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We consider a numerical approximation of a linear quadratic control problem constrained by the stochas-
tic heat equation with nonhomogeneous Neumann boundary conditions. This involves a combination of
distributed and boundary control, as well as both distributed and boundary noise. We apply the finite
element method for the spatial discretization and the linear implicit Euler method for the temporal
discretization. Due to the low regularity induced by the boundary noise, convergence orders above 1/2
in space and 1/4 in time cannot be expected. We prove such optimal convergence orders for our full
discretization when the distributed noise and the initial condition are sufficiently smooth. Under less
smooth conditions the convergence order is further decreased. Our results only assume that the related
(deterministic) differential Riccati equation can be approximated with a certain convergence order, which
is easy to achieve in practice. We confirm these theoretical results through a numerical experiment in a
two-dimensional domain.

Keywords: optimal control; stochastic partial differential equation; full discretization; convergence
analysis; heat conduction.

1. Introduction

This paper is devoted to a numerical scheme for a linear quadratic control problem constrained by
the stochastic heat equation with nonhomogeneous Neumann boundary conditions. We prove optimal
convergence orders for a full discretization, which combines a linear implicit Euler method in time and
a finite element discretization in space.

For time-dependent heat distributions considered in a bounded domain, noise terms in the sense
of random heating or cooling phenomena arise due to imperfect insulation and other uncertain
environmental effects. In engineering applications this might lead to undesired behavior. To keep a
desired heat profile it is therefore necessary to regulate the system. This task can be formulated as
a linear quadratic control problem constrained by the stochastic heat equation, where controls and
additive noise terms are located inside the domain as well as on the boundary. Here, we treat the case
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A NUMERICAL METHOD FOR A CONTROLLED STOCHASTIC HEAT EQUATION 2119

of noise terms defined by Q-Wiener processes. In stochastic control theory it is well known that the
concept of mild solutions is useful to include nonhomogeneous boundary conditions; see Debussche
et al. (2007), Fabbri & Goldys (2009), Fabbri et al. (2017), Guatteri & Masiero (2011), Yu & Liu
(2011). In this context we also refer to related deterministic control problems; see Benner & Mena
(2018), Bensoussan et al. (2007) and the references therein. Typically, optimal controls as solutions
of stochastic linear quadratic control problems are characterized by a feedback law; see Ahmed (1981),
Benner & Trautwein (2018), Curtain & Pritchard (1978), Duncan et al. (2012), Hu & Tang (2018). These
feedback laws often involve the solution to a suitable operator-valued differential Riccati equation. In
this paper the Riccati equation is deterministic resulting from the fact that only additive noise terms are
included. As a consequence the optimal heat distribution fulfills a system of a linear stochastic partial
differential equations (SPDEs), referred to as the controlled stochastic heat equation, which is coupled
to the operator-valued differential Riccati equation. The main obstacle is that the controlled stochastic
heat equation as well as the Riccati equation cannot be solved explicitly. For that reason we analyze a
numerical approximation of the system describing the optimal heat distribution.

For the spatial discretization we use the finite element method as introduced in Thomeé (2006),
where only parabolic equations with homogeneous boundary conditions are considered. The case
of nonhomogeneous boundary conditions is studied in, e.g., Lasiecka (1986). Here, we need a
generalization of this theory since the system includes Q-Wiener processes. Numerical simulations for
Q-Wiener processes with values in Hilbert spaces as well as for some specific SPDEs are demonstrated
in Lord et al. (2014).

Temporal discretization of SPDEs has become an active research area within recent years. Equations
driven by additive noise terms are considered in Wang (2017), and Kruse (2014), Lord & Tambue (2013),
Tambue & Mukam (2019) also consider the case of multiplicative noise terms. These papers have in
common that the linear implicit Euler method is used for the temporal discretization. This is essentially
the usual implicit Euler method but with the noise terms treated explicitly, since treating them implicitly
makes no sense. The stochastic part of the equation is therefore treated explicitly and the deterministic
part implicitly. We follow the same approach in this paper. The error analyses are mainly based on the
fact that the underlying equation involves a closed operator generating an analytic semigroup, such that
fractional powers of this closed operator are well defined.

