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GENERALIZED JACOBI-TRUDI DETERMINANTS

AND EVALUATIONS OF SCHUR MULTIPLE ZETA VALUES

HENRIK BACHMANN AND STEVEN CHARLTON

Abstract. We present new determinant expressions for regularized Schur multiple zeta values.

These generalize the known Jacobi-Trudi formulae and can be used to quickly evaluate certain

types of Schur multiple zeta values. Using these formulae we prove that every Schur multiple zeta

value with alternating entries in 1 and 3 can be written as a polynomial in Riemann zeta values.

Furthermore, we give conditions on the shape, which determine when such Schur multiple zetas

are polynomials purely in odd or in even Riemann zeta values.

1. Introduction

The purpose of this paper is to give a generalized Jacobi-Trudi determinant expression for

regularized Schur multiple zeta values. Using this determinant expression we obtain new explicit

evaluations of certain Schur multiple zeta values. This generalizes results given in [NPY] and

answers questions posed in [BY].

The literature on symmetric functions contains many determinantal results for (skew) Schur

functions: two types of Jacobi-Trudi determinants [M], the Giambelli determinant [G], Lascoux

and Pragacz’s rim ribbon determinant [LP] and the determinant expression of Hamel and Goulden

[HG] based on outside decompositions, which generalizes all the aforementioned ones.

The proofs of all of these determinant expressions are based on the Gessel-Viennot methods

[GV], in which one constructs lattice graphs, assigns weights to their edges and then writes the

weights of disjoint path systems as determinants of matrices whose entries are given by the weights

of individual paths. The weights of path systems then corresponds to Schur functions sλ/µ, where

λ/µ is an arbitrary skew Young diagram, and the entries in the matrix correspond to Schur func-

tions of so-called ribbons. In the case of Jacobi-Trudi determinants, these ribbons are given by

columns or by rows, which then give the complete homogeneous or elementary symmetric func-

tions respectively. This, in particular, gives the well-known result that every Schur function can be

written as a polynomial expression in complete homogeneous functions or elementary symmetric

functions.

Usually, the weights of edges in graphs appearing in these proofs depend only on the horizontal

position in the graph. In [NPY] it was observed, that these proofs can also be adapted to the

case of Schur multiple zeta values by, roughly speaking, making the weights of edges also depend

on their horizontal position. Schur multiple zeta values can be viewed as a variation of Schur

functions, which assign to a Young Tableau k (that is, a Young diagram filled with integers in each
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box) the real number ζ(k). For integers a, c, d, e ≥ 1, b, f ≥ 2 the following sum is an example of

a Schur multiple zeta value

(1.1) ζ

(
a b

c d

e f

)

=
∑

ma ≤ mb<

mc ≤ md< <

me ≤ mf

1

m a
a mb

b mc
c md

d me
e mf

f

,

where we assume the summation indicesm∗ range over positive integers. Schur multiple zeta values,

which were first introduced by Y. Yamasaki, also generalize the classical multiple zeta(-star) values,

which for k1, . . . , kr−1 ≥ 1, kr ≥ 2 are defined by

ζ(k1, . . . , kr) =
∑

0<m1<···<mr

1

mk1

1 · · ·mkr
r

, ζ⋆(k1, . . . , kr) =
∑

0<m1≤···≤mr

1

mk1

1 · · ·mkr
r

.(1.2)

Schur multiple zeta values specialize to these numbers by choosing columns or choosing rows as

the Young tableaux, respectively.

In [NPY] the authors give Jacobi-Trudi formulae for Schur multiple zeta values of Young tableaux

with constant diagonal entries and show that these can be written as determinants whose entries

are given by the multiple zeta(-star) values (1.2). We will generalize these formulae and show

(Theorem 3.3) that there exist explicit determinant expression for these Schur multiple zeta values

as determinants in Schur multiple zeta values of subribbons of a fixed ribbon R. Choosing the

ribbon R to a row or a column then specializes to the Jacobi-Trudi formula proven in [NPY]. For

example, if we choose the ribbon R = then the Schur multiple zeta value (1.1) (where we set

f = c to make the entries constant on the diagonals) can be written as

ζ

(
a b

c d

e c

)

= det








ζ

(
a b

d

e c

)

ζ

(
a b

d

c

)

ζ
(

e c
)

ζ
(

c
)








.

We will prove these determinant expressions in Theorem 2.8 for a more general object Sf
M (Defini-

tion 2.1), which generalizes (truncated) Schur multiple zeta values and Schur polynomials simulta-

neously. By extending the notion of stuffle regularized multiple zeta values to the Schur case, we

will obtain a generalized Jacobi-Trudi determinant expression for regularized Schur multiple zeta

values in Theorem 3.3.

One nice application of this generalized determinant expression, which was also the original

motivation for this project, is the evaluation of Schur multiple zeta values of Young tableaux with

alternating entries in 1 and 3. These were studied in detail in the work [BY], where the authors

consider in general so-called “Checkerboard style” Schur multiple zeta values. There it was shown

that the stairs with alternating entries of 1 and 3 evaluate in an especially nice way, to multiples

of odd single zeta values, e.g.

(1.3) ζ

(

1 3

3

)

=
1

4
ζ(7) , ζ

(
1

1 3

1 3

)

=
1

8
ζ(9) .
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We will show that any Schur multiple zeta values with alternating entries in 1 and 3 can be written

as a polynomial in single zeta values (Theorem 4.3). For example, we obtain for the 3× 3 square

the evaluation

ζ

(
3 1 3

1 3 1

3 1 3

)

=
1

32
det






ζ(3) π4

180 ζ(7)
π4

72 ζ(5) 17π8

90720

ζ(7) 13π8

226800 ζ(11)




 .(1.4)

Choosing the ribbon R to be a stair like in (1.3) and using our generalized Jacobi-Trudi deter-

minant, we will further give explicit conditions for in which cases such Schur multiple zetas are

polynomials in π4 or polynomials in only odd single zeta values (Corollary 4.5). Similar statements

are also be obtained for the case of Schur multiple zeta values with alternating entries in 1 and 2

(Corollary 4.8).

