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Abstract

In this paper, we find all positive squarefree integers d such that the Pell equation X2
−dY 2 =

±1 has at least two positive integer solutions (X,Y ) and (X ′, Y ′) such that both X and X ′

have Zeckendorf representations with at most two terms.
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1 Introduction

For a positive squarefree integer d and the Pell equation

X2 − dY 2 = ±1, where X, Y ∈ Z+, (1)

it is well–known that all its solutions (X,Y ) have the form

X + Y
√
d = Xk + Yk

√
d = (X1 + Y1

√
d)k
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for some k ∈ Z+, where (X1, Y1) be the smallest positive integer solution of (1). The sequence

{Xk}k≥1 is a binary recurrent sequence. In fact, the formula

Xk =
(X1 +

√
dY1)

k + (X1 −
√
dY1)

k

2
(2)

holds for all positive integers k.

Recently there was a spur of activity around investigating for which d, there are members of

sequence {Xk}k≥1 which belong to some interesting sequences of positive integers. Maybe the first

result of this kind is due to Ljunggren [7] who showed that if (1) has a solution with −1 on the

right–hand side, then there is at most one odd k such that Xk is a square. In [2], it is shown

that if all solutions of (1) have the sign +1 on the right–hand side, then Xk is a square only when

k ∈ {1, 2}, with both X1 and X2 being squares occurring only for d = 1785. When only solutions

with the sign +1 in the right–hand side are considered, in [3] it is shown that Xk is a repdigit in

base 10 for at most one k, except when d = 2, for which both X1 = 3 and X3 = 99 are repdigits,

and when d = 3 for which both X1 = 2 and X2 = 7 are repdigits. More generally, in [5] it is shown

that if b ≥ 2 is any integer, then, under the same assumption that only solutions with the sign

+1 on the right–hand side are considered, there are only finitely many d’s such that Xk is a base

b-repdigit for at least two values of k. All such d are bounded by exp((10b)10
5

). In [9], it is shown

that Xk is a Fibonacci number for at most one k, except for d = 2 when both X1 = 1 and X2 = 3

are Fibonacci numbers.

We recall that the Fibonacci sequence {Fk}k≥0 and its companion Lucas sequence {Lk}k≥0 are

given by F0 = 0, F1 = 1, L0 = 2, L1 = 1 and for both, each term afterwards is the sum of the

preceding two terms.

Letting α = (1 +
√
5)/2 and β = (1 −

√
5)/2 be the roots of the characteristic polynomial

X2 −X − 1 of both the Fibonacci and Lucas sequences, the Binet formulas

Fk =
αk − βk

√
5

and Lk = αk + βk (3)

hold for all nonnegative integers k. Further, the inequalities

αk−2 ≤ Fk ≤ αk−1 hold for all k ≥ 1. (4)

Zeckendorf’s theorem (see [14]) claims that every positive integer N has a unique representation

as sum of non–consecutive Fibonacci numbers. That is,

N = Fk1
+ · · ·+ Fkr

, where ki+1 − ki ≥ 2 for all i = 1, 2, . . . , r − 1.

We say that N has Zeckendorf representation with r terms.

In this paper, we look at Pell equations (1) such that Xℓ has Zeckendorf representation with

at most two terms, for at least two values of ℓ.

We prove the following result.

Theorem 1. For each squarefree integer d, there is at most one positive integer ℓ such that Xℓ

has a Zeckendorf representation with at most two terms, except for d ∈ {2, 3, 5, 11, 30}.

For the exceptional values of d appearing in the statement of Theorem 1, all solutions (ℓ,m, n)

of the Diophantine equation

Xℓ = Fm + Fn, with n−m ≥ 2
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are listed in the Section 2 and 5. Note that our results also give all solutions of the problem

under the more relaxed condition that n ≥ m (but not necessarily that n − m ≥ 2). Namely, if

m = n − 1, we then take Fn + Fn−1 = Fn+1 + F0 and when m = n (and n ≥ 2, since F1 = F2),

then Fn + Fm = 2Fn = Fn+1 + Fn−2.

The main tools used in this work are lower bounds for linear forms in logarithms á la Baker and

a version of the Baker–Davenport reduction method from Diophantine approximation, in addition

to elementary properties of Fibonacci numbers and solutions to Pell equations.

2 A preliminary consideration

First of all, we consider the case d = 5 in equation (1). It is well–known that if (X,Y ) are positive

integers such that

X2 − 5Y 2 = ±4, then (X,Y ) = (Ln, Fn) for some n ≥ 1.

In particular, if X2−5Y 2 = ±1, then (2X)2−5(2Y )2 = ±4, so 2X = Ln for some integer n. Thus,

X = Ln/2 and since this is an integer, we have 3 | n. One checks (by induction, for example), that

Ln

2
= Fn +

Fn−3

2
.

So, assume that Ln/2 = Fa + Fb for some n ≥ 10 and a ≥ b (in particular for a − b ≥ 2). If

a ≤ n− 2, then

Fn < Fn +
Fn−3

2
=

Ln

2
= Fa + Fb ≤ 2Fa ≤ Fn−2 < Fn,

a contradiction. If a = n− 1 and b ≤ n− 2, then again

Fn <
Ln

2
= Fa + Fb ≤ Fn−1 + Fn−2 = Fn

a contradiction, while if a = b = n− 1, then

Fa + Fb = 2Fn−1 = Fn + Fn−3 > Fn +
Fn−3

2
=

Ln

2
,

again a contradiction. Certainly, if a ≥ n+ 1, then

Fa + Fb ≥ Fn+1 = Fn + Fn−1 > Fn +
Fn−3

2
=

Ln

2
,

again a contradiction. Having explored both possibilities a ≥ n+1 and a ≤ n− 1 without success,

we conclude that a = n. Hence,

Fa + Fb = Fn + Fb = Fn +
Fn−3

2
=

Ln

2
,

giving Fb = Fn−3/2. This is also wrong since

Fn−5 <
Fn−3

2
< Fn−4

for n ≥ 10 meaning Fn−3/2 cannot be a Fibonacci number Fb. Thus, n < 10, and since 3 | n we

need to check n = 3, 6, 9. The cases n = 3, 6 give the solutions

F3 + F0 = 2F2 = 2F1 = F2 + F1 = 2 = X1,

F6 + F1 = F6 + F2 = 9 = X2,
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while the case n = 9 doesn’t since for it we have X3 = L9/2 = 38 which is not a sum of two

Fibonacci numbers.

