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1 Introduction

In this work we initiate the study of the double-soft behavior of massless closed strings

by considering their emission from n-point closed string tachyon amplitudes in the bosonic

string at the tree-level. While the single-soft behavior is by now well-understood at the

tree-level [1–14] and to some extend also at the loop-level [15–17], the double-soft behavior

have so far had little attention due to the large increase of complexity in the analysis
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(see, however, [18] for double-soft open strings). The motivation has, however, not been

lacking; it’s been argued that for instance the double-soft behavior of massless states, in

particular, of the graviton could shed new light on hidden symmetry of the gravitational S-

matrix [19] in a way similar to the double-soft pion theorem, which reveals the underlying

(hidden) coset algebra of spontaneously broken Quantum Chromodynamics [20]. It has

also been suggested [21, 22] that the double-soft string dilaton theorem could give novel

constraints on the Type IIB supergravity action. More fundamentally, since the origins of

the dilaton soft theorem is not yet fully understood, an extended understanding of its soft

behavior could reveal key aspects to understand this problem. Some hint on its origins

could be deduced from the similarities existing between the single-soft theorems of the string

dilaton and of the Nambu-Goldstone boson of spontaneously broken conformal symmetry.

It has been shown that the soft-operators of both dilatons contain the generators of the

conformal group, in particular dilations and special conformal transformations at leading

and subleading order, respectively [23–25]. However, while the soft theorem of the Nambu-

Goldstone dilaton follows from Ward identities associated with the broken generators of

the conformal symmetry, a similar understanding of the soft behavior of the string dilaton

is still lacking.

Here we focus our attention on tree-level bosonic string amplitudes with two massless

closed string states, representing gravitons, dilatons, and Kalb-Ramond B-fields, and an

arbitrary number n of closed string tachyons, which we denote as Mn+2. We will denote

by l and q the momenta, and by εl and εq the polarization tensors, of the massless states,

and with k1, . . . , kn the momenta of the tachyons.

These amplitudes can be expressed very compactly for arbitrary n as integrals over the

insertion points on a sphere of the vertex operators of each closed string. In this integral

representation we are able to analyze generically Mn+2 for any n in the kinematical region,

where the momenta of the massless particles are simultaneously small; i.e. soft. This is

achieved by first rescaling with a small parameter τ the two soft momenta, (l, q)→ (τ l, τq),

and then by expanding the integrand for small τ , enabling us to calculate the integrals over

the insertion points of the soft states up to the subleading order in τ . The result of these

integrations is then found to be expressible in the form of an operator acting on the pure

n-point tachyon amplitude, Mn, specifically

Mn+2(τq, τ l, ki) = εq,µν εl,ρσ

[
1

τ2
SµνρσW (q, l, ki) +

1

τ
SµνρσE (q, l, ki)

+
1

τ
ŜµνρσJ (q, l, ki)

]
Mn(ki) +O(τ0) (1.1)

where the first two terms above are purely kinematical, while the last term is operational

(hence the hat), i.e. involving the angular momentum operator acting on the pure n-point

tachyon amplitude. Their explicit expressions are specified after equations (3.4)–(3.7). The

leading order term simply confirms the Weinberg theorem, but here includes also the con-

tribution from the dilaton, while the subleading purely kinematical term SE parametrizes,

from a field theory perspective, contributions from double-soft emission directly from the

same tachyon external state.
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From this expression, the double-soft theorems for each of the physical states of the

massless closed string, the graviton and dilaton respectively the Kalb-Ramond states, are

obtained upon symmetrization, respectively, antisymmetrization of the polarization indices

of the massless legs. For the graviton, the polarization indices have to additionally be

transverse and traceless, while for the dilatons the polarization indices must be projected

with a transverse trace-tensor (see eq. (2.4)).

The double-soft operator for external gravitons, given in (3.4) together

with (3.9)–(3.11), turns out to be in agreement with the known result in the litera-

ture [26, 27]. The double-soft theorems for two soft dilatons and for the mixed case of one

graviton and one dilaton are obtained here, for the first time, and given in equations (3.15)

and (3.14), respectively. Finally, the double-soft Kalb-Ramond emission theorem is ex-

pressed in (3.17)–(3.18), where only the SE term is non-vanishing.

Remarkably non of the soft operators above, obtained from string amplitudes, contain

string corrections (the stringy behavior is all contained in the factorized lower-point n-

tachyon amplitude). Therefore in the field theory limit of the amplitudes, they remain

unchanged providing relations among massive scalar amplitudes with and without two soft

gravitons, dilatons, and Kalb-Ramond states.1 We also remark that in the case of the

dilaton, the subleading order of the single and double soft operators contains the generator

of the dilatation. At the sub-subleading order also the generator of special conformal

transformations appears in the case of single-soft emission. We expect that a this will also

take place in the sub-subleading double soft operator, although the explicit check of such

a conjecture deserves further analysis.

To outline the relation between the single-soft theorems and the double-soft theorems,

found here, we derive from both theorems the consecutive soft emission of two soft massless

closed string states; i.e. where the softness of the two states is ordered. This is detailed

in the warm-up section 2, where we revisit the single-soft theorem. The two results agree

upon symmetrization of the single-soft emission ordering, as should be expected. We stress

that oppositely the double-soft theorem, being more general, cannot be derived from twice

the application of the single-soft theorem. On the other hand, the operator term ŜJ in (1.1)

comes out fully from twice the application of the single-soft theorem, and we note that to

the order considered, we do not see emergence of additional operators at the double-soft

level. In fact, we would expect, if at all, emergence of new operators first to appear at the

order O(τ0), which, going beyond the scope of this work, motivates to extend our analysis

to the subsubleading order, which we leave for future work.

To understand better all the additional purely kinematic terms appearing in SE, we

perform in section 6 a field theory diagrammatic analysis of Mn+2, and show the origin of

each term in SE from a field theory perspective. This moreover enables us to predict from

the double-soft theorem the leading terms in the four-point Feynman vertex of two tachyons

and two massless states. We furthermore consider in section 7 an alternative approach and

show that SE, in fact, can be completely derived from on-shell factorization on the four-

1The field theory effective action of tachyons found when keeping their mass m2 = − 4
α′ fixed, is that of

massive φ3-interacting scalars [28].
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point subamplitude of two tachyons and two massless states, which we separately calculate

in appendix A. The missing appearance of α′ in the soft factors is then explained as a

consequence of the property that the leading double-soft behavior of the four-point string

amplitude is equivalent to its field theory limit α′ → 0; a fact, that is also explained in

section 7. We also make use of the four-point amplitude to extract the contact terms,

and thereby the full four-point on-shell vertex, confirming our prediction for it from the

double-soft theorem. This analysis is provided in appendix B.

To briefly recapitulate, the paper is organized as follows. In section 2 we revisit the

single-soft theorems for massless closed string states and discuss the consecutive double-

soft behavior of amplitudes with massless string states and arbitrary numbers of massive

scalar particles. In section 3 we present the results of our analysis on the simultaneously

double-soft limit from the perspective of the string amplitudes. In section 4 and section 5

we give some technical details related to the analysis presented in section 3. In section 6

we discuss the diagrammatic analysis of the results obtained in the paper. In section 7

we use the on-shell factorization theorem to derive all the purely kinematical terms much

more directly than in section 6.

There are two appendices: appendix A provides the full string calculation of the four-

point amplitude with two tachyons and two massless states, while appendix B provides a

field theory diagrammatic calculation of the same four-point amplitude, in its field theory

limit, thereby establishing the four-point vertex of two tachyons and two massless closed

string states.

2 The single-soft case revisited

Before we present our results, it is useful and instructive to keep in mind the single-soft

scattering behavior of massless closed strings. We thus give a brief summary thereof,

and also discuss its application to two consecutively emitted soft massless closed strings,

necessarily related to the more general result of this work.

2.1 The single-soft theorem of a massless closed string

The unified single-soft theorem for the states of the massless closed string; i.e the graviton,

dilaton and Kalb-Ramond, was found in [12] to read:

Mn+1(ki; q) = κD εq,µε̄q,ν

n∑
i=1

[
kµi k

ν
i

ki · q
− i

2

kµi qρ
(
Li + 2S̄i

)νρ
ki · q

− i

2

kνi qρ
(
Li + 2Si

)µρ
ki · q

+
i

2

(
Sµν − S̄µν

)]
Mn(ki) +O(q) (2.1)

where κD is related to Newton’s constant by κD =

√
8πG

(D)
N , with D the number of

spacetime dimensions, and εq,µν = εq,µε̄q,ν is the polarization tensor of the massless state

and q is its momentum, which is soft compared to all the momenta ki of amplitude. Mn is

the lower-point amplitude without the soft state and universality of the soft theorem means
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that this can be any n-point amplitude. Finally the operators L, S and S̄ are defined as

Li,µν = i

(
ki,µ

∂

∂kνi
− ki,ν

∂

kµi

)
, Si µρ = i

(
εiµ

∂

∂ερi
− εiρ

∂

∂εµi

)
, S̄i νσ = i

(
ε̄iν

∂

∂ε̄σi
− ε̄iσ

∂

∂ε̄νi

)
.

(2.2)

The full angular momentum operator is given by the combination

Ji,µν = Li,µν + Si,µν + S̄i,µν =: Li,µν + Si,µν , (2.3)

where we also defined the total spin angular momentum operator Si. Eq. (2.1) is valid in any

string theory at the tree level. Strictly speaking, D should take the critical dimensionality

of the given string theory. However, at the tree-level eq. (2.1) is valid in any dimension

D > 2, where in noncritical dimensions one can think of it as expressing the soft theorem

of tree-level amplitudes of the low-energy effective theories of strings to any order in α′. Of

course, for D ≤ 2 there are no propagating degrees of freedom in the gravitational sector

for (2.1) to make sense in this way.

The soft theorem in (2.1) is a so-called subleading soft theorem; the factorization of the

amplitude extends through subleading order in the soft momentum expansion. It generi-

cally reproduces the soft behavior of the graviton, dilaton and B-field upon symmetrization,

respectively, antisymmetrization of the polarization tensor of the massless state. For the

graviton one additionally imposes transversality, i.e. qµε
µν
g = 0, while for the dilaton the

polarization tensor is taken to be:

εµνd =
1√
D − 2

(ηµν − qµq̄ν − qν q̄µ) , q̄2 = 0 , q · q̄ = 1 (2.4)

with q̄ a reference null-vector. In [12] it was shown that the Kalb-Ramond B-field soft

theorem does not extend to higher order in the soft expansion. However, it is well-known

by now that the soft behavior of the graviton factorizes through subsubleading order at

the tree-level, and this is also the case for the dilaton, as shown in [10]. This behavior is

for the dilaton, in contrast to the graviton, additionally universal and thus a true subsub-

leading soft theorem. It is possible to write a unified subsubleading soft theorem for the

graviton and dilaton, by considering only symmetric polarization of the soft massless closed

state. The first two orders can be immediately derived from (2.1), while the subsubleading

operator was given for all string theories in [10]. The full expression takes the form

Mn+1 = κD εq,µεq,ν
∑
i=1

[
kµi k

ν
i

ki · q
− i

qρk
ν
i J

µρ
i

ki · q
−
qρqσ : Jµρi Jνσi :

2ki · q
− α′

2

qρqσŜ
µρ,νσ
i,t.d.

ki · q

]
Mn+O(q2)

(2.5)

where :: means normal ordering of the double-derivatives such that they all act to the

right, and the last term, clearly theory dependent (t.d.) due to the string parameter α′, is

given by:

Ŝµρ,νσi,t.d. = (kµi η
ρ
α − k

ρ
i η
µ
α)
(
kνi η

σ
β − kσi ηνβ

)
Παβ
i,t.d. (2.6)
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with

Παβ
i,t.d. =


εαi

∂
∂εi,β

+ ε̄αi
∂

∂ε̄i,β
bosonic string

εαi
∂

∂εi,β
heterotic string

0 superstring

(2.7)

Thus, the graviton in superstring theory has the same soft factorization behavior as the field

theory graviton of ordinary Einstein-Hilbert gravity. These theory dependent contributions

are directly related to the difference in their low-energy actions at the leading α′ level,

where in bosonic and heterotic string enters a R2φ term in the action (where R2 should be

understood as the Gauss-Bonnet operator and φ is the dilaton field), which does not appear

in superstrings due to supersymmetry. It turns out, however that the theory dependent

term vanishes (on shell) in all theories, when contracted with the dilaton projection tensor.

