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Abstract

A transport model is considered to describe gradient elution in liquid chromatography

in packed beds with the linear isotherm dependent on the mobile phase modulator. By

applying a coordinate transformation, the model is solved analytically using the Laplace

transform approach. The moment generating property of the Laplace domain solution

is used to derive analytical expressions for the first three moments of the response to

rectangular injections. These moments are instructive for analyzing the retention time,

band broadening and asymmetry of elution profiles. Compared to isocratic elution, the

derivation of analytical solutions and moments for gradient elution is more complicated,

because the retention behavior of the solutes depends on the varying mobile phase modu-

lator. Several case studies are evaluated theoretically. To gain confidence on the derived

analytical results, a high-resolution finite volume scheme is also applied to solve the same

model equations numerically. The analytical solutions and moments provided are utilized

to predict the effects of starting and ending times of gradient, magnitude of modulator con-
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centration variation, gradient slopes, and mass transfer coefficient on retention and peak

shape. The analytical moment expressions derived can be used to determine retention and

mass transfer parameters from experimental peaks and to predict elution behaviors if these

parameters are known.

Key words: Liquid chromatography, gradient elution, transport model, coordinate

transformation, analytical solutions, moment analysis.

1. Introduction

Gradient elution chromatography is a well-known chromatographic technique that can

improve the separation of complex mixtures containing components of widely different elu-

tion behavior, see Jandera et al. (1985); Snyder (1986); Snyder and Dolan (1998); Jandera

(2005). Since its introduction in the early 1950s, it is used extensively for analytical and

preparative applications, see Jandera (2005); Hagdahl et al. (1952); Donaldson et al. (1952).

The technique improves considerably the peak detection capabilities in liquid chromatog-

raphy (e.g. Hoe et al. (2006, 2013); Carta and Stringfield (1992)). Additionally, it provides

a more robust operation compared to isocratic elution when retention is a very strong

function of the mobile phase modifier, as in the case of the chromatography of proteins

and other macromolecules. Gradient elution chromatography is based on the programmed

change in mobile-phase composition and/or column temperature. In liquid chromatogra-

phy, the change in the mobile phase composition is the widely used option. After injecting

a sample into the column, the concentration of a suitable mobile phase modulator (φ) can

be changed in order to alter specifically the interaction strength of the sample components
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with the stationary phase (see e.g. Donaldson et al. (1952)). Typically, the change in the

φ is gradual but can also be stepwise or in a series of steps. Compared to isocratic elution,

the theoretical analysis of gradient elution is more complicated. Theoretical and practical

aspects of gradient elution chromatography are summarized in the books of Jandera et al.

(1985) and Snyder and Dolan (2006) and in the review paper of Jandera (2006). Con-

cepts to predict retention times during gradient elution are described by Baeza-Baeza et

al. (2013).

Most important for quantifying migration processes under the influence of solvent gradients

is knowledge of the relation between modulator concentrations and the component specific

adsorption equilibrium constants. The linear solvent strength (LSS) model is widely used

to describe this relationship (see e.g. Snyder (1986); Carta and Stringfield (1992); Carta

et al. (2018); Hoe et al. (2006, 2013); St̊ahlberg (2010)). The LSS model assumes that the

Henry constant (kH) varies exponentially with the mobile phase composition in reversed

phase chromatography (RPC), according to the following equation:

kH(φ) = kHr
e−αφ, (1)

where kHr
is the component-specific reference Henry constant (at φ = 0) and α is a

component-specific parameter that quantifies the sensitivity of the Henry constant to

changes in φ.

The equilibrium dispersive (ED) and transport (TR) models are frequently used to describe

the dynamics of band profiles in liquid chromatography, see Nicoud (2015); Guiochon

(2002); Miyabe and Guiochon (2000); Guan-Sajonz et al. (1996). In the ED model, all the
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contributions to band broadening are lumped into an apparent axial dispersion coefficient

(Da). Alternatively, the TR model describes band brodening using a mass transfer rate

model based on a single mass transfer coefficient km with a linear driving force expressed

by the difference between the equilibrium and the actual adsorbed phase concentrations

of the solute in the stationary phase. The mass transfer coefficient km lumps together the

two contributions of internal and external mass transfer resistances.

In this work, we use the TR model assuming that the rate coefficient does not depend

on φ. An appropriate coordinate transformation and the Laplace transform approach are

jointly applied to solve the TR model analytically in the Laplace domain, see Javeed et al.

(2013). Because of the complexity of the solution, a time domain solution can be obtained

by using an efficient and accurate numerical Laplace inversion technique such as that of

Durbin (1974). Thus, the moment generating property of the Laplace domain solution is

exploited to derive analytical expressions for the first three analytical moments. These

moments are useful for analyzing and interpreting measured elution profiles and to predict

peak retention, breadth, and skewness. In the literature, moment analysis is known to be a

very effective strategy for deducing important information about the equilibrium and mass

transfer in the column, see Schneider and Smith (1968); Kucera (1965); Suzuki (1973);

Guiochon et al. (2006); Miyabe et al. (2007, 2009). To get confidence in the correctness of

the derived analytical results, a high-resolution finite volume scheme (HR-FVS) is applied

in parallel to solve the model equations numerically (see e.g. Javeed et al. (2011)). The

effects of starting and ending times of gradient, the magnitude of altering the modulator

concentration, gradient slopes, and mass transfer coefficient are analyzed on the elution
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profiles and moments.