Acknowledgement. This work started during the Trimester Program ‘Periods in Number The-

ory, Algebraic Geometry, and Physics’ at the Hausdorff Research Institute for Mathematics in

Bonn. The authors would like to thank the organizers of this program and the Max-Planck-

Institut für Mathematik in Bonn for hospitality and support. This project was partially supported

by JSPS KAKENHI Grant 19K14499.

2. Jacobi-Trudi determinants

The goal of this section is to prove a generalized Jacobi-Trudi type determinant formula for a

generalization of Schur polynomials (Definition 2.1). A partition is a tuple λ = (λ1, . . . , λh) of

positive integers λ1 ≥ · · · ≥ λh ≥ 1. For another partition µ = (µ1, . . . , µr) we write µ ⊂ λ if r ≤ h

and µj ≤ λj for j = 1, . . . , r. For partitions λ, µ with µ ⊂ λ we identify the pair λ/µ = (λ, µ) with

its (skew) Young diagram

D(λ/µ) =
{
(i, j) ∈ Z2 | 1 ≤ i ≤ h , µi < j ≤ λi

}
,

where we set µj = 0 for j > r.

A Young tableau k = (ki,j)(i,j)∈D(λ/µ) of shape λ/µ is a filling of D(λ/µ) obtained by putting

ki,j ∈ Z≥1 into the (i, j)-entry of D(λ/µ). For shorter notation we will also just write (ki,j) in the

following if the shape λ/µ is clear from the context. For example when λ/µ = (5, 4, 3)/(3, 1) we

visualize this Young tableau as

k = (ki,j) =

k1,4 k1,5

k2,2 k2,3 k2,4

k3,1 k3,2 k3,3

.

A Young tableau (mi,j) is called semi-standard if mi,j < mi+1,j and mi,j ≤ mi,j+1 for all i and

j. The set of all Young tableaux and all semi-standard Young tableaux of shape λ/µ are denoted

by T (λ/µ) and SSYT(λ/µ), respectively. For M ∈ Z>0 we further define the set of restricted

semi-standard Young tableaux by

SSYTM (λ/µ) =
{
(mi,j) ∈ SSYT(λ/µ) | mi,j < M

}
.
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Definition 2.1. Let A be a ring. For a map

f : Z>0 × Z>0 → A ,

a skew diagram λ/µ , a Young tableaux k = (ki,j) ∈ T (λ/µ) and an integer M ∈ Z>0 we define

(2.1) Sf
M (k) =

∑

(mi,j)∈SSYTM (λ/µ)

∏

(i,j)∈D(λ/µ)

f(mi,j , ki,j)

and set Sf
M (∅) = 1.

This object generalizes the classical skew Schur polynomials1 sλ/µ(x1, . . . , xM ) in the case A =

Q[x1, . . . , xM ], f(m, d) = xm and it gives the truncated Schur multiple zeta values ζM (k) in the

case A = R, f(m, d) = m−d (see (3.1)). The latter will be discussed in detail in Section 3. In [HG]

the authors proved a generalized Jacobi-Trudi formula for Schur functions, which we will extend

in this section to the above functions Sf
M . For this, we will need to introduce some notation from

[HG]. A ribbon, also called a strip in [HG], is a skew diagram which does not contain a 2×2 square.

Clearly, every skew diagram can be decomposed, in various ways, into a disjoint union of ribbons.

We will be interested in a specific decomposition in which all the starting and ending boxes of the

ribbons are attached to the outside of the skew diagram.

Definition 2.2. Suppose that θ1, . . . , θn are ribbons in a Young diagram λ/µ and each ribbon has

a starting box on the left or bottom perimeter of the diagram and an ending box on the right or

top perimeter of the diagram. Then if the disjoint union of these ribbons equals λ/µ we say that

Θ = (θ1, . . . , θn) is a outside decomposition of λ/µ.

Example 2.3. For the case λ/µ = (4, 3, 3, 2, 1)/(1) a possible outside decomposition of λ/µ is

given by Θ = (θ1, θ2, θ3, θ4) as follows.

λ/µ =

θ4 = (2)/(1) =

θ3 = (4, 3, 1)/(2) =

θ2 = (3, 3, 3, 2)/(3, 3, 1) =

θ1 = (1, 1, 1, 1, 1, 1)/(1, 1, 1, 1) =

Definition 2.4. i) For a skew diagram λ/µ we define its content by

c(λ/µ) = {j − i | (i, j) ∈ D(λ/µ)} ⊂ Z .

ii) We say a ribbon R′ is contained in another ribbon R, if there exist a t ∈ Z with
{
(i + t, j + t) | (i, j) ∈ D(R′)

}
⊂ D(R) .

In this case we also call R′ a subribbon of R.

iii) Let Θ = (θ1, . . . , θn) be an outside decomposition of an edge-connected skew diagram λ/µ.