This property ensures that the dilaton soft behavior is universal, and takes the curious

form when use of (2.4), momentum conservation and on-shell conditions, is made:

Mn+φ =
κD√
D − 2

[
−

n∑
i=1

m2
i

kiq
eq∂ki + 2−

n∑
i=1

D̂i + qµ

n∑
i=1

K̂µ
i

+
n∑
i=1

qρqσ
2kiq

(
Sρµi ηµνSνσi +DΠρσ

i,bos.

)]
Mn +O(q2) (2.8)

where

D̂i = ki ·
∂

∂ki
, K̂µ

i =
1

2
kµi

∂2

∂kiν∂kνi
− kρi

∂2

∂kρi ∂kiµ
− iSµρi

∂

∂kρi
, (2.9)

are the generators of the space-time dilatations and special conformal transformations. the

subscript bos. on Πρσ
i means that it is the operator identically to (2.7) in the case of the

bosonic string, but here enters universally for all string theories. The universality of this

soft theorem persists even at the loop level, albeit one has to rewrite the dilatation operator

in terms rescaling operators, see [17].

2.2 The consecutive soft theorem of two massless closed strings

Before we present the double-soft results, it is useful to first consider what information the

consecutive emission of two soft massless states provides. To keep things simple, but still

giving the idea, we restrict to the consecutive double-soft emission of two dilatons from

an n-point closed string tachyon amplitude. For comparison with the simultaneous soft

emission, where the two soft dilatons are not distinguished, we symmetrize the consecutive

order of soft limits. To subleading order we have:

1

2

{
lim
l→0

, lim
q→0

}
Mdd
n (q, l; ki) =

1

2

κ2
D

D − 2

[
−

n∑
i=1

m2
i

q · ki
(1 + q · ∂ki) + 2−

n∑
i=1

ki · ∂ki − l · ∂l

]

×

[
−

n∑
j=1

m2
j

l · kj
(
1 + l · ∂kj

)
+ 2−

n∑
j=1

kj · ∂kj

]
Mn(ki) + (q ↔ l) +O(q0, l0) (2.10)
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Expanding the two soft brackets (acting also with the first operator on the second) and

rearranging one finds

1

2

{
lim
l→0

, lim
q→0

}
Mdd
n (q, l; ki) =

κ2
D

D − 2


n∑

i,j=1

m2
i m

2
j

kiq kjl

(
1 + q

∂

∂ki
+ l

∂

∂kj

)

+

n∑
i=1

(
m2
i

kiq
+
m2
i

kil

) n∑
j=1

kj
∂

∂kj
− 3

n∑
i=1

(
m2
i

kiq
+
m2
i

kil

)Mn(ki) +O(q0, l0) (2.11)

The first two series of terms follow immediately from the single-soft theorem. The last

series of terms is, however, not obvious. In particular the prefactor 3, instead of just 2,

origins, as we will see, from the contribution of the four-point contact term of two tachyons

and two dilatons. Here the extra factor appears as a consequence of the dilation operator

in the soft theorem. This shows highly non-trivially that the single-soft dilaton theorem

stores information about higher-point interactions, and these are encoded in the conformal

operators.

The more general consecutive soft emission of two (or more) massless closed string can

be obtained in the same way directly from the unified single-soft theorem (2.1). However,

this will be much easier to obtain, once we have provided the simultaneous double-soft

theorem.

3 The simultaneous double-soft theorem of massless closed strings

We now present a summary of our main results. In this work, we restrict the analysis

to the double-soft emission of massless closed strings from n closed string tachyons in the

bosonic string. The full string amplitude can be written in closed form for any n tachyons

as follows:

M2;n(q, l, {ki}) = Nn+2
0 C0

∫ n∏
i=1

d2zi d
2z d2w

dVabc

∫
dθdϕ

N∏
i=1

dθi

∫
dθ̄dϕ̄

N∏
i=1

dθ̄i

×

[
e
α′
4
qlG(z,w) e(θεq)(ϕεl)∂z∂wG(z,w)+

√
α′
2
l(θεq)∂zG(z,w)+

√
α′
2
q(ϕεl)∂wG(z,w)

×
n∏
i=1

e
α′
4
kiq G(z,zi) ×

n∏
i=1

e

√
α′
2
ki(θεq)∂zG(z,zi) ×

n∏
i=1

e
α′
4
kilG(w,zi)

×
n∏
i=1

e

√
α′
2
ki(ϕεl)∂wG(w,zi) ×

∏
i<j

e
α′
4
kikjG(zi,zj)

]
× a.h. (3.1)

where q, l are the momenta of the massless closed strings, εq, εl are their holomorphic

polarization vector, and ki are the momenta of the tachyons. θ and ϕ are Grassmann

variables and a.h. stands for multiplication with the corresponding antiholomorphic part.

G(z, w) = log |z − w|2 is the two-point Green function on the Riemann sphere, however,

for our purpose, and for possible extension to multiloops, it is useful keep the expression

– 7 –
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in terms of the Green functions. The prefactors are given by:

C0 =

(
8π

α′

)(
2π

κD

)2

, N0 =
(κD

2π

)
, Nn+2

0 C0 =

(
8π

α′

)(κD
2π

)n
(3.2)

After performing integration over the Grassmann variables, the expression can be brought

into the following form:

Mn+2({ki}; q, l) =

Mn({ki}) ? εµq ενl ε̄ρq ε̄σl N2
0

∫
d2z d2w e

α′
2 qlG(z,w)

n∏
i=1

e
α′
2 kiq G(z,zi)

n∏
i=1

e
α′
2 kilG(w,zi)

×
[
ηµν ∂z∂wG(z, w) +

α′

2

n∑
i,j=1

kiµ kjν∂zG(z, zi) ∂wG(w, zj) +
α′

2

n∑
j=1

lµkjν∂zG(z, w)∂wG(w, zj)

+
α′

2

n∑
i=1

qνkiµ∂zG(z, zi) ∂wG(z, w) +
α′

2
lµqν∂zG(z, w)∂wG(z, w)

]

×
[
ηρσ ∂z̄∂w̄G(z, w) +

α′

2

n∑
i,j=1

kiρ kjσ∂z̄G(z, zi) ∂w̄G(w, zj) +
α′

2

n∑
j=1

lρkjσ∂z̄G(z, w)∂w̄G(w, zj)

+
α′

2

n∑
i=1

qσkiρ∂z̄G(z, zi) ∂w̄G(z, w) +
α′

2
lρqσ∂z̄G(z, w) ∂w̄G(z, w)

]
(3.3)

where Mn({ki}) is the n-point tachyon amplitude and ? denotes a convolution of integrals.

Our aim is to calculate the integration over the massless closed string vertex operator

positions, parametrized by z and w, up to subleading order in q and l; more specifically,

let qµ → τqµ and lµ → τ lµ, we will compute through order τ−1. Then we will seek an

operator, which when acting on the pure tachyon amplitude in integral form, reproduces

our calculation. This will establish a double-soft theorem, if such an operator exists.

The result of our calculation of the z and w integrals is not in it self interesting. But

from that calculation we are able to establish the following result:

Mµν,ρσ
n+2 ({ki}; τq, τ l) =

κ2
D εq,µν εl,ρσ

{
1

τ2

n∑
i,j=1

kµi k
ν
i

kiq

kρj k
σ
j

kjl
+

1

τ

n∑
i=1

1

ki(q + l)

[
Mµνρσ

1

ql
+

Mµνρσ
2

(kiq) (kil)
+Mµνρσ

3

]

− i

τ

n∑
i=1

kρi k
σ
i

kil

n∑
j=1

qτk
µ
j J

ντ
j

kjq
− i

τ

n∑
i=1

kµi k
ν
i

kiq

n∑
j=1

lτk
ρ
jJ

στ
j

kjl

}
Mn({ki}) +O(τ0) (3.4)

The coefficients M1,2,3 = εµνq ερσl M
µνρσ
1,2,3 are given by:

M1 =− (εµνq εlµν) (qki) (lki) + (lεql) (kiεlki) + (kiεqki) (qεlq)− 2(lεqki) (kiεlq)

+ [(lεtq εlki) + (lεqε
t
lki)](kiq) + [(kiε

t
q εlq) + (kiεqε

t
lq)](kil) (3.5)

M2 = (kiεqki)[(kiεlq) + (qεlki)](kil) + [(lεqki) + (kiεql)] (kiεlki)(qki)

− (kiεqki) (kiεlki)(ql) (3.6)

M3 =− [(kiε
t
q εlki) + (kiεqε

t
lki)] (3.7)
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The operators Sµν;ρσ
W , Sµν;ρσ

E and Sµν;ρσ
J introduced in the introduction, eq. (1.1), are given

by the first, second and third line of (3.4), respectively.

Since the lower-point amplitude Mn is a purely tachyonic amplitude, the action of Jµν

is here simply that of Lµν , but for a generalization of this soft theorem, one should expect

the full Jµν to appear, why we have kept it in this form here (the Sµν-part here simply

annihilates the lower-point amplitude, so its addition is here indifferent).

We emphasize that (3.4) encodes the result of the explicit computation of (3.3). It

specifically shows that the double-soft emission of massless closed strings obeys a double-

soft theorem through subleading order. It will be checked in section 5 that (3.4) is on-shell

gauge invariant, as it should be.

We finally notice that (3.4) does not contain any explicit α′-terms.

In the following subsections we obtain from (3.4) the specific double-soft theorem

associated to each of the massless string states by contracting it with the corresponding

polarization tensors. We notice first, however, that the expression must be different from

zero only if the soft states are either both symmetrically polarized (gravitons/dilatons) or

both Kalb-Ramond (antisymmetric) states. This is a consequence of the world-sheet parity

symmetry of the bosonic string, according to which amplitudes odd under the exchange of

the left and right sectors of the closed string vanish. It is for later use, i.e. when checking

gauge invariance in section 5, useful to rewrite (3.5) in a way that takes this symmetry

into account, namely

M1 =− (εµνq εlµν) (qki) (lki) + (lεql) (kiεlki) + (kiεqki) (qεlq)− (lεqki) (kiεlq)

− (kiεql) (qεlki) + [(lεtq εlki) + [(lεqε
t
lki)](kiq) + [(kiε

t
q εlq) + (kiεqε

t
lq)](kil) (3.8)

where only the term with a factor of 2 in (3.5) was rewritten.

