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Horizons in a binary black hole merger I: Geometry and area increase
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Recent advances in numerical relativity have revealed how marginally trapped surfaces behave
when black holes merge. It is now known that interesting topological features emerge during the
merger, and marginally trapped surfaces can have self-intersections. This paper presents the most
detailed study yet of the physical and geometric aspects of this scenario. For the case of a head-on
collision of non-spinning black holes, we study in detail the world tube formed by the evolution of
marginally trapped surfaces. In the first of this two-part study, we focus on geometrical properties
of the dynamical horizons, i.e. the world tube traced out by the time evolution of marginally outer
trapped surfaces. We show that even the simple case of a head-on collision of non-spinning black holes
contains a rich variety of geometric and topological properties and is generally more complex than
considered previously in the literature. The dynamical horizons are shown to have mixed signature
and are not future marginally trapped everywhere. We analyze the area increase of the marginal
surfaces along a sequence which connects the two initially disjoint horizons with the final common
horizon. While the area does increase overall along this sequence, it is not monotonic. We find short
durations of anomalous area change which, given the connection of area with entropy, might have
interesting physical consequences. We investigate the possible reasons for this effect and show that
it is consistent with existing proofs of the area increase law.

I. INTRODUCTION

One of the remarkable predictions of general relativity
is the existence of black holes, purely geometric objects in
a curved spacetime which behave like compact physical
objects in numerous physical situations, and can power
the most energetic phenomena in our universe. The prop-
erties of spacetime near black holes are unlike anything
observed in flat space, even for very large black holes
where the curvature near the horizon is not necessarily
large. One of these unusual phenomena is the existence
of closed trapped surfaces. These are 2-dimensional closed
surfaces which have the unusual property that even out-
going light rays emanating from the surface are conver-
gent. Such surfaces cannot exist completely contained
in flat spacetime regions. In fact, within classical gen-
eral relativity, they can only exist in geodesically incom-
plete spacetimes, usually taken to indicate the presence
of a singularity [Il 2]. Marginally outer trapped surfaces
(MOTS) are limiting cases of trapped surfaces where the
outgoing light rays have vanishing convergence. The out-
ermost MOTS on a given constant time hypersurface,
also known as an apparent horizon, can be shown lo-
cally to have the property of a one-way membrane, i.e.
any material particle having fallen into it cannot cross it
again. The outermost MOTS can also be shown to have
non-decreasing area and furthermore these are found to
satisfy the laws of black hole mechanics. Black hole space-
times however contain a much wider variety of MOTSs
which have interesting physical and geometric properties.

Numerous merger events where two black holes merge
to form a larger remnant black hole have now been ob-
served by gravitational wave detectors [3Hg]. The number
of detections will increase by orders of magnitude in the
next years as the detectors become more sensitive and
new generations of detectors are built. It is common to
understand such mergers using event horizons. A well
known example is [9], the “pair of pants picture”, which
clearly shows the merger of two disjoint surfaces to yield
a final horizon. How should one think of the merger pro-
cess in terms of marginally trapped surfaces, and does
this yield a picture analogous to the “pair of pants”?

The scenario of how two MOTSs merge has been re-
cently established for the first time numerically, and is
summarized in Fig.[I} This figure is obtained from a nu-
merical solution of the full vacuum Einstein equations for
the head-on collision of two unequal mass black holes. We
start with simplest puncture initial data where the black
holes have no spin or initial linear momentum, namely
Brill-Lindquist initial data [I0]. The initial data is pre-
scribed on Euclidean space with two points (the “punc-
tures”) removed. The data is time symmetric, i.e. the
extrinsic curvature vanishes. The 3-metric hgy is confor-
mally flat: hqy, = ®484,. The conformal factor at a point
ris

Dr)=1+4 242 (1)

where 1 and r5 are the distances from r to the two punc-
tures, d the distance between the punctures, and mq, mo
are the bare masses associated with the punctures. The



ADM mass is seen to be Mapy = mq +mo. There turns
out be a rich variety of MOTSs even in this simple initial
data; see [I1I] for a detailed study. We choose a partic-
ular configuration m; = 0.5 and mo = 0.8, and the ini-
tial coordinate separation between the two punctures is
do/Mapm = 1. For these parameters, there are initially
only two disjoint MOTSs (representing the two black
holes) surrounding the two punctures. Throughout, we
state times in units of M := Mapn/1.3.

As we evolve this initial data using the Einstein equa-
tions, the result is shown in Fig. |1} This is the analog
of the “pair of pants picture”. In this figure time goes
vertically upwards and horizontal sections of the tubes
yield sections of the MOTSs at a given time (the MOTSs
are axially symmetric, and thus the full MOTS can be
obtained by revolving these sections around their respec-
tive axes). The tubes in red and purple are the world
tubes of the two individual MOTSs. These get closer
to each other and eventually touch at a time labeled
Tiouch, and go through each other after Tioucn- At a time
Thifurcate Which is somewhat earlier than Tioyuch, when the
two horizons get sufficiently close to each other, a com-
mon MOTS is formed outside the individual ones. This
common MOTS immediately bifurcates into an inner and
outer branch shown respectively as a green mesh and in
blue. The outer branch (in blue) becomes more symmet-
ric and reaches an equilibrium state corresponding to a
MOTS of a Schwarzschild black hole horizon. The inner
branch on the other hand becomes increasingly distorted.
Eventually it merges with the two individual MOTSs pre-
cisely at the time Tioycn- Finally, the inner MOTS devel-
ops self-intersections immediately after Tiouen. For refer-
ence, we find Tiouen &~ 5.53781 M (& 4.25985 Mapnm ) and
Thiturcate ~ 1.37460 M (= 1.05738 Mapwm)-

It is useful to rephrase the above in terms of sections
of the world tubes of Fig. Before time Thifurcate the
intersection of the world tubes with a Cauchy surface
will consist of two disjoint spherical surfaces which we
shall denote S; and Sy. The 3-dimensional world tubes
generated by them will be denoted H; and Ho respec-
tively. Between Thifurcate and Tiouch, S1 and S continue
to exist separately, but are now surrounded by a pair of
marginally trapped surfaces which enclose both & and
Ss. The inner of these is denoted Sipner and the outer one
(the apparent horizon) by Souter- The world tubes gen-
erated by them are Hinner and Houter~ At Ttouch7 Sl and
S touch and at later times they go through each other
while remaining spherical. Also at Tiouch, Sinner coincides
with &1 U 8o, i.e. it forms a cusp. After Tioucn, the cusps
of Sinner develop into knots, i.e. self-intersections, which
become larger with time. The eventual fate of S1, So and
Sinner 18 not yet known [12 [13]; these get closer to the
punctures whence they become difficult to track numeri-
cally (though constraints on their possible dynamics fol-
low from general results precluding the change of topol-
ogy of Cauchy hypersurfaces during evolution [I4] [15]).
Souter continues moving outwards becoming ever more
symmetric as it reaches its final equilibrium fate.

These results were first reported in [16], and the numer-
ical method is detailed in [T}, [16]. In particular, the exis-
tence of self-intersecting MOTSs has been proven in de-
tail with high accuracy (cf. also the recent [17]). A num-
ber of questions still remain to be answered about this
scenario. These include understanding geometric prop-
erties of the world tubes such as the status of the area
increase law, physical properties such as multipole mo-
ments, fluxes of energy across the horizons, and the sta-
bility properties. The goal of the present series of papers
is to discuss these physical properties in detail for this
same initial configuration. In this paper, the first of two
parts, we shall discuss the geometric properties of the
world tubes shown in Fig. [l This includes the signa-
ture of the world tubes, the expansion of the ingoing null
rays, and most importantly, the area increase law. The
area of the final apparent horizon Syuter at late times is
certainly larger than the sum of the areas of S; and S,
at early times. Moreover, we can trace a sequence of sur-
faces which takes us from the initially disjoint surfaces
S1 and S; to the single final horizon Soyter- However, the
area does not increase monotonically along this sequence;
there are in fact short durations of area decrease along
this sequence. This fact needs an explanation, and might
have important physical implications. In short, the geo-
metrical quantities studied in this first paper show how
the area increases. The second paper (henceforth paper
IT) addresses the question of why the area increases, i.e.
the energy fluxes across the horizon.