As in [HG] we note that the θi nest correctly, so there exists a ribbon R, which contains all

θ1, . . . , θn and which satisfies c(R) = c(λ/µ). This ribbon is unique up to diagonal translation

1Which give the Schur functions in the case M → ∞.
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and we will denote by RΘ the one which is furthest left. (This is well-defined, since all

coordinates in a diagram are positive.)

iv) Since RΘ contains all θ1, . . . , θn, we can define for 1 ≤ i, j ≤ n the subribbons RΘ(i, j) of

RΘ by the property c(RΘ(i, j)) = [min c(θi),max c(θj)] if min c(θi) ≤ max c(θi). In the case

min c(θi) = max c(θj) + 1 we set RΘ(i, j) = ∅ and in the cases min c(θi) > max c(θj) + 1 the

RΘ(i, j) are undefined.

Example 2.5. We again use the same skew diagram λ/µ = (4, 3, 3, 2, 1)/(1) and outside decom-

position Θ = (θ1, θ2, θ3, θ4) as in Example 2.3. In this case we have c(λ/µ) = {−4,−3, . . . , 2, 3}
and

RΘ = (6, 6, 6, 5, 3)/(6, 6, 4, 2) = ,

which contains the ribbons θ1, θ2, θ3, θ4 in the following way

, , , .

The subribbons RΘ(i, j) can be read off from here, by choosing the starting box of θi and the

ending box of θj in RΘ. We obtain

RΘ(1, 1) = = θ1 , RΘ(1, 2) = , RΘ(1, 3) = RΘ , RΘ(1, 4) = ,

RΘ(2, 1) = ∅ , RΘ(2, 2) = = θ2 , RΘ(2, 3) = , RΘ(2, 4) = ,

RΘ(3, 1) = undef. , RΘ(3, 2) = , RΘ(3, 3) = = θ3 , RΘ(3, 4) = ,

RΘ(4, 1) = undef. , RΘ(4, 2) = undef. , RΘ(4, 3) = undef. , RΘ(4, 4) = = θ4 .

Definition 2.6. i) We denote by T diag(λ/µ) the set of all Young diagram k = (ki,j) ∈ T (λ/µ),

which have constant entries on the diagonals, i.e. ki,j = ki′,j′ whenever j − i = j′ − i′.

ii) For an outside decomposition Θ = (θ1, . . . , θn) of λ/µ and k ∈ T diag(λ/µ) we define the

Young tableau Rk

Θ(i, j) = (ri,j) ∈ T (RΘ(i, j)) by ri,j = ki′,j′ for some (i′, j′) ∈ D(λ/µ) with

j′ − i′ = i− j. (Notice that (i, j) is not necessarily an element in D(λ/µ), but there has to be

at least one (i′, j′) ∈ D(λ/µ) with the same content.)

Example 2.7. Again in the case λ/µ = (4, 3, 3, 2, 1)/(1) with the outside decomposition Θ =

(θ1, θ2, θ3, θ4) of λ/µ as in Example 2.3, we could choose

k =

2 1 5
6 3 2
4 6 3
7 4
3

∈ T diag(λ/µ) .

This would give, for example

Rk

Θ(1, 2) =
6 3

3 7 4
or Rk

Θ(3, 3) =
1 5

6 3 2
4

.
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Theorem 2.8. For an edge-connected skew diagram λ/µ with outside decomposition Θ = (θ1, . . . , θn)

and k ∈ T diag(λ/µ), we have for all M ∈ Z>0

(2.2) Sf
M (k) = det

(

Sf
M (Rk

Θ(i, j))
)

1≤i,j≤n
,

where we set Sf
M (Rk

Θ(i, j)) = 0 if RΘ(i, j) is undefined.

Proof. The proof is a variation of the proof of Theorem 3.1 in [HG] for Schur functions, which we

will now describe roughly and modify for our purpose.

In [HG] the ribbons are called strips and the authors define for a outside decomposition (θ1, . . . , θn)

a strip θi#θj ([HG, p. 465]). Since we are just considering the case of edge-connected skew di-

agrams λ/µ, we do not need to consider the “null strips” used in [HG]. In particular, Case III

of the definition of θi#θj never appears. The “same shape” mentioned in the Case I is exactly

given by our ribbon RΘ and from the definition of the Cases I & II one can see that we have

θi#θj = RΘ(i, j).

Following the proof in [HG] for a given outside decomposition (θ1, . . . , θn) we construct an n-

tuple of lattice paths which are in a 1 : 1 correspondence with semi-standard Young tableaux of

shape λ/µ. The i-th path begins at Pi and ends at Qi for 1 ≤ i ≤ n. If θi has a starting box on the

left perimeter in box (s, t) ∈ D(λ/µ) of the diagram we set Pi = (t− s, 1) and if it has a starting

box on the bottom perimeter in box (s, t) (but not the left) we set Pi = (t − s,M − 1). If the

ribbon θi has ending box on the top perimeter in box (u, v) we set Qi = (v − u+ 1,M − 1) and if

it has ending box on the right perimeter in box (u, v) (but not the top) we set Qi = (v− u+1, 1).

For each semi-standard Young tableaux of shape λ/µ we obtain a unique n-tuple of paths from

Pi to Qi for i = 1, . . . , n, which are allowed to have horizontal or down-diagonal steps to the right,

and vertical steps up and down. If a box in the Young tableau containing j at coordinates (a, b) in

the diagram is approached from the left in the ribbon θi, we put a horizontal step from (b − a, j)

to (b − a + 1, j). If a box containing j in the Young tableaux at coordinates (a, b) is approached

from below in θi, we put a diagonal step from (b− a, j + 1) to (b − a+ 1, j).

For example, in the case λ/µ = (4, 3, 3, 2, 1)/(1) we show in Figure 1 how a path system on the

left corresponds to the semi-standard Young tableau on the right, with the outside decomposition

(θ1, θ2, θ3, θ4) given in Example 2.3 and M = 8.