3.1 Two symmetrically polarized soft states (gravitons and dilatons)

In the case where εµνq and εµνl are both symmetric, the coefficients M1,2,3 simplify to:

M1 =− (εµνq εl,µν) (qki) (lki) + (lεql) (kiεlki) + (kiεqki) (qεlq)

− 2(lεqki) (qεlki) + 2(lεqεlki)(kiq) + 2(kiεqεlq)(kil) (3.9)

M2 = 2(kiεqki) (kiεlq)(kil) + 2(lεqki) (kiεlki)(qki)− (kiεqki) (kiεlki)(ql) (3.10)

M3 =− 2(kiεqεlki) (3.11)

For two soft gravitons, our result has to agree with the already established field theory

double-soft graviton expressions [26]. Eq. (3.4) is, however, different from the result of [26]

for the graviton. The difference is in the M1-term, but we can show that the two expressions

are equivalent as a consequence of momentum conservation; i.e. we can write the terms in

question as:
n∑
i=1

1

ki(l + q) ql

[
−(εµνq εl,µν) (qki) (lki) + (lεql) (kiεlki) + (kiεqki) (qεlq)− 2(lεqki) (qεlki)

+ (lεqεlki)(ki(q − l)) + (kiεqεlq)(ki(l − q))
+(lεqεlki)(ki(q + l)) + (kiεqεlq)(ki(q + l))] (3.12)
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In the last line the numerator cancels the pole in ki(q + l) and, due to the momentum

conservation, the sum over the hard particles yields:

n∑
i=1

[(lεqεlki) + (kiεqεlq)] = −2(lεqεlq) (3.13)

which can be neglected to the order in the soft expansion we are considering. The remainder

of (3.12) then agrees with [26].

For the simultaneous soft emission of both a graviton and a dilaton, we can specify the

result further by using the dilaton projection tensor (2.4) and that the graviton polarization

tensor is traceless, thereby getting

Mn+g+d =−
κ2
D√

D − 2

[
1

τ2

n∑
j=1

kjεlkj
kjl

n∑
i=1

m2
i

kiq

(
1 + τ q

∂

∂ki

)
+

1

τ

n∑
j=1

kjεlkj
kjl

n∑
i=1

ki
∂

∂ki

+
1

τ

n∑
i=1

m2
i

ki(q + l)

(
qεlq

ql
+ 2

kiεlq

kiq
− (ql)(kiεlki)

(kil)(kiq)

)

− i

τ

n∑
i=1

m2
i

kiq

n∑
j=1

εlµνk
µ
j lρJ

νρ
j

kjl

]
Mn +O(τ0) (3.14)

Finally we can specify to the double-soft dilaton case, getting (we set k2
i = −m2

i ):

Mn+d+d =
κ2
D

D − 2

[
1

τ2

n∑
i,j=1

m2
i m

2
j

kiq kjl

(
1 + τq

∂

∂ki
+ τ l

∂

∂kj

)
− 1

τ

n∑
i=1

m4
i

(kil)(kiq)

(ql)

ki(q + l)

− D − 2

τ

n∑
i=1

(qki)(lki)

ki(q + l) (ql)
− 1

τ

n∑
i=1

2m2
i

ki(q + l)

− 1

τ

n∑
i=1

(
m2
i

kiq
+
m2
i

kil

)2−
n∑
j=1

kj
∂

∂kj

]Mn +O(τ0) (3.15)

Since these results apply to n hard states being closed string tachyons, the masses should

be taken equal to m2
i = −4/α′, however, we expect that this result applies, at least to

some extend, more generally to the interaction with other massive bosons. As will be

detailed later, all terms with a double-pole in the soft limit can be understood as double-

soft emissions directly from external tachyon lines through three-point interactions. The

last line, with only a simple pole structure, can be directly understood from the single-soft

theorem (2.8). Finally there remains one additional term with a simple pole; this is also an

external line emission contribution, however, its structure reveals that it must come from

a four-point contact interaction where two dilatons are emitted from the same point of an

external line. In other words, the double-soft theorem immediately give us the on-shell

contact interaction of two tachyons with two dilatons.

The consecutive soft theorems can be immediately derived from these results. As an

example, let us consider again the consecutive emission of two soft dilatons and compare
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with (2.11). Specializing (3.15) to the symmetrized consecutive soft theorem, we get:

1

2

{
lim
l→0

, lim
q→0

}
Mn+d+d =

κ2
D

D − 2

[
n∑

i,j=1

m2
i m

2
j

kiq kjl

(
1+q

∂

∂ki
+ l

∂

∂kj

)
+

n∑
i=1

(
m2
i

kiq
+
m2
i

kil

) n∑
j=1

kj
∂

∂kj
− 3

n∑
i=1

(
m2
i

kiq
+
m2
i

kil

)

− (D − 2)

n∑
i=1

ki(q + l)

2(ql)
−

n∑
i=1

m4
i (ql)

2(kil)(kiq)

(
1

kiq
+

1

kil

)]
Mn +O(q0, l0) (3.16)

We observe that the first two lines are exactly the same as what we found from using the

single-soft theorem consecutively in (2.11). But now we understand the factor 3 discussed

below (2.11); it is the additional contribution from the four-point contact term of (3.15)

that here ensures the factor of 3. Thus the single-soft theorem, used to derived (2.11),

rather amazingly contains the information about the four-point contact term.

3.2 Two antisymmetrically polarized (Kalb-Ramond) soft states

Since most terms of (3.4) are symmetric in the polarization indices of at least one of the soft

massless states, the double-soft theorem (3.4) simplifies radically when taking the external

states to be antisymmetrically polarized. We specifically find that the soft theorem of two

Kalb-Ramond B-fields read:

Mn+B+B = κ2
D

n∑
i=1

1

τki(q + l)

[
M

(BB)
1

ql
+ 2(kiεq εl ki)

]
Mn +O(τ0) (3.17)

with

M
(BB)
1 = (εµνq εl, νµ) (qki) (lki)− 2(lεqki) (kiεlq)− 2(lεq εlki)(kiq)− 2(kiεq εlq)(kil) (3.18)

We recall that the amplitude of a single B-field interacting with n-tachyons vanishes, and

so does its soft theorem; i.e. the B-field single-soft operator annihilates the pure tachyon

amplitude. Now, instead with two soft B-fields, the soft behavior is non-vanishing, and

given by the above expression.

4 Computational details

In this section we give some detail about the derivation of the simultaneous double soft

limit results presented in section 3. The advantage of using string amplitudes to find such

relations, which to leading order in the string slope are field theory identities, is due to

their peculiarity to be very compact expressions containing few diagrams, only one in the

case of oriented closed theories, at each order or the perturbative expansion. This is visible

in eq. (3.1) where the amplitude, giving the interaction among two massless states and

n-tachyons, is a multiple integral on the complex Koba-Nielsen variables parametrizing the

insertion of the string vertices on the complex plane CP 1. The amplitude turns out to be a

convolution integral among the n-tachyon amplitude and two extra integrals that collect all
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the dependence on the complex variables, w and z, associated to the two massless vertices

carrying soft momenta q and l. The soft limit is obtained by performing, for small values

of l and q, the integration on these two complex variables. The integrals to be evaluated

for low momenta are all collected by the following general expression:

I
nmaibj
n̄m̄āib̄j

=

∫
d2zd2we

α′
2
τ2qlG(z,w)

n∏
i=1

e
α′
2
τkiqG(z,zi)

n∏
i=1

e
α′
2
τkilG(w,zi) [∂zG(z, w)]n [∂wG(z, w)]m

×[∂zG(z, zi)]
ai [∂wG(z, zj)]

bj [∂z̄G(z, w)]n̄[∂w̄G(z, w)]m̄[∂z̄G(z, zi)]
āi [∂w̄G(z, zj)]

b̄j

(4.1)

with (n, m, a, b, n̄, m̄, ā, b̄) = 0, 1. Eq. (3.3) contains also terms with the double deriva-

tives of the Green function, i.e. ∂z∂wG(z, w) and analogous anti-holomorphic expressions,

which may not seem described by (4.1). However, due to the identity ∂z∂wG(z, w) =

−∂wG(z, w)∂zG(z, w), valid for the tree level Green function G(z, w) = log |z − w|2, the

general expression (4.1) therefore does in fact describe those terms as well.

There are six different typologies of such integrals depending of the degrees of diver-

gence for w ∼ z. The one with highest pole is:2

I1100
1100 =

∫
d2zd2w e

α′
2
τ2qlG(z,w)

n∏
i=1

e
α′
2
τkiqG(z,zi)

n∏
i=1

e
α′
2
τkilG(w,zi) ∂z∂wG(z, w) ∂z̄∂w̄G(z, w)

(4.2)

where we have used the identity ∂z∂wG(z, w) = −∂wG(z, w)∂zG(z, w).

One integration, for example the one in w, can be easily performed by using the

identity:

e
α′
2
τ2qlG(w,z)∂z∂wG(z, w) ∂z̄∂w̄G(z, w) =

1(
α′

2 τ
2ql − 1

)2 ∂2

∂z∂z̄
|z − w|α′τ2ql−2 (4.3)

The integral in w in (4.2), with the use of (4.3) and after some integration by parts,

can be easily evaluated in the soft region giving:

I1100
1100 =

∫
d2z

∏n
i=1 e

α′
2
τqkiG(z,zi)

(α
′

2 τ
2ql)2 (α

′

2 τ
2ql − 1)2

∂

∂z

∂

∂z̄

[
(2π)α′τ2ql

n∏
i=1

eτlkiG(z,zi)

]
+O(τ0) . (4.4)

where we have neglected all the boundary integrals. This integral, up to boundary terms,

is equal to:

I1100
1100 =− 2π

α′

2 τ
2ql (α

′

2 τ
2ql − 1)2

∫
d2z ∂z

n∏
i=1

e
α′
2
τqkiG(z,zi) ∂z̄

n∏
i=1

e
α′
2
τlkiG(z,zi)

=−2π

(
α′

2

) n∑
i,j=1

(qki) (lkj)

ql

∫
d2z ∂zG(z, zi) ∂z̄Gc(z, zj)

n∏
s=1

e
α′
2
τ(q+l)ksG(z,zs) +O(τ0)

(4.5)

2I1100
1100 is infrared divergent for w ' z in the kinematic region τ2(q + l)2 ≤ 4

α′ , with −4/α′ being the

tachyon mass. We compute this integral in the kinematic region where it is well defined and then we

analytically extend it in the soft region τ ' 0, cf. [29].
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The integral for the terms in the sum having i = j is easily evaluated giving:

−2π

n∑
i=1

(qki) (lki)

τ qlki(q + l)

∫
d2z ∂ze

α′
2
ε(q+l)kiG(z,zi) ∂z̄G(z, zi)

×
[
1 +

∑
s 6=i

α′

2
τ ks(l + q)G(z, zs) +O(τ2)

]

= −(2π)2
n∑
i=1

(qki) (lki)

τ ql ki(q + l)

[
Λα
′τ(q+l)ki +

∫
d2z e

α′
2
τ(q+l)kiG(z,zi) πδ(z − zi)

]
+O(τ0)

= −(2π)2
n∑
i=1

(qki) (lki)

τ ql ki(q + l)
+O(τ0) (4.6)

where Λ is a cut-off regularizing the integral for large value of z and e
α′
2
ε(q+l)kiG(zi,zi) = 0. In

getting the result we have used the identities ∂z∂z̄G(z, w) = πδ(z−w) and
∫
d2zδ(z−w) = 2.