This article is arranged as follows. In Section 2, the transport model is formulated for

gradient elution liquid chromatography in a fixed-bed column. In Section 3, suitable new

variables are introduced that support deriving the solutions. In Section 4, the Laplace

transform approach is applied to solve the model equations analytically. In Section 5, the

relevant time domain moments are obtained. Section 6 presents results of several case

studies. Finally, conclusions are presented in Section 7.

2. The mathematical model

In this study, the TR model is considered for gradient elution lumping together all con-

tributions to band broadening into one rate constant. Further, it is assumed that this

constant km is independent of φ. The conservation equations for the solute in the two

phases are given by

∂c

∂t
+ F

∂q

∂t
+ u

∂c

∂z
= 0, (2)

∂q

∂t
= km(q

∗(φ(t, z))− q), (3)

where c is the concentration of solute in the liquid phase, q is the actual solute concentration

in the solid phase, q∗ is the equilibrium solute concentration in the solid phase, u is the

interstitial velocity, F = (1− ǫ)/ǫ is the phase ratio with ǫ being the external porosity, t is

time and z is the axial-coordinate.

The initial conditions for an initially fully regenerated column are:

c(0, z) = 0, q(0, z) = 0. (4)

5



An appropriate inlet boundary condition is required for Eq. (2). In this study, we consider

rectangular pulse injections described by a Dirichlet boundary condition:

c(t, 0) =















cinj , if 0 ≤ t ≤ tinj ,

0 , t > tinj.

(5)

Here, cinj denotes the injected concentration and tinj is the time of injection.

The concentration of the varying mobile phase modulator, φ(t, z), at any time and at

any position inside the column determines the local migration speed of the solute. The

modulator is assumed to be unretained and its profile within the column is assumed to be

unaffected by band broadening. This is a somewhat restrictive assumption, which needs

to be checked when applying the model analyzed in this paper. As a result, we can use the

ideal model to describe the φ as a function of time and distance in the column. The ideal

model accounting for change in the concentration of the modulator in the mobile phase

can be written for a column of length L as

∂φ

∂t
+ u

∂φ

∂z
= 0, (6)

φ(0, z) = φ0, 0 ≤ z ≤ L, (7)

φ(t, 0) =































φ0 , if t < ts,

Φ(t− ts) , if ts ≤ t ≤ te,

φe , t > te,

(8)

where, ts and te denote the starting and ending times of the gradient. Further, φ0 denotes

the initial concentration of the modulator, Φ is the implemented gradient profile which
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can be of arbitrary shape and φe is the final concentration of the modulator in the solvent

reached at time te (the time at which gradient ends) and is kept constant afterwards.

For a linear gradient holds

Φ(t) = φ0 + β̃t , (9)

where

β̃ = (φe − φ0)/(te − ts), (10)

is the slope (or steepness) of the gradient. Furthermore, if the adsorption equilibrium is

assumed to be linear φ ∈ [φ0, φe], we have

q∗(t, z) = kH(φ(t, z))c(t, z). (11)

In this work, we assume that the Henry’s constant kH depends exponentially on the mod-

ulator concentration φ as given in Eq. (1) (LSS-model).

3. Introduction of new variables

Let us define the two new variables

η =
t

t0
, ξ =

t

t0
− z

L
, (12)

where, t0 = L/u is the retention time of a non-retained component (kH = 0) and ξ

represents an implementation of a “moving observer”. Application of the chain rule gives
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for the relevant derivatives:

∂c

∂t
=

∂c

∂η

dη

dt
+

∂c

∂ξ

dξ

dt
=

1

t0

[

∂c

∂η
+

∂c

∂ξ

]

, (13)

∂q

∂t
=

∂q

∂η

dη

dt
+

∂q

∂ξ

dξ

dt
=

1

t0

[

∂q

∂η
+

∂q

∂ξ

]

, (14)

∂c

∂z
=

∂c

∂η

dη

dz
+

∂c

∂ξ

dξ

dz
= − 1

L

∂c

∂ξ
= − 1

ut0

∂c

∂ξ
. (15)

Accordingly, the balance equations, Eqs. (2) and (3), reduce to:

∂(c + Fq)

∂η
+ F

∂q

∂ξ
= 0, (16)

∂q

∂η
+

∂q

∂ξ
= κm(kH(ξ)c− q), (17)

where κm = t0km and kH(ξ) = kH(φ(ξ)). Further, φ(ξ) is obtained by solving Eq. (6) for

the given initial and boundary conditions (c.f. Eqs. (7) and (8)):