P1 P2 P3 P4

Q1 Q2 Q3

Q4

2 2 5

2 3 3

4 4 4

5 5

6

Figure 1. An example of a lattice path system and the corresponding semi-standard
Young tableau of shape (4, 3, 3, 2, 1)/(1).
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A step ending in (i, j) corresponds to a box in the semi-standard Young tableaux of content i−1

and filling j. The proof for the case of Schur functions in [HG] then uses the usual Gessel-Viennot

procedure and assigns to a horizontal or diagonal step ending in a point (i, j) the weight xj . To

adapt this proof for the more general case of our functions SM
f , we therefore just need to change

the weight of a step ending in (i, j) to be f(j, i− 1), which then proves the Theorem. �

Remark 2.9. The authors would expect that there is also a version of Theorem 2.3 for interpolated

variants of Sf
M , which generalize interpolated Schur multiple zetas as defined in [B]. This might

be doable by using the construction of the t-lattice graph therein and a similar approach to the

one described in the proof above.

In the application to Schur multiple zeta values we will usually not start with an outside de-

composition, but instead, we will fix a ribbon Rθ. Therefore the following corollary will be helpful

later.

Corollary 2.10. For an edge-connected skew diagram λ/µ, a ribbon R with c(R) = c(λ/µ) and

k ∈ T diag(λ/µ), the value Sf
M (k) can be written as a polynomial in Sf

M (k′). Here the k′ ∈ T diag(R′)

are Young tableaux where R′ are subribbons of R.

Proof. To prove this statement we need to construct an outside decomposition Θ with RΘ = R,

which can be done in the following way. To construct θ1, let (i, j) ∈ D(λ/µ) the box of R with

smallest content j − i. We have c(R) = c(λ/µ) and therefore this box corresponds to the bottom

left box of λ/µ. Define this box to be the first box of θ1.

Since R is a ribbon there is either a box on top of this box or one on the right. Assume there

is a box on top: if there is also a box on top of the corresponding box in λ/µ, choose this box to

be the next box of θ1. If there is no box, θ1 is complete and it has a box starting on the bottom

perimeter and ending box on the top perimeter of λ/µ. Similarly, if there is a box on the right: If

there is also a box on the right in λ/µ choose this box, otherwise θ1 is complete and has an ending

box on the right perimeter of λ/µ.

After θ1 is complete, we can construct θ2 by choosing one of the remaining boxes with the

smallest content and repeat the same construction as we did for θ1. It is clear that in this process

we will never choose a box that has already been removed: if we did, then the box of this content

in the ribbon would have a neighbour below and to the left contrary to the definition of a ribbon.

Once all boxes have been removed in this way, we obtain an outside decomposition Θ of λ/µ,

with RΘ = R. Since RΘ(i, j) are all subribbons of R, the statement follows from Theorem 2.8. �

Remark 2.11. Another point of view to construct an outside decomposition out of a ribbon R, is

to first ‘cover the plane’ by copies of R. Since c(λ/µ) = R we can cover λ/µ completely by copies

of R. Now the corresponding outside decomposition can be read off by considering the intersection

of λ/µ with the copies of R.

Figure 2 illustrates how one obtains an outside decomposition of λ/µ = (4, 3, 3, 2, 1)/(1) from

the ribbon R = (6, 6, 6, 5, 3)/(6, 6, 4, 2), by tiling the plane in this way.
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λ/µ =

R =

θ4 =

θ3 =

θ2 =

θ1 =

Figure 2. Starting with a skew diagram λ/µ = (4, 3, 3, 2, 1)/(1) and a ribbon R =
(6, 6, 6, 5, 3)/(6, 6, 4, 2), we can cover the plane by R and consider its intersections with
λ/µ. This gives an outside decomposition Θ = (θ1, θ2, θ3, θ4) with RΘ = R.

3. Jacobi-Trudi formula for regularized Schur multiple zeta values

We now recall the definition of Schur multiple zeta values, which were first defined in [NPY].

For a Young tableau2 k = (ki,j) ∈ T (λ/µ) and an integer M ∈ Z>0 the truncated Schur multiple

zeta value is defined by

(3.1) ζM (k) =
∑

(mi,j)∈SSYTM (λ/µ)

∏

(i,j)∈D(λ/µ)

1

m
ki,j

i,j

.

The limit M → ∞ of (3.1) exist, when k is admissible. Being admissible means that ki,j ≥ 2

for all corners (i, j), where (i, j) ∈ D(λ/µ) is called a corner of λ/µ if (i, j + 1) 6∈ D(λ/µ) and

(i+1, j) 6∈ D(λ/µ), see [NPY, Lemma 2.1]. For an admissible k the Schur multiple zeta value ζ(k)

is then defined by

ζ(k) = lim
M→∞

ζM (k) .

The numbers (3.1) generalize truncated multiple zeta and zeta-star values

ζM (k1, . . . , kr) =
∑

0<m1<···<mr<M

1

mk1

1 · · ·mkr
r

, ζ⋆M (k1, . . . , kr) =
∑

0<m1≤···≤mr<M

1

mk1

1 · · ·mkr
r

,

by choosing a column of length r or row of length r respectively. In these cases the only corner is

the box containing kr and therefore the limit M → ∞ exists in the case kr ≥ 2, which then gives

the multiple zeta (star) values ζ(k1, . . . , kr) and ζ⋆(k1, . . . , kr) from (1.2).