The integral for the terms of the sum with i 6= j is computed in the same way and one

can see that it is subleading in τ . The terms in eq. (3.3) containing I1100
0011 therefore turn

out to be:

N2
0 ε
µρ
q ενσl

(
ηµν −

α′

2
τ2 lµqν

)(
ηρσ −

α′

2
τ2 lρqσ

)
I1100

1100

= −(2π)2N2
0 ε
µν
q εl µν

n∑
i=1

(qki) (lki)

τ ql ki(q + l)
+O(τ0) . (4.7)

The next integrals that we consider are those with three derivative of the Green’s function

Gc(z, w). They are:

α′

2
N2

0 ε
µρ
q ε

νσ
l τ

n∑
i=1

[
ηµν lρkiσI

1100
1001i + ηµνqσkiρI

1100
011i0 + ηρσlµkiνI

1001i
1100 + ηρσqνkiµI

011i0
1100

]
(4.8)

By exchanging the integration variables (z, w) with their complex conjugate we get the

following identities:

I1100
1001i = I1001i

1100 ; I1100
011i0 = I011i0

1100 (4.9)

Furthermore, by exchanging l with q and the integrated variables z with w, we get the

further relation:

I1100
1001i

∣∣∣
l↔q

= I1100
011i0 (4.10)

We have, therefore, only one integral to evaluate whose leading contribution in the τ

expansion turns out to be:

I1100
1001i =

2

α′
(2π)2 (kiq)

τ2 ql ki(l + q)
+O(τ−1)⇒ I1100

011i0 =
2

α′
(2π)2 (kil)

τ2 ql ki(l + q)
+O(τ−1) (4.11)
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The integrals with a double pole for z ' w are of two different typologies:

−α
′

2
N2

0 ε
µρ
q ε

νσ
l

n∑
i,j=1

[
kiρ kjσηµνI

1100
001i1j + kiµkjνηρσI

001i1j
1100

]
(4.12)

The integral I1100
001i1j

can be computed with the same procedure followed for I1100
1100 which

consists to integrate by part several times to get the double derivative of the Green’s

function which is equal to the delta-function. The result of the calculation gives:

I1100
001i1j = − (2π)2 δij

α′

2 τ ki(q + l)(α
′

2 τql − 1)
Λα
′τki(q+l) +O(τ0) =

(2π)2 δij
α′

2 τ ki(q + l)
+O(τ0) (4.13)

I
001i1j
1100 is the complex conjugate of I1100

001i1j
and being z, and w integrate variables we get:

I
001i1j
1100 = I1100

001i1j (4.14)

The second typology of integrals with a double pole for z = w is:

(α′
2

)2
N2

0 ε
µρ
q ε

νσ
l τ2

n∑
i,j=1

[
lµkjν

(
lρ kiσI

1001j
1001i

+ qσkiρI
1001j
011i0

)
+ qνkjµ

(
lρkiσI

011j0
1001i

+ qσkiρI
011j0
011i0

)]
(4.15)

We first observe that the exchange of the integration variables z and w together with the

substitutions l↔ q determines the following identity:

I
1001j
1001i

∣∣∣
l↔q

= I
011j0
011i0

; I
1001j
011i0

∣∣∣
l↔q

= I
011j0
1001i

(4.16)

The explicit calculation of the two independent integrals gives:

I
1001j
1001i

= −I1001j
011i0

=

(
2

α′

)2 (2π)2 δij
τ3 ql ki(q + l)

+O(τ−2) (4.17)

The integrals with only one derivative of Gc(z, w) are:

(α′
2

)2
N2

0 ε
µρ
q ε

νσ
l τ

n∑
i,j,m=1

[
kiρkjσ

(
qνkmµI

011m0
001i1j

+ lµkmµI
1001m
001i1j

)
+ kiµkjν

(
qσkmρI

00111j
011m0 + lρkmσI

001i1j
1001m

)]
(4.18)

We now observe that the replacements (z, q, i)↔ (w, l, j) determine:

I011m0
001i1j

∣∣∣i↔j
l↔q

= I1001m
00ii1j

; I
001i1j
011m0

∣∣∣i↔j
l↔q

= I
001i1j
1001m

(4.19)

Furthermore, exchanging the integration variables with their complex conjugate we get:

I011m0
001i1j

= I
001i1j
011m0 (4.20)
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and, therefore, there is only one integral to compute. Explicit calculation gives:

I011m0
001i1j

= I
001i1j
011m0 =

(
2

α′

)2 (2π)2 δij δim
τ2 ki(q + l) kiq

+O(τ−1) (4.21)

which also implies:

I1001m
00ii1j

= I
001i1j
1001m

=

(
2

α′

)2 (2π)2 δij δim
τ2 ki(q + l) kil

+O(τ−1) (4.22)

The last integral to compute is the one without a pole for z ' w:(
α′

2

)2

N2
0 ε

µρ
q ε

νσ
l

n∑
i,j,m,p=1

kiµ kjν kmρ kpσ I
001i1j
001m1p

(4.23)

For such an integral, the exponential factor e
α′
2
τ2lqGc(z,w) can be expanded because any pole

in τ can arise from the region of the complex plane where the two Koba-Nielsen variables

z and w are pinched. The integral becomes:

n∑
i,j,m,p=1

kiµ kjν kmρ kpσ I
001i1j
001m1p

=

n∑
i,j,m,p=1

kiµ kjν kmρ kpσ

∫
d2zd2w

[
1 +

α′

2
τ2qlGc(z, w)

] n∏
i=1

e
α′
2
τkiqGc(z,zi)

×
n∏
i=1

e
α′
2
τkilGc(w,zi)∂zGc(z, zi) ∂wGc(z, zj) ∂z̄Gc(z, zm) ∂w̄Gc(z, zp) +O(τ4) (4.24)

The leading contribution is exactly the same as two consecutive soft limits in the momenta

q and l. The two integrals are decoupled and they have been computed in ref. [5]. The

result is here quoted:

(2π)2

(
2

α′

)2
[

n∑
i,j=1

kµi k
ρ
i

τkiq

kνj k
σ
j

τkjl
− i

n∑
j=1

kνj k
σ
j

τkjl

n∑
i=1

qτk
µ
i J

ρτ
i

kjq
− i

n∑
i=1

kµi k
ρ
i

τkiq

n∑
j=1

lτk
ν
j J

στ
j

kjl

]
+O(τ0)

(4.25)

Here Jρτi is the orbital angular momentum.

The subleading term in the τ -expansion of (4.24) can be evaluated by using the same

procedure followed with the other integrals. The main contribution comes out from the

terms of the sum having i = j = m = p and it turns out to be:

−(2π)2
( 2

α′

)2
n∑
i=1

kµi k
ν
i k

ρ
i k

σ
i (ql)

τkil kiq ki(l + q)
+O(τ0) (4.26)

5 Check of gauge invariance

On-shell amplitudes with external gauge particles like gravitons or Kalb-Ramond fields,

are gauge invariant also in the infrared region where the massless gauge particles carry low
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momenta. Gauge invariance is, therefore, a consistency condition that the soft amplitude

derived in eq. (3.4) must satisfy. It requires that a such n+ 2-point amplitude is vanishing

when the external polarizations are replaced by the corresponding momentum, according

to the relations:

εqν qµ εlρσM
µν;ρσ
n+2 ({ki}, τq, τ l) = εqµ qν εlρσM

µν;ρσ
n+2 ({ki}, τq, τ l) = 0 (5.1)

with qµε
µ
q = 0 and similar relations for the other massless particle carrying momentum l. In

the following, as consistency check of the string calculation, we will show that indeed (3.4)

satisfies these relations. It will be sufficient to prove the condition (5.1) only for the particle

carrying q momentum, because the symmetry of the amplitude in the exchange of q with l

guarantees that such constraints are also satisfied by the other soft momentum.

Equation (5.1) when imposed on M1 as written in (3.8), and M2 and M3 as given

in (3.6) and (3.7), gives:

n∑
i=1

εqνqµ
ki(q + l)

[Mµν
1

ql
+

Mµν
2

(kiq)(kil)
+Mµν

3

]
Mn =

n∑
i=1

[
(εql)

(kiεlki)

kil
+

(qεlq)

ql
(kiεq)

]
Mn (5.2)

The second term is subleading in the τ -expansion and should be neglected.

The same replacement εµνq → εqνqµ when imposed on the remaining terms of (3.4)

gives:[
n∑
j=1

(εqki)

n∑
i=1

kiεlki
kil

− i
n∑
i=1

kiεlki
kil

n∑
j=1

εqνqρJ
νρ
j − i

n∑
i=1

(εqki)

n∑
j=1

εlµν
lρk

µ
j J

νρ
j

kjl

]
Mn

= −(εql)
n∑
i=1

kiεlki
kil

Mn + · · · (5.3)

where we have used momentum conservation and conservation of angular momentum in

the form
∑n

i=1 J
νρ
i Mn = 0, and the · · · denote terms of higher order in the τ -expansion,

which should be neglected. The relevant terms in the two last expressions exactly cancels,

thus ensuring gauge invariance. Similar considerations hold when we replace εqµν → εqµ qν ,

making (3.4) fully gauge invariant.

6 Field theory diagrammatica

In this section we explain how the different terms in our main result (3.4) can be understood

from a Feynman diagram perspective. A diagrammatic analysis of the single-soft case can

be found in [9]. The important lesson to draw from the single-soft case is that both direct

emission diagrams (where the soft state is emitted directly from external lines), as well as

indirect emission diagrams (where the soft state is emitted from internal lines) contribute

to the sub- and subsubleading soft behavior of massless closed states, whereas the leading

soft behavior is entirely given by the direct emission diagrams (Weinberg’s theorem).

At the double-soft level, direct emission diagrams come in two classes, cf. figure 1;

A) where the two soft states are emitted directly from two different external lines, and
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k
i

k j

εq
, q

ε
l , l

Mn

Class A diagrams

ki

ki + l + q

εl, l

εq , q

Mn

Class B diagrams

Figure 1. The two classes of direct emission diagrams of two massless closed states with polarization

and momenta εq, q respectively εl, l from external tachyon lines with momenta ki, with i = 1, . . . , n

and i 6= j. Diagrams where the intermediate exchanged particle is not a tachyon is considered part

of the indirect emission diagrams, cf. figure 2. Mn denotes the n-point tachyon subamplitude with

two (A) or one (B) external legs off shell.

k
i

ε l,
l

εq
, q

Mn

ε
q , q

ε l,
l

Mn

Figure 2. The two types of indirect emission diagrams, where at least one of the massless closed

string states is emitted from internal interactions of the n-point subamplitude. Label descriptions

as in figure 1.