From now on, we will consider the Pell equation (1) with d 6= 5.

3 An inequality for n and ℓ

Let (X1, Y1) be the minimal solution in positive integers of the Pell equation (1) with d 6= 5. Taking

δ := X1 +
√
dY1 and η := X1 −

√
dY1. (5)

We obtain that

δ · η = X2
1 − dY 2

1 =: ǫ, ǫ ∈ {±1} .

Thus, from (2), we have

Xℓ =
1

2

(

δℓ + ηℓ
)

. (6)

Since δ ≥ 1 +
√
2 and α = (1 +

√
5)/2, it follows that the estimate

δℓ

α2
≤ Xℓ < δℓ holds for all ℓ ≥ 1. (7)

Indeed, inequality on the right–hand side is taken from the fact that |η| = |δ|−1. To inequality on

the left–hand side, we note that

Xℓ ≥
δℓ − δ−ℓ

2
= δℓ

(

1− δ−2ℓ

2

)

≥ δℓ

(

1− (1 +
√
2)−2

2

)

>
δℓ

α2
.

We assume that (m1, n1, ℓ1) and (m2, n2, ℓ2) are shortlists of positive integers such that

Fm1
+ Fn1

= Xℓ1 and Fm2
+ Fn2

= Xℓ2 , (8)

with 1 ≤ ℓ1 < ℓ2. We also assume that ni −mi ≥ 2 for i = 1, 2. By the main result in [9], we may

assume that not both m1 and m2 are zero, although this condition will not be used. Thus, ni ≥ 2

for i = 1, 2.

We will start from the assumption that n ≥ 3. Setting (m,n, ℓ) := (mi, ni, ℓi), for i ∈ {1, 2}
and using inequalities (4) and (7), we get from (8) that

αn−2 ≤ αm−2 + αn−2 ≤ Fm + Fn = Xℓ ≤ δℓ

and
δℓ

α2
≤ Xℓ = Fm + Fn ≤ αm−1 + αn−1 ≤ αn−1

(

1 + α−2
)

.

The above inequalities give

(n− 2) logα < ℓ log δ ≤ (n+ 1) logα+ log(1 + α−2).

Dividing across by logα and setting c1 := 1/ logα, we deduce that

−2 < c1ℓ log δ − n < 1 +
log(1 + α−2)

logα
,
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and since α2 = α+ 1 > 2, we get

|n− c1ℓ log δ| ≤ 2. (9)

Furthermore, ℓ < n, for if not, we would then get

δn ≤ δℓ ≤ αn+1(1 + α−2), implying

(

δ

α

)n

≤ α+ α−1,

which is false since δ ≥ 1 +
√
2, α = (1 +

√
5)/2 and n ≥ 3.

Besides, given that ℓ1 < ℓ2, we have by (8) and (4) that

αn1−2 ≤ Fn1
≤ Fm1

+ Fn1
= Xℓ1 < Xℓ2 = Fm2

+ Fn2
< αn2−1

(

1 + α−2
)

.

Thus,

n1 ≤ n2 + 2. (10)

Using identities (6) and (3) in the Diophantine equations (8), we get

αm + αn

√
5

− 1

2
δℓ =

1

2
ηℓ +

βm + βn

√
5

.

Thus, dividing both sides of the above equality by (αn + αm)/
√
5 and taking absolute value, we

get
∣

∣

∣
δℓ(

√
5/2)α−n(1 + αm−n)−1 − 1

∣

∣

∣
<

3.6

αn
, (11)

where we have used the facts that |η| = |δ|−1, |β| = α−1, ℓ ≥ 1 and m ≥ 0.

Put

Λ1 := δℓ(
√
5/2)α−n(1 + αm−n)−1 − 1,

and

Γ1 := ℓ log δ + log(
√
5/2)− n logα− log(1 + αm−n).

Since |eΓ1 − 1| = |Λ1| < 3.6/αn < 0.84 for n ≥ 3, it follows that e|Γ1| < 6.25 and so

|Γ1| < e|Γ1||eΓ1 − 1| < 23

αn
.

Thus, we get

|ℓ log δ + log(
√
5/2)− n logα− log(1 + αm−n)| < 23

αn
. (12)

In order to find upper bounds for n and ℓ, we use a result of E. M. Matveev on lower bounds

for nonzero linear forms in logarithms of algebraic numbers.

Let η be an algebraic number of degree d over Q with minimal primitive polynomial over the

integers

f(X) := a0

d
∏

i=1

(X − η(i)) ∈ Z[X ],

where the leading coefficient a0 is positive. The logarithmic height of η is given by

h(η) :=
1

d

(

log a0 +
d
∑

i=1

logmax{|η(i)|, 1}
)

.
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In this work we will use the following properties. If η = p/q is a rational number with gcd(p, q) = 1

and q > 0, then h(η) = logmax{|p|, q}. Are also known: h(ηs) = |s|h(η) for all s ∈ Z and

h(η ± γ) ≤ h(η) + h(γ) + log 2, h(ηγ±1) ≤ h(η) + h(γ).

Our main tool is a lower bound for a linear form in logarithms of algebraic numbers given by

the following result of Matveev [10]:

Theorem 1 (Matveev’s theorem). Let L ⊆ R be a real algebraic number field of degree dL over

Q, η1, . . . , ηl non–zero elements of L, and d1, . . . , dl rational integers. Put

Λ := ηd1

1 · · · ηdl

l − 1 and D ≥ max{|d1|, . . . , |dl|, 3}.