For any Young tableau k, the value ζM (k) can be written as a linear combination of trun-

cated multiple zeta values by considering the so-called topological sorts (or rather a generalization

thereof) of the poset given by the inequalities of the semi-standard Young tableau. For example,

we have

ζM

(

a b

c

)

=
∑

0 < ma ≤ mb < M<

mc < M

1

ma
a ·mb

b ·mc
c

=
∑

0<ma<mc<mb<M
or 0<ma<mc=mb<M
or 0<ma<mb<mc<M
or 0<ma=mb<mc<M

1

ma
a ·mb

b ·mc
c

= ζM (a, c, b) + ζM (a, b+ c) + ζM (a, b, c) + ζM (a+ b, c) .

(3.2)

The product of two multiple zeta values can be expressed by using the so called harmonic product

formula, which in the lowest depth is given by ζM (a)ζM (b) = ζM (a, b)+ζM (b, a)+ζM (a+b). Using

2The entries of the Young tableau could also be elements in C like in [NPY]. We will just consider the case of integer
entries.
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the notion of Schur multiple zeta values, this can be expressed even more nicely as

ζM
(
a
)
ζM
(

b
)
= ζM

(
a b

)
+ ζM

(

b

a

)

.

See [BY] for a precise definition of the harmonic product of Schur multiple zeta values for general

Young tableaux. In [IKZ] the authors introduce (harmonic) regularized3 multiple zeta values

ζreg(k1, . . . , kr;T ) ∈ R[T ], which are defined for all k1, . . . , kr ∈ Z>0. These coincide with the

classical multiple zeta values in the case kr ≥ 2 and they satisfy the harmonic product formula for

all indices. We generalize this notion to Schur multiple zeta values in the following way.

Lemma 3.1. For any Young tableau k ∈ T (λ/µ) there exist a unique polynomial ζreg(k;T ) ∈ R[T ],

such that

ζM (k) = ζreg(k; log(M) + γ) +O

(

logJ(M)

M

)

as M → ∞. Here γ denotes the EulerMascheroni constant and J is an integer depending on k.

Proof. As mentioned before, the value ζM (k) can be written as a linear combination of the trun-

cated multiple zeta values, by using the same idea as in (3.2). By [IKZ] these satisfy the similar

asymptotic formula

ζM (k1, . . . , kr) = ζreg(k1, . . . , kr; log(M) + γ) +O

(

logJ
′

(M)

M

)

for some integer J ′, from which the result follows. �

Remark 3.2. Even though ζreg(k;T ) depends on T , we will omit T from our notation and just

write ζreg(k) in the following. In the literature of classical multiple zeta values people typically

refer to ζreg(k1, . . . , kr; 0) ∈ R as the regularized multiple zeta values. In the following we do not

specialize T and always view ζreg(k) ∈ R[T ] as a polynomial.

For any Young tableau k = (ki,j) ∈ T (λ/µ) it is easy to see that for f(m, d) = m−d and all

M ∈ Z>0, we have

(3.3) ζM (k) = Sf
M (k) .

Using Theorem 2.8 in the case of Young tableaux with constant diagonal entries we therefore obtain

the following.

Theorem 3.3. For an edge-connected skew diagram λ/µ with outside decomposition Θ = (θ1, . . . , θn)

and k ∈ T diag(λ/µ), we have

(3.4) ζreg(k) = det
(
ζreg(Rk

Θ(i, j))
)

1≤i,j≤n
,

where we set ζreg(Rk

Θ(i, j)) = 0 if RΘ(i, j) is undefined.

Proof. By (3.3) and Theorem 2.8 we get for all M ∈ Z>0

ζM (k) = det
(
ζM (Rk

Θ(i, j))
)

1≤i,j≤n
.

3In their work Ihara-Kaneko-Zagier define two regularized versions (harmonic and shuffle) of multiple zeta val-
ues, denoted by Z∗

k1,...,kr
(T ) ∈ R[T ] and Z�

k1,...,kr
(T ) ∈ R[T ]. We just consider the harmonic version and write

ζreg(k1, . . . , kr ;T ) = Z∗

k1,...,kr
(T ).
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The result follows from Lemma 3.1 by comparing the asymptotics of both sides as M → ∞. �

Theorem 3.3 generalizes the Jacobi-Trudi type formulae proven in [NPY]. Notice that even

when k is admissible, the Rk

Θ(i, j) are not necessarily all admissible and therefore in the matrix

regularization is necessary. The terms involving T will nevertheless cancel out in the determinant in

these cases. Clearly, we also have an analogue of Corollary 2.10, which will be the more interesting

point of view in our application below.

Corollary 3.4. For an edge-connected skew diagram λ/µ and a ribbon R with c(R) = c(λ/µ) and

k ∈ T diag(λ/µ), the ζreg(k) can be written as a polynomial in ζreg(k′;T ). Here the k′ ∈ T diag(R′)

are Young tableaux with the R′ being subribbons of R.

4. Checkerboard style Schur multiple zeta values

In [BY] the authors evaluated special type of Schur multiple zeta values which have alternating

entries in a, b ≥ 1. For example the Schur multiple zeta value

ζreg

(
a b

b a b

b a b

)

is of this type. Here the coloring is just for aesthetic purposes. We refer to these kind of Schur

multiple zeta values as Checkerboard style Schur multiple zeta values. We first recall some notation

introduced in [BY]. For n ≥ 0 define the following four type of Checkerboard style Schur multiple

zeta values

Aa,b(n) := ζreg






a

. .
.
b

a . .
.

a b




 , Ba,b(n) := ζreg






a b

. .
.
b

a . .
.

b




 ,

Sa,b(n) := ζreg






a

. .
.
b

a . .
.

b




 , S⋆

a,b(n) := ζreg

(
a b

. .
.
. .
.

a b

)

.