B) where they are emitted directly from the same external line. We classify the (mixed)

type of diagrams where one state is emitted directly and another is emitted indirectly, as

indirect emission diagrams together with the ones where both are emitted indirectly, cf.

figure 2. Since all terms of our result (3.4) have a pole in τ = 0, meaning that at least one

propagator goes on-shell in the doubles-soft limit q, l → 0, we can immediately conclude

that no diagrams, where both states are emitted indirectly (figure 2, right panel) contribute

to (3.4) (since such diagrams at the tree-level are finite in this limit). We can, however, not

immediately conclude from the pole structure, which terms are of direct emission type or of

indirect emission type, since the class B direct emission diagrams contain both four-point

contact double-emission diagrams which contribute with a simple pole in the q, l → 0, as

well as diagrams with an additional pole inside the four-point ‘blob’ of figure 1, right panel,

that require a deeper analysis to understand, which we will here perform.

This analysis, besides being instructive, also provides a direct relation between our

result (3.4) and the effective field theory action of massless closed strings interacting with

massive scalar particles. (For an effective action of tachyons interacting with gravitons and

dilatons, see eq. (4.12) in ref. [30] and the equation below it.)
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6.1 Class A direct emission contributions

We begin by analyzing the almost trivial case of double-soft emission directly from two

different external tachyons, labelled i and j with i 6= j, and i, j = 1, . . . , n, cf. Class A of

figure 1 (left panel). The intermediate (dashed) states carry momentum ki+ q resp. kj + l.

The propagators give the pole structure:

1

(ki + q)2 +m2
i

1

(kj + l)2 +m2
j

=
1

(m2
i −m2) + 2(kiq)

1

(m2
j −m2) + 2(kjl)

(6.1)

where −m2 = k2
i = k2

j is the tachyon mass, and we used that q2 = l2 = 0. It is evident

that if the intermediate state is a tachyon, the class A diagrams contribute with an overall

double-pole
1

(kiq)(kjl)

in the limit q, l → 0. If the intermediate states were both massless, or massless and

tachyonic, the diagram is considered of indirect emission type, discussed later. But we can

immediately see from (6.1) that if both intermediate states were massless, there would be

no pole in the limit q, l→ 0, hence such diagrams do not contribute to (3.4).

It is easy to calculate the full contribution of the class A diagrams at the tree level. We

notice that the three-point vertices (blobs in figure 1, left panel) reduce to the three point

polarization-stripped amplitude of two tachyons and one massless state, which is given by

Mµν
3 = 2κD k

µ
i k

ν
i , assuming that the vertex is contracted with the polarization tensor εµνq

and taken on shell, as is the case here. Hence the full contribution of the class A diagrams

is given by:

M
(A)
n+2 = κ2

D εq,µνεl,ρσ
∑
i 6=j

kµi k
ν
i

(kiq)

kρj k
σ
j

(kjl)
Mn(k1, . . . , ki + q, . . . , kj + l, . . . , kn) . (6.2)

In the limit q, l → 0 we recognize these contributions as the order τ−2-terms of (3.4) for

i 6= j. The corresponding i = j contributions will naturally come from the class B direct

emission diagrams.

The subleading contributions in the q and l expansion above are also represented

in (3.4) and, less obviously, contained in the Jµν-terms. The other half of the Jµν-terms

come from indirect emission diagrams and ensure gauge invariance at the subleading order

of the full amplitude.

6.2 Class B direct emission contributions

We start by noticing that the propagator shown in figure 1, right panel, has a particular

form in the soft limit, q, l→ 0:

1

(ki + q + l)2 +m2
i

=
1

2ki(q + l) + 2(ql)
=

1

2ki(q + l)
− (ql)

2(ki(q + l))2
+ · · · (6.3)

The pole-structure is that of the M1 and M2 terms of (3.4). We will furthermore show

that the (ql)-term inside M2, eq. (3.6), is arising exactly due to the expansion above.
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ki

ki + l + q

εl, lεq , q

ki + q
Mn

(I.a)

l + q ki + l + q

kiε
q , q

ε l
, l

Mn

(II.a)

ki + l + q

ki

ε
q , q

ε l
, l

Mn

(III)

Figure 3. The tree diagrams making up the class B diagrams of figure 1.

ki

ki + l + q

εl, lεq , q

ki + q
Mn

(I.b)

l + q ki + l + q

kiε
q , q

ε l
, l

Mn

(II.b)

Figure 4. Disallowed field theory tree diagrams of class B type.

There are two ways to diagrammatically reproduce M1 and M2 terms of (3.4) from

the class B diagrams: we can either compute all diagrams contributing to the four-point

‘blob’ in figure 1, or more directly insert the four-point string amplitude for the ‘blob’ by

using that the intermediate off-shell leg is a scalar and thus the four-point form-factor is a

simple momentum-extension of the four-point amplitude.

Since we here want to develop a diagrammatic understanding of all terms, we first

proceed by the first approach and in the next section consider also the second approach

that allows also to take in account the effect of the string corrections. We start by listing

the diagrams and effective point-interactions; i.e. Feynman vertices.

6.2.1 Three-point vertices

In figure 3 we collect the tree diagrams that contribute to the class B diagrams of figure 1.

There are three types of vertices in figure 1; i) two-tachyon-one-massless, ii) three-

massless, iii) two-tachyon-two-massless.

One could naively also write down the diagrams in figure 4, however, an inspection of

the underlying three-point string vertices shows that they have proper field theory limit,

see the end of appendix B. This is consistent with the effective field theory action in [30],

where the tachyon does not have three-point interactions with the graviton and dilaton

involving only one tachyon. We therefore must disregard such diagrams and this turns out

to be consistent, both with the double-soft theorem (3.4) and with the four-point amplitude

of two tachyons and two massless states, as shown in appendix A and B.

We derive the three-point vertices involved in figure 3 from the corresponding three-

point string amplitudes, keeping particle symmetries manifest.

Vertex (i) enters in diagrams (I.a) and (II.a). For diagram (I.a) it is sufficient to use

the same form for the vertex as used for the class A diagrams, since the massless states

are on shell. However, for diagram (II.a) we need an extension of vertex (i) taking into
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account the off-shellness of the massless state, and this is given by

V αβ(p, k1, k2) = 2κD
1

2
(k1 − k2)α

1

2
(k1 − k2)β (6.4)

where k1, k2 are the momenta of the tachyons and p is the momentum of the massless state

with polarization indices αβ. Setting k1 =: ki and k2 =: −k1 − p we get:

V αβ(p, ki, −ki − p) = 2κD(ki +
1

2
p)α(ki +

1

2
p)β . (6.5)

Eq. (6.4) is simply the polarization-stripped 3-point string amplitude of two tachyons and

one massless state, while (6.5) is the promotion of it to a three-point vertex, where the

p-terms only contribute if the massless state is internal (off shell), since pαε
αβ
p = 0.

Vertex (ii) for three-massless states is obtained in the same way and given by:

V µν; ρσ;αβ(p1; p2; p3) =
κD
2

[
ηµρ(p1 − p2)α + ηρα(p2 − p3)µ + ηαµ(p3 − p1)ρ + α′pα1 p

µ
2p

ρ
3

]
×
[
ηνσ(p1 − p2)β + ησβ(p2 − p3)ν + ηβν(p3 − p1)σ + α′pβ1p

ν
2p
σ
3

]
(6.6)

Also the α′-terms could have been written more symmetrically, e.g. pα1 → 1
2(p1 − p2)α,

however, since these terms will be neglected in what follows, we kept the short form above.

Finally, the four-point vertex (iii) of two tachyons and two massless states can be

extracted from the four-point amplitude, which we return to later. We will instead first

predict its leading soft behavior from the double-soft theorem (3.4).

6.2.2 Diagram I.a

As already discussed, the contributions from diagram I.a of figure 3 can be obtained simi-

larly to the class B diagrams, remembering that we here have to sum over both the t and

u channels (where the order of the two massless states are exchanged). We thus get:

M
(I.a)
n+2 = κ2

Dεq,µνεl,ρσ

n∑
i=1

kµi k
ν
i

(kiq)

(ki + q)ρ(ki + q)σ

ki(q + l) + (ql)
Mn(k1 . . . , ki + q + l, . . . kn) + (q ↔ l)

(6.7)

Introducing the τ -parameter by q → τ q and l→ τ l and expanding in τ , one finds:

M
(I.a)
n+2 = κ2

Dεq,µνεl,ρσ

n∑
i=1

[
1

τ2

kµi k
ν
i

(kiq)

kρi k
σ
i

(kil)

(
1− τ (ql)

ki(q + l)
+ τ(q + l)α

∂

∂kαi

)

+
1

τ

kµi k
ν
i

kiq

(kρi q
σ + kσi q

ρ)

ki(q + l)
+

1

τ

kρi k
σ
i

kil

(kµi l
ν + kνi l

µ)

ki(q + l)

]
Mn(ki) +O(τ0) (6.8)

The order τ−2 term together with the term with the ki-derivative give exactly the i = j

contributions corresponding to the sum in (6.2) related to (3.4) as discussed there. The

term with the contraction (ql) and the terms in the second line reproduce exactly the

M2-term in (3.4), cf. (3.6).
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6.2.3 Diagram II.a

The contributions from diagrams II.a are given by:

M
(II.a)
n+2 = εq,µνεl,ρσ

n∑
i=1

V µν;ρσ;αβ(q, l,−q − l)
(q + l)2

Vαβ(q + l, ki,−ki − q − l)
(ki + q + l)2 +m2

i

×Mn(k1, . . . , ki + q + l, . . . , kn) . (6.9)

Parts of calculating the soft limit of this expression require some on-shell manipulations,

and we thus give some detail.

The first vertex above, after using on-shell tracelessness conditions, takes the form:

V µρ; νσ;αβ(q, l,−q − l) = 2κD

(
1

2
ηµν(q − l)α + ηναlµ − ηαµqν

)
×
(

1

2
ηρσ(q − l)β + ησβlρ − ηβρqσ

)
. (6.10)

To evaluate M
(II.a)
n in the soft limit, we again introducing τ through q → τ q and l → τ l

and expand in τ , getting:

M
(II.a)
n+2 =

κ2
D

τ

n∑
i=1

1

4(ql)(ki(q + l))

[
(εlεq)ki(q − l) ki(q − l) (6.11)

+ 2[(lεtqεlki) + (lεqε
t
lki)]ki(q − l)− 2[(kiε

t
qεlq) + (kiεqε

t
lq)]ki(q − l)

+ 4(lεql)(kiεlki)−4(lεqki)(kiεlq)−4(kiεql)(qεlki) + 4(kiεqki)(qεlq)
]
Mn(ki)+O(τ0)

The terms with ki(q− l) can be rewritten to cancel the ki(q+ l) denominator. In particular,

the first term is rewritten as follows:
n∑
i=1

(εlεq)

4(ql)(ki(q + l))
ki(q − l) ki(q − l)

=
n∑
i=1

(εlεq)

4(ql)(ki(q + l))
ki(q − l) ki[(q + l)− 2l]

=

n∑
i=1

(εlεq)

4(ql)
ki(q − l)−

n∑
i=1

(εlεq)ki(2q − (q + l))(kil)

2(ql)(ki(q + l))

= −
∑
i

(εlεq)(kiq)(kil)

(ql)ki(q + l)
− (εlεq)

2
(6.12)

where in the last step momentum conservation was invoked to get (on shell)
∑

i ki(q− l) =

−(q + l)(q − l) = 0 and
∑

i kil = −(ql). The latter term is subleading in the τ -expansion,

and will thus be neglected in (6.11).