The shortcoming of the papers mentioned above is that they only consider equations with
homogeneous boundary conditions. We will extend these results by including instead nonhomogeneous
Neumann boundary conditions. Because this leads to a less regular solution, the convergence order is
decreased. However, the theory of fractional powers to closed operators can still be applied, and we use
this to prove optimal convergence orders under the assumption that the associated Riccati equation can
be well approximated. We make such an assumption mainly because there is a lack of temporal error
analyses applicable to the current situation, and providing such a proof is out of the scope of this paper.
We refer to Lasiecka & Triggiani (2000) for related results on deterministic linear quadratic control
problems and their corresponding Riccati equations.

In order to illustrate our theoretical results we implement our method in MATLAB and perform a
numerical experiment that shows the expected convergence orders. We also confirm that achieving the
assumed convergence orders for the approximation of the Riccati equation is straightforward in practice.

The paper is organized as follows. In Section 2 we introduce the linear quadratic control problem
constrained by the stochastic heat equation. We state the optimal controls and derive the resulting
system describing the optimal heat distribution. Section 3 is devoted to the numerical scheme of the
controlled stochastic heat equation and the Riccati equation. We also state the main result concerning
the convergence order. In order to prepare for the proof of this theorem we derive several auxiliary
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2120 P. BENNER ET AL.

results on continuity, consistency and stability in Section 4. The proof of the main result then follows
in Section 5. Finally, in Section 6 we discuss the implementation and illustrate the theoretical results
through a numerical experiment.

2. A linear quadratic control problem constrained by the stochastic heat equation

Throughout this paper, let (Ω ,F ,P) be a complete probability space endowed with a filtration (Ft)t�0
satisfying Ft = ⋂

s>t Fs for all t � 0 and F0 contains all sets of F with P-measure 0. We use E to
denote the expectation with respect to this probability space. Moreover, we assume that D ⊂ R

n for
n � 1 is either a bounded domain with sufficiently smooth boundary ∂D or a bounded and convex
domain.

First, we introduce some basic notation and we state properties of operators frequently used in the
remaining part. For s � 0 let Hs(D) denote the usual Sobolev space. We set H = L2(D) and let
I denote the identity operator on H. We introduce the Neumann realization of the Laplace operator
A : D(A) ⊂ H → H defined by

Ay = Δy

for every y ∈ D(A) with

D(A) =
{

y ∈ H2(D) : ∂
∂ν

y = 0 on ∂D
}

.

The characterization of the domain follows from existence and uniqueness results of the corresponding
elliptic problem; see Grisvard (1985). The operator A is the infinitesimal generator of an analytic
semigroup

(
eAt

)
t�0 of contractions such that for λ > 0, fractional powers of λ − A denoted by (λ − A)α

with α ∈ R are well defined. For more details in a more general framework we refer to Pazy (1983),
Vrabie (2003), but we have also collected the main properties that we need in Section 4.

For α ∈ R the space D((λ − A)α) equipped with the inner product

〈y, z〉α = 〈
(λ − A)αy, (λ − A)αz

〉
H

becomes a Hilbert space. The corresponding norm is denoted by ‖·‖α . In general the domain of (λ−A)α

for α ∈ (0, 1) can be expressed explicitly by interpolation of the spaces H and D(A); see Lions &
Magenes (1972). In the case that D is bounded with sufficiently smooth boundary we have

D((λ − A)α) =
{

H2α(D) for α ∈ (0, 3/4) ,{
y ∈ H2α(D) : ∂

∂ν
y = 0 on ∂D

}
for α ∈ (3/4, 1) ,

where we refer to Fujiwara (1967). We set Hb = L2(∂D) and introduce the Neumann operator
N : Hb → H given by g = Nh with

⎧⎨
⎩

Δg(x) = λ g(x) in D,

∂

∂ν
g(x) = h(x) on ∂D,

(2.1)
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A NUMERICAL METHOD FOR A CONTROLLED STOCHASTIC HEAT EQUATION 2121

where λ > 0. If D is bounded with sufficiently smooth boundary the result N ∈ L
(
Hb; H3/2(D)

)
has been proved in Lions & Magenes (1972). In this case we can therefore conclude that N ∈ L(Hb;
D((λ − A)α)) for α ∈ (0, 3/4), which means that the operator (λ − A)αN is linear and bounded by
the closed graph theorem. If D is instead bounded and convex then D has a Lipschitz boundary and
satisfies the cone property; see Grisvard (1985). We therefore again obtain N ∈ L(Hb; D((λ − A)α)) for
α ∈ (0, 3/4); see Lasiecka (1980).