Here n denotes the number of pairs of a and b and in the case n = 0 we interpret above Schur

multiple zeta values as Aa,b(0) = ζreg(a), Ba,b(0) = ζreg(b) and Sa,b(0) = S⋆
a,b(0) = 1. In the

case when (a, b) = (1, 3) the above checkerboard style Schur multiple zeta values can be evaluated

explicitly.

Theorem 4.1 ([BY, Theorem 3.4 & 3.5]). For n ≥ 1 we have

S1,3(n) = ζ






1

. .
. 3

1 . .
.

3




 =

1

4n
ζ⋆({4}n) ,

S⋆
1,3(n) = ζ





1 3

. .
.
. .
.

1 3



 =

n∑

k=0

1

4k
ζ⋆({4}k)ζ({4}n−k) ,

A1,3(n) = ζ






1

. .
. 3

1 . .
.

1 3




 =

2

4n
ζ(4n+ 1) ,
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B1,3(n) = ζ






1 3

. .
. 3

1 . .
.

3




 =

1

4n
ζ(4n+ 3) .

These formulae can be seen as analogues of the well-known 1-3 formula for multiple zeta values:

(4.1) ζ








1

3
...
1

3








= ζ({1, 3}n) = 2π4n

(4n+ 2)!
=

1

4n
ζ({4}n) .

In particular we see, that all the above examples are elements of Q[π4, ζ(3), ζ(5), . . . ], using the

well-known facts that ζ⋆({4}k), ζ({4}n) ∈ Q[ζ(4)] = Q[π4] (see for example [HI, Section 6]). We

now give some other explicit evaluations for non-admissible 1-3 indices.

Proposition 4.2. For n ≥ 0 we have

ζreg({1, 3}n, 1) = ζ∗({1, 3}n)T +
1

22n−1

n∑

j=1

(−1)jζ(4j + 1)ζ({4}n−j) ,

ζreg({3, 1}n) = ζ({3, 1}n−1, 3)T + (−1)n
n∑

k=0

1

4k
ζ⋆({4}k)ζ({4}n−k)

+
1

22n−3

∑

1≤j≤n−1
0≤k≤n−1−j

(−1)j+kζ(4j + 1)ζ(4k + 3)ζ({4}n−j−1−k) .

Proof. By the harmonic product ([BY, Lemma 2.2]) we have that for all M ∈ Z>0,

ζM ({1, 3}n, 1) = ζM









1

3
...
1

3

1









= ζM
(
1
)
ζM








1

3
...
1

3








− ζM








1

3
...
1

1 3








.

The first equation in the Proposition follows from this together with Corollary 3.6 in [BY], which

gives an explicit formula for the Schur multiple zeta value on the right, and that ζreg(1) = T .

Similarly we can use the harmonic product formula to get that

ζreg({3, 1}n) = ζ({3, 1}n−1, 3)T +

n−1∑

j=1

(−1)jA1,3(j)ζ({3, 1}n−j−1, 3) + (−1)nS⋆
1,3(n) .

Using the explicit formulae in [BY] for A1,3(j) and S1,3(n) above, together with

ζ(3, {1, 3}n) =
n∑

k=0

(

−1

4

)k

ζ(4k + 3)ζ({1, 3}n−k) ,(4.2)

which is part of [BY, Corollary 3.6], we get the desired result. �

Theorem 4.3. Every (regularized) Checkerboard style Schur multiple zeta value with alternating

entries of 1 and 3 is an element in Q[π4, ζ(3), ζ(5), . . . ][T ].
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Proof. By Corollary 3.4 every 1-3 Checkerboard style Schur multiple zeta value can be written as a

polynomial in ζ({1, 3}n), ζ(3, {1, 3}n), ζreg({3, 1}n) and, ζreg(1, {3, 1}n), by choosing a long enough

column as the ribbon R. The statement then follows from (4.1), (4.2) and Proposition 4.2. �

Notice that in some cases it is better to choose a different ribbon R instead of a long col-

umn, since the stairs S1,3, S⋆
1,3, A1,3 and B1,3 have nicer evaluations than the multiple zetas

ζ({1, 3}n), ζ(3, {1, 3}n), ζreg({3, 1}n) and ζreg(1, {3, 1}n). In particular by choosing R = we

obtain the earlier formula (1.4) for the 3× 3 square.

Proposition 4.4. Fix one F ∈ {S, S⋆, A,B} and let k be an Checkerboard style Young tableau

with alternating entries of a, b ≥ 1. If k can be tessellated purely by Fa,b stairs, then ζreg(k) ∈
Q[Fa,b(n) | n ≥ 0].

Proof. Again we use Corollary 3.4 and choose a particular ribbon R. In this case, we choose the

ribbon R to be the one with the same shape as F and such that c(R) = c(λ/µ). We will call this

an F -type stair in the following. This choice is possible since k is tessellated purely by F -type

stairs and therefore the box with the smallest content is the starting box of a F -type stair and the

box with the largest content is the ending box of a F -type stair. The construction of the outside

decomposition Θ in the proof of Corollary 2.10 then assures that all the subribbons RΘ(i, j) are

also F -type stairs. The entries in the matrix of Corollary 3.4 are therefore all of the form Fa,b(n)

for some n ≥ 0 which then gives ζreg(k) ∈ Q[Fa,b(n) | n ≥ 0]. �

Corollary 4.5. Let k be an admissible Checkerboard style Young tableau with alternating entries

of 1 and 3.

i) If k can be tessellated purely by S1,3 stairs, then ζ(k) ∈ Q[π4].

ii) If k can be tessellated purely by S⋆
1,3 stairs, then ζ(k) ∈ Q[π4].

iii) If k can be tessellated purely by A1,3 stairs, then ζ(k) ∈ Q[ζ(4n+ 1) | n ≥ 1].

iv) If k can be tessellated purely by B1,3 stairs, then ζ(k) ∈ Q[ζ(4n+ 3) | n ≥ 0].