The plan for the rest of the paper is the following.
Sec. [ sets up notation and briefly summarizes the basic
notions and results that we shall use later. The behavior
of MOTSs under time evolution, even for the simple case
of a head-on collision, exhibits a rich variety of geometric
and physical properties, and we will need the full machin-
ery of quasi-local horizons to describe these features. For
this reason we summarize different notions of quasi-local
horizons, and we shall find it appropriate to modify ex-
isting terminology in some cases. Sec. [[T]] discusses a very
basic geometric and physical aspect, namely the area of
the MOTSs, and the status of the area increase law. This
will involve issues such as the signature of the world tube
and whether the MOTSs are future or past trapped. The
classic area increase law for event horizons might lead us
to believe that area should always increase to the future.
The situation will be somewhat more complicated for us.
While the area of the MOTS does increase overall, we
find that there are small durations where this does not
hold. Sec. studies in detail the expansion of the ingo-
ing null normal. Future trapped surfaces have negative
ingoing expansion everywhere, indicating the presence of
a singularity to the future. We shall see that the dynami-
cal horizons are not everywhere future trapped, and have
portions with positive ingoing expansion. Sec. m studies
the signature of the dynamical horizons and it shows that
the horizons have both timelike and spacelike portions.
Sec. [VI revisits the area increase, and considers the cor-
respondence of geometric fields on the horizon with prop-



Ttouch

Tbifurcate

l

S -0 D

FIG. 1: The behavior of MOTSs in a binary black hole merger obtained from a numerical simulation of the full
vacuum Einstein equations. The left panel shows an overview up to T'= 8 M > Tiouen and the right panel a close-up
of the end section of the two individual horizons (purple, red) and the inner common horizon (green) with the
self-intersections visible. The blue contour describes the outer common horizon. See text for details.

erties of a 2-dimensional fluid, first suggested within the
membrane paradigm. Sec. [VI]] concludes by discussing
open questions and possible directions for future work.
Appendix [A] presents a detailed comparison of our re-
sults with the proof of area monotonicity on a dynamical
horizon. Appendix [B] extends the membrane paradigm
analogy to spinning black holes, and finally Appendix [C]
speculates on a possible geometric interpretation of self-
intersecting MOTSs.

II. BASIC NOTIONS

A. The optical scalars and marginally trapped
surfaces

We collect here the basic notions and definitions re-
lated to quasi-local black hole horizons we shall need
later. While we will try to be as self contained as possible,
our goal in this section is not to provide a comprehen-
sive overview of the subject, but rather to summarize the
connections between the different notions with suitable
references to the literature. Reviews with diverse view-
points can be found in e.g. [I8-25].

Spacetime is a 4-dimensional manifold .#Z with a
Lorentzian metric gq, with signature (—,+,4,+). The
derivative operator compatible with g,; will be denoted
V., and the Riemann tensor Rgp.q is defined according
to (VaVy — VyVa)Xe = Rapc’Xy for an arbitrary 1-
form X.. Let S C .# be a smooth, orientable, closed
2-dimensional spacelike surface. While it is possible to

consider higher genus surfaces, these are generically ex-
pected to be unstable [26] and we restrict ourselves to
spherical topology in this paper. S is naturally endowed
with two null-normal fields denoted ¢* and n®. These
vector fields are required to be future-directed, null and
orthogonal to §. We are free to rescale them by positive-
definite functions. This rescaling freedom can be reduced
by fixing the inner-product £ - n = —1 which ties the
rescalings of ¢ and n:

(= fl, n—f1tn, f>0. (2)
Since S is spacelike, the spacetime metric g,;, when re-
stricted to the tangent space of S, yields a Riemannian
metric

Qab = Jab + Lanp + naly . (3)

We denote the volume 2-form on S by €, and the deriva-
tive operator on S compatible with ¢, is denoted D.
Integrals over S will be written with dA as the measure.

Of special importance for us will be the so called opti-
cal scalars, i.e. the expansion, shear, and twist of £* and
n®. The derivative V,/;, projected on S can be separated
into a symmetric and anti-symmetric part, and the sym-
metric part can in turn be decomposed into a trace and
trace-free part:

[P ¢ ¢
0oy Vela = 59(@(1@12 + Jc(w) + wflb) . (4)

Here ©y) is the expansion of £, the symmetric tracefree
tensor J((L? is the shear, and the anti-symmetric tensor



w((l? is the twist of £*. The expansion, shear, twist of n®

are defined analogously:

~C 1 -~
qaqgvcnd = §®(n)Qab + O'((;Z) + WL(:;) . (5)

The most important objects for us will be the two expan-

. ‘
sions, and a((lb). In general, whenever we refer to shear or

Oap, We shall mean ol(z? unless indicated otherwise. The
twist will vanish because, by construction, ¢ and n are
orthogonal to a smooth surface S.

It will often be useful to complete (¢, n) to a null-tetrad
(¢,n,m,m) where m® is a complex null vector orthogonal
to both ¢ and n. Thus m?® is tangent to S and satisfies
m-m =1 (7 is the complex conjugate of m). Given the
null-tetrad, the information contained in the symmetric-
tracefree tensor o, on S can be reduced to a single com-
plex field:

b = m*mbV 0, . (6)

o :=0ougm*m
The choice of m can be changed by a phase: m — e*¥m.
Under this change, the shear transforms as ¢ — €*¥o
which means that ¢ has spin weight +2. This implies that
o can be expanded into angular modes on S using spin-
weighted spherical harmonics of spin-weight +2. This will
play a very important role in paper IIL.

The projections of V¢, and V,n;, given in Egs. (4)
and are the two extrinsic curvatures of S embed-
ded in spacetime .#. The other important quantity is
the connection on the normal bundle of S. Since S has
co-dimension 2, the connection on the normal bundle is
given by a single 1-form w, defined as

Wy = —nbagvceb. (7)

This 1-form determines the angular momentum associ-
ated with the horizon; we will always deal with non-
spinning black holes and will have w, = 0 in this paper.

S is said to be a future-marginally-outer-trapped sur-
face if ©() = 0 and ©(,) < 0. Note that the expan-
sions ©(y) and O, are also rescaled under the trans-
formation of Eq. , but these conditions remain un-
changed since £* and n® remain future directed. If instead
O(n) > 0 (and still requiring O, = 0), then S is said to
be past-marginally-outer-trapped. We shall often just re-
fer to marginally trapped surfaces with the understanding
that we are referring to future-marginally-outer-trapped
surfaces. Surfaces satisfying only ©(, = 0 (with no con-
dition on O ,)) are the marginally outer trapped surfaces,
or MOTS in short — these are the basic objects that we
shall study in this paper. As we shall see, ©(,) < 0 will
not always be satisfied; it is therefore necessary to keep
track of this condition in the various definitions and re-
sults.

A MOTS is a geometric concept in the full 4-
dimensional spacetime independent of any spatial slices.
In numerical simulations however, they are connected to
Cauchy surfaces because in order to locate them, we only

require the Cauchy data, i.e. the 3-metric and extrinsic
curvature. For a closed 2-surface S in X, let R* be the
spacelike outward pointing normal to S, and T'* the unit-
timelike normal to ¥. A convenient choice for the null
normals is

1 1

\/i(Ta_’_Ra)’ na:E

The expansion condition © ;) = 0 can be written in terms
of the extrinsic curvature Ky, of ¥ C

I (T% — R%) . (8)

DyR* + Ky R°R* — K =0 (9)

where D, is the derivative operator on 3. Taking S to
be the level set of a suitable function h, this equation
can, in turn, be expressed as a second order non-linear
differential equation for h. Our choice for h is based on
choosing a reference surface sufficiently close to S. Details
on how the reference surface is chosen, the associated co-
ordinate system, and the numerical method for solving
the above equation can be found in [I1l 27] and our im-
plementation is available at [28]. This is an extension of
the widely used method developed in [29H34]. Our nu-
merical calculations use the Einstein Toolkit [35, 36]. We
use TwoPunctures [37),138] to set up initial conditions and
an axisymmetric version of McLachlan [39] to solve the
Einstein equations, which uses Kranc [40, 4] to generate
efficient C++ code. For the results in the current series
of papers, we performed simulations with three spatial
resolutions 1/Az = 960, 480, 60, running, respectively,
until Thax = 7M,20M,50 M. Further details of the
simulation specific to our problem are detailed in [27].

