
Hybrid Semi-parametric Modeling in Separation
Processes: A Review
Kevin McBride1, Edgar Ivan Sanchez Medina2, and Kai Sundmacher1,2,*

DOI: 10.1002/cite.202000025

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution
and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Separations of mixtures play a critical role in chemical industries. Over the last century, the knowledge in the area of

chemical thermodynamics and modeling of separation processes has been substantially expanded. Since the models are

still not completely accurate, hybrid models can be used as an alternative that allows to retain existing knowledge and aug-

ment it using data. This paper explores some of the weaknesses in the current knowledge in separations design, simulation,

optimization, and operation, and presents many examples where data-driven and hybrid models have been used to facili-

tate these tasks.
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1 Introduction

If all the different separations performed throughout
human history are considered, several important examples
like the separation and purification of metals from earth,
the production of salt from sea water, capturing alcohol by
distillation, and the cultivation of dyes from plant matter
are found [1]. Each one of these has had a significant effect
on not only technological progress, but also on the course
of history. These acts of taking a mixture of substances and
separating them result as a consequence of nature’s ten-
dency to increase in entropy. Much of the technological
development as a species has been motivated by a drive to
confront this chaos in an attempt to increase order. Perhaps
the most relevant examples today are found in oil industry
where refineries use large distillation sequences to separate
crude oil into many different products used throughout all
levels of the economy. There is no doubt that the separation
of chemical substances or raw materials has long played an
important role in the advancement of human species and is
largely responsible for our modern standard of living.

The aim of chemical separation is to achieve the purifica-
tion or enrichment of one or more substances from a mix-
ture of several other substances. This is applied to all forms
of conventional matter: gas, liquid, and solid. Whereas our
ancestral forefathers labored under conditions on a much
smaller scale, the modern chemical engineer of the industrial
era is interested in performing these separations at a larger
scale and in a more economically feasible manner. Many
common and ancient separation methods have been adapted
for use at this scale, such as distillation, adsorption, liquid-
liquid extraction, and crystallization, especially in the pre-
vious century. During this time, chemical engineers have
amassed a vast body of knowledge concerning chemical sep-

arations including thermodynamic information and theory,
pure-component properties, and other relevant physical
properties required to design and operate these processes.

Despite the great progress made, there is a lack of funda-
mental understanding in many areas that often precludes
pursuing the optimal separation strategy or realizing that
another separation route may be possible. This is important
in modern chemical plants, where 60 to 80 % of costs origi-
nate in separations [2]. When looking for avenues to de-
crease operational costs, it would seem natural to want to
reduce the expenditures for separations. But the question is,
why other possibilities are not simply considered. A simple
reason might be the lack of physical property data for a sig-
nificant component in the mixture. Perhaps the theory used
to design a planned unit operation is insufficient to describe
the real behavior of the system leading to suboptimal per-
formance, not to mention the difficulties that may arise in
operating such a unit. Sometimes this lack of understanding
leads the designers to fall back to easier decisions, such as
using distillation for a separation. And why not, it is a well-
known technology with quick and accurate models being
readily available. This does not come as a surprise since the
more mature a technology is, the more often it is used.
Fig. 1 shows the general trend between how well-known a
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technology is and how often it is employed. If it is truly the
intention to design better separation units and to possibly
move away from the current reliance on distillation, the fo-
cus has to be on gaining more knowledge in order to more
confidently design alternative separation technologies.

This begs the question as to which form of knowledge is
best suited for this task. One compelling solution is to use
process data to compensate for the lack of system informa-
tion. For this reason, there is now a push to include separa-
tion technologies within the data-driven modeling para-
digm. Closely related to this is the use of hybrid models,
which are a combination of first principles and data-driven
models, another area quickly gaining importance and popu-
larity [3].

This contribution examines the role data and modeling
play in the future of separation technologies, continuing a
discussion started at the 58th Tutzing Symposium on this
topic. In the first part, several open issues in the design of
separators and the role of chemical thermodynamic models
are introduced and briefly dis-
cussed. In the second half of the
paper, several methods being
proposed to handle these issues
using data are reviewed. Finally,
the paper is concluded with a
recommendation and a hope that
further discussions about where
future efforts can be applied in
the big data era in separations
technology, or fittingly Separa-
tions 4.0, will continue.

2 Current Challenges in Separation Processes

The most important aspect in designing a separation unit
operation is knowing the phase behavior. Without the gen-
eration of more than one phase, there can be no separation
process [2]. The phase behavior is based on the chemical
thermodynamics, which can be predicted using an equation
of state (EoS) or an excess Gibbs energy (gE) model. Many
such models have been developed in the last century [4],
starting with the van der Waals equation, but there is still
no model that is generally applicable to all chemical compo-
nents and mixtures. This means that the decision about
which model to use is critical; the model must be accurate
enough to adequately describe the phase behavior based on
the measurable characteristics of the system. If not, it may
be predicted that no separation should occur when in reality
it does, or the reverse, where a feasible separation is pre-
dicted for a system that exhibits no such behavior.