Let Ai ≥ max{dLh(ηi), | log ηi|, 0.16} be real numbers, for i = 1, . . . , l. Then, assuming that Λ 6= 0,

we have

|Λ| > exp(−3× 30l+3 × l4.5 × d2L(1 + log dL)(1 + logD)A1 · · ·Al).

We apply Matveev’s theorem on the left-hand side of (12). We take l := 4,

η1 := δ, η2 :=
√
5/2, η3 := α, η4 := 1 + αm−n,

d1 := ℓ, d2 := 1, d3 := −n, d4 := −1.

Furthermore, L = Q(
√
d,
√
5) which has degree dL = 4. Since ℓ < n, we take D := n. We have

h(η1) = (1/2) log δ, h(η2) = (1/2) log 5, h(η3) = (1/2) logα and

h(η4) ≤ h(1) + h(αm−n) + log 2

= (n−m)h(α) + log 2

= (n−m)

(

1

2
logα

)

+ log 2.

Thus, we can take

A1 = 2 log δ, A2 = 2 log 5, A3 = 2 logα, A4 = (2 logα)(n−m) + 4 log 2.

Note that Γ1 6= 0, since otherwise

δℓ = (2/
√
5)(αn + αm) ∈ Q(

√
5).

But given that d 6= 5 is squarefree, it follows that Q(
√
d) ∩ Q(

√
5) = Q. Hence, ℓ = 0 and

αn + αm = (
√
5/2) < 2, which is not possible for any n > m ≥ 0.

Now Matveev’s Theorem 1 tells us that

log |Γ1| > −1.4 · 30744.542(1 + log 4)(1 + logn)(2 log δ)(2 log 5)(2 logα)

· ((2 logα)(n −m) + 4 log 2)

> −7.2× 1015(n−m)(logn)(log δ).

Comparing the above inequality with (11), we get

n logα− log 23 < 7.2× 1015(n−m)(logn)(log δ).

6



Thus,

n < 1.5× 1016(n−m)(logn)(log δ). (13)

This inequality was under the assumption that n ≥ 3, but if n = 2, then the above inequality

obviously holds as well

Returning to equation Fm + Fn = Xℓ, and rewriting it as

αn

√
5
− 1

2
δℓ =

1

2
ηℓ +

βn

√
5
− Fm,

we obtain
∣

∣

∣
δℓ(

√
5/2)α−n − 1

∣

∣

∣
<

1.1

αn−m
. (14)

Put

Λ2 := δℓ(
√
5/2)α−n − 1, Γ2 := ℓ log δ + log(

√
5/2)− n logα.

Given that n−m ≥ 2, we have that |Λ2| = |eΓ2 − 1| < 0.421. It follows that

|ℓ log δ + log(
√
5/2)− n logα| = |Λ2| < e|Γ2||eΓ2 − 1| < 2

αn−m
. (15)

Furthermore, Γ2 6= 0, since δℓ /∈ Q(
√
5) by a previous argument and αn > 2 for all n ≥ 2.

Applying Matveev’s Theorem 1 with the parameters l := 3,

η1 := δ, η2 :=
√
5/2, η3 := α, d1 := ℓ, d2 := 1, d3 := −n,

we can conclude that

log |Γ2| > −1.5 · 1014(log δ)(log n)(logα),

and comparing with (15), we get

n−m < 3.2 · 1014(log δ)(log n). (16)

We replace the previous bound (16) on n−m in (13) and use the fact that δℓ ≤ αn+1
(

1 + α−2
)

,

to obtain bounds on n and ℓ in terms of logn and log δ.

Let us record what we have proved so far.

Lemma 1. Let (m,n, ℓ) be a solution of Fm + Fn = Xℓ with n−m ≥ 2, m ≥ 0 and d 6= 5, then

ℓ < 1.6× 1030(logn)2(log δ) and n < 4.8× 1030(log n)2(log δ)2. (17)

4 Absolute bounds

In this section we will find absolute bounds for m,n and ℓ, which determine that (8) only has a

finite number of solutions.

We recall that (m,n, ℓ) = (mi, ni, ℓi), where ni − mi ≥ 2, mi ≥ 0, so ni ≥ 2, for i = 1, 2.

Moreover, 1 ≤ ℓ1 < ℓ2. We return to inequality (15) and write:

|Γ(i)
2 | := |ℓi log δ + log(

√
5/2)− ni logα| <

2

αni−mi
, for i = 1, 2.

7



We make a suitable cross product between Γ
(1)
2 , Γ

(2)
2 and ℓ1, ℓ2 to eliminate the term involving

log δ in the above linear forms in logarithms:

|Γ3| :=
∣

∣

∣
(ℓ2 − ℓ1) log(

√
5/2) + (ℓ1n2 − ℓ2n1) logα

∣

∣

∣
= |ℓ2Γ(1)

2 − ℓ1Γ
(2)
2 |

≤ ℓ2|Γ(2)
2 |+ ℓ1|Γ(2)

2 |

≤ 2ℓ2
αn1−m1

+
2ℓ1

αn2−m2

≤ 4n2

αλ
(18)

with λ := min
i=1,2

{ni −mi}.
Next, we apply Matveev’s theorem with l = 2,

η1 := 2a, η2 := α, d1 := ℓ1 − ℓ2, d2 := ℓ1n2 − ℓ2n1.

We take L := Q(
√
5) and dL := 2. We continue by remarking that Γ3 6= 0, because α is a unit in

the ring of algebraic integers of Q(
√
5) while the norm of

√
5/2 is 5/4.

Note that |ℓ2 − ℓ1| < ℓ2 < n2. Further, from inequality (18), we have

|ℓ1n2 − ℓ2n1| < (ℓ2 − ℓ1)
log(

√
5/2)

logα
+

4ℓ2

αλ logα
< 3.4ℓ2 < 3.4n2

given that λ ≥ 2. So, we can take D := 3.4n2.