φ(ξ) =































φ0 , if ξ < ηs ,

Φ(ξ − ηs) , if ηs ≤ ξ ≤ ηe ,

φe , ξ > ηe,

(18)

where ηs = ts/t0, ηe = te/t0, Φ(ξ) = φ0 + βξ, and

β = (φe − φ0)/(ηe − ηs). (19)

Ahead of the advancing solution, specified by t = z/u, i.e. for ξ = 0 and t ≥ 0, the

solute concentration cannot exceed zero, because the solute is retained by the stationary

phase and dispersion is neglected in the transport model. Therefore, the initial conditions

become:

c(η = 0, ξ) = 0, q(η = 0, ξ) = 0, for ξ ≥ 0. (20)
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For the rectangular pulse injections considered, the BC (Eq. (5)) is modified into

c(η, 0) =















cinj , if 0 < η ≤ ηinj ,

0 , η > ηinj.

(21)

Here, ηinj = tinj/t0.

4. Analytical solution of the model in the Laplace domain

Next, we apply the Laplace transformation to solve the model equations. The Laplace

transformed c and q with respect to η are given as (see e.g. Nicoud (2015))

c̄(s, ξ) =

∫ ∞

0

e−sηc(η, ξ)dη, q̄(s, ξ) =

∫ ∞

0

e−sηq(η, ξ)dη. (22)

By applying the Laplace transformation on Eq. (17), we obtain the following ODE

c̄(s, ξ) =
1

κmkH(ξ)

[

(s + κm)q̄(s, ξ) +
dq̄(s, ξ)

dξ

]

. (23)

Similarly, Eq. (16) gives

s[c̄(s, ξ) + F q̄(s, ξ)] + F
dq̄(s, ξ)

dξ
= 0. (24)

On using Eq. (23) in Eq. (24), we obtain

dq̄(s, ξ)

dξ
+ s

(

1 +
κm

s+ FkH(ξ)κm

)

q̄(s, ξ) = 0. (25)

The solution of the above equation is given by

q̄(s, ξ) = A exp

(

−sξ −
∫ ξ

0

sκm

s+ FkH(θ)κm

dθ

)

. (26)
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The next step is to specify the constant A. We already know the boundary condition for

the liquid phase concentration c̄(s, 0) but not for the solid phase concentration q̄(s, 0). The

Laplace transformation of Eq. (17) at ξ = 0 gives

sq̄(s, 0) +
∂q̄(s, ξ)

∂ξ

∣

∣

∣

∣

ξ=0

= κm[kH(φ0)c̄(s, 0)− q̄(s, 0)]. (27)

For a rectangular pulse injection (c.f. Eq. (21)), the Eqs. (26) and (27) give

A = cinj

[

s+ FkH(φ0)κm

Fκm

] [

1− e−sηinj

s

]

. (28)

Using the above values of A in Eq. (26) we obtain q̄(s, ξ) which is then used along with its

derivative in Eq. (23) to obtain c̄(s, ξ). Thus, the concentration in the bulk phase can be

expressed in the Laplace domain as

c̄(s, ξ) = cinj

[

s+ FkH(φ0)κm
s+ FkH(ξ)κm

] [

1− e−sηinj

s

]

exp

(

−sξ − κm

∫ ξ

0

s

s+ FkH(θ)κm
dθ

)

, for ξ ≥ 0.

(29)

According to Eq. (18), we obtain

kH(ξ) =































kH(φ0), for 0 ≤ ξ < ηs,

kH(Φ(ξ − ηs)), for ηs ≤ ξ ≤ ηe,

kH(φe), for ξ > ηe.

(30)

Here, Φ(ξ − ηs) = φ0 + β(ξ − ηs), β = (φe − φ0)/(ηe − ηs) and kH(φ) is given by in by Eq.

(1) for φ ∈ {φ0,Φ, φe}.

4.1. Analytical solution in the (s,x) coordinates

One can find a relation between (s,x) coordinates and (s,ξ) coordinates in the Laplace

domain by using Eqs. (2), (3), (16) and (17) in the ξ-domain. After some simple manipu-
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lations, we obtain:

dx

dξ
=

se−αβ(ξ̃−ηs) + κm

s+ FkH(θ)κm

, for ξ̃ ∈ (ηs, ηe), (31)

or

∫ ξ

0

1

s + FkH(θ)κm

dθ =
x

se−αβ(ξ̃−ηs) + κm

. (32)

By using the above transformation, the ξ-domain solution in Eq. (29) is converted into the

x-domain solution as

c̄(s, x) = cinj

[

1− e−sηinj

s

]

exp

(

−sf(s, x)− κmx

se−αβ(ξ̃−ηs) + κm

)

, (33)

where, due to Eq. (32), f(s, x) := ξ(s, x) is given as

f(s, x) =































s+FkH(φ0)κm

s+κm
x, 0 ≤ ξ < ηs,

ηs + 1
αβ

ln[
(s+FkH(φ0)κm)

s
e
sαβ

(

x
s+κm

−

ηs
s+FkH (φ0)κm

)

−
FkH(φ0)κm

s
], ηs ≤ ξ ≤ ηe,

ηe + [s+ FkH(φe)κm]

[

x
s+κm

−
ηs

s+FkH(φ0)κm
− 1

sαβ
ln[

seαβ(ηe−ηs)+FkH(φ0)κm

s+FkH(φ0)κm
]

]

, ξ > ηe.