We now collect basic definitions and results pertaining
to quasi-local horizons that we shall use while presenting
our results. The goal here is not a detailed review of the
subject, but mainly to orient the reader and to set up
notation and terminology.

B. The MOTS stability operator

Starting with a MOTS on a Cauchy surface, it is nat-
ural to ask how it behaves under time evolution. It is not
a priori obvious that a MOTS should evolve smoothly.
It is now known that the behavior of a MOTS under
time evolution is controlled by a second order non-self-
adjoint elliptic operator Ly known as the stability oper-
ator [11l 42H44]. Ly is constructed from variations of &
[26]. Given a surface S, let Sy be a family of surfaces pa-
rameterized by a real variable A; the surfaces Sy depend
smoothly on A. We take Sy—¢ to coincide with &, and A
can take values in an interval (—e, €). The variation Sy
is assumed to be smooth which implies that if we pick
a point p on §, the variation produces a smooth curve
passing through p, and the tangent vector to these curves
at A = 0 defines a vector field X on S. With this struc-
ture, one can naturally define the variation of geometric
quantities on S [45] [46]. Of particular importance is the



variation of © ) denoted dx© ). On each Sy construct
the null normals ¢ and n(® as for S itself. This defines
the expansion @8)) for all A, and allows us to differentiate
it:

d@(z\)
5X®(£) = d;\) . (10)

A=0

This variation should not be confused with usual deriva-
tives of ©y). In particular, while d.x© ) = cdx Oy for
constants ¢, it turns out that 6y x Oy # Vix Oy if Y is a
non-constant function. If X is tangent to S and ©,) = 0
on S, then it is obvious that 6x©) = 0. Thus, we only
need to consider variation fields X normal to S. One
could consider X to be proportional to £ or n, but in the
context of a Cauchy evolution, it is natural to take X
along the normal R* X% = ¢ R®. Thus, we define the
stability operator associated with ¥ D S as

Ly [¢] := V2 0yrO) (11)

where a global constant positive factor can be arbitrarily
chosen, and v/2 is chosen to simplify later expressions.
An explicit calculation shows that Ly is a second order
elliptic operator but it is not necessarily self-adjoint. In
vacuum spacetimes, the expression for Ly is the follow-
ing:

Ly [)] = —=Asth + 20" Dot

1
+ <2R + Dyw® — waw® — o’abo“b> P. (12)

Here Ags is the Laplacian on S and D, is the derivative
operator on S. In the present case, we shall deal with
the head-on collision of non-spinning black holes so that
w, = 0, whence Ly, will be self-adjoint and will have real
eigenvalues.

In the dynamical evolution setting, the importance of
Ly, lies in the following result [IT], 42H44]:

e A MOTS evolves smoothly as long as Ly, is invert-
ible, i.e. as long as none of its eigenvalues vanish.

In simple cases when the smallest eigenvalue Ay is strictly
positive, then Ly is obviously invertible and the MOTS
evolves smoothly. In a binary black hole merger, this is
what happens for the outermost MOTS and the two in-
dividual MOTSs. However, as shown in [IT], 16 27], the
inner common MOTS is more complicated. It is born at
Thifurcate With Ag = 0 which immediately becomes nega-
tive. None of the other eigenvalues cross 0 and the MOTS
continues to evolve smoothly. It is clear from this that the
complete spectrum of Ly;, and not just its principal eigen-
value, is potentially of interest. This is especially true for
spinning black holes when the eigenvalues can be com-
plex, thus leading to the full MOTS-spectral problem for-
mulated in [47] and initiated in [48] 49]. We shall explore
the spectrum of Ly in paper II.

C. Marginally trapped tubes and dynamical
horizons

With the time evolution understood, we consider the
three-dimensional world tube traced out by a MOTS.
This world tube is known as a marginally outer trapped
tube. More formally (following [43]):

Definition 1 (Marginally Outer Trapped Tube). A
smooth 3-dimensional surface H in a spacetime is said
to be a marginally outer trapped tube (MOTT) if

e it has topology S? x R, i.e. it admits a foliation by
2-spheres,

e cach leaf of the foliation is a MOTS.

Note that #H is allowed to have arbitrary signature and
no restrictions are placed on the ingoing expansion © )
for any of the MOTSs which constitute H. As we have
seen, the results involving the stability operator men-
tioned above do not assume any condition on ©,), and
hold for any MOTT. The classic examples of MOTTs in
spherical symmetry are the well known Vaidya [50] and
Oppenheimer-Snyder [51] solutions. Further examples in
spherical symmetry can be found in e.g. [52-54]. These
examples already show the wide variety of cases that can
appear even in spherical symmetry. See [55] for a con-
struction of the spacetime locally near such a horizon.
See e.g. [12,84], 56, [57] for previous examples of numerical
studies concerning dynamical horizons in various physi-
cal situations. The present paper shall provide the most
detailed numerical study yet of these horizons in a black
hole merger.

Imposing additionally ©,) < 0 leads to the definition
of a marginally trapped tube (following [58]):

Definition 2 (Marginally Trapped Tube). A MOTT is
said to be a marginally trapped tube (MTT) if it satisfies
in addition ©,) < 0 everywhere.

As we shall discuss below in Sec. [[II] the condition
©(n) < 0 is employed in different proofs of the area in-
crease law. The proof of the area increase law [59H6T]
holds for an MTT of arbitrary signature, though with
additional technical assumptions we shall discuss later
(MTTs are referred to as holographic screens in this
work).

Additional restrictions can be placed on a MOTT de-
pending on the physical situation one is interested in.
When the marginally trapped tube is in equilibrium, i.e.
there is no energy flux across H, we need the notion of a
non-expanding horizon [62]:

Definition 3 (Non-expanding horizon). A smooth 3-
dimensional surface A in a spacetime is said to be a non-
expanding-horizon if

e A has topology S* x R

o A is null



o Any null normal to A, denoted £*, has vanishing
expansion (O =0).

e The FEinstein field equations hold at A and, if Ty
is the stress energy tensor, —Té‘(b 18 future directed
and causal when 0% is future directed.

From the properties of a null surface, it can be shown
that every complete cross-section of A is a MOTS. Thus,
a non-expanding horizon is, in essence, a MOTT with
null signature. The last condition is an energy condition
and is implied by, for example, the dominant energy con-
dition. It can also be shown that each cross-section of A
has the same area; the black hole here is in equilibrium
in an otherwise dynamical spacetime. Not all geometric
fields on a non-expanding horizon are time independent.
Further physical restrictions requiring the derivative op-
erator to be time independent lead to the notion of an
isolated horizon [63H65]. It is interesting to note that a
version of the stability operator also appears in going
from non-expanding to isolated horizons [65], and again,
the invertibility of the stability operator turns out to be
the relevant condition.

Local constructions of spacetime neighborhoods near
non-expanding horizons is given in [55] 63, [66H71]. All
stationary black holes and Killing horizons, including
of course the Schwarzschild and Kerr black holes, are
non-expanding horizons. A detailed study of the Kerr-
Newman black hole viewed as a non-expanding horizon
can be found in [72]. Apart from these, there are also
the so-called distorted black holes representing station-
ary black holes in the presence of external fields [73]
(see also [T4] for exact solutions representing charged dis-
torted black holes). Distorted black holes can potentially
have positive O, [75].

Moving now to the general dynamical case, we will
work with a general MOTT. As we shall see, a MOTT
can be spacelike or timelike, or even have sections of
mixed signature. In addition it can have positive or neg-
ative ©(,). In principle we could add qualifiers in front
of MOTT and refer to, for example, spacelike or timelike
MOTTs. However, to minimize the number of acronyms
and to perhaps make it easier to remember:

Definition 4 (Dynamical Horizons). We shall refer to a
generic MOTT as a dynamical horizon. Additional qual-
ifiers will be added as appropriate. Thus we can have
spacelike or timelike dynamical horizons depending on
the signature, and future or past depending on whether
Ony <0 or > 0 respectively.

The reader might be aware that previously, dynam-
ical horizons referred to spacelike MTTs [76] [77] (this
is closely related to but not the same as a future outer
trapping horizon [78H81]). However, already in [77] (Ap-
pendix B), timelike cases were considered and referred
to as timelike dynamical horizons. Dynamical horizons
were always meant to refer to a general MOTT and the
spacelike case was initially thought to be the most rele-
vant case. We shall therefore use different terminology in

this paper. A general MOTT will be called a dynamical
horizon and qualifiers will be added as appropriate.