Proof. This is a direct consequence of Proposition 4.4 and the explicit formulae for the Schur

multiple zeta values S1,3, S
⋆
1,3, A1,3 and B1,3 given in Theorem 4.1. �

Proposition 4.4 and Corollary 3.4 give a more direct proof for Theorem 4.4 in [BY]. There the

authors used the Jacobi-Trudi formula for a column R instead of a stair R, to show that certain

thick stairs can be written as polynomials in the stairs Ba,b. We want to emphasize that the

general Jacobi-Trudi determinant in Corollary 3.4 is much more elegant for this purpose since no

complicated matrix manipulations are necessary anymore.

Example 4.6. i), ii) We note that tableaux of the form λ/µ where λi − µi ∈ 2Z and λi − λi−1

odd can be tessellated purely by S⋆-type stairs. The transpose can be tessellated purely by

S-type stairs. Hence we get, for example

ζ








1 3 1 3

1 3 1 3 1 3

1 3 1 3

1 3 1 3

1 3








, ζ











1

1 3

1 3 1

3 1 3

1 3

1 3

3











∈ Q[π4] .
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iii) We note that admissible tableaux of the form λ/(2n, 2n− 1, . . . , 2, 1) can be tessellated purely

by A-type stairs. Hence we get, for example

ζ









1

1 3

1 3 1

1 3 1 3

1 3 1 3

1 3









∈ Q[ζ(4n+ 1) | n ≥ 1] .

iv) We note that tableaux of the form (2n−1, 2n−2, . . . , 2, 1)/µ, where µ ⊂ (2n−3, 2n−4, . . . , 2, 1)

can be tessellated purely by B-type stairs. Hence we get, for example

ζ











3 1 3

3 1 3

1 3 1 3

3 1 3

3 1 3

1 3

3











∈ Q[ζ(4n+ 3) | n ≥ 0] .

We can also consider Checkerboard style Schur multiple zeta values with alternating 1 and 2

entries. In [BY], some results were stated about the A,B, S, S⋆ stairs with these entries, from

which we obtain further results using Proposition 4.4.

Lemma 4.7. For n ≥ 1 we have

A1,2(n) = ζ






1

. .
. 2

1 . .
.

1 2




 = 3ζ(3n+ 1) .

Proof. This statement was stated in [BY] without proof, which we will give now. By [BY, Lemma

2.3] we have for n ≥ 1

A1,2(n) = (−1)n−1L1,2(n)−
n−1∑

k=1

(−1)n−kA1,2(k) ζ({1, 2}n−k) ,

where for n ≥ 1 the L1,2(n) are given by

L1,2(n) = ζ








1

2
...
1

1 2








.

These can be written in terms of multiple zeta values by using the iterated integral expression in

Equation 6.3 of [NPY]. From this we obtain the following expression

L1,2(n) = 3
∑

l+m=n−1
l,m≥0

ζ({1, 2}l, 1, 1, 2, {1, 2}m) = 3
∑

l+m=n−1
l,m≥0

ζ({3}m, 4, {3}l) .

Here the last equality follows from the duality formula for multiple zeta values. Clearly we have

A1,2(1) = 3ζ(4) and by using induction on n, and the duality ζ({1, 2}n−k) = ζ({3}n−k), we must
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only show

3ζ(3n+ 1) = (−1)n−13
∑

l+m=n−1
l,m≥0

ζ({3}m, 4, {3}l)− 3

n−1∑

k=1

(−1)n−kζ(3k + 1) ζ({3}n−k) .

We see this follows directly by the harmonic product formula for multiple zeta values, since terms

in the second summation telescope. �

Corollary 4.8. Let k be an admissible Checkerboard style Young tableau with alternating entries

of 1 and 2.

i) If k can be tessellated purely by S1,2 stairs, then ζ(k) ∈ Q[ζ(3n) | n ≥ 1].

ii) If k can be tessellated purely by S⋆
1,2 stairs, then ζ(k) ∈ Q[ζ(3n) | n ≥ 1 odd].

iii) If k can be tessellated purely by A1,2 stairs, then ζ(k) ∈ Q[ζ(3n+ 1) | n ≥ 1].

Proof. Using the duality ζ({1, 2}n) = ζ({3}n) together [BY, Lemma 3.3] we obtain S1,2(n) =

ζ⋆({3}n) ∈ Q[ζ(3n) | n ≥ 1]. Then i) follows by using Proposition 4.4 with F = S.

For ii) we first notice that S⋆
1,2(n) = ζ⋆({1, 2}n), which follows from [BY, Lemma 3.3] together

with [HI, Equation 38]. Then using the formula

ζ⋆({1, 2}n) =
∑

i1+3i3+5i5+···=n

2i1+i3+i5+...ζ(3)i1ζ(9)i3ζ(15)i5 . . .

1i1 i1!3i3i3!5i5 i5! . . .
,

which can be found in [HI, Equation 39], we obtain the desired result by using Proposition 4.4

with F = S⋆.

The last statement iii) is a consequence of Lemma 4.7 and Proposition 4.4 with F = A. �

We end this note by answering another question posed in [BY] Section 5. There it was observed

that the product B1,3(n − 1) · A1,3(n) minus their ‘gluings’ is always a rational multiple of π8n.