However, it is often not the choice of the thermodynamic
model that is the most important aspect, but instead the
quality and nature of the experimental data available to fit
the model parameters. The problem here is that much of the
data required to accurately model all of the possible chemical
systems has not been collected (Fig. 2). In fact, according to a
rough estimate by [2], there is only about 1.2 % of the neces-
sary vapor-liquid equilibria (VLE) data available for all bina-
ry mixtures of interest. It would be unreasonable to under-
take the task of collecting all of the missing data. For this
reason, much of the effort in thermodynamic modeling has
focused on creating predictive methods. These are often
group contribution methods because of the lower amount of
experimental data needed to fit group-based parameters
compared to the fitting of molecule-specific parameters more
commonly found in EoS. The advantage of using group con-
tribution methods is that the molecules can be derived from
constituent groups, allowing a small subset of groups to rep-
resent the properties of a much larger set of molecules. How-
ever, even state-of-the-art group contribution methods like
modified UNIFAC (UNIQUAC functional-group activity
coefficients) Dortmund [5] still lack many of the binary
interaction parameters because the experimental data is
simply not there.
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Figure 1. Correlation between separation technology maturity
and frequency of use. Adapted from [1].

Figure 2. Thermodynamic data available in the Dortmund Data Bank 2019 [6].
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Having experimental data is only one part of the equa-
tion; the model parameters need to be appropriately fit.
This involves solving an optimization problem, which
requires a carefully selected objective function to ensure
reasonable results are obtained. Usually it is not enough to
rely on a single class of data, such as concentration or pres-
sure measurements, but also excess enthalpy and activity
coefficients at infinite dilution [2]. Care must also be taken
when evaluating the solution to the parameter fitting: it
may be that only a local optimum has been found instead of
the global optimum. This may lead to a suboptimally fit
model that produces erroneous predictions and shows
unsuspected behaviors [7].

Additionally, many of the experiments performed to col-
lect the thermodynamic data needed to fit the parameters
do not follow any experimental plan. There exist often very
large confidence intervals or strong correlations between
parameters. This makes the identification of parameters
more difficult and leads to calibrations that are not
adequate for use in accurate process designs and operation.
With as much knowledge about the design of experiments
that has been collected in the last century, its implementa-
tion should be standard [8]. Some authors are moving
exactly in this direction, e.g., Dechambre et al. [9] recently
presented a new method for designing experiments to
improve the parameter estimation for the non-random two-
liquid model (NRTL) and universal quasichemical (UNI-
QUAC) models used in liquid-liquid equilibria (LLE) pre-
dictions. An increase in such efforts could potentially
reduce the number of experiments while increasing the
quality of the information obtained. This in turn will lead to
better parameters. An alternative is the introduction of
high-throughput experiments for collecting thermodynamic
data. Some examples are the recent use of Raman spectros-
copy [10] or the use of bench-top nuclear magnetic reso-
nance (NMR) devices [11] for measuring LLE. Successful
industrial examples can also be found in the contributions
by the research and development department at Dow
Chemical Company [12–14].

These modern methods to
increase the rate at which new
data is collected is paramount.
The strong focus on distillation
has led to a proportional concen-
tration of VLE data (it was
already mentioned that even here
only a small fraction of data
exists). Thus, it is also of no sur-
prise that there are large deficits
in the needed experimental data
for other, potentially beneficial,
separation technologies such as
micellar systems, supercritical
fluids, ionic liquids, or systems
containing complex biomole-
cules. Not only is there not

enough data available for these substance classes, there are
also very few models, if at all, that can be used to predict
their thermodynamic behavior. For many of these systems,
the use of predictive methods like conductor-like screening
model for real solvents (COSMO-RS) [15] or UNIFAC-ion-
ic liquids (UNIFAC-IL) [16] becomes necessary to find a
starting point when considering their use in a new separa-
tion design.

Although critically important, the thermodynamic equi-
librium is not the only criteria that influences a separation
process. Separations are achieved by enhancing the rate of
mass transfer of all species by bulk movement within a par-
ticular phase. This separation is constrained by the mass
transfer and the extent is controlled by thermodynamic
equilibrium. Other physical influences, such as fluid
mechanics and heat transfer, also play an important role. At
the end, the extent of the separation between chemical spe-
cies depends on the ability to exploit the differences
between the distinct product phases. This includes the
molecular, thermodynamic, and transport properties of the
individual components.

Therefore, the design of a unit operation for separation is
necessarily part of a multi-scale model, such as the one seen
in Fig. 3. In the molecular level, molecular dynamics, statis-
tical mechanics, and density functional theory are com-
monly applied. While these models can usually describe the
molecular level well enough, the use of these models is not
sufficient for process design. Therefore, phase equilibrium
models, rate-based models, and other constitutive equations
need to be applied due to the influence of the bulk sub-
stance. The next level contains models for energy and mass
balances as well as other phenomena like solute partition-
ing. The culmination of these models spanning across many
levels is the final unit operation model.

It is quite common to make several assumptions to
decrease the complexity of this multi-scale problem by
assuming that the mixtures are homogeneous and that the
process is at steady state. As a result, models for stationary
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Figure 3. Different levels implicated in the modeling of separation units.
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systems are much better developed than those describing
dynamic systems (just consider equilibrium models
compared to rate-based models). This is commonly seen in
the modeling of separation processes where the design often
hinges on the simple determination of the phase equilibri-
um. Two prominent examples of where this assumption
fails are found in the modeling of the absorption of hydro-
gen chloride from exhaust gas using water as an extraction
solvent [2] and in the distillation of the ternary system com-
posed of water, ethanol, and acetone [17]. In the prior, it is
predicted that after a single stage, a satisfactory separation
at equilibrium is achieved. It turns out that large columns
are needed because the mass transfer between the desired
phases is very slow and equilibrium is not reached in prac-
tice. In the latter, if MESH (material balances, equilibrium
relationships, summation equations, and heat balances)
equations are used, the designed distillation column needs
25 stages to achieve the desired purity; by contrast, if the
mass transfer is considered, 39 stages are needed to perform
the separation. Usually an efficiency factor is used to
account for the inaccuracies or ignored effects not covered
in the equilibrium model, e.g., tray efficiency in distillation.
Perhaps a better solution to the multi-scale problem is to
use surrogate models instead of simplifications. The surro-
gate models serve to bridge the gap between levels and,
thereby, simplify the problem without losing too much
information [18].