From Matveev’s theorem

log |Γ3| > −2.6 · 1010(logn2)(logα).

Combining this with (18), we get

λ < 2.7 · 1010 log n2. (19)

Without loss generality, we can assume that λ = ni −mi, for i ∈ {1, 2} fixed.

We set {i, j} = {1, 2} and return to (12) to replace (m,n, ℓ) = (mi, ni, ℓi):

|Γ(i)
1 | = |ℓi log δ + log(

√
5/2)− ni logα− log(1 + α−(ni−mi))| < 23

αni
(20)

then to (15), with (m,n, ℓ) = (mj , nj, ℓj):

|Γ(j)
2 | = |ℓj log δ + log(

√
5/2)− nj logα| <

2

αnj−mj
. (21)

We perform a cross product in inequalities (20) and (21) in order to eliminate the term log δ:

|Γ4| :=
∣

∣

∣
(ℓi − ℓj) log(

√
5/2) + (niℓj − njℓi) logα+ ℓj log(1 + α−(ni−mi))

∣

∣

∣

= |ℓiΓ(j)
2 − ℓjΓ

(i)
1 | ≤ ℓi|Γ(j)

2 |+ ℓj |Γ(i)
1 | ≤ 25n2

αρ
(22)

with ρ := min{ni, nj −mj}.
If Γ4 = 0, we then obtain

(
√
5/2)ℓi−ℓj = αniℓj−njℓi(1 + α−λ)ℓj .

8



Since α is a unit, the right–hand side above is an algebraic integer. This is impossible because

ℓ1 < ℓ2 so ℓi − ℓj 6= 0, and neither
√
5/2 nor (

√
5/2)−1 are algebraic integers. Hence, Γ4 6= 0.

By using Matveev’s theorem, with the parameters l := 3 and

η1 :=
√
5/2, η2 := α, η3 := 1 + α−λ,

d1 := ℓi − ℓj, d2 := niℓj − njℓi, d3 := ℓj ,

and inequalities (19) and (22), we get

ρ = min{ni, nj −mj} < 6.8 · 1012λ log n2 < 2 · 1022(log n2)
2.

Note that the instance (i, j) = (2, 1) leads to n1 −m1 ≤ n1 ≤ n2 + 2 while (i, j) = (1, 2) lead to

ρ = min{n1, n2 −m2}. Hence, either the minimum is n1, so

n1 < 2 · 1022(logn2)
2, (23)

or the minimum is nj −mj and from inequality (19) we get

max
i=1,2

{ni −mi} < 2 · 1022(log n2)
2. (24)

Next, assume that we are in case (24). We evaluate (20) in i = 1, 2 and make a new cross

product in order to eliminate the term involving log δ:

|Γ5| := |(ℓ1 − ℓ2) log(
√
5/2) + (n1ℓ2 − n2ℓ1) logα

+ ℓ2 log(1 + αm1−n1)− ℓ1 log(1 + αm2−n2)|
= |ℓ1Γ(2)

1 − ℓ2Γ
(1)
1 | ≤ ℓ1|Γ(2)

1 |+ ℓ2|Γ(1)
1 |

<
46n2

αn1−2
. (25)

In the above inequality we used inequality (10) to conclude that min{n1, n2} ≥ n1 − 2. In order

to apply Matveev’s theorem we will prove that Γ5 6= 0.

Lemma 2. The equation

(
√
5/2)ℓ2−ℓ1 = αm1ℓ2−m2ℓ1(1 + αn1−m1)ℓ2(1 + αn2−m2)−ℓ1 (26)

has no solution in integers 1 ≤ ℓ1 < ℓ2 and ni −mi ≥ 2, mi ≥ 0 for i = 1, 2.

Proof. We let K = Q(
√
5). For any positive integer k

NK/Q(1 + αk) = (1 + αk)(1 + βk) = 1 + (−1)k + αk + βk

so

NK/Q(1 + αk) =











Lk, if k ≡ 1 (mod 2),

5F 2
k/2, if k ≡ 2 (mod 4),

L2
k/2, if k ≡ 0 (mod 4).

Hence, assuming (26) and taking norms we get

(−5

4

)ℓ2−ℓ1

= NK/Q(
√
5/2)ℓ2−ℓ1

= NK/Q(α)
m1ℓ2−m2ℓ1

NK/Q(1 + αn1−m1)ℓ2

NK/Q(1 + αn2−m2)ℓ1

= (−1)m1ℓ2−m2ℓ1
Eℓ2

n1−m1

Eℓ1
n2−m2

,

9



where Ek ∈ {Lk, L
2
k/2, 5F

2
k/2} according to the residue class of k modulo 4. If n1 −m1 = n2 −m2,

then the right-hand side is Eℓ2−ℓ1
n1−m1

, which is an integer. This is impossible since the left–hand

side is not an integer. So, n1 − m1 6= n2 − m2. In the left, we have 5 in the numerator. Thus,

we must have 5 in the numerator in the right as well. Since 5 ∤ Lk for any k, it follows that

n1 −m1 ≡ 2 (mod 4) and En1−m1
= 5F 2

(n1−m1)/2
. Thus, the exponent of 5 in Eℓ2

n1−m1
is at least

ℓ2. Since it is ℓ2 − ℓ1 < ℓ2 in the left it follows that 5 | En2−m2
. By the previous argument,

n2 −m2 ≡ 2 (mod 4) and En2−m2
= 5F 2

(n2−m2)/2
. By the Carmichael primitive divisor theorem,

if ℓ ≥ 7 is odd, Fℓ has a primitive prime factor p which exceeds 5 and does not divide Fm for

any m < ℓ. Using this theorem, we conclude easily that (n1 −m1)/2 ≤ 5 and (n2 − m2)/2 ≤ 5

(otherwise, since (n1−m1)/2 6= (n2−m2)/2 are odd, the fraction (5F(n1−m1)/2)
ℓ2/(5F 2

(n2−m2)/2
)ℓ1

in reduced form will contain with positive or negative exponent a primitive prime p > 5 of Fk,

where k = max{(n1 −m1)/2, (n2 −m2)/2}, which does not appear in the left).