(34)

Eqs. (33) and (34) are inverted numerically to get the time domain solution. As ξ̃ ∈ (ηs, ηe),

we can choose any value of ξ̃ between ηs and ηe. In our numerical computations, we have

chosen ξ̃ = (3ηs + 2ηe)/5 which gives better agreement with the numerical results of HR-

FVS.

5. Analytical moments

The analytical expressions of temporal moments in the (η, ξ) and (η, x) coordinates are

derived in Appendix A, while these moments in (t, z) coordinates are given below.

The area of the eluted peak is given by (c.f.(A-14))

µ0 = cinjtinj. (35)
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The mean retention time is given by (c.f.(A-15))

µ1 =
tinj
2

+ t0(1 + ξR)−
1

km

[

1

FkH(φ0)
− 1

FkH(ξR)

]

. (36)

The breadth of the peak is described by the second central moment which is given by

(c.f.(A-18))

µ′
2 =

t2inj
12

+
2t0F

2k2
H(ξ̃R)

km

∫ ξR

0

1

F 2k2
H(θ)

dθ − 1

k2
m

[

F 2k2
H(ξ̃R)

F 2kH
2(φ0)

− F 2k2
H(ξ̃R)

F 2k2
H(ξR)

]

. (37)

Here, ξ̃R ∈ (ξR, ξ0), ξ0 = FkH(φ0) and ξR is given by Eq. (A-4) of the Appendix A.

Finally, the skewness of the peak is described by the third central moment which is given

by (c.f.(A-19))

µ′
3 =

6t0F
3k3

H(ξ̃R)

k2
m

∫ ξR

0

1

F 3k3
H(θ)

dθ − 2

k3
m

[

F 3k3
H(ξ̃R)

F 3k3
H(φ0)

− F 3k3
H(ξ̃R)

F 3k3
H(ξR)

]

. (38)

The analytical solutions of the integrals in the second and third central moments are given

by Eq. (A-13) of the Appendix A. As ξ̃R ∈ (ξR, ξ0), we can choose any value of ξ̃R between

ξR and ξ0. In our numerical computations, we have chosen the value of ξ̃R = 1.04ξR which

gives better agreement with the numerical moments.
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5.1. Limiting case for isocratic elution

For isocratic elution (β = 0), the above moments (c.f. Eqs.(35), (36), (37) and (38)) reduce

to:

µ0,iso = cinjtinj, (39)

µ1,iso =
tinj
2

+ t0[1 + FkH(φ0)], (40)

µ′
2,iso =

t2inj
12

+
2t0FkH(φ0)

km
, (41)

µ′
3,iso =

6t0FkH(φ0)

k2
m

. (42)

These expressions agree with the well-known relationships already available in the literature

(see e.g. Javeed et al. (2013)). These moment expressions can be used to calculate directly

other commonly used peak properties, such as HETP= Lµ′
2/µ

2
1.

6. Numerical case studies

In this section, various case studies are provided to illustrate selected elution profiles and

corresponding moments obtained from the semi-analytical solution (c.f. Eq. (33)) and from

the analytical expressions for the temporal moments (c.f. Eqs. (35)-(38)). In the figures,

the solute concentration (c) and the modulator concentration (φ) are plotted over time

(t) at the column outlet (z = L). Furthermore, temporal moments are plotted with

respect to different operational parameters appearing in the model equations. The reference

parameters used in the case studies are listed in Table 1. These model parameters are

chosen in accordance with ranges common in liquid chromatography applications.
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6.1. Effects of different parameters on elution profiles and moments

Figure 1(a) compares the first elution profiles for two isocratic cases (β = 0 and φ(ξ) = φ0

or φ(ξ) = φe) with the profile obtained for elution with a linear gradient (β 6= 0 and φ(ξ)

according to Eq. (18)). As expected, it can be seen that isocratic elution with φ(ξ) = φ0

produces a wider profile with a longer retention time and larger variance and asymmetry

(µ1 = 80.1 min, µ′
2 = 14.2 min2 and µ′

3 = 4.2 min3). On the other hand, isocratic elution

with φ(ξ) = φe produces a comparatively narrow and more symmetric earlier eluting

profile (µ1 = 57.45 min, µ′
2 = 9.64 min2 and µ′

3 = 2.79 min3). Lastly, gradient elution

generates a profile which is most symmetric and narrow lying between the two isocratic

cases (µ1 = 71.24 min, µ′
2 = 9.1 min2 and µ′

3 = 2.32 min3). Figure 1(b) gives the elution

profiles for different gradient steepnesses obtained by changing φe (or β/t0 in Eq. (19)),

while all other parameters are taken from Table 1. The well-known acceleration effect of

steeper gradients is correctly captured by the solution. A comparison of semi-analytical

solutions for concentration (shown by lines in Figure 1(a)&(b)) with the numerical solutions

of high-resolution finite volume scheme (HR-FVS) (shown by symbols in Figure 1(a)&(b))

verifies the correctness of our semi-analytical solutions.