Surrogates can also be used to replace the complex chem-
ical thermodynamics for use in process simulation or opti-
mization to obtain a reasonable trade-off between accuracy
and computational expediency. The constitutive equations
used to describe chemical thermodynamics and equilibrium
are often complex, highly nonlinear equations that need to
be solved implicitly. This does not often conform well to the
standard optimization algorithms used in process optimiza-
tion. The user may experience failure to converge to a feasi-
ble solution, experience long calculation times, and if, how-
ever, successful in creating a useful model, it may not be
suitable for real-time optimization (RTO) or use in nonlin-
ear model predictive control (NMPC) due to the long calcu-
lation time required. Not only are the equations difficult to
converge, they may have several local optima as well, which
may also lead to poor performance.

The quality of a simulation or design process also
depends heavily on the prediction accuracy of the chosen
thermodynamic models. One area that is particularly sensi-
tive to errors in thermodynamic predictions is in distillation
when the relative volatility of the key components is close
to 1. In one glaring example from [2], a small deviation in
the relative volatility leads to a much larger error in the
height of the column, i.e., a 5 % error in the relative volatili-
ty around 1.10 leads to over 100 % error in the number of
minimum trays. This is not a small discrepancy and rein-
forces the need for accurate predictions, in this case vapor
pressure. Compounding this is the difficulty in estimating
vapor pressure, compelling Gmehling et al. [2] to state that

‘‘estimation of vapor pressure is one of the most difficult
problems in thermodynamics’’.

Perhaps even more problematic are predictions of LLE.
Here, gE models are used to predict activity coefficients due
to their easier implementation than EoS and that usually
pressure is not considered in LLE calculations. Currently,
there is no method that can be used to reliably predict LLE
[2]. The problem with these models lies in the fact that the
activity coefficient must handle both the composition and
temperature dependencies of the system. Similar to the
problem with mixing rules used in EoS, LLE predictions
start to deviate substantially when more than two compo-
nents are present in a mixture in significant quantities to
effect the equilibrium. Temperature dependencies can be
very difficult to model, especially if measurements have not
been conducted at various temperatures, and the representa-
tion of composition effects may not be as straightforward as
many models assume [19]. One interesting example to con-
sider is the system of tetrahydrofuran, water, and phenol, for
which no gE model can explain its phase behavior [20].

Additionally, there may be other phenomena that are not
adequately described, such as foaming, fouling, or the influ-
ence of impurities. A correct description of these influences
is necessary for an accurate design and operation of a real
process. At the end of the spectrum, models that describe
process behaviors in the presence of failures are almost
completely lacking. The use of these models would allow a
process simulator to converge to a solution (albeit a non-
functioning process) instead of leading to convergence
error. This additional information could lead to safer
designs as well as provide more insight into the appropriate
parameters for process control and operation.

In the big-data era, there are now two major options for
improving the prediction accuracy of thermodynamic equa-
tions. The first avenue is continuing to increase the level of
knowledge about chemical systems, so that better theories
and thereby models can be produced. It would be desirable
to find a unique EoS with accurate and broadly applicable
mixing rules that describes all types of mixtures. Such a
model would provide perfect values for all thermodynamic
properties of pure components and mixtures. This is still far
away, but many advancements have been made in this
area in the last couple of decades, e.g., volume-translated
Peng-Robinson (VTPR) [21], perturbed chain statistical
associating fluid theory (PC-SAFT) [22], and variants. The
second avenue is actively improving the existing models by
incorporating more data in the form of data-driven and
hybrid models. Thus, the remainder of this paper examines
recent advances in the application of these models to sepa-
ration processes.

3 Data Sources in Separations

The world is facing an enormous increase in the amount of
data available in several fields. The data sources available in
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chemical engineering can be classified into five major
groups: 1) plant data, 2) laboratory data, 3) simulation data,
4) literature data, and 5) business data (Fig. 4).

The amount of data available during the operation of a
chemical plant is extremely large. The chemical process
industry has been progressively adopting machine learning
tools to explore the information available in the data [23].
A recent review discussed that the relevance that data has in
the chemical industry is likely to increase even more in the
future [24]. However, most of this data (usually obtained by
sensors) is highly correlated. Or, most of the data is col-
lected from continuous processes at steady state and is not
very useful for determining process dynamics. Therefore,
some filtering or pre-processing of the raw data is para-
mount before it can be used for modeling. In fact, data-driv-
en models have been applied successfully in the industry for
process monitoring [13, 25–28], inferential sensors [29],
and advanced control schemes [30].

Unlike data from chemical plants, the data obtained from
laboratory experiments are characterized by better control
and systematic management. Highly correlated data can be
avoided using optimal experimental design techniques.
However, the velocity of data generation in traditional labo-
ratories is significantly slower compared to the plant case.
As previously mentioned, high-throughput digitalized labo-
ratories present a viable way to tackle this problem.