Assume that one of (n1 −m1)/2 or (n1 −m2)/2 is 5. Then the exponent of 5 is one of 3ℓ2 (if

(n1 −m1)/2 = 5), or ℓ2 − 3ℓ1 (if (n2 −m2)/2 = 5) and none of these equals ℓ2 − ℓ1 which is the

exponent of 5 on the left. Hence, {(n1 −m1)/2, (n2 −m2)/2} = {1, 3}. Since the exponent of 2

appears with negative sign in the left, we conclude that the only possibility is

(n1 −m1)/2 = 1, (n2 −m2)/2 = 3.

In this case, we get

(−5

4

)ℓ2−ℓ1

= (−1)m1ℓ2−m2ℓ1

(

5ℓ2

(5 · 4)ℓ1

)

= ±5ℓ2−ℓ1

4ℓ1
,

and comparing the exponents of 2 in both sides we get ℓ2 − ℓ1 = ℓ1, so ℓ2 = 2ℓ1. We now return

to equation (26) and use

1 + α2 =
√
5α and 1 + α6 = 2

√
5α3,

to get

(√
5

2

)ℓ1

=

(√
5

2

)ℓ2−ℓ1

= αm1ℓ2−m2ℓ1

(

(
√
5α)ℓ2

(2
√
5α3)ℓ1

)

= αℓ1(2m1−m2)
√
5
ℓ2−ℓ1

αℓ2−3ℓ12−ℓ1 =

(

α2m1−m2−1

(√
5

2

))ℓ1

.

Extracting ℓ1 powers, we get that

√
5

2
= ζα2m1−m2−1

√
5

2
,

where ζ is some root of unity of order 2ℓ1. Hence, α2m1−m2−1 = ζ−1. Since the left–hand side is

real and positive, we have ζ−1 = 1 so 2m1 −m2 − 1 = 0. Since n1 = m1 + 2, n2 = m2 + 6, we get

that

n2 = m2 + 6 = (2m1 − 1) + 6 = 2(n1 − 2) + 5 = 2n1 + 1.

Hence, putting k = n1, we have gotten to the situation where

Xℓ1 = Fn1
+ Fm1

= Fn1
+ Fn1−2,

Xℓ2 = X2ℓ1 = Fn2
+ Fm2

= F2n1+1 + F2n1−5.

10



Since

X2ℓ1 = 2X2
ℓ1 ± 1,

we get

F2n1+1 + F2n1−5 = X2ℓ1 = 2X2
ℓ1 ± 1 = 2(Fn1

+ Fn1−2)
2 ± 1.

Of course this is absurd because the left–hand side is always even and the right–hand side is always

odd. Thus, it is not possible that

F2n1+1 + F2n1−5 − 2(Fn1
+ Fn1−2)

2 = ±1.

It is an easy exercise though to show that the left–hand side above is ±4 (namely, (−1)n14 for all

n1 ≥ 3).

We apply a linear form in four logarithms to obtain an upper bound to n1. We take

η1 :=
√
5/2, η2 := α, η3 := 1 + αm1−n1 , η4 := 1 + αm2−n2 ,

d1 := ℓ1 − ℓ2, d2 := n1ℓ2 − n2ℓ1, d3 := ℓ2, d4 := −ℓ1,

and apply Matveev’s theorem on the left–hand side of inequalities (25). Combining the resulting

inequality with the right–hand side in (25) and inequalities (19) and (24) leads us to

n1 < 2.12 · 1015h(1 + αm1−n1)h(1 + αm2−n2)(log n2)

< 5 · 1014(n1 −m1)(n2 −m2)(logn2)

< 2.7 · 1047(logn2)
4. (27)

Thus, we have that inequality (27) holds provided that (24) holds. Otherwise, (23) holds which is

even better than (27). Hence, we conclude that n1 < 2.7 · 1047(logn2)
4 holds in all cases.

By inequality (9),

log δ ≤ ℓ1 log δ ≤ (n1 + 1) logα+ log(1 + α−2) < 1.3 · 1047(logn2)
4.

Putting this into (17) we get n2 < 8.2 · 10124(log n2)
10, and then n2 < 2.1 · 10150.

In summary, we have proved the following result.

Lemma 3. Let (mi, ni, ℓi) be two solutions of Fmi
+ Fni

= Xℓi for i = 1, 2, with ni − mi ≥ 2,

mi ≥ 0, d 6= 5, 1 ≤ ℓ1 < ℓ2, then

max{m1, ℓ1} < n1 < 4 · 1057 and max{m2, ℓ2} < n2 < 2.1 · 10150.

5 Reducing n1 and n2

In the above Lemma 3, we obtained upper bounds on our variables which are very large, so we

need to reduce them. With this aim, we use some results from the theory of continued fractions

and the geometry of numbers.

The following results, well–known in the theory of Diophantine approximation, will be used for

the treatment of linear forms homogeneous in two integer variables.
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Lemma 4. Let τ be an irrational number, M be a positive integer and p0/q0, p1/q1, , . . . be all the

convergents of the continued fraction of τ . Let N be such that qN > M . Then putting

a(M) := max{at : t = 0, 1, . . . , N}, the inequality |mτ − n| >
1

(a(M) + 2)m
,

holds for all pairs (n,m) of integers with 0 < m < M .

For the treatment of nonhomogeneous linear forms in two integer variables, we will use a slight

variation of a result due to Dujella and Pethő, which itself is a generalization of a result of Baker

and Davenport (see [4]). For a real number X , we put

||X || := min{|X − n| : n ∈ Z}

for the distance from X to the nearest integer.