Figures 2 and 3 illustrate the impact of altering the ending and starting times of the

gradients individually for a fixed gradient steepness and magnitude.

Figure 2 displays the effect of gradient ending time (te) for a fixed starting time of ts =

5 min on the elution profiles and moments. One limiting case arises if te = ts = 5 min,

which describes a situation, where after this short delay there is an immediate switch

to the isocratic situation with φ = 0.6. This delay makes the first and third moments
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slightly smaller and the second moment slightly larger compared to the fully isocratic case

discussed in Figure 1. Increasing the ending time, i.e. introducing shallower gradients,

slows down the chromatograms and makes the peaks more narrower and more symmetric.

However, this trend stops if the gradients are so shallow that the elution is controlled by

the initial elution strength. Then the corresponding limits of the moments given in Figure

1 are asymptotically reached. In the particular example illustrated the turning point is

approximately at te = 55 min.

Figure 3 displays the effect of modulator starting time (ts) for a fixed ending time of 80 min

on the elution profiles and moments. Similar behavior as shown in Figure 2 can be seen

in the limiting cases of very shallow and very fast gradients. The elution profiles and also

the corresponding three moments approach the limiting situations for the isocratic cases

illustrated in Figure 1. Again a transition region can be seen where the second and third

moments are smaller than in the two limiting situations (in the example for ts between 30

and 40 min).

Figure 4 shows the effect of solvent strength parameter (α) on the elution profiles and

moments. It can be seen that profiles become narrower and more symmetric with reduced

retention time when α is increased from 0.001 to 4, i.e. when the sensitivity of the Henry

constant with respect to the modulator concentration is increased.

Figure 5 displays the effects of the mass transfer coefficient (km) on the elution profiles

and moments. It can be seen that the profiles become narrower and symmetric when km

is increased from 1 min−1 to 50 min−1. However, as expected, the mean retention time is

not affected by km.
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As in Figure 2, to show the flexibility of the solution space covered, Figure 6 displays but

now the effect of gradient ending time (te) for the case of negative gradient (i.e. φe < φ0)

on the elution profiles and moments. The results predicted by our solution are consistent

with the expected behavior, including the fact that there exists now a distinct gradient

ending time te for which the second and third moments have maxima (approx. for 55 min).

6.2. Peak compression factor

The most comprehensive treatment of gradient elution chromatography is based on the lin-

ear solvent strength (LSS) theory of Snyder (1986); Snyder and Dolan (2006). This theory

has been developed for infinitesimal feed pulses. In linear gradient elution chromatography,

the peak compression factor assumes that a) linear solvent strength (LSS) model applies

to the retention of the sample, b) the efficiency of the column is independent of the mobile

phase composition, and c) the relative retention factor of a compound inside its band varies

linearly with the distance from the band center (see e.g. Gritti and Guiochon (2008)).

Assume a gradient elution in the column and that modifier moves through the column bed

as an ideal and undistorted wave. The standard deviation of the component peak in time

units is given as (e.g. Carta and Stringfield (1992); Gritti and Guiochon (2008); Guiochon

et al. (2006))

σ = C
Lmax/u√

N

[

1 +
FkH(φ0)

FkH(φ0)αβ + 1

]

, (43)

where β = (φe−φ0)/(ηe− ηs). Here, N denotes the plate number and C is a band or peak
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compression factor, which are defined as

N =

(

µ1,iso − tinj
2

)2

µ′
2,iso −

t2inj
12

, C =

√

1 + p+ p2/3

1 + p
, (44)

where µ1,iso and µ′
2,iso are given by Eqs. (40) and (41), while

p = − FkH(φ0)αβ

1 + FkH(φ0)
. (45)

C represents the ratio of the standard deviation obtained in gradient elution and the stan-

dard deviation obtained if the peak were eluted isocratically at the modulator concentration

at which the peak elutes in the gradient. C is less than one.

Using the second cental moment in Eq. (37), the standard deviation σ for a gradient

considering infinitesimal feed pulse is calculated as

σ =

√

µ′
2 −

t2inj
12

. (46)

Figure 7 compares the values of σ calculated from Eq. (43) with those calculated from Eq.

(46) as a function of the slope β/t0 = (φe−φ0)/(te−ts). Here, ts = 5 min, te = 80 min and

φ0 = 0.1 were kept fixed, while φe was changed to get different values of β/t0. All other

parameters are taken from Table 1. A good agreement can be seen between the standard

deviation calculated from our moments expressions (c.f. Eq. (46)) and the one obtained by

Eq. (43) for small feed pulses. A similar agreement between the two expressions can, of

course, be expected for C.