For example in the case n = 2, we have

ζ

(

1 3

3

)

· ζ
(

1

1 3

1 3

)

− ζ

(
1 3 1

3 1 3

1 3

)

= 1074502 ζ({1, 3}4) .

We denote the gluing of a stair of B1,3(n − 1) on top of A1,3(n) for n ≥ 1 by the following Schur

multiple zeta value of a Young tableau with shape (n+1, n+1, n, . . . , 3, 2)/(n− 2, n− 3, . . . , 2, 1):

G1,3(n) = ζ








n+1
︷ ︸︸ ︷

1 3 1

. .
. 3 1 3

1 . .
.
. .
. 3

3 1 . .
.

1 3








.

The observation in [BY] is then a direct consequence of our generalized Jacobi-Trudi formula. We

first give a Lemma containing a fun evaluation of S⋆
1,3(n) in terms of Bernoulli polynomials; the

result on G1,3(n) follows afterwards.

Lemma 4.9. For n ≥ 1, the following evaluation holds

S⋆
1,3(n) = 2iB4n+1

(
1− i

2

)
4nπ4n

(4n+ 1)!
,
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where Bk(t) is the k-th Bernoulli polynomial.

Proof. First recall from [HI, Section 6.1] the following generating series expressions for ζ({4}k)
and ζ⋆({4}k),

Z4(t) :=
∑

k≥0

ζ({4}k) tk =
cosh(

√
2π 4

√
t)− cos(

√
2π 4

√
t)

2π2
√
t

,

Z⋆
4 (t) :=

∑

k≥0

ζ⋆({4}k) tk =
π2

√
t

sin(π 4
√
t) sinh(π 4

√
t)

,

which are linked via Z4(−t)Z⋆
4 (t) = 1. It follows from the evaluation in Theorem 4.1 that

S⋆
1,3(n) = [tn]

(
Z4(t)Z

⋆
4 (

1
4 t)
)
.

One can check directly that Z4(t)Z
⋆
4 (

1
4 t) is expressible as

i

2

(

f

(
1− i

2
, i
√
2π

4
√
t

)

+ f

(
1− i

2
,
√
2π

4
√
t

)

− f

(
1 + i

2
, i
√
2π

4
√
t

)

− f

(
1 + i

2
,
√
2π

4
√
t

))

,

where

f(a, x) :=
eax

ex − 1
=
∑

k≥0

Bk(a)
xk−1

k!

is a shifted version of the generating series of the Bernoulli polynomials. Extracting the coefficient

of tn corresponds to taking the (4n+ 1)-th term in the expansions of f , so we obtain

[tn]
(
Z4(t)Z

⋆
4 (

1
4 t)
)
= i

(

B4n+1

(
1− i

2

)

−B4n+1

(
1 + i

2

))
4nπ4n

(4n+ 1)!
.

Under the symmetry Bk(x) = (−1)kBk(1 − x) of Bernoulli polynomials, this simplifies to the

expression given in the statement of the Lemma. �

Proposition 4.10. For n ≥ 1 we have

B1,3(n− 1) · A1,3(n)−G1,3(n) = αnζ({1, 3}2n) ∈ Qπ8n ,

where

αn = 8i(8n+ 1)

(
8n

4n

)

B4n+1

(
1− i

2

) 2n∑

j=0

(−1)j
(
1− 22j−1

)(
1− 24n−2j−1

)
(
4n

2j

)

B2jB4n−2j .

Here Bk is the k-th Bernoulli number, and Bk(x) the k-th Bernoulli polynomial.

Proof. Using Corollary 3.4 with an A-type ribbon R gives an outside decomposition (θ1, θ2) with

an A-type stair θ1 and a B-type stair θ2. We then immediately obtain

G1,3(n) = det

(

A1,3(n) S1,3(n)

S⋆
1,3(n) B1,3(n− 1)

)

and thus B1,3(n− 1) ·A1,3(n)−G1,3(n) = S1,3(n)S
⋆
1,3(n). So from Theorem 4.1 it already follows

that B1,3(n− 1) · A1,3(n)−G1,3(n) ∈ π8nQ.

The explicit formula for αn arises as follows. From Lemma 4.9, we have

S⋆
1,3(n) = 2iB4n+1

(
1− i

2

)
4nπ4n

(4n+ 1)!
.
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Theorem 4.1, gives us S1,3(n) =
1
4n ζ

⋆({4}n). Using known formulae for the Taylor series of csc(x)

and csch(x) to expand out the generating series of ζ⋆({4}n) in Lemma 4.9, gives

ζ⋆({4}n) = 4π4n

(4n)!

2n∑

j=0

(−1)j(1− 22j−1)(1 − 24n−2j−1)

(
4n

2j

)

B2jB4n−2j .

From (4.1), we have

ζ({1, 3}2n) = 2π8n

(8n+ 2)!
.

From these evaluations and the definition of αn as

αn =
B1,3(n− 1) · A1,3(n)−G1,3(n)

ζ({1, 3}2n) =
S1,3(n)S

⋆
1,3(n)

ζ({1, 3}2n) ,

we obtain the required formula. �

From this formula we list some values of αn for small n, to confirm the results in (5.2) and (5.3)

of [BY], and the numerics for the weight 32 case n = 4 thereafter.

n 1 2 3 4 5

αn 70 1074502
9656199193420

21
2222659435447178310

766533703696349735861335868

11

After computing αn for larger values of n, we note that the denominator is always appears to

be much smaller than the numerator, but as n increases the denominator also increases in a way

that is not so clear from the formula. For n = 9 we have denominator 133, for n = 15 we have

denominator 1085, whereas for n = 23 we have denominator 206283.
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