Lemma 5. Let τ be an irrational number, M be a positive integer, and p/q be a convergent of the

continued fraction of the irrational τ such that q > 6M . Let A,B, µ be some real numbers with

A > 0 and B > 1. Put ǫ := ||µq|| −M ||τq||. If ǫ > 0, then there is no solution to the inequality

0 < |mτ − n+ µ| < AB−k,

in positive integers m,n and k with

m ≤ M and k ≥ log(Aq/ǫ)

logB
.

At various occasions, we need to find a lower bound for linear forms with bounded integer

coefficients (in three and four integer variables). Let τ1, . . . , τt ∈ R and the linear form

x1τ1 + x2τ2 + · · ·+ xtτt with |xi| ≤ Xi. (28)

We set X := max{Xi}, C > (tX)t and consider the integer lattice Ω generated by

bj := ej + ⌊Cτj⌉ et for 1 ≤ j ≤ t− 1 and bt := ⌊Cτt⌉ et,

where C is a sufficiently large positive constant.

Lemma 6. Let X1, . . . , Xt be positive integers such that X := max{Xi} and C > (tX)t is a fixed

constant. With the above notation on Ω, we consider a reduced base {bi} to Ω and its base of

Gram–Schmidt {b∗
i } associated. We set

c1 := max
1≤i≤t

||b1||
||b∗

i ||
, δ :=

||b1||
c1

, Q :=

t−1
∑

i=1

X2
i and T :=

(

1 +

t
∑

i=1

Xi

)

/2.

If the integers xi satisfy that |xi| ≤ Xi, for i = 1, . . . , t and δ2 ≥ T 2 +Q, then we have

∣

∣

∣

∣

∣

t
∑

i=1

xiτi

∣

∣

∣

∣

∣

≥
√

δ2 −Q− T

C
.

For more details, see Proposition 2.3.20 in [1, Section 2.3.5].
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5.1 First reduction

With this purpose of reducing the upper bound to n1 and n2 given in Lemma 3 to cases that can

be treated computationally, we return to Γ3,Γ4 and Γ5.

Dividing both sides of inequality (18) by (ℓ2 − ℓ1) logα, we obtain
∣

∣

∣

∣

∣

log(
√
5/2)

logα
− ℓ2n1 − ℓ1n2

ℓ2 − ℓ1

∣

∣

∣

∣

∣

<
8.4n2

αλ(ℓ2 − ℓ1)
with λ := min

i=1,2
{ni −mi}. (29)

Bellow we apply Lemma 4. We put τ := log(
√
5/2)/ logα (which is an irrational) and compute its

continued fraction [a0, a1, a2, . . .] and its convergents p1/q1, p2/q2, . . .

[0, 4, 3, 5, 7, 3, 1, 8, 45, 1, 3, 1, . . .] and 0,
1

4
,

3

13
,
16

69
,
115

496
,

361

1557
,

476

2053
, . . . .

Furthermore, we note that taking M := 2.1 · 10150 (according to Lemma 3), it follows that

q282 > M > n2 > ℓ2 − ℓ1 and a(M) := max{ai : 0 ≤ i ≤ 282} = 258.

Then, by Lemma 4, we have that
∣

∣

∣

∣

τ − ℓ2n1 − ℓ1n2

ℓ2 − ℓ1

∣

∣

∣

∣

>
1

260(ℓ2 − ℓ1)2
. (30)

Hence, combining the inequalities (29) and (30), we obtain

αλ < 2184 · n2(ℓ2 − ℓ1) < 9.7 · 10303,

so λ ≤ 1455.

Now, for each ni−mi = λ ∈ [2, 1455] we estimate (via LLL–algorithm) a lower bound for |Γ4|,
with

Γ4 = (ℓi − ℓj) log(
√
5/2) + (niℓj − njℓi) logα+ ℓj log(1 + αmi−ni) (31)

given in inequality (22). Recall that Γ4 6= 0.

We put as in (28), t := 3,

τ1 := log(
√
5/2), τ2 := logα, τ3 := log(1 + α−λ),

and

x1 := ℓi − ℓj, x2 := niℓj − njℓi, x3 := ℓj.

Further, we setX := 7.2·10150 as an upper bound to |xi| < 3.4n2 for all i = 1, 2, 3, and C := (20X)5.

A computer search allows us to conclude, together with inequality (22), that

10−608 < min
λ∈[2, 1455]

|Γ4| < 25n2 · α−ρ, with ρ := min{ni, nj −mj},

which leads to ρ ≤ 3635. As we noted before, ρ = n1 (so n1 ≤ 3635), or ρ = nj −mj .

Next we suppose that nj −mj = ρ ≤ 3635. Since λ ≤ 1455, we have

λ = min
i=1,2

{ni −mi} ≤ 1455 and χ := max
i=1,2

{ni −mi} ≤ 3635.

Returning to inequality (25) which involves

Γ5 := (ℓ1 − ℓ2) log(
√
5/2) + (n1ℓ2 − n2ℓ1) logα

+ ℓ2 log(1 + αm1−n1)− ℓ1 log(1 + αm2−n2) 6= 0, (32)
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we use again the LLL–algorithm to estimate a lower bound for |Γ5| and so to find a beter bound

to n1 than the one given in Lemma 3.

We will distinguish the cases λ < χ or λ = χ.

The case λ < χ.

We take λ ∈ [2, 1455] and χ ∈ [λ+ 1, 3635] and put for (28), t := 4,

τ1 := log(
√
5/2), τ2 := logα, τ3 := log(1 + αm1−n1), τ4 := log(1 + αm2−n2),

and

x1 := ℓ1 − ℓ2, x2 := n1ℓ2 − n2ℓ1, x3 := ℓ2, , x4 := −ℓ1.

Also we put X := 7.2 · 10150 and C := (7X)9. Computationally we confirm that,

10−1215 < min
λ∈[2,1455]

χ∈[λ+1,3635]

|Γ5|,

which together with inequality (25) lead to inequality

αn1−2 < 46 · 101215n2.