Figure 8 compares the gradient and isocratic two-component elutions. In Figure 8(a) the

outlet profiles of both components are plotted for isocratic and gradient elutions. Here,

we have chosen a case in which rather two large retention factors differ significantly, which
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represents a situation in which typically gradients are applied. The following values were

used: kHr,1 = 10, kHr,2 = 30, φe = 0.95, α = 0.95, ts = 1 min, te = 280 min, and

other parameters are taken from Table 1. Due to pronounced difference in the retention

factors of the components, a wide gap is present between the two peaks during isocratic

elution. This gap affects the cycle time and, thus, productivities is considerably altered

in gradient elution. For illustration, Figure 8(b) shows the elution profiles for the same

gradient starting time but different gradient steepness which are generated by changing

the gradient end time te. The plots show that steeper gradients (i.e. earlier end times)

reduce the distance between the peaks and the cycle time and, thus, enhances productivity.

The plots show that gradient steepness has significantly influenced the retention of more

retained component 2. The solutions derived in this paper provide a suitable tool to

optimize gradient start and end times and the starting and ending levels of the solvent

strength.

7. Conclusions

The transport model was used to derive analytical solutions and temporal moments of the

response peak in linear gradient elution chromatography. For this a coordinate transforma-

tion was used together with the Laplace transform approach. The Laplace domain solution

was used to derive up to now unknown analytical moment expressions in the transformed

and actual time domains. Compared to isocratic elution, the derivation of analytical solu-

tions and moments for gradient elution is more complicated, because the retention behavior

of the solute in this operation mode varies with a change in the mobile-phase composition.

18



Several case studies were conducted. The effects of starting and ending times of gradient,

magnitude of modulator concentration, solvent strength, gradient slope, and mass transfer

coefficient were analyzed on the elution profiles and moments. The advantages of gradient

elution over isocratic elution were demonstrated and its potential application to analytical

chromatography was explored. The results of this research work can be useful for solving

parameter estimation (inverse) problems and for analyzing and optimizing the analyti-

cal and preparative liquid chromatography exploiting gradient elution. It should be noted

that although application examples were presented for cases where the interaction strength

decrease as the modulator concentration increases (α > 0), thereby requiring a positive

gradient, the same relationships apply when (α < 0) and the interaction strength increases

with the modulator concentration, thereby requiring a negative gradient. In practice, the

former case is found in reverse phase chromatograph (RPC), where φ is the volume fraction

of an organic modifier. The latter case is found in hydrophobic interaction chromatography

(HIC), where φ is the concentration of a kosmotropic salt such as ammonium sulfate.

Appendix A

A. Analytical moments in the (η, ξ) coordinates

Now, we use now Eq. (29) to derive analytical expressions of temporal moments µ̃n and

central temporal moments µ̃′
n (n ≥ 2) at the column outlet. Lets define (c.f. Eq. (12))

ξR = ηR − 1, (A-1)
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where

ηR = tR/t0, (A-2)

denotes a dimensionless retention time with tR being the usual retention time for gradient

elution (or the first temporal moment). The following well-known relationship, rigourously

derived by Nikitas and Pappa-Louisi (2005), can be used to predict this dimensionless

retention time in gradient elution, which also comes out from Eq. (32) for x = 1 and s = 0:

∫ ξR

0

1

FkH(θ)
dθ = 1. (A-3)

The above equation is utilized to find the value of unknown ξR := f(0, 1) (c.f. Eq. (32)).

By using Eqs. (30) and (A-3) the value of ξR is obtained as

ξR =































FkH(φ0), for 0 ≤ ξ0 < ηs,

ηs +
1
αβ

ln [1 + αβ (FkH(φ0)− ηs)] , for ηs ≤ ξ0 ≤ ηe,

ηe + FkH(φe)− ηs
FkH(φe)
FkH(φ0)

− [exp(αβ(ηe−ηs))−1]
αβ

FkH(φe)
FkH(φ0)

, for ξ0 > ηe,

(A-4)

where ξ0 = FkH(φ0).

On replacing ξ by ξR in Eq. (29) and using the following well-known moment generating

formulas (see Vander (1958)), we can calculate the first three moments of the response

peak.

The zeroth moment is given as

µ̃0(ξR) = lim
s→0

c̄(s, ξR). (A-5)

While, the normalized nth moment is obtained as

µ̃n(ξR) =
(−1)n

µ̃0(ξR)
lim
s→0

dnc̄(s, ξR)

dsn
, for n = 1, 2, · · · . (A-6)
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By utilizing Eqs. (29) and (A-5), the zeroth moment is given as

µ̃0(ξR) =
FkH(φ0)

FkH(ξR)
cinjηinj. (A-7)

By using Eqs. (29) and (A-6) (for n = 1), the normalized first moment is found to be:

µ̃1(ξR) =
ηinj
2

+ 1 + ξR − 1

κm

[

1

FkH(φ0)
− 1

FkH(ξR)

]

. (A-8)

In the above equation, the third and fourth terms, which contain the gradient dependent

Henry constant, decide for a decrease or an increase in the retention time during the gradi-

ent elution. For a positive value of the modulator concentration (α > 0) or slope (β > 0),

which gives a positive gradient, the interaction strength decreases and, hence, the reten-

tion time decreases. On the other hand, a negative value of the modulator concentration

(α < 0) or slope (β < 0) provides a negative gradient that increases interaction strengths,

thereby giving a larger retention time. Under typical conditions the third term has a strong

impact on the value of µ̃1, while the effect of last (fourth) term has is negligible.