We conclude this section by a short discussion of the
area increase and fluxes across dynamical horizons. Con-
sider a portion AH between two MOTSs with initial area
A; and final area Af. As shown in [45] [76], [82], the area
change Ay — A; can be written as an integral over AH,
with the integrand being local fields on AH. The inte-
grand can be viewed as a flux, whence the area is seen
to change due to the flux of radiation across the horizon.
We shall discuss the fluxes in great detail in paper II, but
here we just mention two points: i) the dominant contri-
bution is due to the shear 0'((1‘;), which was recently seen
to be closely correlated with the outgoing flux measured
at infinity [83]. Thus, the fluxes provide a critical link
between horizon dynamics and observations of gravita-
tional waves. ii) the fluxes are manifestly positive definite
for spacelike dynamical horizons, but not so for timelike
cases [77].

Besides these flux laws, there is an alternate formula-
tion of the area change. The starting point is the mem-
brane paradigm for black hole event horizons [84HST7].
By applying the Einstein equations to an event horizon,
Damour showed a close analogy between evolution equa-
tions on the horizon and the Navier-Stokes equation for
a 2-dimensional fluid [84] [85]. In this way, it is possible
to relate fields on the event horizon and physical proper-
ties of a corresponding 2-dimensional fluid such as energy
density, pressure, bulk and shear viscosity. An interesting
feature of this correspondence is that one obtains a nega-
tive bulk viscosity for the fluid, suggesting an instability.
As shown in [88H90], this correspondence also holds for
dynamical horizons and one can similarly obtain coun-
terparts to the various physical quantities listed above.
In particular, the bulk viscosity now turns out to be pos-
itive as expected. We shall explore certain aspects of this
analogy later in Sec. [V}

III. THE AREA INCREASE LAW

The laws of black hole thermodynamics can be sat-
isfactorily formulated using quasi-local horizons [62] [64],
70, [77, [9THI3]. For example, formulations of the first law
of black hole mechanics based on event horizons [94] [95]
use a mixture of quantities defined at the horizon (such
as the area) and infinity (such as the ADM mass, and
also surface gravity which uses the timelike Killing vec-
tor normalized at infinity). The quasi-local formulation
of the first law satisfactorily addresses this problem, and
coherently uses quantities defined only at the horizon.
Here we shall not review all aspects of black hole ther-
modynamics, and instead focus on one aspect, namely
the area increase law.

The areas of the various horizons for our particular
configuration are straightforward to calculate and have
been presented previously [16l 27]. Here we present the
same data first in terms of the radii of the black holes;



see Fig. 2l For a spherical surface with area A, one can
define a radius R according to \/A/4m, known as the
area-radius. This is straightforward to define for Sinner
and Sguter, and their radii will be denoted Rjnner and
Router respectively. For the two individual horizons &
and Sy, we can similarly define an effective area radius
Rii0 as /(A1 + Ag)/4m. Fig. plots these radii as func-
tions of time. To connect the two initial horizons to the
final one, one can follow the curves along the segment I,
then follow segment II backwards in time, and then seg-
ment I which takes us to the final remnant black hole.
While the overall area change is of course positive, the
area does not change monotonically along I + II + III.
There is a small duration of anomalous area increase on
segment I1 just prior to Tiouch. The second panel shows
a close-up near Tiouch and the anomalous area increase
of Sinner. For reference, the local minimum of the area
occurs at Ty, = 5.50594 M.

Fig. Shows the irreducible masses M;,, = \/A/167 of
the various horizons. For the two individual horizons Sy
and Ss, we show them separately and also the sum

MY 4 D = \JA /167 + /Ay /167, (13)

irr irr

This measure takes into account the interaction energy
between the two black holes, which in fact is quite signif-
icant given that the separation between the black holes
is small. Thus unlike Fig. 2| in Fig. [3] the curve for

M + M ) Jies above the curves for the outer hori-

rr rr

zons. For the apparent horizon, the value of MoUer at
late times is a good approximation to the Bondi mass,
i.e. the mass left in the spacetime after all the gravita-
tional radiation has left the system. Since this is a very
short simulation, the amount of radiation is small and
the difference between this estimate of the Bondi mass

and the ADM mass is smaller than 0.1%.

In the next sections we will go deeper into the var-
ious ingredients which determine the area change. Let
us therefore conclude this section by outlining why the
expansion O, and the signature of the dynamical hori-
zons, are the main ingredients we should be looking
at. There are some simplified cases when the area in-
crease law can be easily proved, namely for purely future-
spacelike and purely future-timelike dynamical horizons,
i.e. we assume everywhere ©,,) < 0 and fix the signature.
Let us start with the spacelike case, and let H be the dy-
namical horizon. The null normal choices of Eq. are
tied to a Cauchy surface intersecting the dynamical hori-
zon. We need instead null-normals entirely determined
by H. Since H is spacelike, it has a unit-timelike normal
7%, The foliation on H determines a unit-spacelike vector
field 7*, which we take to be outward pointing. Then,
analogous to Eq. , a suitable choice of null normals is

A -~a ~a ~a _ ma
ga:T +7r 7 ﬁa:T T . (14)
V2 V2

Then, with @@ = 0, we easily get
9@

V2
where D, is the derivative operator on 4. This shows
that the area of the cross-sections of H increases along
7. Similarly, for a timelike dynamical horizon, the roles

of 7 and 7% are interchanged and it is now 7% which is
tangent to H. We get for the divergence of 7%

D7 = >0, (15)

~_ O®@

D, 7 =+ 7 <0, (16)
whence the area decreases along 7. The reader should
bear in mind that the null normals n® and n® are related
by a scaling as in Eq. . Thus the expansions of n®
and n® are also related by a scaling, but the sign of the
expansion remains unchanged.

These simple calculations illustrate the importance of
the sign of O, and the signature. The proof of the area
increase law by Bousso & Engelhardt [59) [60] which we
will discuss below, does not make any assumption on the
signature but does assume O,y < 0. With this assump-
tion, and additional technical requirements which will be
important, it can be shown that the area must be mono-
tonic on a future dynamical horizon. Now, viewing Hinner
and Houter as a single dynamical horizon (i.e. consider the
union of the segments III, II, and II’ shown in Fig. ,
the area is in fact monotonic except for the anomalous
area increase starting from Tpin. We need to explain
which of the conditions assumed in the proof are violated.
Some obvious questions for us are thus: Do the various
dynamical horizons behave as one might have naively ex-
pected? For example, is the outer common horizon every-
where spacelike and does it have ©,) < 07 Similarly, is
the inner horizon always timelike? What happens during
the anomalous area increase shown in the second panel of
Fig. 2/ We shall now proceed to address these questions.

In the next sections we shall examine the signature
and the behavior of ©,) for all the horizons. Keep in
mind the different role played by these two aspects: © )
is part of the extrinsic curvature of a MOTS, i.e. it is
determined by how S is embedded in a spacetime mani-
fold. The signature of the dynamical horizons H, on the
other hand, necessarily involves MOTSs at different time
steps; we need to obtain at least a small portion of H in
order to evaluate its signature. Thus, we first investigate
O(n) followed by the signature.

IV. THE EXPANSION OF THE INGOING NULL
RAYS

As we have seen, the expansion of the inward point-
ing null rays, ©(,), is of great importance for the area

increase law. The average O, over a closed 2-surface S
with area As and area 2-form € is

1 ~
@(n) = 7% @(n)e. (17)
S Js
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FIG. 2: The first panel shows the radii of the various horizons as functions of time. The orange dotted line is an
“effective” area-radius for the two individual horizons, the blue curve is the radius of the apparent horizon, while the
solid green curve is the radius of the inner common MOTS. It is possible to connect the initial radii with the final
one by following the segment I + II 4+ III (the segment II is followed backwards in time). The second panel shows a
close-up near Tioucn Where an anomalous increase in the area of the inner common horizon is observed.
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FIG. 3: Irreducible masses of the various horizons as
functions of time.