Hence, considering the upper bound on n2 given in Lemma 3, we conclude that n1 ≤ 6545.

The case λ = χ.

In this case, we have

Γ5 := (ℓ2 − ℓ1)
(

log(2/
√
5) + log(1 + αm1−n1)

)

+ (n1ℓ2 − n2ℓ1) logα.

We divide inequality (25) by (ℓ2 − ℓ1) logα to obtain

∣

∣

∣

∣

∣

∣

∣log(2/
√
5) + log(1 + αm1−n1)

∣

∣

logα
− ℓ2n1 − ℓ1n2

ℓ2 − ℓ1

∣

∣

∣

∣

∣

<
96n2

αn1−2(ℓ2 − ℓ1)
. (33)

We now put τλ :=
∣

∣log(2/
√
5) + log(1 + αλ)

∣

∣ / logα and compute its continued fractions [a
(λ)
0 , a

(λ)
1 , a

(λ)
2 , . . .]

and its convergents p
(λ)
1 /q

(λ)
1 , p

(λ)
2 /q

(λ)
2 , . . . for each λ ∈ [2, 1455]. Furthermore, for each case we

find an integer tλ such that q
(λ)
tλ > 2.1 · 10150 > n2 > ℓ2 − ℓ1 and calculate

a(M) := max
2≤λ≤1455

{a(λ)i : 0 ≤ i ≤ tλ}.

A simple computational routine in Mathematica reveals that for λ = 312, tλ = 270 and i = 223 we

have a(M) = a
(312)
223 = 1000002. Hence, combining the concusion of Lemma 4 and inequality (33),

we get αn1−2 < 96 · 1000004n2(ℓ2 − ℓ1) < 4.3 · 10308, so n1 ≤ 1170.

Hence, we obtain that n1 ≤ 6545 holds in all cases (ρ = n1, λ < χ or λ = χ).

By inequality (9),

log δ ≤ ℓ1 log δ ≤ n1 logα+ log(1 + α−2) < 3150.

Considering the above inequality in (17) we conclude that n2 < 3 · 1037(logn2)
2 which yield

n2 < 4.4 · 1041. In summary, after this first cycle of reduction, we have

n1 ≤ 6545 and n2 < 4.4 · 1041. (34)
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We note that the above upper bound for n2 represents a very good reduction of the bound given

in Lemma 3. Hence, it is expected that if we restart our reduction cycle with our new bound on

n2, then we can get an even better bound on n1. Indeed, returning to (29), we take M := 4.4 ·1041
and computationally we verify that q89 > M > n2 > ℓ2 − ℓ1 and a(M) := max{ai : 0 ≤ i ≤
89} = a73 = 161, from which it follows that λ ≤ 414. We now return to (31), where putting

X := 1.5 · 1042 and C := (7X)5, we apply LLL-algorithm to λ ∈ [2, 414]. This time we get

7.9 · 10−174 < minλ∈[2,414] |Γ4|, then ρ ≤ 1035. Continuing under the assumption nj −mj = ρ ≤
1035, we return to (32) and put X := 1.5 · 1042, C := (11X)9 and M := 4.4 · 1041 for the cases

λ < χ and λ = χ. One can confirm computationally that

2.7 · 10−347 < min
λ∈[2,414]

χ∈[λ+1,1035]

|Γ5| and a(M) = a
(43)
45 = 19362,

respectively and thus we obtain n1 ≤ 1870. Running one more time the reduction cycle, we

concluded that n1 ≤ 1811.

In the next lemma we summarize the reductions achieved.

Lemma 7. Let (mi, ni, ℓi) be two solutions of Fmi
+ Fni

= Xℓi for i = 1, 2, with ni − mi ≥ 2,

mi ≥ 0, d 6= 5, 1 ≤ ℓ1 < ℓ2, then

m1 < n1 ≤ 1811, ℓ1 ≤ 990 and n2 < 3.3 · 1040.

5.2 Final reduction.

From (5) and (6) and the fact that (X1, Y1) is the smallest positive integer solution to the Pell

equation X2 − dY 2 = ±1, we obtain

Xℓ =
1

2

(

δℓ + ηℓ
)

=
1

2

(

(

X1 +
√
dY1

)ℓ

+
(

X1 −
√
dY1

)ℓ
)

=
1

2

(

(

X1 +
√

X2
1 ∓ 1

)ℓ

+

(

X1 −
√

X2
1 ∓ 1

)ℓ
)

:= P±
ℓ (X1).

Thus, returning to the equation Fm1
+ Fn1

= Xℓ1 , we consider the equations:

P+
ℓ1
(X1) = Fm1

+ Fn1
and P−

ℓ1
(X1) = Fm1

+ Fn1
, (35)

with m1 ∈ [0, 1811], n1 ∈ [m1 + 2, 1811] and ℓ1 ∈ [1, 990].
A computer search on the above equations (35) shows that

P+

ℓ1
:

(n1, m1, ℓ1) X1 d Y1 δ (n1,m1, ℓ1) X1 d Y1 δ

(5, 3, 2) 2 3 1 2 +
√
3 (12, 10, 2) 10 11 3 10 + 3

√
11

(8, 5, 3) 2 3 1 2 +
√
3 (13, 6, 2) 11 30 2 11 + 2

√
30

(11, 6, 2) 7 12 2 7 + 4
√
3 (21, 5, 2) 74 219 5 74 + 5

√
219

(11, 6, 4) 2 3 1 2 +
√
3

It easy to see that (n1,m1, ℓ1, X1) = (2, 0, ℓ1, 1) too are solutions for all ℓ1 ∈ [1, 990]. However,
these lead to Y1 = 0, which is not of interest to us. On the other hand

P−

ℓ1
:

(n1,m1, ℓ1) X1 d Y1 δ

(4, 0, 2) 1 2 1 1 +
√
2

(3, 1, 2) 1 2 1 1 +
√
2

(5, 3, 3) 1 2 1 1 +
√
2

(23, 12, 2) 120 14401 1 120 +
√
14401
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are the only solutions. We note that 7 + 4
√
3 = (1 +

√
3)2, so these come from the same Pell

equation with d = 3.