Similarly, the normalized second moment can be expressed as

µ̃2(ξR) =
η2inj
3

+ ηinj

(

1 + ξR − 1

κm

[

1

FkH(φ0)
− 1

FkH(ξR)

])

− 2(1 + ξR)

κm

[

1

FkH(φ0)
− 1

FkH(ξR)

]

+ (1 + ξR)
2 − 2

κ2m

[

1

F 2kH(ξR)kH(φ0)
− 1

F 2k2H(ξ)

]

+ 2

∫ ξR

0

1

F 2k2H(θ)κm
dθ. (A-9)

By using Eqs. (A-8) and (A-9), the normalized central moment is calculated as

µ̃′
2(ξR) = µ̃2(ξR)− (µ̃1(ξR))

2

=
η2inj
12

+ 2

∫ ξR

0

1

F 2k2
H(θ)κm

dθ − 1

κ2
m

[

1

F 2kH
2(φ0)

− 1

F 2k2
H(ξR)

]

. (A-10)
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The normalized third moment is expressed as

µ̃3(ξR) =
η3inj
4

+ η2inj (1 + ξR) +
3ηinj
2

(1 + ξR)
2 + (1 + ξR)

3 − 3ηinj (1 + ξR)
1

κm

[

1

FkH(φ0)
− 1

FkH(ξR)

]

− 3 (1 + ξR)
2 1

κm

[

1

FkH(φ0)
− 1

FkH(ξR)

]

− η2inj
1

κm

[

1

FkH(φ0)
− 1

FkH(ξR)

]

− 3ηinj
1

κ2m

[

1

F 2kH(ξR)kH(φ0)
− 1

F 2k2H(ξR)

]

− 6 (1 + ξR)
1

κ2m

[

1

F 2kH(ξR)kH(φ0)
− 1

F 2k2H(ξR)

]

+ 3ηinj

∫ ξR

0

1

F 2k2H(θ)κm
dθ + 6 (1 + ξR)

∫ ξR

0

1

F 2k2H(θ)κm
dθ

− 6

κm

[

1

FkH(φ0)
− 1

FkH(ξR)

]
∫ ξR

0

1

F 2k2H(θ)κm
dθ − 6

κ3m

[

1

F 2k2H(ξR)kH(φ0)
− 1

F 3k3H(ξR)

]

+ 6

∫ ξR

0

1

F 3k3H(θ)κ2m
dθ. (A-11)

By using Eqs. (A-8), (A-9) and (A-11), the normalized central moment is calculated as

µ̃′
3(ξR) = µ̃3(ξR)− 3µ̃1(ξR)µ̃2(ξR) + 2µ̃1(ξR)

3

= 6

∫ ξR

0

1

F 3k3
H(θ)κ

2
m

dθ − 2

κ3
m

[

1

F 3k3
H(φ0)

− 1

F 3k3
H(ξR)

]

. (A-12)

Finally, we specify the integral term appearing in the expressions for the moments. For

the given F nkn
H(θ) = F nkn

H(φ0) exp(−nαβθ) (n = 2, 3) holds

∫ ξR

0

1

F nkn
H(θ)

dθ =































1
Fnkn

H
(φ0)

ξR, for 0 ≤ ξR < ηs,

1
Fnkn

H
(φ0)

ηs +
exp[nαβ(ξR−ηs)]−1

nαβFnkn
H
(φ0)

, for ηs ≤ ξR ≤ ηe,

1
Fnkn

H
(φ0)

ηs +
exp[nαβ(ηe−ηs)]−1

nαβFnkn
H
(φ0)

+ 1
Fnkn

H
(φe)

(ξR − ηe), for ξR > ηe.

(A-13)

Once again, the second and third terms in µ̃′
2(ξR) and µ̃′

3(ξR), which contain the gradient

dependent Henry constant, decide about a possible decrease or increase in the variance and

asymmetry of profiles during gradient elution (for more details, see the paragraph below

Eq. (A-8)).
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B. Analytical moments in the (η, x) coordinates

Now, the dimensionless temporal moments in (η, ξ) coordinates are used to obtain the

dimensionless temporal moments in the (η, x) coordinates. The dimensionless temporal

moments µ0,d, µ1,d and µ′
2,d, and µ′

3,d at the column outlet (x = 1) as functions of dimen-

sionless time (η) are given below.