The average of ©,, is shown in Fig. |4ffor all four horizons
as functions of time. The initial data is time symmetric,
which implies that ©,,) = 0 for S; o initially. The average
becomes negative and remains negative at all times. The
common horizons are born with negative ©,) and they
remain negative at all times.

The behavior of ©,) beyond the averages is more in-
teresting. The individual horizons however remain bor-
ing: ©(,) < 0 for the individual horizons at all times.
Since the initial data is time symmetric, the individual
black holes initially have ©(,) = 0 but it is strictly nega-
tive thereafter. The individual horizons are therefore con-
ventional future-dynamical horizons. The outer dynami-
cal horizon generated by the apparent horizons are some-
what more interesting: they do not always have ©,) < 0

—1.0

FIG. 4: The average ingoing expansion

as one might have expected. Upon formation, there is a
small region with ©,) > 0 around the “waist” defined
as follows. Each MOTS is axisymmetric, and thus has an
axial symmetry vector ¢®. This vanishes at two points
which defines the two poles. We can calculate the proper
length of each orbit of p®. The proper length vanishes at
the poles and, for a regular round sphere, it is maximum
at the equator. However, for some of the MOTSs in our
problem, we find that the proper circumference has a lo-
cal minimum around the equator. This is most obvious
for Hinner near Tiouen where it looks like a figure eight
(see second panel of Fig. @, but it is also true for the
apparent horizon just when it is born at Thifurcate-

For Houter, this portion soon disappears and we have
the conventional ©(,) < 0 at all points on the appar-
ent horizons after this. See Fig. o} A similar feature was
also seen in [57]. Evidently, the small portion with the
“wrong” sign of O(,) does not affect the area increase
law for Houter; the relevant portion of the horizon is too
small to have an overall effect and the apparent horizon



area is monotonically increasing.

As might be expected, the inner horizon Sipner is yet
more interesting. As shown in Fig. @ Sinner never truly
becomes future marginally trapped, i.e. it always has
a portion (around its “waist”) with positive ©,y. This
shrinks with time and eventually vanishes momentarily
at Tiouch, but reappears immediately afterwards. Thus we
see that Hipner is never truly future marginally trapped.
However, just after Thiturcate; Sinner 1S decreasing in area
(as it should) despite this effect.

We see then that dynamical horizons generally do not
have © ) < 0 everywhere — this is the takeaway message
from this section. This condition has been widely used in
previous literature on quasi-local horizons to prove the
area increase law. In particular, it is used in the proof
of the area increase law for future dynamical horizons of
arbitrary signature [59, [60]. Thus, these proofs are not
directly applicable for Hinner and there is, strictly speak-
ing, no contradiction. However, there is a more subtle
reason why the proof of [59, [60] does not apply to Hinner,
and we shall return to this point shortly.

V. THE SIGNATURE OF THE DYNAMICAL
HORIZONS

Given a MOTS and a dynamical horizon H obtained
by evolving it, the signature of H can be computed in a
straightforward way. For any point p on the world tube,
we can construct three linearly independent vectors tan-
gent to H, say eq (A = 1,2,3) and find their inner-
products qap := e - eg. The eigenvalues of g4p then
yield the signature; if it has a negative eigenvalue it is
timelike, and it is spacelike if all eigenvalues are positive.
If the matrix is degenerate then H is a null surface.

Alternatively, we can consider properties of a “time
evolution” vector on the dynamical horizon. Consider a
dynamical horizon H of arbitrary signature and arbitrary
O(n)- Let V@ be a vector field on H such that it is orthog-
onal to the leaves of the MOTSs which constitute H, and
it maps one foliation to the next. Thus, if on a dynamical
horizon the MOTSs are labeled by a parameter A, then
we can choose A such that V29,\ = 1. Each MOTS S is
taken to lie on a given Cauchy surface and thus equipped
with null normals (¢, n®) according to Eq. (8). Since V*
is orthogonal to S, there must exist functions b and ¢ on
S such that

Ve =bl"+cn®. (18)

Since £-n = —1, we have V - V = —2bc. Thus, the signa-
ture of H is controlled by the sign of be; H is spacelike if
b and c¢ have different signs, and timelike if they have the
same signs. Readers more familiar with 7% and R® might
find the following expression for V'* more illuminating:

V2V® = (b+¢)T* + (b — ¢)R”. (19)

We identify the 4 cases shown in Fig. [7] depending on
the signs of b and c. If b and ¢ are both positive, then

intuitively, the term along T dominates and is positive
and thus V¢ is timelike. Similarly, when b and ¢ have op-
posite signs, the term along R® dominates. When b > ¢,
i.e. when b > 0 and ¢ < 0, V? points outwards (i.e. along
R® by definition), and in the opposite case when b < ¢
then it points inwards. We note that in our simulations,
by construction the MOTS is found on Cauchy surfaces
referring to a given time, and we essentially construct
V@ by connecting a MOTS at a given time with another
MOTS at a later time. This means that when it is time-
like, V* can never be past directed and thus case IV
cannot occur in our simulations.

The null case corresponds to either of b or ¢ vanishing,
and it is usually assumed that this does not occur on open
sets (this is borne out in our numerical results). The null
portions arise when H transitions between any two of the
four cases listed above. Furthermore, only one of the signs
can change in a transition; the vanishing of both b and
¢ means that V' vanishes which cannot happen as long
as the foliation of the MOTT is regular. If € is the area
2-form on &, and when § is a MOTS so that O = 0,
then

[,ng C@(n)g. (20)

Locally, the area increase is determined by the product
O (). Thus, ¢ plays a double role: the product be deter-
mines the signature while the product cO,) determines
the change in area. V' is strictly null only on a set of
measure zero. As discussed earlier, the null case is never-
theless very important for conceptual reasons. All of the
well known stationary Kerr and Schwarzschild horizons
are null. Moreover, Houter has b large and positive, and ¢
small but negative in the limit of late times as it reaches
equilibrium, so that V' - V = —2bc £ 0. The same holds
for H; ad Ho at early times.

With this understanding, we can now present our re-
sults regarding the signature. Hy, Hs and Hoyter always
turn out to be spacelike; this is consistent with them
being stable in the sense of the principal eigenvalue of
the stability operator being positive [43] (this will be dis-
cussed further in paper IT). Only Hinner shows interesting
behavior in this regard. The signature of this world tube
is shown in Figs. [8] As discussed earlier, this horizon de-
velops cusps and self intersections. From Fig. 8 we see
clearly that Hiuner is mostly timelike, but there are in-
teresting and non-negligible portions which are spacelike.
When it is initially formed at Thifurcate, it is completely
spacelike; it must of course agree there with Hoyuter which
is always spacelike. However, it remains fully spacelike for
only a few time-steps after which most portions become
timelike; the region around the “waist” remains spacelike
for the longest. After this, Hinner remains entirely time-
like until just before Tiouen When the portion around the
larger black hole develops spacelike portions. The second
panel of Fig. |8 shows a close-up of a portion around the
self-intersecting knot. We see there is only one change
of signature as we traverse each knot. Fig. [J] shows the
distance of the waist to the point where this change hap-
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FIG. 5: The sign of O, for Houter- Upon formation, there is a small portion around the waist that has ©,) > 0.
This portion soon disappears after which time the outer dynamical horizon is a conventional spacelike
future-trapped dynamical horizon. The second panel shows a zoom of Hoyuter just after it is formed.

pens. The region around the knot is becoming increas-
ingly spacelike.

We can dissect this behavior further in terms of the
functions b and ¢ introduced earlier. The apparent hori-
zon at late times is easiest to understand: V¢ is space-
like and outward pointing, but strongly tilted towards
£%. Thus, c is small and negative, and b is positive which
means that, at late times, the dynamical horizon Hoyuter
generated by Souter must be of type I. The same holds
for S; and Sy at early times. Closer to Thifurcate When
Souter 18 growing rapidly, we must have b > 0 and ¢ < 0,
but ¢ will not be small. The inner horizon is radically
different. As it is born, it moves inwards rapidly and it
is spacelike: it has b < 0 and ¢ > 0 and is of type III.
The spacelike portions at early times shown in Fig. [§] (at
the bottom of the world tube) are of type IIT. This world
tube soon becomes timelike of type II wherein b > 0 and
¢ > 0. This continues till we approach Tiouch- Shortly be-
fore Tiouch, a part of Sinner again becomes spacelike: this
is the portion which envelops the larger MOTS S5. How-
ever, in this spacelike portion it turns out that we have
b > 0and c < 0,i.e. it is of type I. The inner horizon thus
shows the following transitions: IIT — IT — I (partially).
It is in fact this spacelike portion of type I which is re-
sponsible for the anomalous area increase shown in the
right panel of Fig.