Simulation data can be generated in large amounts due to
the continuously increasing computational power. More re-
liable and complex models can be solved more quickly,
which opens a new data source for the training of surrogate
models. The uncertainty found in this type of data is typi-
cally caused by numerical noise, which can be controlled
more easily compared to noisy data from real-world sys-
tems. Many examples of the use of simulation data for sur-
rogate training are available in the literature [31, 32]. For
simulation data, it can be distinguished between two types
of sampling techniques: one-shot (or stationary) and adap-
tive (or sequential) designs. The former refers to a predeter-

mined space-filling strategy, e.g., Latin hypercube sampling
[33], Sobol [34] and Halton [35] sequences. The latter
approach starts from a simple one-shot design, which is
iteratively augmented by employing exploration-exploita-
tion methods, e.g., expected improvement function [36],
bumpiness function [37], LOLO-Voronoi [38], smart sam-
pling algorithm [39], and mixed adaptive sequential sam-
pling [40]. It has been shown that, most of the times, adap-
tive sampling outperforms one-shot strategies in getting
similar level of accuracy with less samples [38].

Another rich source of data comes from experimental
results published in the scientific literature. In many appli-
cations, access to this type of data can save considerable
amounts of time and resources for on-going research. How-
ever, some issues here may be that data is lacking for some
components or mixtures of interest, or that the experimen-
tal conditions differ substantially such that the validity
range is restricted to a narrower domain than desirable.
Conveniently, a great amount of the thermodynamic data
found in the literature has been collected and made avail-
able in several databases, such as the Dortmund Data Bank
[6] and the NIST database [41].

Regarding business data, the reader is referred to the
work of Chiang et al. [24], which reviews several successful
examples of the integration of planning and scheduling
tasks with process control by using this information
through surrogate models.

4 Data-Driven Models in Separation
Processes

Data-driven models have been used in the field of separa-
tion processes as a tool to overcome the lack of knowledge
of the system or to alleviate the computational burden of
expensive calculations. Among the data-driven surrogates
used in separation process applications, the most common
are artificial neural network (ANN), partial least squares
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Figure 4. Data sources for separation process modeling and their advantages (�) and disadvantages (·).
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(PLS), Gaussian process (GP), and polynomials for regres-
sion purposes and support vector machine (SVM) for clas-
sification. Other techniques such as principal component
analysis (PCA) for dimensionality reduction and fuzzy logic
(FL) for the inclusion of heuristic knowledge have been also
applied. Recent reviews on surrogate modeling within
chemical engineering can be found in the literature [42, 43].

Data-driven models act as an input/output relationship,
which has several advantages and disadvantages compared
to pure mechanistic models (Tab. 1). On the one hand, da-
ta-driven models do not require expert knowledge to be de-
veloped, which make them very flexible. Moreover, this type
of models usually has a fast evaluation time, which is desir-
able for optimization. Because they are significantly cheaper
than mechanistic models, data-driven models can replace
complex parametric models alleviating the computational
burden of the entire model. On the other hand, in order to
build this type of model, enough data has to be available,
which is not the case in every application. Besides, data-
driven models are known to be poor extrapolators, which
limit their validity to the domain in which the model was
trained. Given that the data-driven model acts as a black
box, very little understanding of the system under consider-
ation can be attained.

The selection of the surrogate form depends on the goal
of the model and the available information of the system.
This task commonly relies only on the modeler criterion,
given that clear-cut guidelines do not exist for this, but
some general advice can be found in the work of Forrester
et al. [44].

Automatic surrogate generation approaches can also be
found in the literature. The surrogate modeling (SUMO)
Matlab toolbox [45] builds a set of candidate structures,
which are then discriminated using techniques such as
cross-validation and Akaike information criteria. Another
example is the automatic learning of algebraic models for
optimization (ALAMO) framework [46], which relies on
adaptive sampling techniques and basis functions to con-
struct a surrogate which aims to balance the trade-off
between accuracy and complexity. ALAMO was recently
extended to restrict the output space of the surrogate by
allowing the implementation of physical knowledge in the
form of constraints [47]. The performance of this frame-
work is shown in several chemical engineering applications

in [47, 48]. Algorithms for global optimization of con-
strained gray-box computational problems (ARGONAUT)
follow similar ideas in the context of global optimization of
combined data-driven and first-principle models [49–52].

Despite the selected form for the surrogate model, its per-
formance relies mostly on the data quality (which depends on
the source) and quantity. While the quantity of the data is
restricted by the available measurement devices, the quality of
the data depends heavily on the process conditions under
which the plant is operated. Ideally, the lowest number of
high-quality samples (that provides enough information
about the structure of the true function) possible has to be got-
ten to ensure the high accuracy and low cost of the surrogate.

Purely data-driven surrogate models have been applied to
separation process applications for either computational
burden reduction or modeling complex phenomena. For
instance, the optimization of pressure swing adsorption sys-
tems has been performed employing ANNs as surrogates
[53–55]. The mechanistic models that describe this type of
units consist on full partial differential algebraic equations
(PDAE) systems that are computationally expensive. How-
ever, by employing ANNs, the optimization time has been
reduced from several hours to just a few seconds, showing
the benefits that data-driven models have in the optimiza-
tion of complex systems if appropriately formulated. More-
over, convolutional neural networks and deep auto-
encoders have been used as a fault diagnosis tool for distilla-
tion processes [31]. Fault diagnosis in distillation is very
complex to model using mechanistic models and in practice
most of the time relies entirely on the operator experience.
Nevertheless, by using data-driven models, it is possible to
construct models that help decision makers on such com-
plex tasks.

Despite the benefits of using data-driven models in sepa-
ration processes, one should not solely rely upon them and
discard all process knowledge accrued over the years. The
reason for this is that both approaches (mechanistic and
data-driven) are complementary as the weaknesses of the
one can be strengthened by the features of the other. This
type of hybrid model has been shown to outperform purely
mechanistic and purely data-driven models in several appli-
cations [56–59].