Next we introduce the controlled stochastic heat equation with nonhomogeneous Neumann bound-
ary conditions as an evolution equation. Here, we include distributed and boundary controls as
well as distributed and boundary noise. Let U contain all Ft-adapted processes (u(t))t∈[0,T] with

values in an arbitrary Hilbert space Ū satisfying E
∫ T

0 ‖u(t)‖2
Ū

dt < ∞ and let V contain all

Ft-adapted processes (v(t))t∈[0,T] with values in V̄ ⊂ Hb satisfying E
∫ T

0 ‖v(t)‖2
Hb

dt < ∞. We consider
the following controlled system in H for t ∈ [0, T] and λ > 0:

{
dy(t) = [Ay(t) + Bu(t) + (λ − A)Nv(t)] dt + G dW(t) + (λ − A)N dWb(t),

y(0) = ξ ,
(2.2)

where (u(t))t∈[0,T] and (v(t))t∈[0,T] represent the distributed and the boundary controls. We assume
that u ∈ U, B ∈ L(Ū; H) and v ∈ V . The processes (W(t))t�0 and (Wb(t))t�0 are independent and
Ft-adapted Q-Wiener processes with values in H and Hb, respectively. The corresponding covariance
operators are denoted by Q ∈ L(H) and Qb ∈ L(Hb). We make the following assumptions.

Assumption 2.1 The initial value ξ ∈ L2(Ω; D((λ − A)β/2)) with β ∈ (0, 2) is F0-measurable.

Remark 2.2 The results shown in this section also hold for an F0-measurable initial value
ξ ∈ L2(Ω; H). We make the additional regularity requirement due to the main result stated in the
following section.

Assumption 2.3 We assume that G is a square-integrable random variable with values in the space
of Hilbert–Schmidt operators mapping Q1/2(H) into D((λ − A)(β−1)/2) denoted by LHS(Q1/2(H);
D((λ − A)(β−1)/2)), where β ∈ (0, 2) arises from Assumption 2.1.

Definition 2.4 A predictable process (y(t))t∈[0,T] with values in H is a mild solution of system
(2.2) if

sup
t∈[0,T]

E‖y(t)‖2
H < ∞

and for all t ∈ [0, T] and P-a.s.,

y(t) = eAtξ +
t∫

0

eA(t−s)Bu(s) ds +
t∫

0

(λ − A)eA(t−s)Nv(s) ds +
t∫

0

eA(t−s)G dW(s)

+
t∫

0

(λ − A)eA(t−s)N dWb(s).
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2122 P. BENNER ET AL.

For an existence and uniqueness result for a mild solution to system (2.2) we refer to Benner &
Trautwein (2018). Next we introduce the cost functional J : U × V → R defined by

J(u, v) = E

⎡
⎣ T∫

0

〈C y(t), C y(t)〉Z + 〈R u(t), u(t)〉H + 〈Rb v(t), v(t)〉Hb
dt

⎤
⎦ ,

where C ∈ L(H; Z) represents an observation operator mapping H into an arbitrary Hilbert space Z.
The operators R ∈ L(H) and Rb ∈ L(Hb) are given scaling factors for the costs of the controls and are
assumed to be invertible. The aim is to find controls u ∈ U and v ∈ V such that

J(u, v) = inf
u∈U,v∈V

J(u, v).

The controls u ∈ U and v ∈ V are called optimal controls. In Ahmed (1981), Benner & Trautwein
(2018), Curtain & Pritchard (1978), Duncan et al. (2012), Fabbri & Goldys (2009), Hu & Tang (2018),
similar control problems are considered with the result that the optimal controls satisfy a feedback law.
We follow the same approach here and therefore introduce the following Riccati equation in L(H):

⎧⎪⎨
⎪⎩

d

dt
P(t) = AP(t) + P(t)A − P(t)BR−1B∗P(t) − H ∗(t)GR−1

b G ∗H (t) + C∗C,

P(T) = 0,
(2.3)

where H (t) = (λ−A)1−αP(t), G = (λ−A)αN with α ∈ (1/2, 3/4). We make the following definition,
where Σ(H) denotes the space of all symmetric operators on H and C([0, T]; Σ(H)) is endowed with
the topology of uniform convergence.