To explain this, we need to go back to the Bousso-
Engelhardt proof of the area increase law [59, [60]. A key
intermediate result in this work is Theorem IV.2 of [59]
which shows that ¢ cannot change sign. This would seem
to rule out the transition I — I described in the pre-

vious paragraph. However, this proof requires the exis-
tence of a MOTS which has ¢ < 0 everywhere, i.e. it
requires that the spacelike portion contains at least one
complete MOTS. We see that around Tiouch, Hinner has
complete MOTSs in the timelike portion, but none in the
spacelike portion. Moreover, after Tiouch, Hinner vViolates
another requirement assumed in [59] 60], namely that
each MOTS should have disjoint “inside” and “outside”
regions. Thus, again, there is no contradiction with the
proof. Further details can be found in Appendix [A] The
appendix also shows that a straightforward extension of
the proof to our case does not work.

VI. THE ANOMALOUS AREA INCREASE AND
THE MEMBRANE PARADIGM

In this final section, we indulge in some speculations on
the anomalous area increase. We have mentioned briefly
earlier that because of the relation between horizon area
and entropy, the anomalous area increase of Hippner might
be physically significant. One approach where this might
play a role is in the fluid-gravity correspondence. For
black holes in d + 1-dimensional anti-deSitter space, it
is suggested in [96] that the area increase law for the
event horizon has a dual description in terms of an “en-
tropy current” defined for a relativistic fluid living on
the d-dimensional boundary. The calculation presented
in [96] is perturbative, where many of the complications
of full non-linear general relativity, such as those we have
studied, do not arise. In order to extend this correspon-
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FIG. 6: The sign of O, for Sinner- As for the apparent horizon, Sinner has a portion around its waist with 0,y > 0,
and this portion becomes smaller over time but does not disappear. The second panel shows details near Tiouch. We
see that the portion with positive ©(,) momentarily vanishes at Tioucn, but reappears again immediately afterwards.

FIG. 7: The four different types of time evolution vector
fields on a generic dynamical horizon. The right and left
quadrants, I and IIT respectively, refer to spacelike
dynamical horizons. The top and the bottom quadrants,
IT and IV respectively, are timelike. Horizons in the
right quadrant are moving outwards while those in the
left quadrant move inwards. We do not have any
horizons in the bottom quadrant (IV) since in our
simulations V¢ can never be past directed.

dence to non-perturbative situations, it has been argued
that the event horizon might not be the appropriate con-
cept, and one should consider dynamical horizons instead
[97, [98]. Indeed, because of the teleological and non-local

nature of the event horizon, it would be unusual if its
properties could be mapped to a local hydrodynamics
description (except in situations where it can be treated
perturbatively).

At present, a viable proposal for the dual entropy cur-
rent for dynamical horizons is lacking. We suggest that
binary mergers might provide an interesting test case.
If each of the horizons H; and Hy at early times have
a dual hydrodynamics description and so does the final
horizon Houter at late times, then the overall increase in
area might be viewed as the increase in entropy due to
the interaction and mixing between the two fluids. As
we have detailed in this paper, the inner horizon Hiuner
provides the link between the initial and the final states.
Thus, if such a dual description is generally viable then
Hinner, and in particular the quantity c©,) appearing in
Eq. (20), is likely to play an important role. The product
€O () yields the time derivative of the area according to
Eq. averaged over the horizons:

fﬁvgz As = f C@(n) dA. (21)
S S

The integrals of cO,) as functions of time for H;, Ha
and Houter are shown in Fig. and these are consistent
with Fig. 2l Similarly, Fig. [I1] for the inner horizon is
consistent with the right panel of Fig. 2} the minimum
of the area in the right panel of Fig. [2|is consistent with
the zero of [¢O(, in Fig. While these results are
guaranteed mathematically, it is still a useful numerical
check since Eq. is an independent calculation of Ag.

There exists in fact a different description of a black
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Thiturcate) Hinner 18 entirely spacelike. This phase however lasts for a very short time (and is not easy to make out in
the figure). It develops timelike portions and soon becomes fully timelike. The portions around the “waist” persist in

remaining spacelike for the longest. At a later time, a little bit before Tioucn, the part of Hipner surrounding the
larger black hole reverts to being spacelike. The right panel shows details near the self-intersection. The thin dashed
curve is the location of the self-intersection.
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FIG. 9: Proper length Al of the curve segment
connecting the waist of Sipper to the point where the
signature changes from timelike to spacelike. This
corresponds to the proper distance measured along the
MOTS when going from the waist to the dotted line in
Fig. [ We cannot numerically resolve whether this
signature change happens precisely at the cusp (i.e.
Al =0) when T = Tiouch-

hole horizon in terms of fluids, namely that arising in
the membrane paradigm mentioned in Sec.[[TC] As men-

tioned there, the analogy between fields on black hole
horizons and a 2-dimensional fluid also works for .
One of these quantities is the energy density which, it
turns out, is proportional to the expansion of V. Since
Ow) = cO(y), we see that the energy density is propor-
tional to ¢O(,). The interpretation of cO,) as an energy
density means that Sipner has large negative energy when
it is formed, and its energy becomes positive after Ty, .
To explain this more fully, we revisit the discussion of
the quasi-local membrane paradigm in [88H90], adapting
it to MOTTs of arbitrary signature. Given a hypersurface
H, we introduce the orthogonal vector W* (compare with

Ve in Eq. )
W =bl* —cn®, (22)

satisfying V-W = 0, W-W = 2bc = —V-V. The evolution
of its expansion O ) = bO(y) — cO(,) along H is written

as (cf. e.g. [45], [99])

1 %
LvOw) = kO, — 390w — ol )U?gv)
—Gap VWP + (Lvb)O) — (Lve)O )
+D® (bDyc — ¢Dgb — 2bc wy) (23)
where k() = —nbVov 4, Ug) = bU((L? + C‘Tgbl)’ U((z‘le) =

bag,) — ca((;) and Ggp is the Einstein tensor. First we
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FIG. 11: Plot of the integral of ¢O,) for the inner horizon Siyner- The left panel shows the values just after Thiturcate
when Sinper is formed and rapidly decreases in area, while the right panel shows values near Tiouen. The results are
consistent with the area results. In particular, as we see from the second panel of Fig. [2] the area of Sijyner has a
minimum at Ti,i,. In the second panel of this plot, we get a zero at Ty, consistent with it being the rate of change
of the area.

note that, if H is a smooth event horizon (so in par-
ticular a null hypersurface), by making b = 1, ¢ = 0
so that V¢ = We = (% we immediately recover the
null Raychaudhuri equation. This equation was inter-
preted by Price and Thorne in [86] [87] as an energy
balance law by introducing the surface energy density
€ = —Ou)/8T = —O(;/8m. For a dynamical horizon,
namely with ©) = 0 and thus Oy = —O(y), we can
write

1
LvOw) + 6y = 0w + 560 + ol oty

+GapVOW? + (Lv Ine)O
+D (¢Dyb — bDyc + 2bc wy) . (24)

Identifying again ¢ = —Oy)/87 as a formal surface
energy density, that in the MOTT case translates into
€ = Oy /8T = cO(y)/8m, we can interpret A in Eq.

in terms of a total surface energy £

E= ]{zse:— —%c@ S.(25)
The rate of change of £
As -
= -—= Ly (g€) = (Evf + @(V)&?) €, (26)
8 S S

is controlled by Eq. . This can be cast as an energy
balance law
tretome=— ("o )+ 0 Ow)
Ve (ME= 8 ) ) 167

ab
+ f){’( (W)> +T1-D,Q", (27)
8w

where k(") /87 is a surface tension (2-dimensional pres-
sure term), Oy is the fluid expansion (so that a bulk



viscosity coefficient ¢ = 1/16 can be identified), U((I‘b/) and

a((lzv) /8w are, respectively, the shear strain and stress ten-
sors (in general not proportional, so MOTTs do not corre-
spond to Newtonian fluids and therefore a shear viscosity
1 cannot be defined), IT := T, VWP + = (Ly Ine)O v is
an external energy production rate (enforced by the Ein-
stein equations) and Q* := (bD%c — ¢D*b — 2bc w®) /8 is
heat flux.

