−n for some αi ∈ F and some p > n ≥ 0. Let us choose
α so that n is minimal. If σ ↦ c(σ) is unramified then we can clearly take

α ∈ k ⊗Fp
F and in this case n = 0. Conversely if n = 0 then α ∈ k ⊗Fp

F and
so σ ↦ c(σ) is unramified.
● We first compute the set of M ∈ L≤p(VF). Any such M is generated by
ξB for some B ∈ GL2(F((u))). Using the Iwasawa decomposition for
GL2(F((u))) we may assume B = ( ur b

0 us ) for some b ∈ F((u)). With
respect to ξB the matrix of ϕ is given by

A = (u(p−1)r u−r(ϕ(b) − u(p−1)sb + ups(ϕ(α) − α))
0 u(p−1)s

)
Thus r, s ∈ [0,1]. When r = s = 0 we must have ϕ(b)− b+ϕ(α)−α ∈ F[[u]],
which is only possible if ϕ(α) − α ∈ F[[u]] and b ∈ F[[u]]. Thus when
c(σ) is unramified we obtain a single element of L≤p(VF), and otherwise
this case contributes no elements. For r = 0, s = 1, we must have ϕ(b) −
up−1b + up(ϕ(α) − α) ∈ F[[u]]. This occurs if and only if b ∈ F[[u]] so in
this case we obtain a single element of L≤p(VF). If r = 1, s = 0 then we
must have ϕ(b) − b + ϕ(α) − α ∈ uF[[u]]. We see this is only possible if
ϕ(α) − α = 0 (i.e. c(σ) = 0) and b ∈ F[[u]]. In this case we obtain multiple
elements of L≤p(VF), one for every b ∈ F. Finally, if r = s = 1 then we must
have ϕ(b) − up−1b + up(ϕ(α) − α) ∈ uF[[u]], and one sees that this case
contributes one element to L≤p(VF).
● We assert that each of the M ∈ L≤p(VF) from the previous bullet point lies
in L≤pcrys(VF). This can be done by first checking each is strongly divisible
(which is easy to do by hand). Then use Lemma 5.1.6 to deduce each is
contained in L≤pcrys(VF) where VF is equipped with some GK-action extend-
ing the GK∞-action. Finally use that there is at most one way to extend
the GK∞ action on VF to a GK-action, because VF is cyclotomic-free.
● Let us now focus on the case v = (0, p − 1). We first suppose c(σ) is non-
zero. From the above Lv consists of one closed point M admitting a basis

on which ϕ acts by ( 1 upβ

0 up−1 ) where β = ϕ(α) − α. To compute the tangent

vectors of L⊗R F around this point take X = ( a b
c d ). Then Aϕ(X)A−1 −X

equals

(ϕ(a) − a + upβϕ(c) u1−p (upβ(ϕ(d) −ϕ(a) − upβϕ(c)) + ϕ(b) − up−1b)
up−1ϕ(c) − c −upβϕ(c) +ϕ(d) − d )

Assume that Aϕ(X)A−1 −X ∈Mat(F[[u]]). From up−1ϕ(c)− c ∈ F[[u]] we
deduce c has u-adic valuation ≥ −1. If this valuation is −1 then ϕ(a) − a +
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upβϕ(c) ∈ F[[u]] implies v(ϕ(a) − a) = v(β). By construction p < v(β) ≤ 0
while v(ϕ(a) − a) = pv(a) unless a ∈ F[[u]], so we must have a,β ∈ F[[u]].
Thus c /∈ F[[u]] implies c(σ) is unramified. Regardless of the valuation of
c we see α ∈ F[[u]]. Similarly d ∈ F[[u]], and also b ∈ F[[u]]. We conclude
that if c(σ) ≠ 0 then Lv ⊗R F is a reduced point when c(σ) is ramified and
a non-reduced point if c(σ) is unramified.
● Finally we consider when c(σ) = 0. In this case we may construct a mor-
phism A1

F → L
v given by the element MF[T ] ∈ L

≤p
crys(VF ⊗F F[T ]) with basis

ξ (u T

0 1
)

for ξ as above. Since Lv is projective this morphism extends to a morphism
P1
F → L

v which is an isomorphism.

These calculations recover those of [Kis09a, 1.7.14], see also [San14].
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