Definition 2.5 The process (P(t))t∈[0,T] is a mild solution of (2.3) if

• P ∈ C([0, T]; Σ(H)),

• P(t)y ∈ D((λ − A)1−α) for every y ∈ H and all t ∈ [0, T),

• (λ − A)1−αP ∈ C([0, T);L(H)),

• limt→0 t1−α(λ − A)1−αP(t)y = 0 for every y ∈ H,

and for all t ∈ [0, T] and every y ∈ H,

P(t)y = −
T∫

t

eA(s−t)P(s)BR−1B∗P(s)eA(s−t)y ds

−
T∫

t

eA(s−t)[H ∗(s)GR−1
b G ∗H (s) − C∗C]eA(s−t)y ds. (2.4)
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A NUMERICAL METHOD FOR A CONTROLLED STOCHASTIC HEAT EQUATION 2123

In Bensoussan et al. (2007, Part IV), existence and uniqueness results for a mild solution to system
(2.3) are shown for some special cases. The ideas of these proofs are easily adapted to the current
situation, and therefore there exists a unique mild solution of system (2.3).

Remark 2.6 Equation (2.4) can be written equivalently as

d

dt
〈P(t)y, z〉H = 〈P(t)y, Az〉H + 〈P(t)Ay, z〉H − 〈R−1B∗P(t)y, B∗P(t)z〉H

− 〈R−1
b G ∗H(t)y,G ∗H (t)z〉H + 〈Cy, Cz〉Z

for every y, z ∈ D(A); see Bensoussan et al. (2007).

The optimal controls u ∈ U and v ∈ V satisfy a.e. on [0, T] and P-a.s.,

u(t) = −R−1B∗P(t)y(t), v(t) = −R−1
b G ∗H (t)y(t).

Plugging these formulas into (2.2) results in the following controlled system in H:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dy(t) =
[
Ay(t) − BR−1B∗P(t)y(t) − (λ − A)NR−1

b G ∗H (t)y(t)
]

dt

+ G dW(t) + (λ − A)N dWb(t),

y(0) = ξ .

(2.5)

3. A linear implicit Euler method for the finite element discretization

In this section we introduce a fully discrete scheme for system (2.5). We denote by Th a triangulation
of the domain D with mesh width h ∈ (0, 1]. Let Yh ⊂ Y = D((λ − A)1/2) be the set of continuous
functions that are piecewise linear over Th. We introduce the L2-projection Ph : H → Yh defined by

〈Phy, z〉H = 〈y, z〉H

for every y ∈ H and every z ∈ Yh. Then we have the basic estimate

‖y − Phy‖H � Chρ‖y‖ρ/2 (3.1)

for a constant C > 0 and every y ∈ D((λ − A)ρ/2) with ρ ∈ [0, 2]; see Thomeé (2006). Moreover, let
Rh : Y → Yh be the Y-projection given by

〈(λ − A)Rhy, z〉H = 〈(λ − A)y, z〉H

for every y ∈ Y and every z ∈ Yh. We have the following relation between the L2-projection Ph and the
Y-projection Rh:

(λ − Ah)Rhy = Ph(λ − A)y (3.2)
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2124 P. BENNER ET AL.

for every y ∈ D(A); see Lord & Tambue (2013, Lemma 3.1). We consider the following semidiscrete
version of system (2.5) in Yh:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dyh(t) =
[
Ahyh(t) − BhR−1B∗

hPh(t)yh(t) − Bb
hR−1

b

(
Bb

h

)∗
Ph(t)yh(t)

]
dt

+ PhG dW(t) + Bb
h dWb(t),

yh(0) = Phξ ,

(3.3)

where the operator Ah : Yh → Yh satisfies for every y, z ∈ Yh,

〈Ahy, z〉H = 〈Ay, z〉H

and Bh = PhB. As a consequence of inequality (3.1) we get

‖B∗y − B∗
hy‖H � Chρ‖y‖ρ/2 (3.4)

for a constant C > 0 and every y ∈ D((λ − A)ρ/2) with ρ ∈ [0, 2]. Moreover, we have
Bb

h = (λ−Ah)RhN ∈ L(Hb; H) and (Ph(t))t∈[0,T] with Ph(t) ∈ L(Yh) is the solution of the semidiscrete
version of system (2.3) given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dt
Ph(t) = AhPh(t) + Ph(t)Ah − Ph(t)BhR−1B∗

hPh(t)

− Ph(t)B
b
hR−1

b

(
Bb

h

)∗
Ph(t) + C∗

hCh,

Ph(T) = 0,

(3.5)

where Ch = CPh. By definition the operator Ah is again the infinitesimal generator of an analytic
semigroup (eAht)t�0 on Yh such that fractional powers of λ − Ah with λ > 0 are well defined. We can
therefore introduce the solutions of system (3.3) and (3.5) in a mild sense analogously to Definitions 2.4
and 2.5. We note that the mild solution of system (3.5) coincides again with the weak solution according
to Remark 2.6.