First, using Eq. (A-7), the dimensionless total mass solute at the column outlet is obtained

as

µ0,d =
FkH(ξR)

FkH(φ0)
µ̃0 = cinjηinj. (A-14)

The dimensionless mean retention time is obtained from Eq. (A-8) is given as

µ1,d =
ηinj
2

+ (1 + ξR)−
1

κm

[

1

FkH(φ0)
− 1

FkH(ξR)

]

. (A-15)

According to the definition of ξR (c.f. Eq. (A-1)):

ξR = ηR − 1. (A-16)

Therefore, Eq. (A-15) takes the form:

µ1,d =
ηinj
2

+ ηR − 1

κm

[

1

FkH(φ0)
− 1

FkH(ξR)

]

. (A-17)

The second central moment (c.f. Eq. (A-10)) is obtained as

µ′
2,d =

η2inj
12

+ (µ̃′
2(ξR)−

η2inj
12

)F 2k2
H(ξ̃R), for ξ̃R ∈ (ξR, ξ0)

=
η2inj
12

+
2F 2k2

H(ξ̃R)

κm

∫ ξR

0

1

F 2k2
H(θ)

dθ − 1

κ2
m

[

F 2k2
H(ξ̃R)

F 2kH
2(φ0)

− F 2k2
H(ξ̃R)

F 2k2
H(ξR)

]

. (A-18)
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Similarly, the third central moment (c.f. Eq. (A-12)) is obtained as

µ′
3,d = F 3k3

H(ξ̃R)µ̃
′
3(ξ̃R)

=
6F 3k3

H(ξ̃R)

k2
m

∫ ξR

0

1

F 3κ3
H(θ)

dθ − 2

κ3
m

[

F 3k3
H(ξ̃R)

F 3k3
H(φ0)

− F 3k3
H(ξ̃R)

F 3k3
H(ξR)

]

. (A-19)
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Table 1: Reference parameters used in the simulations.

Parameters Values

Length of column L = 10 cm

Porosity ǫ = 0.4

Interstitial velocity u = 1.0 cm/min

Retention time of non-retained component t0 = 10 min

Reference Henry’s constant kHr
= 5

Solvent strength parameter α = 0.8

Mass transfer coefficient km = 10 min−1

Injected concentration cinj = 1mmol/l

Time of injection tinj = 2 min

Initial concentration of the modulator φ0 = 0.1

Final concentration of the modulator φe = 0.6

Gradient start time ts = 5 min

Gradient end time te = 80 min
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Figure 1: Plot (a) gives a comparison of gradient and isocratic elutions for parameters listed in Table

1. For isocratic elution with φ = φ0: µ1 = 80.1 min, µ′

2
= 14.2 min2 and µ′

3
= 4.2 min3. For gradient

elution: µ1 = 71.24 min, µ′

2
= 9.1 min2 and µ′

3
= 2.32 min3. While, for isocratic elution with φ = φe:

µ1 = 57.45 min, µ′

2
= 9.64 min2 and µ′

3
= 2.79 min3. Plot (b) gives the elution profiles for different values

of φe (or β/t0), while all other parameters are taken from Table 1.
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Figure 2: Effect of gradient end time (te) on the elution profiles and moments. Here, te was changed

gradually while all other parameters are taken from Table 1. The marked values of the moments, obtained

by numerically integrating the elution profiles, are in good agreement with those calculated directly from

the moment expressions.
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Figure 3: Effect of gradient start time (ts) on the elution profile and moments. Here, ts was changed

gradually while all other parameters are taken from Table 1. The marked values of moments, obtained by

numerically integrating the elution profiles, are in good agreement with those calculated directly from the

moment expressions.
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Figure 4: Effect of α on the concentration profiles and moments. Here, α was changed gradually while all

other parameters are taken from Table 1. The marked values of the moments, obtained by numerically

integrating the elution profiles, are in good agreement with those calculated directly from the moment

expressions.
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Figure 5: Effect of km on the gradient elution. Here, km was changed while all other parameters are taken

from Table 1. The marked values of the moments, obtained by numerically integrating the elution profiles,

are in good agreement with those calculated directly from the moment expressions.
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Figure 6: The effect of gradient ending time (te) for the case of negative gradient (i.e. φe < φ0) on

the elution profiles and moments. Here, ts = 5 min, φ0 = 0.6, and φe = 0.1. The marked values of

the moments, obtained by numerically integrating the elution profiles, are in good agreement with those

calculated directly from the moment expressions.
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Figure 7: A comparison of the values of σ calculated from Eq. (43) with those calculated from Eq. (46) as

a function of the slope β/t0 = (φe − φ0)/(te − ts). Here, ts = 5 min, te = 80 min and φ0 = 0.1 were kept

fixed, while φe was changed to get different values of β/t0. All other parameters are taken from Table 1.
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Figure 8: Plot (a) compares gradient and isocratic two-component elutions. Here, we used kHr ,1 = 10,

kHr ,2 = 30, φe = 0.95, α = 0.95, ts = 1 min, te = 280 min, while other parameters are taken from Table

1. Plot (b) shows the elution profiles for different steepness of the gradient obtained by varying the end

time te.
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