From the above tables, we are let to set

δ1 := 2 +
√
3, δ2 := 10 + 3

√
11, δ3 := 11 + 2

√
30,

δ4 := 74 + 5
√
219, δ5 := 1 +

√
2, δ6 := 120 +

√
14401.

We work on the linear form in logarithms Γ1 and Γ2, in order to reduce the upper bound on

n2 given in Lemma 7. From inequality (15), for (m,n, ℓ) = (m2, n2, ℓ2), we write

∣

∣

∣

∣

∣

ℓ2
log δs
logα

− n2 +
log(

√
5/2)

logα

∣

∣

∣

∣

∣

< 4.2 · α−(n2−m2), for s = 1, 2, . . . , 6. (36)

We put

τs :=
log δs
logα

, µs :=
log(

√
5/2)

logα
and As := 4.2, Bs := α.

By the Gelfond-Schneider’s theorem, we conclude that τs is transcendental (so irrational). Inequal-

ity (36) can be rewritten as

0 < |ℓ2τs − n2 + µs| < AsB
−(n2−m2)
s , for s = 1, 2, . . . , 6. (37)

Now, we take M := 3.3× 1040 which is an upper bound on n2 (according to Lemma 7), and apply

Lemma 5 to inequality (37). For each τs with s = 1, . . . , 6, we compute its continued fraction

[a
(s)
0 , a

(s)
1 , a

(s)
2 , . . .] and its convergents p

(s)
1 /q

(s)
1 , p

(s)
2 /q

(s)
2 , . . ..

In each case, by means of computer search with Mathematica, we find an integer ts such that

q
(s)
ts > 2× 1041 = 6M and ǫs := ||µsq

(s)|| −M ||τsq(s)|| > 0.

Finally we found the values of hs := ⌊log(Asq
s
t2/ǫs)/ logBs⌋:

s 1 2 3 4 5 6

ts 73 74 98 86 85 81

ǫs > 0.34 > 0.24 > 0.35 > 0.38 > 0.09 0.37

hs 204 204 203 206 209 203

.

Hence, the above hs correspond to upper bounds on n2 −m2, for each s = 1, . . . , 6, according to

Lemma 5.

Replacing (m,n, ℓ) = (m2, n2, ℓ2) in inequality (12), we can write

∣

∣

∣

∣

∣

ℓ2
log δs
logα

− n2 +
log
(

(
√
5/2)/

(

1 + α−(n2−m2)
))

logα

∣

∣

∣

∣

∣

< 47.8 · α−n2 , for s = 1, 2, . . . , 6. (38)

We now put

τs :=
log δs
logα

, As := 47.8, Bs := α

and

µs,n2−m2
:=

log
(

(
√
5/2)/

(

1 + α−(n2−m2)
))

logα
.
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With the above parameters we rewrite (38) as

0 < |ℓ2τs − n2 + µs,n2−m2
| < AsB

−n2

s , for s = 1, 2, . . . , 6. (39)

Bellow we apply again Lemma 5 to the above inequality (39), for

s = 1, . . . , 6 and n2 −m2 ∈ [1, ds], with M := 3.3× 1040.

Taking

ǫs,n2−m2
:= ||µsq

(s,n2−m2)|| −M ||τsq(s,n2−m2)||,
and

hs,n2−m2
:= ⌊log(Asq

(s,n2−m2)/ǫs,n2−m2
)/ logBs⌋,

we obtain computationally that

max{hs,n2−m2
: s = 1, . . . , 6 and n2 −m2 = 1, . . . , hs} ≤ 227.

Thus, by Lemma 5, we have n2 ≤ 227, for all s = 1, . . . , 6. Running a new reduction cycle from

inequality (38), with M := 227 (new upper bound on n2), we finally obtain n2 ≤ 42 and by

inequality (10) we have n1 ≤ n2 + 2. Given that δℓ2 ≤ 2αn2 we conclude that ℓ1 < ℓ2 ≤ 25.

Gathering all the information obtained, our problem is reduced to search solutions for (8) in the

following range:

1 ≤ ℓ1 < ℓ2 ≤ 25, m2 + 2 ≤ n2 ∈ [2, 42] and m1 + 2 ≤ n1 ∈ [2, 44]. (40)

Checking equalities (8) in the above range, we obtain the following solutions.

For ǫ = +1:

F3 + F5 = 7 = X2, F5 + F8 = 26 = X3, F6 + F11 = 97 = X4 (δ = 2 +
√
3)

F3 + F6 = 10 = X1, F10 + F12 = 199 = X2, (δ = 10 + 3
√
11)

F4 + F6 = 11 = X1, F6 + F13 = 241 = X2 (δ = 11 + 2
√
30)

and

F5 + F21 = 10951 = X2 (δ = 74 + 5
√
219).

The above table contains only the information on Xℓ = Fn +Fm with n−m ≥ 2, but we can find

the additional solutions when n−m ≤ 1. Indeed, they are

F3 + F0 = 2F1 = 2F2 = 2 = X1, 2F7 = 26 = X3 (δ = 2 +
√
3)

2F5 = 10 = X1 (δ = 10 + 3
√
11).

For ǫ = −1:

F1 + F3 = 3 = X2, F3 + F5 = 7 = X3, (δ = 1 +
√
2)

F12 + F23 = 28801 = X2 (δ = 120 +
√
14401).

Allowing for m = 0 or m ∈ {n − 1, n}, we get the additional solutions F1 = F2 = 1 = X1 and

F4 = 3 = X2 when δ = 1 +
√
2.

Note that in the cases d ∈ {219, 14401}, we only found one value of ℓ such that Xℓ has

Zeckendorf representation with at most two terms (instead of two such ℓ), which is why these d

are not included in the statement of the main result.
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