5 Overview of the Use of Hybrid Models
in Separation Processes

5.1 Background

In Sect. 4, data-driven surrogates have been compared to
pure mechanistic models showing several advantages and
disadvantages (Tab. 1). Hybrid modeling attempts to com-
bine the strengths of pure data-driven and pure mechanistic
models in an effort of integrating all available information
of the system. In fact, some highly accurate EoS can be con-
sidered hybrid models. The reason for this is that they use a
combination of a first principles model to describe the ideal
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Table 1. Advantages and disadvantages of data-driven models
compared to purely mechanistic models.

Advantages Disadvantages

Expert knowledge is not
needed for development.

Enough high-quality data has to be
available to build an accurate model.

Less computationally
expensive.

Poor extrapolation capabilities.

Very little abstract understanding is
achieved.
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behavior of the system combined with a data-driven model
determined by selecting the best subset of terms from a
larger set of possibilities using a stochastic optimization
algorithm [2]. However, in this paper, the focus is on
models that combine nonparametric and parametric sub-
models. Models of this kind are called hybrid semi-para-
metric models (called simply hybrid models for briefness in
this paper). The difference depends on the form of the data-
driven sub-model, which can have a predefined number of
parameters whose values need to be determined (e.g., linear
regression) or a number of parameters that is unknown
beforehand (non-parametric models, e.g., ANN).

As stated by Glassey and von Stosch [60], the high bene-
fit-to-cost ratio of hybrid modeling while dealing with com-
plex systems makes it a very promising approach. S. Zen-
dehboudi et al. [61] provided a recent review on hybrid
modeling applications in various areas including reaction
engineering and separation processes. The advantages of
hybrid models compared to their individual components
can be summarized with the following three major groups.
– Structure: Within the hybrid model, the white box pro-

vides a base for understanding the physical system, while
the black box part only replaces the phenomena in the
system that it is expensive or not well understood. For
this reason, hybrid models have better interpretability
than black box models and the number of model parame-
ters needed is less [62]. Moreover, given that the complex
or unknown phenomena are covered by a data-driven
surrogate, the model synthesis is less complex compared
to pure mechanistic models [58, 63].

– Performance: Compared to both black box and white box
models, it has been shown in the literature that, in most
cases, hybrid models produce more accurate results both
in steady and dynamic systems [56–59]. The reason for
this is their better extrapolation capabilities compared to
pure data-driven models and their better handling of un-
known/complex features compared to white box models.

– Data dependency: Compared to a pure data-
driven model, a hybrid model requires less
data [64]. This is because the extent of the
predictions that the data-driven model has to
perform is reduced by the inclusion of mecha-
nistic knowledge [62].
Several challenges of hybrid modeling can also

be identified. For instance, the inclusion of fun-
damental knowledge into data-driven models
constrains the feasible region of prediction [60].
Therefore, if this knowledge is incorrect, poorer
predictions from the hybrid model are expected
when compared to a pure data-driven model. In
addition, the best combination of parameters for
each sub-model still needs to be identified. This
is a challenging task given that training tech-
niques for hybrid models have additional
challenges compared with the parameter identi-
fication of its individual sub-models [65].

The use of hybrid models has gained popularity in the
past 20 years. In fact, as shown by Mohd Ali et al. [3], the
use of pure data-driven models in chemical process systems
has been decreasing. On the contrary, the number of publi-
cations on hybrid modeling has being rising steadily. They
forecast that this trend will continue in the future.

The general approach for creating hybrid models for use
in separation unit design follows those usually applied to
hybrid models in that they can be arranged into serial or
parallel arrangements [62]. Agarwal [66] provided a com-
plete theoretical description of these possible arrangements
for hybrid models. In the serial arrangement, the data-
driven sub-model (black box) can be connected to the
mechanistic sub-model (white box) either before or after it
(Fig. 5). The former serial arrangement has encountered
more applications in process engineering than the latter one
[65]. On the other hand, the parallel arrangement has been
applied whenever the mechanistic model is available, but,
for some reason, it is not completely accurate, i.e., model
mismatch [59, 67, 68].

5.2 Literature Review

Separations are important tasks in every chemical process.
The design and operation of separators have been tradition-
ally carried out using first-principle and empirical models.
The accuracy of these models is of immense importance for
the proper design, operation, and optimization of the sepa-
ration tasks. Nevertheless, the physical phenomena involved
in separation processes are highly complex. This makes the
development of reliable mechanistic models very difficult.
Hybrid models have been applied in different separation
systems showing an overall improvement in the modeling
capabilities compared to traditional methods. In the follow-
ing, several applications of hybrid models used in separa-
tion processes are reviewed.
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Figure 5. Hybrid semi-parametric model arrangements. a) Serial arrangement
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5.2.1 Distillation

Distillation is by far the most mature and commonly used
separation technique in industry [1]. In a distillation col-
umn, the vapor and liquid phases come into contact on
each stage, which facilitates the mass transfer between
phases. The species are separated through their difference
in volatility. This difference causes the separation of the
components to be performed at dissimilar extents along the
column, making the separation of components possible.
The amount of energy consumed by distillation units is very
significant, e.g., more than 20 % of the energy consumed in
refineries are consumed by crude distillation units [69].
Therefore, due to their energetic relevance and popularity,
the modeling of distillation columns has been of great inter-
est in the past years.