Next we reduce the following terms in a similar manner:

n∑
i=1

2[(lεtqεlki) + (lεqε
t
lki)]ki(q − l)

4(ql)(ki(q + l))
=

n∑
i=1

[(lεtqεlki) + (lεqε
t
lki)](kiq)

(ql)(ki(q + l))
+

(lεtqεlq)

(ql)
(6.13)

−
n∑
i=1

2[(kiε
t
qεlq) + (kiεqε

t
lq)]ki(q − l)

4(ql)(ki(q + l))
=

n∑
i=1

[(kiε
t
qεlq) + (kiεqε

t
lq)](kil)

(ql)(ki(q + l))
+

(lεtqεlq)

(ql)
(6.14)
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The latter terms of each equation are subleading in the τ -expansion and will thus be

neglected in (6.11).

Finally, using that εµνq/l are either both symmetric or antisymmetric it follows that

(lεqki)(kiεlq) + (kiεql)(qεlki) = 2(lεqki)(kiεlq) . (6.15)

In total M
(II.a)
n+2 reduces to

M
(II.a)
n+2 =

κ2
D

τ

n∑
i=1

1

(ql)(ki(q + l))

[
− (εlεq)(kiq)(kil)− 2(lεqki)(kiεlq)

+ [(lεtqεlki) + (lεqε
t
lki)](kiq) + [(kiε

t
qεlq) + (kiεqε

t
lq)](kil)

+ (kiεqki)(qεlq) + (lεql)(kiεlki)
]
Mn(ki) +O(τ0) (6.16)

This expression matches exactly the contribution of the M1 term in (3.4).

6.2.4 Diagram III

This diagram is distinguished from the other one by only having one intermediate propaga-

tor taking the form on shell 1/ki(q+ l), and involving a four-point, rather than three-point,

contact interaction. This interaction vertex can be extracted from the four-point string

amplitude by careful considerations, which we provide in appendix B.

Here instead we want to make the point that our diagrammatic considerations so far

together with our main result (3.4) provides a prediction or derivation of the four-point

contact interaction vertex to leading order in the soft expansion; i.e. the only term in (3.4)

with pole structure 1/ki(q + l) and unmatched by the preceding diagrams (there are no

other diagrams giving such a pole structure) is the M3-term, thus:

M
(III)
n+2 = −κ2

Dεq,µνεl,ρσ

n∑
i=1

kµi k
ρ
i η
νσ + kνi k

σ
i η

µρ

τ ki(q + l)
Mn(ki) +O(τ0) (6.17)

The prediction for the vertex is thus:

V µν;ρσ
4 (τq, τ l, ki,−ki − q − l) = −2κD(kµi k

ρ
i η
νσ + kνi k

σ
i η

µρ) +O(τ) (6.18)

This matches exactly the complete vertex derived from the four-point amplitude in ap-

pendix B.7 to leading order in τ .

6.3 Indirect emission diagrams

As we have already remarked, only the indirect emission diagrams in the left panel of

figure 2 may be contributing to the double-soft theorem in (3.4) (the right panel diagrams

might contribute to a possible higher order soft theorem).

The contribution from these diagrams can now be fixed by gauge invariance. We write

them in the form:

M Ind.
n+2 =

n∑
i=1

εq,µνV
µν(q, ki,−ki − q)

2kiq
εl,ρσN

ρσ(l, ki + q)

+

n∑
i=1

εl,µνV
µν(l, ki,−ki − l)

2kil
εq,ρσN

ρσ(q, ki + l) (6.19)
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where N is an n+ 1-point form factor, which is local in its first argument, i.e.

Nρσ(q, ki) = Nρσ(0, ki) + q · ∂qNρσ(0, ki) + · · · (6.20)

and we recall that there are no such contributions if the two massless states are antisym-

metric B-fields. Thus Nρσ is a symmetric tensor. This is consistent with the fact that the

sum of direct emission diagrams to the subleading soft order are gauge invariant by them

selves.

The numerators in (6.19) are basically the three-point amplitude of two tachyons and

one massless state, given by 2κD(kiεq/lki). Therefore to subleading order in τ (shifting

q → τq and l→ τ l) we simply have:

M Ind.
n+2 =

κ2
D

τ

n∑
i=1

[
(kiεqki)

kiq
εl,ρσ +

(kiεlki)

kil
εq,ρσ

]
Nρ,σ(0, ki) +O(τ0) (6.21)

Since the full amplitude to this order in τ has to be gauge invariant, and since all terms

computed from the direct emission diagrams, except for the (q + l)α∂/∂kαi -terms in (6.2)

and (6.8), were already considered in section 5, we can directly read off from there, that

Nρσ is fixed by gauge invariance of the amplitude be:

Nρσ(0, ki) = −
n∑
j=1

kρj
∂

∂kjσ
Mn(ki) (6.22)

These contribution, together with the (q+ l)α∂/∂kαi -terms from (6.2) and (6.8) then add to

form the Jρσ-terms appearing in the double-soft theorem (3.4), exactly so to restore gauge

invariance of the full amplitude (cf. section 5).

7 Soft theorem from on-shell factorization

It might have been noticed that the diagrammatic calculation in the previous section was

essentially a computation of the four-point amplitude, taking the soft limit, diagram-by-

diagram, of the two massless states.

In fact, looking back at figure 1, right panel, one observes that the soft limit q, l → 0

puts the intermediate tachyon propagator on shell. The factorization theorem then tells

that the amplitude factorizes into the corresponding lower-point amplitudes, one of them

being the four-point amplitude of two tachyons and two massless states. Thus, when one

is only interested in the leading and subleading double soft behaviour, it suffices to use the

factorization theorem to extract the residues of the singularities from propagators going on

shell in the soft limit by using the lower-point amplitudes. Specifically, all class B diagrams

can be summarized as:

M classB
n+2 =

n∑
i=1

M4(τq, τ l, ki,−(ki + τq + τ l))
1

τ(2ki(q + l))
Mn(ki + τq + τ l) +O(τ0) (7.1)

From the double-soft theorem (3.4) we expect at the same time that the four-point string

amplitude above reduce in the soft limit to the four-point field theory amplitude, since no

α′-term enter in (3.4).
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To make an independent and alternative check that these relations are indeed correct,

we can simply compute the full four-point string amplitude explicitly and insert it in the

above expression. The calculation of the four-point string amplitude of two tachyons and

two massless states is given in the appendix A. As shown in the appendix, the result can

be brought into the exact form:

M4(τq, τ l, k1, k2) =− 2κ2
D ε

µν
q ερσl

Γ
(
u
2

)
Γ
(

2+s
2

)
Γ
(
t
2

)
Γ
(

4−t
2

)
Γ
(

2−s
2

)
Γ
(

4−u
2

) (k1q)(k2q)

ql

×

[
Aµρ +

α′τ2

2− s

(
(ql)ηµρ − (qµ + lµ)(qρ + lρ)

)]

×

[
Aνσ +

α′τ2

2− s

(
(ql)ηνσ − (qν + lν)(qσ + lσ)

)]
, (7.2)

with

Aµρ = ηµρ +
k1µk2ρ

k1q
+
k2µk1ρ

k2q
, (7.3)

s = α′τ2(ql) , t = 2 + α′τ(qk2) , u = 2 + α′τ(k1q) . (7.4)

Remarkably, each factor of α′ comes with at least one power τ in the above expression

for the four-point amplitude. This shows that the double-soft limit of this amplitude

effectively takes the expression to its field theory limit, specifically:

M4(τq, τ l, k1, k2) = −2κ2
D

(k1q)(k2q)

ql
εµνq ερσl AµρAνσ +O(τ2) (7.5)

M4(τq, τ l, k1, k2) = −2κ2
D

(k1q)(k2q)

ql
εµνq ερσl AµρAνσ +O(α′) , (7.6)

both of which is the field theory expression for the two-tachyon-two-massless-closed-states

amplitude. (The order τ -term also vanish due to momentum conservation.)

This feature, together with the fact that the single-soft theorem does not contain

α′-terms, explains why we do not find any α′-terms in the double-soft theorem.

Finally, considering (7.1) and using (7.5), we can after straightforward but tedious

manipulations show that the contribution from the class B diagrams to the double-soft

limit can be written as:

MClassB
n+2 = κ2

D

n∑
i=1

[
1

τ2

(kiεqki)(kiεlki)

(kiq)(kiq)

+
1

τ

(
M1

ql
+

M2

(kiq)(kil)
+M3

)
1

ki(q + l)

]
Mn(ki) +O(τ0) (7.7)

where M1,2,3 are exactly as given in (3.5)–(3.7).

In the same way, all class A diagrams can be, almost trivially, understood from on-

shell factorization on to the three-point subamplitudes; an analysis that we will not make

explicit here.
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This thus provides us with a complete understanding of all terms in (3.4); it con-

sists of the two consecutive single-soft terms (containing the expected O(τ−2) Weinberg

terms on different legs), while the rest is fully given by the factorization on the four-point

subamplitude as given above.

8 Conclusion and discussion

In this work we have derived directly from the string theory integral representation of the

amplitude of two massless closed strings interacting with n-point closed strings tachyons,

the soft behavior of the two massless states when simultaneously becoming soft; i.e. when

their momentum goes to zero.

The result for two gravitons has already been established in [26], and confirmed here

independently in a slightly different, but on-shell equivalent form, while all the other cases;

i.e. of two dilatons, a graviton and a dilaton, and two Kalb-Ramond states, are here derived

for the first time. Furthermore our main expression (3.4) provides a unified description

of all the soft theorems just mentioned. Having no explicit α′ contribution, the generic

result can thus be seen as the double-soft theorem for the double-copied Yang-Mills the-

ory interacting with massive scalar particles. We expect that our result is universal, i.e.

readily generalizable to the interaction with any other hard states by including in the an-

gular momenta operator, appearing in the subleading soft operator, also the spin angular

momenta part.

Based on our experience with the single-soft theorem, it is conceivable that our result

can be extended to the loop level [16, 17]. From the lessons learned there, we expect that:

1) There will be additional factorizable contributions to the double-soft theorem involving

the dilaton, due to its modified behavior at loop level [17], which appear to ensure the

correct scaling property of the amplitudes at each loop order. In the single-soft case,

these can be resummed into a universal multiloop soft factor that replaces the dilatation

operator in terms of external momenta with the dilatation operator in terms of the scalefull

parameters of the theory (i.e. α′ and gs), as shown in [17]. We expect a similar mechanism

to apply to multisoft theorems to the order considered here, since the dilatation operator

here appears as a direct consequence of the single-soft theorem. 2) There will appear IR

divergence in certain number of dimensions related to tachyons and dilatons going on shell

in the loops. From the analysis in [16] and [26] we expect, however, the IR behaviour of the

loop diagrams to, respectively, be well-defined when a tadpole regularization is provided

and when the space-time dimension is greater than five.