This fluid description arising in the membrane
paradigm is however only a formal analogy. There is,
unlike in the fluid-gravity correspondence, no deeper in-
terpretation in terms of any dual boundary description
or otherwise. Nevertheless, it is still interesting that the
analogy goes through for the inner horizon as well. In
Appendix [B] we show that the analogy also extends to
spinning black holes, i.e. to include the rotation 1-form
wq, which serves to define a momentum density on .
We shall make further use of this analogy in paper II. In
particular following [100, [I0T] in this viscous fluid pic-
ture, the evolution equation for ©y will be employed
to introduce decay and oscillation timescales leading to a
slowness parameter [102] for the approach of a dynamical
horizon to equilibrium.

VII. CONCLUSIONS

In this paper we have studied geometrical properties
of the world tube of marginally outer trapped surfaces in
a binary black hole merger. This includes the status of
the area increase law, and the different ingredients which
go into the rate of change of the area, i.e. the expan-
sion of the ingoing null normal ©,) and the signature
of the world tube. We have seen that the horizons are of
mixed signature with various transitions between space-
like and timelike portions, especially for the inner hori-
zon. Cross-sections of the inner horizon can be of mixed
signature. Similarly, the condition ©,) < 0 is not sat-
isfied everywhere for the inner horizon. The anomalous
area increase apparently contradicts existing proofs of the
area increase law, in particular the Bousso-Engelhardt re-
sult. We have argued that technical assumptions required
for this proof do not hold in our case. We have briefly
discussed the anomalous area increase in terms of the
membrane-paradigm analogy using the energy density of
a fictitious 2-dimensional fluid. The deeper physical sig-
nificance of the anomalous area increase, if any, is still
not understood.

The second paper will continue this study and consider
physical quantities such as energy fluxes, multipole mo-
ments and the stability operator on all of these horizons.
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Appendix A: Comparison with the
Bousso-Engelhardt area increase law

In this Appendix, we show that the anomalous area
increase does not violate any of the existing proofs of
the area increase laws. The most general proof to-date is
due to Bousso & Engelhardt [59] [60], and an extension
thereof due to Sanches & Weinberg [61]. These proofs for-
mally apply to future dynamical horizons, or holographic
screens in the terminology of [59) 60]. We note that this
proof is in fact an application of the maximum principle
for elliptic operators. The application of the maximum
principle to null-surfaces was studied previously by Gal-
loway [103]. These methods have previously been applied
by Ashtekar & Galloway to spacelike dynamical horizons
to show e.g. the uniqueness of the foliation by MOTSs
[58]. We shall discuss the proof in more detail below,
but roughly speaking, these results would naively indi-
cate that the inner horizon should have decreasing area
and would seem to rule out the anomalous area increase.
While these results assume ©(,) < 0, this is only a suf-
ficient but not necessary condition. The regions on the
horizon with @(n) > 0 are small near Tioucn and do not,
by themselves, explain the area increase. In other words,
we can split the area (and similarly also its rate of change)
as the sum of two terms depending on the sign of ©,,:

@(n)<0 @(n)>0

The area over the ©(,) < 0 portion turns out to be much
larger than the second term, and it has a correspondingly
larger effect on As. We saw for example that the area of
Souter increases as expected despite it not having ©,,) <
0 everywhere.

The difficulty, and apparent contradiction, lies else-
where. It is the spacelike portion on the inner horizon
near Tiouech that leads to the anomalous area increase.
A key ingredient of the Bousso-Engelhardt results is an
intermediate step showing that the function c¢ is not al-
lowed to change sign. Thus, if we actually had ©,) <0,
then ¢O(,) cannot change sign, and the area increase law
follows directly from Eq. (it must increase with time
for regions I and IV, and decrease with time for regions
IT and III). In the transition from timelike to spacelike
of the inner horizon near Tiouch, which we have seen is
a transition II — I of Fig.[7] this is precisely what goes
wrong: ¢ goes from positive to negative. Moreover, this
intermediate result only uses the condition © ) = 0 and

(A1)
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FIG. 12: As a MOTS evolves in a spatially outward
direction from S; to Sa, the null surface N5 is nowhere
to the future of V.

does not rely upon ©(,) < 0. So how can this intermedi-
ate result be consistent with the results of this paper? To
understand this we need to delve into some of the techni-
cal conditions required in the Bousso-Engelhardt proof.
We shall not spell out the details of the proof, but we
instead offer a pictorial description which will make the
result plausible.

The simplest case which we sketch here is the proof
that the transition I — II is ruled out. We thus start
out with a MOTS evolving spatially outward, which later
partially switches over to a future timelike direction. For
a MOTS S, we construct the outgoing null surface AN
generated by the null-rays starting from ¢*. Denote the
part of A to the future of S by N'*, and the portion to
the past by N ™. If we move S; spatially outwards along
V% to a new MOTS Ss, the null surface N5 is easily seen
to be nowhere to the future of Ni; see Fig. If ve
partially changes to a future timelike direction, this will
eventually cease to hold.

Consider now the dynamical horizon, i.e. the world
tube spanned by S as it evolves along V. Let the part
of H with ¢ > 0 be denoted as H™, the part with ¢ < 0
as H~, and the part with ¢ = 0 as H°. Assume that H
has initially a leaf completely of type I, i.e. we assume
¢ < 0 on a complete leaf. Let A be the affine parameter
along V% ie. V*9,A = 1, and let A = )y at the initial
MOTS S, (which has ¢ < 0).

Let us take H™ to lie in the A > )\g region; this will
be shown to lead to a contradiction. Let Ay > Ay be the
smallest value of A on H*, i.e. when the timelike portion
first appears. Clearly, Ny, lies nowhere to the future of
Ny,- We can move further infinitesimally to A; + € still
without entering the future of N,,. Consider then the
MOTS Sy, +c and its subset ST = Sy, 4 N HT. Then
trace back the null rays to the past along N =, and let
k® denote the null generator of A/~. Let us follow N
back in time and look at its intersection with Cauchy
surfaces corresponding to various values of A < A;. The
intersection N~ NH is generically a curve on H. Let the
minimum value of A on this intersection be denoted A*.
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FIG. 13: A pictorial sketch of the Bousso-Engelhardt
proof. The portion of H with the offending timelike
region of type II with ¢ > 0is H*. The rest of the

horizon is of type I. The parameter A increases
upwards. Sy, is the MOTS at Ao, and A; is the earliest
that H* appears. ST is the portion of Sy, (. within H*.
The dashed curve depicts the intersection of ‘H with the
null surface '~ (generated by the past-inward directed
null curves along —¢% starting from ST). The point q is
where A has a minimum over the dashed curve. At ¢,
the null generator of the N~ coincides with the
outgoing null normal of the MOTS Sy which is, by
definition, supposed to have vanishing expansion.

Since € is chosen sufficiently small, N~ lies to the past of
Sy, so that A* > Ag. Let ¢ € Sx+ be the point where the
minimum is achieved. This construction is shown pictori-
ally in Figs.[I3and[14] Fig.[13|depicts the world tube, its
timelike portion, and the intersection with N'~. The same
situation is shown in Fig. [[4] in terms of how these sur-
faces would appear on Cauchy surfaces at various times.

Then, it can be shown that N~ is tangent to Sy«; they
share the same null normal at ¢ so that by a suitable
rescaling we can set k® = £* at q. However, since Sy« is
“inside” N/, it has larger curvature, and thus we must
have ©y)(q) > O)(q) where O ;)(q) is the expansion of
k® at g. From the Raychaudhuri equation, and assuming
the null energy condition and the positivity of |o*)|2, it
follows that © ;) (g) > 0. This implies then that ©y(q) >
O(x)(q) > 0 which contradicts Oy (g) = 0 (the defining
condition for a MOTS). Thus, HT cannot exist and the
transition I — IT is ruled out.

A similar argument, works for the transition from re-
gion II — I, except we follow the null surface to the
future, and it is required to have a complete MOTS with
¢ < 0. The other forbidden transitions where ¢ changes
sign are IV — III and IIT — IV. In both of these cases,
a direct attempt at applying the above argument does
not work. Instead, one needs to reverse the direction of
V' so that these are reduced to the previous two cases.