Historically, distillation columns were initially designed
using graphical methods, e.g., McCabe-Thiele or Ponchon-
Savarit. However, with the increase of computational power,
computer-aided methods started to gain popularity for col-
umn design [1]. Nevertheless, despite the computational
power available nowadays, several complications for the
design, control, and optimization of distillation units are
still present. Subsequently, several of these limitations are
discussed, along with some hybrid model applications
found in the literature that try to address them.

Rigorous models required expensive phase equilibrium
and mass transfer calculations, which results in very expen-
sive models that cannot be easily integrated into an optimi-
zation framework (especially online optimization). Hybrid
models have been applied with the aim of solving this prob-
lem and have achieved promising results. For instance,
Safavi et al. [70] used wavelet neural networks to model the
separation factor in a continuous binary distillation column.
This surrogate separation factor model was integrated with
the mass balances of the column, and it was shown that the
computational cost of the model was reduced significantly.
The hybrid model was then successfully integrated into an
online optimization study. A similar approach was followed
by Engell and Dadhe [71], who reduced the computational
burden of a reactive distillation model by approximating
the VLE with a radial basis function neural network,
making their integration in an NMPC possible.

An interesting example that elucidates the capability of
hybrid modeling to reduce computational costs was pre-
sented by Mahalec and Sanchez [72]. They applied PLS
regression to approximate the true boiling point curve of an
in-silico atmospheric pipe still column. This reduced the
size of the entire rigorous model from around 10 000 non-
linear equations to around 100 almost linear equations
maintaining similar levels of accuracy. Later, they optimized
the resulting hybrid model showing that it converged to a
better optimum than the rigorous mechanistic model (pos-
sibly due to the reduction of the nonlinearities in the mod-
el). This work was later extended by applying additional
simplifications, which made the hybrid model independent

from the tray temperatures (conserving the high accuracy)
which made it suitable for RTO, planning and scheduling
applications [73]. This last example reveals that hybrid
models can be used to unify different scales (which tradi-
tionally are treated with independent models) within a sin-
gle model. In this way, the mismatch between the individual
models is eliminated. A recent review shows the importance
of data for the integration of models among different scales
[74]. Recent works have shown the capability of GP for
global optimization of distillation columns [75, 76]. These
tools can be easily implemented into hybrid schemes.
Hybrid ANNs have been recently used for RTO in distilla-
tion columns [77].

Purely data-driven models ignore the extensive expert
knowledge that has been gained in separation technology
design and operation. This is not something seriously worth
considering and underlines the importance of using other
approaches, such as the hybrid modeling cases discussed
here. In the operation of distillation columns, expert knowl-
edge is especially useful during the start-up and shutdown
stages. The nature of these operation modes is highly com-
plex, which make their integration into a single mechanistic
model very difficult. However, by using FL, the start-up
behavior of a bath distillation column has been included
into a single model that describes the complete operation
cycle [78].

Process integration, e.g., reactive distillation, imposes
additional complexity for the modeling of distillation units.
Different types of ANNs have been used to replace expen-
sive calculations in reactive distillation models [71, 79, 80].
Furthermore, in practice, composition measurement devices
can be very expensive to purchase and maintain, and they
usually have a time-delay response that prevents proper
control of the distillation column. Khazraee and Jahanmiri
[80] successfully applied an adaptive neuro-fuzzy inference
system to establish a relationship between unmeasured vari-
ables (chemical composition) and measured variables (tem-
perature) for control. ANNs have been also coupled with
mechanistic models to solve the problem of missing data
achieving robust and accurate models through data aug-
mentation [81]. Further opportunities for hybrid model
applications include fault diagnosis [31] and identification
of more realistic columns [82].

5.2.2 Crystallization

Crystallization is a common separation technique primarily
found in the pharmaceutical and food industries. Its use
recounts to very old times, e.g., obtainment of sodium chlo-
ride, and is still broadly used for the production of many
goods used in everyday life. This separation process occurs
when crystalline solids are formed from a homogeneous flu-
id phase (usually a liquid phase), through the mechanisms
of nucleation, growth, and agglomeration [1]. These mecha-
nisms are highly complex, and many physical phenomena
related to them are still poorly understood [83]. Further-
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more, the estimation of product quality variables, e.g., aver-
age particle size, are often determined offline. This makes
the modeling of crystallizers very complicated. Hybrid
models have been used in both serial and parallel arrange-
ments to compensate for this lack of knowledge.

For instance, sugar crystallization processes are known to
be strongly nonlinear and nonstationary [63]. The complex-
ity of these processes is captured by the growth, nucleation,
and agglomeration kinetic rate expressions. ANN and SVM
have been connected in serial arrangement to mass, energy,
and population balances to describe industrial crystallizers
[58, 63, 84]. The roll of the surrogates in these applications
has been precisely to capture the behavior of the growth,
nucleation, and agglomeration kinetics. It has been shown
that hybrid models are more flexible (i.e., high-quality pre-
dictions at different operating conditions) than traditional
modeling techniques (fitting empirical equations using
nonlinear programming (NLP) optimization methods) and
are significantly more consistent with experimental data
[63, 84].

A common approach to overcome the complexity of
modeling crystallizers is to neglect the agglomeration phe-
nomena. However, it has been shown that this assumption
leads to significant errors [58]. Georgieva et al. [58] re-
moved this assumption by integrating an ANN to approxi-
mate the agglomeration kinetics along with the kinetics for
growth and nucleation. The resulting hybrid model was
compared to a fully mechanistic model, the former showing
better agreement with the experiments. This work was later
extended by showing its application to various control strat-
egies to achieve an optimal supersaturation trajectory
[85, 86]. In these last references, given that experimental
values of the kinetic constants are not available, sensitivity
equations were used to propagate the error signal back to
the data-driven sub-model to achieve the training of the
hybrid model.