One of the uses of soft theorems is to derive from them the low-energy effective field

theory action of the underlying theory. In this spirit, we have provided also a diagrammatic

analysis of the terms appearing in the double-soft theorem (3.4). This establishes for the

low-energy theory two things: 1) There are no three-point field theory interactions of two

massless states interacting with one tachyon, and the effective field theory should be void

from such (this agrees with ref. [30]), and 2) there is a four-point contact interaction of

two tachyons and two massless states, which we have derived both from the double-soft

theorem, and from an analysis of the four-point amplitude.
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Due to the high level of complexity in the analysis presented in this paper, we have

here focused our attention on the leading and subleading double-soft behavior. It would be

very interesting to analyze also the next, i.e. subsubleading τ0 order, where we expect much

more complexity to appear, since given that the single-soft cases all have a subsubleading

factorization behavior, it might turn out that the high level of complexity will organize

compactly into a subsubleading double-soft theorem due to some putative unknown (hid-

den) symmetry. Having now a good handle on the first two orders, we hope that such an

analysis will appear in a future work.
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A Four-point bosonic string amplitude of two closed tachyons and two

closed massless string states

The 2-tachyon-2-massless closed string amplitude is given at the tree-level by:

Mttdd = C0N
4
0 ε
µν
3 ερσ4

∫ ∏4
i=1 d

2zi
dVabc

∏
i<j

|zi − zj |α
′kikj

×

[
− ηµρ

(z3 − z4)2
+
α′

2

2∑
i,j=1

kiµkjρ
(z3 − zi)(z4 − zj)

+
α′

2

2∑
i=1

k4µkiρ
(z3 − z4)(z4 − zi)

+
α′

2

2∑
i=1

kiµk3ρ

(z3 − zi)(z4 − z3)
− α′

2

k4µk3ρ

(z3 − z4)2

]
×
[
c.c. with (µ→ ν, ρ→ σ)

]
(A.1)

Here k1, k2 are the tachyon momenta. To perform the integral, we set z1 = 0, z2 = z, z3 =

1, z4 = w →∞, thus dV134 = d2z1d
2z3d

2z4/|w|2|1− w|2 → d2z1d
2z3d

2z4/|w|4, and get:

Mttdd = C0N
4
0 ε
µν
3 ερσ4

∫
d2z|z|α′k1k2 |w|α′k1k4 |1− z|α′k2k3 |z − w|α′k2k4 |1− w|α′k3k4

×

[
− ηµρ +

α′

2

2∑
i,j=1

wkiµkjρ

(1− zi)
(
1− zj

w

) − α′

2

2∑
i=1

k4µkiρ

+
α′

2

2∑
i=1

wkiµk3ρ

(1− zi)
(
1− 1

w

) − α′

2
k4µk3ρ

]
×
[
c.c. with (µ→ ν, ρ→ σ)

]
(A.2)

where in the bracket we already took the limit w →∞, where it was consistent. Notice that

2∑
i,j=1

wkiµkjρ

(1− zi)
(
1− zj

w

) +
2∑
i=1

wkiµk3ρ

(1− zi)
(
1− 1

w

) =
2∑
i=1

3∑
j=1

wkiµkjρ

(1− zi)
(
1− zj

w

)
=

2∑
i=1

3∑
j=1

wkiµkjρ
(1− zi)

(
1 +

zj
w

+ · · ·
)

= −
2∑
i=1

wkiµk4ρ

(1− zi)
+

2∑
i=1

3∑
j=1

zjkiµkjρ
(1− zi)

(A.3)
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and we see that the first term vanishes on shell (as it must) due to ερσ4 k4ρ = 0. We can

also drop the term in the second sum where j = 1, since z1 = 0. Also the following two

terms vanish on shell:

ερσ4

(
−

2∑
i=1

k4µkiρ − k4µk3ρ

)
= 0 (A.4)

Notice also that for w →∞.

|w|α′k1k4 |z − w|α′k2k4 |1− w|α′k3k4 → |w|α′(k1+k2+k3)k4 = |w|0 = 1 (A.5)

since k2
4 = 0 on shell. Then we are left with the following expression:

Mttdd = C0N
4
0 ε
µν
3 ερσ4

∫
d2z|z|α′k1k2 |1− z|α′k2k3

×

ηµρ +
α′

2

2∑
i=1

3∑
j=2

zjkiµkjρ
(1− zi)

ηνσ +
α′

2

2∑
i=1

3∑
j=2

z̄jkiµkjρ
(1− z̄i)

 . (A.6)

Expanding the sum in the bracket gives:[
ηµρ +

α′

2

(
zk1µk2ρ + k1µk3ρ +

1

1− z
(zk2µk2ρ + k2µk3ρ)

)]

=

[
ηµρ +

α′

2

1

(1− z)
(z(1− z)k1µk2ρ + (1− z)k1µk3ρ + zk2µk2ρ + k2µk3ρ)

]

=

[
ηµρ +

α′

2

1

(1− z)

(
− z2k1µk2ρ + z (k1µk2ρ − k1µk3ρ + k2µk2ρ)︸ ︷︷ ︸

−k4µk2ρ−k1µk3ρ

+ k1µk3ρ + k2µk3ρ︸ ︷︷ ︸
−k4µk3ρ

)]

(A.7)

where in the underbraced expressions we used momentum conservation and on-shell con-

ditions.

Rewriting it further by using momentum conservation and on-shell condition, k3ρ →
−(k1 + k2)ρ and k4µ → −(k1 + k2)µ leads to the following simpler form:[

ηµρ −
α′

2
(k1µk1ρ + k2µk2ρ)−

α′

2
k1µk2ρ(1− z)− α′

2

k2µk1ρ

(1− z)

]
(A.8)

We now note that all integrals are in the form:

In,n̄ =

∫
d2z zA (1− z)B+n z̄A (1− z̄)B+n̄ . (A.9)

It can be shown, using integration techniques of KLT, that all such integrals can be rewrit-

ten into the form

In,n̄ = 2π
Γ(−1−A−B − n)

Γ(−A)Γ(−B − n)

Γ(1 +A)Γ(1 +B + n̄)

Γ(2 +A+B + n̄)
(A.10)
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We notice that the left and right brackets, parametrized by n respectively n̄ factorize, thus

the factorized structure of kinematic coefficients will also preserved. By using the property

zΓ(z) = Γ(1 + z), we can extract an overall function outside of the brackets of the form:

C(A′, B) :=
Γ(1−A′ −B)

Γ(1−A′)Γ(1−B)

Γ(1 +A′)Γ(1 +B)

Γ(1 +A′ +B)
=: CLCR (A.11)

where we made a redefinition of A, i.e. A′ = A + 2 = α′

2 k3k4, upon using momentum

conservation, on-shell conditions and that m2 = −4/α′. This prefactor has the property

that limα′→0C = 1.

We write down each case of n separately.

For n = 0 we need the following rewriting to factorize in CL:

Γ(−1−A−B)

Γ(−A)Γ(−B)
=

Γ(1−A′ −B)

Γ(2−A′)Γ(−B)
=

(−B)

(1−A′)
CL (A.12)

Similarly, for n = −1 we need:

Γ(−A−B)

Γ(−A)Γ(1−B)
=

Γ(2−A′ −B)

Γ(2−A′)Γ(1−B)
=

(1−A′ −B)

1−A′
CL (A.13)

And for n = 1 we need:

Γ(−2−A−B)

Γ(−A)Γ(−B − 1)
=

Γ(−A′ −B)

Γ(2−A′)Γ(−B − 1)
=

(−B − 1)(−B)

(−A′ −B)(1−A′)
CL (A.14)

For n̄ = 0 we need the following rewriting to factorize into CR.

Γ(1 +A)Γ(1 +B)

Γ(2 +A+B)
=

Γ(−1 +A′)Γ(1 +B)

Γ(A′ +B)
=

(A′ +B)

(−1 +A′)(A′)
CR (A.15)

Similarly, for n̄ = −1 we need:

Γ(1 +A)Γ(B)

Γ(1 +A+B)
=

Γ(−1 +A′)Γ(B)

Γ(−1 +A′ +B)
=

(−1 +A′ +B)(A′ +B)

(−1 +A′)(A′)(B)
CR (A.16)

And finally for n̄ = 1 we have:

Γ(1 +A)Γ(2 +B)

Γ(3 +A+B)
=

Γ(−1 +A′)Γ(2 +B)

Γ(1 +A′ +B)
=

(1 +B)

(−1 +A′)(A′)
CR (A.17)

We are now ready to assemble all pieces into the amplitude, getting:

Mttdd = C0N
4
0 ε
µν
3 ερσ4 (2π)

[
C(A′, B)

(1−A′)2

]
B(A′ +B)

A′

×

[
ηµρ −

α′

2
(k1µk1ρ + k2µk2ρ)−

α′

2
k1µk2ρ

1 +B

A′ +B
+
α′

2
k2µk1ρ

1−A′ −B
B

]

×

[
ηνσ −

α′

2
(k1νk1σ + k2νk2σ)− α′

2
k1νk2σ

1 +B

A′ +B
+
α′

2
k2νk1σ

1−A′ −B
B

]
(A.18)
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where

A′ =
α′

2
k3k4 , B =

α′

2
k2k3

or in terms of the Mandelstam variables:

s =
α′

2
(k3 + k4)2 , t =

α′

2
(k2 + k3)2 , u =

α′

2
(k2 + k4)2 , s+ t+ u = 4

⇒ A′ =
s

2
, B =

t− 2

2
, A′ +B =

s+ t− 2

2
=

2− u
2

We can write the amplitude as

Mttdd = C0N
4
0 ε
µν
3 ερσ4 (4π)

[
C(s, t, u)

(2− s)2

]
(t− 2)(2− u)

s

×

[
ηµρ −

α′

2
(k1µk1ρ + k2µk2ρ) +

α′

2
k1µk2ρ

t

u− 2
+
α′

2
k2µk1ρ

u

t− 2

]

×

[
ηνσ −

α′

2
(k1νk1σ + k2νk2σ) +

α′

2
k1νk2σ

t

u− 2
+
α′

2
k2νk1σ

u

t− 2

]
(A.19)

where

C(s, t, u) := C

(
s

2
,
t− 2

2

)
=

Γ
(
u
2

)
Γ
(

2+s
2

)
Γ
(
t
2

)
Γ
(

4−t
2

)
Γ
(

2−s
2

)
Γ
(

4−u
2

) , (A.20)

and we note that:

t− 2 = α′k2k3 , u− 2 = −α′k3(k2 + k4) = α′k1k3

⇒ (t− 2)(2− u)

s
= −α′ (k2k3)(k1k3)

k3k4

So with

C0 =
8π

α′

(
2π

κD

)2

, N0 =
κD
2π

we have

Mttdd = εµν3 ερσ4 (−2κ2
D)

[
C(s, t, u)(
1− s

2

)2
]

(k2k3)(k1k3)

k3k4

×

[
ηµρ −

α′

2
(k1µk1ρ + k2µk2ρ) +

t

2

k1µk2ρ

k1k3
+
u

2

k2µk1ρ

k2k3

]

×

[
ηνσ −

α′

2
(k1νk1σ + k2νk2σ) +

t

2

k1νk2σ

k1k3
+
u

2

k2νk1σ

k2k3

]
(A.21)

We can immediately derive the field theory limit of this, since In the limit α′ → 0 we

know that s→ 0, and t, u→ 2 and thus C(s, t, u)→ 1.3 Thus the field theory result is:

lim
α′→0

Mttdd =− 2κ2
D

(k2k3)(k1k3)

k3k4
εµν3 ερσ4 AµρAνσ , (A.22)

3This follows e.g. from Γ(1+z)
Γ(1−z) = − Γ(z)

Γ(−z) = 1− 2zγ +O(z2), where γ is the Euler-Mascheroni constant.
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k1 + q

ε
q , q ε l

, l

k1 k2

(a)

l + q

ε
q , q

ε l
, l

k1

k2

(b)

k1

k2

ε
q , q

ε l
, l

(c)

Figure 5. Diagrams contributing to the two tachyon two massless amplitude.

with

Aµρ = ηµρ +
k1µk2ρ

k1k3
+
k2µk1ρ

k2k3
. (A.23)

This agrees, up to an overall sign, with the field theory result given in eq. (2.2) of ref. [31].