The details of this proof are given in [59, [60]; see
also [58, [103]. Here we list the technical conditions and
Lemmas which must hold for the above argument to go
through:
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FIG. 14: Same as Fig. but now showing how the
various surfaces would appear on Cauchy surfaces. We
start with A\; + € where we start tracing back N'~. The
color scheme is consistent with Fig. [I3} the portion in

red is the timelike portion ST, the blue curve the
MOTS, while the dashed curve shows the intersection of
N~ with the Cauchy surfaces. The timelike portion will
contract slower than the null surface, and will thus stay

outside the null portion. Eventually, at \*, the
intersection is the point q. Sy~ is tangent to N~ at g,
and the rest of it lies “inside” N'~. The maximum
principle is applied in a neighborhood of q.

1. Each MOTS S, which foliate H must have an “in-
side” and an “outside”, i.e. if they lie on a Cauchy
surface ¥, they must split it into two disjoint por-
tions.

2. The existence of a MOTS Sy which has ¢ < 0 every-
where — required for the point ¢ which minimizes A
to exist.

3. Genericity condition on the zeros of b and ¢, OHT =
HO = OH~ — this excludes non-generic zeros of ¢ or
b (e.g. the zeros must not coincide with extrema,
and the functions cannot vanish in an open set).

4. On any S, |o|?> must be positive definite (in the
presence of matter, we would include the null en-
ergy condition) - this ensures the positivity of

O (q)-

5. The proof of ©(q) > O@)(q) is given in [104];
see [103] for a more general proof with, e.g. weaker
smoothness assumptions, explicitly using the max-
imum principle.

All of these conditions do hold on Sguter, S1 and Sa
but not on Sinner Where the first two are violated. (1)
is violated by the self intersecting MOTSs but this only
happens after Tioucn and is not relevant for the anomalous
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area increase which occurs before Tiouen- The culprit is
then condition (2): We see that near Tiouch, we have ¢ < 0
only over a part of the MOTSs before Tioucn. Thus, the
proof of [59] [60] does not rule out the anomalous area
increase scenario presented above. Repeating the proof
by dropping the requirement of a complete MOTS with
¢ < 0, and replacing it with requiring that there should
be a complete MOTS in region II (as is the case here) is
seen to not work either.

To show this, let us look explicitly at the case of inter-
est to us, namely a transition II — I (future-timelike to
outward-spacelike). The transition is partial and we do
not have any section which is entirely spacelike. We do
however have a complete MOTS in the timelike portion.
The picture is very similar to Fig. with the timelike
and spacelike portions interchanged. Thus, H™ becomes
H~ and 8T can be labeled S~. Similarly, Fig. [14] can
be reused but with the curves for A/~ and the various
S interchanged. Since S~ is spacelike, it contracts faster
than A=, and thus it goes inside N'~. At \*, we again
have N'~ tangent to Sy, but critically, Sy« now lies “out-
side” N'~. Thus, while we still have ©)(q) > 0, but
now Oy (q) < O (¢), and no contradiction arises with
Or)(q) = 0.

Appendix B: Damour-Navier-Stokes equation in
MOTTs

For completeness, in the context of the quasi-local
membrane paradigm discussed in section [VI, we present
here the equation for the evolution of the rotation form
wa, interpreted as a (Damour)-Navier-Stokes equation for
the momentum density of the two-dimensional fluid.

As we did for ©(y, we evaluate now the evolution of
w, along a hypersurface H

1
Lvwa +Ov)wa = Dar") + 5DuOy) — Dyo"4(B1)
440" Goe W — ©()Dab + O () Dac.

Making first b = 1 and ¢ = 0, i.e. V* = W* = (% we
recover the evolution equation of the rotation form on a
null hypersurface [21], in particular the one satisfied on
a general (smooth) event horizon

1
Lywa + O wa = Dk + 5DaO) — Dy,

+q."GpWE . (B2)

Following Damour [84] [85], this equation can be inter-
preted as a Navier-Stokes equation by defining a mo-
mentum surface density 7, = —w, /8, leading to a New-
tonian viscous fluid picture with negative bulk viscos-
ity ¢ = —1/167 and shear viscosity p = 1/167. In our
MOTT case, making Oy = 0 in Eq. (BI), we get

1
Lyw, + G(V)wa = 'Dali(v) + ?Da@(v) - DbO'(W)ba

+¢."Gp W + Oy Dylne.  (B3)



Defining, as in the event horizon case, a momentum sur-

face density m, = —w, /87 we get [8F]
) €]
K V)
a a = *Da Da
Lymq + O ( - > + < Tom )

Wb

+D = + fa, B4

b ( ] ) fa ( )
that corresponds to a viscous fluid with the interpreta-
tion of the terms given after Eq. (27, namely a New-
tonian fluid in the trace part of the viscous stress ten-
sor (since it is proportional to the trace of the strain
tensor, i.e. the expansion ©y)) with positive bulk vis-

cosity ¢ = 1/16m, non-Newtonian in the shear stress

. (W) . . )

tensor part (since o,, '/87 is not in general propor
W)

tional to the strain shear tensor o,,’). The term f, :=
—q P Ty We— é@(vﬂ)a In ¢, where Einstein equations are
imposed, corresponds to an external force surface den-
sityﬂ See [105] for a critical account of this viscous fluid
interpretation.

Equations and are valid for general signature
MOTTs, where V¢ can be proportional n®. In contrast
with the ©(y evolution and the energy balance equation
discussed in section [VI, where the “heat flux” term Q°
must be generalized, Eqgs. and coincide exactly
with those in [88HI0], that were originally restricted to
deviations around the outgoing null vector £°.

Appendix C: Contact structures: a tentative bridge
from immersed MOTS to wavefronts and caustics

As observed in Fig. [§] and fully discussed in Section
VI of [27], the inner common horizon Sj,ney transitions
from i) a smooth “embedded curve” before time Tiouch,
into ii) a singular curve (vanishing of its differential) with
cusps at Tiouch, and then to iii) an “immersed curve” with
self-intersections (knot) after Tioucn- In a complementary
view to this “parametrised curve” perspective, we could
approach such a sequence in terms of projections: the
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described transition corresponds indeed to the generic
curve metamorphoses (“perestroikas”) happening when
projecting a three-dimensional curve into a plane with
the projection direction changing with a parameter [106].
Indeed, as illustrated in [I7], such self-intersections seem
to have a “genericity” flavor in trapped regions.

Such a projection view suggests a picture with the
“lifted” curve as the fundamental object and self-
intersections as an artifact of the projections. The natural
question is: what is the appropriate higher-dimensional
space in which MOTSs “truly” live? A suggestive ten-
tative answer is given in terms of contact structures
[107, [T08].

Specifically, and dwelling now beyond axisymmetry, let
us consider a n-dimensional spacetime .# and its cotan-
gent bundle T%# with natural Liouville form A = p,dz®.
After removing the vanishing one-forms, T%#\{0%,},
we can take quotient by one-form rescalings with non-
vanishing real numbers R*. The resulting space PT*# =
(T \{0%,})/R* is the “projectified cotangent bundle”.
Crucially, at each point, the kernel of A is invariant un-
der such R*-rescalings and projects onto hyperplanes in
the tangent space of PT%# : such field of (non-integrable)
hyperplanes defines a “contact structure” on PT%#. In
a local chart (z%p,), with say p, # 0, we can con-
sider the “affine” chart (z°,p;,2), i € {1,...,n— 1} with
z=2",p, = 1. Then A’ = p;dx’ + dz is the contact form
of the (2n — 1)-contact manifold PT%# (cf. [I0§] for a
discussion in a general relativistic setting; see also [109]).

The relevance of such contact structures is that they
rule the properties of light propagation in the geomet-
ric optics approximation, in particular the geometry of
light wavefronts and the formation of caustics [110]. In
this sense, and given the constitutive relation between
(marginally) trapped surfaces and light convergence, such
a higher-dimensional geometry seems a promising setting
in which lifts of spacetime MOTSs could exist as embed-
ded, properly not self-intersecting, surfaces. Elucidating
their ultimate relation to wavefronts and caustics could
shed light onto the here discussed patterns of MOTS dy-
namics and the understanding of the trapped region.
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