PLS regression has been also used to improve the model
performance of crystallization processes. This technique has
been used in a parallel arrangement to integrate the residu-
als between the real system and the model by Hermanto
et al. [68] and Zhang et al. [87] in control applications. It
has been shown that by filtering the propagated error in the
control of batch crystallizers (to remove possible noise
caused by sporadic disturbances, i.e., only-one batch distur-
bances), the model generalization is improved significantly
[87, 88]. Residuals in crystallizer models have been also
integrated using fuzzy predictive adaptive resonance theory
(ARTMAP) networks [89], and by employing self-learning
systems, the model has been updated continuously to
account for incrustation [90] resulting in better control
strategies. Recently, soft sensors have been designed using
Gaussian mixture regression for the online estimation of
variables that are normally determined offline, e.g., average
particle size [91].

5.2.3 Extraction

Extraction processes normally involve the use of an external
liquid phase to remove, at least partially, one or more com-
ponents from a mixture that can also be liquid (liquid-liq-
uid extraction) or solid (solid-liquid extraction or leaching)
[1]. Furthermore, some applications use a solvent in super-
critical conditions, which is known as supercritical extrac-
tion. Common problems for the modeling of extraction sys-
tems are lack of knowledge of thermodynamic parameters
for some substances (e.g., critical constants of solid compo-
nents are usually unknown [92]), kinetic models for leach-
ing systems are difficult to obtain and generalize, and LLE
calculations are computationally expensive.

Kamali and Mousavi [59] used ANN to account for the
discrepancies between the predicted solubility (using Peng-
Robison) of a-pinene in supercritical CO2 and experimental
data. They reported that the hybrid model outperforms the
dense gas model with Peng-Robinson (mechanistic model)
and the pure ANN in terms of predictability. Similarly,
recursive PLS and SVM for regression have been used in
leaching processes to account for unmodeled phenomena,
resulting in more accurate and cheaper models compared to
pure mechanistic ones [67, 93]. Leaching kinetic rates have
been also modeled by ANN and coupled with first princi-
ples increasing the model’s accuracy and generalization
[94].

As mentioned before, LLE calculations are often very
expensive which prevents accurate models to be applied
within optimization frameworks. Traditionally, accurate
equilibrium conditions are calculated using expensive EoS
such as PC-SAFT [95] or gE models such as modified
UNIFAC Dortmund [96]. GP and quadratic polynomials
have been used to reduce the complexity caused by using
such expensive thermodynamic models, achieving fast and
reliable surrogates [97]. In the last reference, a case study is
presented, where a thermomorphic solvent system is opti-
mized using surrogates for the partitioning behavior of the
catalyst and the two-phase region of the system with the
mentioned techniques. The results show a more robust and
economically viable reaction-extraction system compared to
the referenced case. This work was later extended to reduce
the model dimensionality further, by modeling the binodal
curve (instead of the complete two-phase region) and using
numerical continuation [75]. The resulting hybrid model
was later globally optimized.

Recent studies have shown that, by employing GP and
ANN trained on data obtained from the PC-SAFT in an
LLE system, accurate predictions of phase equilibrium can
be obtained around 36 times faster than by using the origi-
nal PC-SAFT [98]. This surrogate model was later aug-
mented by introducing an SVM that classifies the validity of
the operating conditions (ensuring only operating condi-
tions within the two-phase region are considered) [32]. The
resulting classification/regression surrogate was later used
in the optimization of a simplified hydroformylation of
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1-dodecene process, demonstrating how expensive thermo-
dynamic packages can be embedded into an optimization
problem of a process flow sheet. By using the original PC-
SAFT model, the problem converges to an optimum in
more than 48 hours; in contrast, by employing the surro-
gate, the optimum is found in less than 2 seconds. The inte-
gration of classification (one-phase or two-phase region)
and regression (within the two-phase region) avoided dis-
continuity in the regression model as described in [99].

5.2.4 Flotation

Flotation processes work under the principle of difference
in hydrophobicity of substances [100]. This difference is
often increased by using surfactants or wetting agents. The
flotation technique is commonly used in the metallurgical
industry for valuable mineral separation and in the waste-
water treatment sector for the removal of fats and oils. Air
bubbles are injected into the mixture causing the hydropho-
bic substances to float to the surface, where they can be
removed mechanically. Due to the lack of understanding of
the phenomena involved and the vast number of interac-
tions between many variables, e.g., agitation intensity, resi-
dence time of bubbles, bubbles size, particles size, and sur-
face hydration, constructing an accurate dynamic model for
flotation systems remains challenging [100].

Several applications of hybrid models used in flotation
systems can be found in the literature. ANN and PCA have
been integrated with first principle models to approximate
the flotation kinetics of dynamic metallurgical systems
showing great generalization capabilities across different
processes, resulting in flexible and robust models [94, 101].
A parallel arrangement of several ANNs to a mechanistic
model for the activated sludge process is also reported in
the literature, reporting good accuracy [102]. Dong et al.
[103] used a hybrid model with PCA and SVM for the
switching and control of an industrial coal flotation process
achieving an increase in the clean coal recovery compared
to other control strategies. An extensive review on the use
of hybrid models and data-driven surrogates in flotation
processes can be found in [104].