We can, in fact, separate the field theory part from the string corrections as follows.

We first use momentum conservation to rewrite t = 2 − α′(k1k3 + k3k4) and u = 2 −
α′(k2k3 + k3k4), and then we can algebraically rewrite the amplitude into the following

form (using in particular 1
1− s

2
= 1 + s

2−s):

Mttdd =− 2κ2
D ε

µν
3 ερσ4

Γ
(
u
2

)
Γ
(

2+s
2

)
Γ
(
t
2

)
Γ
(

4−t
2

)
Γ
(

2−s
2

)
Γ
(

4−u
2

) (k2k3)(k1k3)

k3k4

×

[
Aµρ +

α′

2− s

(
(k3k4)ηµρ − (k1µ + k2µ)(k1ρ + k2ρ)

)]

×

[
Aνσ +

α′

2− s

(
(k3k4)ηνσ − (k1ν + k2ν)(k1σ + k2σ)

)]
(A.24)

Using momentum conservation we can further rewrite (k1µ + k2µ) = −(k3µ + k4µ), getting

the form used in the main text, where the notation k3 = q, k4 = l and ε3 = εq, ε4 = εl
is used.

B Four-point amplitude from string inspired Feynman diagrams

In this appendix we show how to reproduce the field theory result of the four-point ampli-

tude of two tachyons and two massless closed strings, calculated in the previous appendix,

through a diagrammatic field theory like calculation, thereby establishing the Feynman

rules and vertices for the field theory limit of the theory. Our aim here is in particular to

fix the four-point vertex (on-shell contact term) of two tachyons and two massless states.

The Feynman diagrams that, in principle, may contribute to the four-point field theory

amplitude are shown in figure 5 and figure 6. They involve all the possible three-point

vertices with tachyons and massless states as well as a four-point vertex. However, as we

will see, the diagrams in figure 6 are irrelevant. In fact, the three-point interactions involved

in those diagrams, do not have a well-defined field theory limit from their corresponding

string theory amplitudes, indicating that they are not permitted in the Feynman rules.
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We begin with considering the diagrams in figure 5. The vertices involved, derived

from string theory, were given section 6.2.1. Based thereon we compute the contribution

from each diagram:

A
(a)
4 (k1, k2, q, l) = εqµν εlρσ

V µν(k1, q, −k1 − q)V ρσ(k1 + q, l, k2)

(k1 + q)2 +m2
+ (q ↔ l)

= 2κ2
D

(k1εqk1)

kiq

[
(k1εlk1) + (k1εlq) + (qεlk1) + (qεlq)

]
+ (q ↔ l) (B.1)

where (q ↔) denotes the similar contribution from the cross-channel diagram, and we used

momentum conservation to replace k2 = −k1 − l − q. By using the on-shell four-point

identity k1l = k2q and:[
1

k1q
+

1

k2q

]
= −(qk1)(qk2)

ql

[
2

(qk1)(qk2)
+

1

(qk1)2
+

1

(qk2)2

]
= − ql

(qk1)(qk2)
(B.2)

we can rewrite eq. (B.1) as follows:

A
(a)
4 =− 2κ2

D

(qk1)(qk2)

ql

{
(k1εqk1)(k1εlk1)

[
2

(qk1)(qk2)
+

1

(qk1)2
+

1

(qk2)2

]
+

[
1

(k1q)2
+

1

(k2q)(k1q)

]
(k1εqk1)[(k1εlq) + (qεlk1) + (qεlq)]

+

[
1

(k2q)2
+

1

(k2q)(k1q)

]
(k1εlk1)[(k1εql) + (lεqk1) + (lεql)]

}
(B.3)

Diagram b gives:

A
(b)
4 = εqµρ εlνσ

V µρ;νσ;αβ(q, l, −q − l)Vαβ(q + l, k1, k2)

(q + l)2

=
κ2
D

2(ql)

[
(εqεl) k1(q − l) k1(q − l)

+ 2[(lεtqεlk1) + (lεqε
t
lk1)]k1(q − l)− 2[(k1ε

t
qεlq) + (k1εqε

t
lq)]k1(q − l)

+ 4(lεql)(k1εlk1) + 4(k1εqk1)(qεlq)− 4(lεqk1)(k1εlq)− 4(k1εql)(qεlk1)
]

(B.4)

By use of (B.2) together with the on-shell identities

k1(k1 + k2) = k2(k1 + k2) = 1/2(k1 + k2)2 = (ql)

and

(εqεl)
k1(q − l) k1(q − l)

(ql)
= −4

(εqεl)(k1q)(k2q)

(ql)
+ (εlεq)(ql)

[(lεtqεlk1) + (lεqε
t
lk1)]k1(q − l)

(ql)
= 2

[(lεtqεlk1) + (lεqε
t
lk1)](k1q)

(ql)
+ [(lεtqεlk1) + (lεqε

t
lk1)]
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we can rewrite (B.4) in the following form:

A
(b)
4 =− 2κ2

D

(k1q)(k2q)

ql

[
(εqεl)−

[(lεtqεlk1) + (lεqε
t
lk1)]

k2q
−

[(k1ε
t
qεlq) + (k1εqε

t
lq)]

k1q

− (lεql)(k1εlk1) + (k1εqk1)(qεlq)− (lεqk1)(k1εlq)− (k1εql)(qεlk1)

(k1q)(k2q)

]
+ κ2

D

[
1

2
(εlεq)(ql) + (lεtqεlk1) + (lεqε

t
lk1) + (k1ε

t
qεlq) + (k1εqε

t
lq)

]
(B.5)

The sum of the two diagrams, (B.2) and (B.5), is now seen to give the full four-point

amplitude in (7.6) (upon expanding the double-copy form) up to contact terms, i.e.:

A
(a)
4 +A

(b)
4 =− 2κ2

D

(qk1)(qk2)

ql

[
(εqεl)−

[(lεtqεlk1) + (lεqε
t
lk1)]

k2q
−

[(k1ε
t
qεlq) + (k1εqε

t
lq)]

k1q

+
(k1εqk1)[(k1εlk1) + (k1εlq) + (qεlk1) + (qεlq)]

(qk1)2

+
(k1εlk1)[(k1εqk1) + (k1εql) + (lεqk1) + (lεql)]

(qk2)2

+
2(k1εqk1)(k1εlk1) + (k1εqk1)[(k1εlq) + (qεlk1)] + (k1εlk1)[(k1εql) + (lεqk1)]

(qk1)(qk2)

− (lεqk1)(k1εlq) + (k1εql)(qεlk1)

(qk1)(k1q)

]
+ κ2

D

[
1

2
(εlεq)(ql) + (lεtqεlk1) + (lεqε

t
lk1) + (k1ε

t
qεlq) + (k1εqε

t
lq)

]
≡M4(q, l, k1, k2)− εqµρεlνσV µρ;νσ

4 (q, l, k1, k2) (B.6)

where M4 is the field theory limit of the four-point amplitude computed in appendix A

and the contact terms read:

εqµρεlνσV
µρ;νσ

4 (q, l, k1, k2) =− κ2
D

[
1

2
(εlεq)(ql) + (lεtqεlk1) + (lεqε

t
lk1) + (k1ε

t
qεlq)

+ (k1εqε
t
lq) + 2(k1εqε

t
lk1) + 2(k1ε

t
qεlk1)

]
(B.7)

This four-point contact interaction is fully consistent with the double-soft theorem in (3.4),

as explained in the main text. To the order in the soft expansion considered, only the last

two terms contribute there.

Finally, we discuss the disallowed diagrams in figure 6. They involve the vertices of

two massless states and one tachyon, as well as a three tachyon vertex.

As done in section 6.2.1, we may try to promote the corresponding three-point string

amplitudes to field theory vertices by stripping off the polarization tensors and keeping

particle symmetries. We get thereby the following two vertices, respectively:

V µν;αβ(p1, p2, k) = 2κD

(
2

α′

)[
ηµα − α′

2
kµ kα

][
ηνβ − α′

2
kνkβ

]
(B.8)

V (k1, k2, k3) = 2κD

(
2

α′

)
(B.9)
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Figure 6. Disallowed field theory tree diagrams with a collapsed propagator.

Both vertices are proportional to the inverse of the string slope. Therefore, we expect

that they decouple in the α′ → 0 limit performed by keeping fixed the D-dimensional

gravitational coupling constant κD. Indeed, the diagrams in figure 6, at leading order in

the string expansion and for external on-shell particles, do not show any poles due to the

propagation of particles going on shell. Instead, they become contact terms, which should

be described by the four-point vertex. This is easily seen, for example in one of the channels

of the diagram in figure (d), one has:

A
(d)
4 = εlµνεqρσ

V µν;αβ(l, k1, −l − k1)V ρσ
αβ (−k2 − q, q, k2)

(k1 + l)2

=
α′

4

[
1− α′

2

k1l

1 + α′

2 k1l

]
εlµνεqρσ V

µν;αβ(l, k1, −l − k1)V ρσ
αβ (−k2 − q, q, k2) (B.10)

while for the one in figure (e) one gets:

A
(e)
4 = εlµνεqρσ

V µν;ρσ(l, q, −l − q)V (l + q, k1, k2)

(q + l)2 +m2

= −α
′

4

[
1 +

α′

2

ql

1− α′

2 ql

]
V µν;ρσ(l, q, −l − q)V (l + q, k1, k2) (B.11)

In both cases the propagator is, as shown, proportional to α′ and thus ‘shrinks to zero’,

i.e. a point interaction, in the field theory limit of the amplitude. (Taking the vertices into

account, in both cases the leading order term of α′0 is purely local (contact terms), while

the on-shell poles only appear at subleading order in α′.) Thus, in the field theory limit

these contributions do not parametrize proper Feynman diagrams, and should instead be

described through the four-point contact vertex.

The four point vertex is ensured to take the form in (B.7) by on-shell gauge invariance

of the full amplitude. Thus, we conclude that (B.7) collects the full four point interaction

of two on-shell scalars and massless closed string states.
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