5.2.5 Drying

Drying refers to the removal of moisture from a system,
which is mostly accomplished by evaporation or sublima-
tion. However, condensation and sorption can also be used
as drying mechanisms if the system is a fluid [1]. The most
important complication in modeling drying systems is the
accurate determination of the rates of heat and mass trans-
fer. Usually, an accurate calculation of these phenomena
may result in solving systems of nonlinear PDAE that might
be computationally expensive to solve. Hence, hybrid mod-
els have also proved to be suitable for the modeling of dry-
ing units.

Heat and mass transfer coefficients have been estimated
via ANNs within mechanistic dynamic models of a direct
flow rotary dryer and a batch fluidized bed dryer [57]. The
results showed that better predictability and flexibility is
achieved when using the hybrid model compared to its
individual sub-models. In terms of control of drying units, a
simple first principles model has been coupled with an
ANN to obtain an accurate and easier-to-solve model [105],
which can be used in online control.

5.2.6 Filtration

Filtration processes are pressure-driven methods that rely on
membranes through which the different components of the
mixture to be separated move at different speeds [1]. Filtra-
tion is frequently used in the pharmaceutical, food, and water
treatment industries. The most important problems in filtra-
tion processes are the proper design and maintenance of the
filtration membrane. The former is related with the physical
properties of the membrane itself, e.g., type of membrane
material and physical structure, the latter is mainly related
with the incrustation (or scaling, fouling) process. The
understanding of the kinetics related with fouling and the
concentration gradient during the filtration are two of the
most challenging tasks for modeling this type of processes.

Mechanistic models include several parameters that are
determined by empirical correlations and experimental
data. Piron et al. [106] use ANNs for the determination of
such parameters in a microfiltration system of suspensions
of baker’s yeast achieving accurate results compared to
experimental data. Membrane fouling has been also mod-
eled using hybrid ANN, demonstrating accurate results for
a water treatment plant [107].

5.2.7 Discovery of Materials for Separation
Processes

The discovery of new materials is currently one of the most
important areas of research, since new materials can lead to
processes that are more efficient, better healthcare and
water/food availability. This is also true for the improve-
ment of separation tasks, where it may lead to new separa-
tion technologies even further away from what is well
known, like distillation. The reason is that many separation
techniques rely on the material properties (other than the
mixture to be separated) to perform the split (e.g., solvents
in extraction, adsorbents, membrane materials). Therefore,
the discovery of new materials for separations remains a big
challenge, but one with much potential.

Historically, materials have been discovered mainly by
trial and error by individuals working in traditional labora-
tories. This method is prone to errors, extremely slow, and
inefficient given the immensity of the material design space.
For this reason, enormous effort has been allocated to the
development of computational techniques and robotics to
explore the design space more proficiently. A recent review
on this topic is found in [108].
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It has been shown that SVMs are able to classify a large
space of metal-organic frameworks (MOFs) according to
their CO2 adsorption capacity. This serves as a pre-screening
step to reduce the number of MOFs to consider for a subse-
quent more detailed screening [109]. The results have shown
that the search space can be reduced by up to one order of
magnitude, which imposes great time savings in the discov-
ery path. Furthermore, linear regression and PCA have been
used for the discovery of new solvents employing quantum
chemical calculations [110]. This solvent screening method
has been later integrated to the process optimization of a
Diels-Alder reaction into a unique mixed-integer nonlinear
programming (MINLP) optimization problem [111]. This
integration shows that the optimum process includes a less
efficient (in terms of reaction extent) solvent that benefits
more the solvent-product separation (compared to the tradi-
tional way of selecting a solvent independently of the pro-
cess-wide optimization framework). Therefore, the potential
of unifying the material design task into a higher-scale prob-
lem becomes tractable by employing hybrid models.

6 Conclusion

This article presents a discussion of various issues still
found in the design of separations and what role data can
play in helping to resolve them. This comes about due to the
two primary means available for increasing model accuracy:
either with better theories or with more data. Better theories
are needed to create better first-principle models, which
would provide higher accuracy combined with better extra-
polation. This also translates into a much better understand-
ing of the physical phenomena that take place inside of a
separation unit. The other proposed path to improving sepa-
ration process design and control involves the integration of
more data sources into the models via surrogate and hybrid
modeling. In this article, it is argued that the latter is the most
promising because it combines process knowledge with that
what is not known or understood. In this way, the advantages
of both approaches can be used. To support this idea, many
examples were presented, where data-driven and hybrid
models were used to increase the accuracy of separation
modeling, simulation, and design. We hope that this discus-
sion will continue and that the examples provided in this
article will inspire the further development of these methods.
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Abbreviations

ALAMO automatic learning of algebraic models for
optimization

ANN artificial neural network
ARGONAUT algorithms for global optimization of

constrained gray-box computational
problems

ARTMAP predictive adaptive resonance theory
COSMO-RS conductor-like screening model for real

solvents
EoS equation of state
FL fuzzy logic
gE excess Gibbs energy
GP Gaussian process
LLE liquid-liquid equilibria
MESH material balances, equilibrium relationships,

summation equations, and heat balances
MINLP mixed-integer nonlinear programming
MOF metal-organic framework
NLP nonlinear programming
NMPC nonlinear model predictive control
NMR nuclear magnetic resonance
NRTL non-random two-liquid model
PCA principal component analysis
PC-SAFT perturbed chain statistical associating fluid

theory
PDAE partial differential algebraic equations
PLS partial least squares
RTO real-time optimization
SUMO surrogate modeling
SVM support vector machine

UNIFAC UNIQUAC functional-group activity
coefficients

UNIFAC-IL UNIFAC-ionic liquids
UNIQUAC universal quasichemical
VLE vapor-liquid equilibria
VTPR volume-translated Peng-Robinson
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