Next, let t0, t1, . . . , tM be a partition of the time interval [0, T] such that 0 = t0 < t1 < · · · < TM = T .
We assume that tm − tm−1 = Δt for each m = 1, . . . , M with Δt ∈ (0, 1]. Applying a linear implicit
Euler method to system (3.3) gives us the following fully discrete system in Yh for m = 1, . . . , M:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ym
h = Sh,Δty

m−1
h − ΔtSh,ΔtBhR−1B∗

hP m−1
h ym−1

h − ΔtSh,ΔtB
b
hR−1

b

(
Bb

h

)∗
P m−1

h ym−1
h

+ Sh,ΔtPhG δWm + Sh,ΔtB
b
h δWb,m,

y0
h = Phξ ,

(3.6)

where Sh,Δt = (I−ΔtAh)
−1, δWm−1 = W(tm)−W(tm−1) and δWb,m = Wb(tm)−Wb(tm−1). The operator

P m
h ∈ L (Yh) results from a time discretization of system (3.5). We make the following assumption.
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A NUMERICAL METHOD FOR A CONTROLLED STOCHASTIC HEAT EQUATION 2125

Assumption 3.1 We require for each m = 0, 1, . . . , M − 1,

‖P(tm) − Pm
h Ph‖L(H) � c (h2 + Δt),

‖G ∗H (tm) −
(

Bb
h

)∗
P m

h Ph‖L(H) � c (h + Δt1/4),

where c > 0 is a constant.

Remark 3.2 Note that we can at least write formally G ∗H(t) = (
Bb

h

)∗
P(t) for all t ∈ [0, T). Hence,

Assumption 3.1 especially provides the convergence rate for the operator
(
Bb

h

)∗
P(tm) − (

Bb
h

)∗ P m
h Ph

for each m = 0, 1, . . . , M − 1. For some convergence results we refer to Lasiecka & Triggiani (2000).
Here we will verify the convergence rates by a numerical experiment in Section 6.

We are now in a position to state the main result of the paper.

Theorem 3.3 Let (y(t))t∈[0,T] be the mild solution of system (2.5) and let ym
h satisfy the fully discrete

system (3.6) for m = 0, 1, . . . , M − 1. If Assumptions 2.1, 2.3 and 3.1 are fulfilled then there exists a
constant c > 0 such that for sufficiently small ε > 0,

‖y(tm) − ym
h ‖L2(Ω; H) � c

(
hmin{1/2−ε,β} + Δtmin{1/4−ε,β/2}).

The proof of this theorem will be provided in Section 5. In order to prepare we will first collect and
derive a number of lemmata in the following section.

4. Auxiliary results

We start by collecting some well-known properties of fractional powers of operators. For a proof see,
e.g., Pazy (1983), Vrabie (2003).

Lemma 4.1 Let A : D(A) ⊂ H → H be the Neumann realization of the Laplace operator. Then

(i) for α � 0 the operator (λ − A)α is linear and bounded, and for α > 0 the operator (λ − A)α is
linear and closed;

(ii) α � β � 0 implies D ((λ − A)α) ⊂ D((λ − A)β) and for every y ∈ D ((λ − A)α),

‖(λ − A)βy‖H � M0‖(λ − A)αy‖H ;

(iii) D ((λ − A)α) with α > 0 is dense in H;

(iv) (λ − A)α+βy = (λ − A)α(λ − A)βy if y ∈ D ((λ − A)γ ), where γ = max{α, β, α + β};
(v) for α > 0 and t > 0, we have eAt : H → D ((λ − A)α) and (λ − A)αeAty = eAt(λ − A)αy if

y ∈ D ((λ − A)α);

(vi) the operator (λ − A)αeAt is linear and bounded for α > 0 and t > 0, and moreover we have for
every y ∈ H,

‖(λ − A)αeAty‖H � Mαt−α‖y‖H ;

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/42/3/2118/6278491 by M
PI for D

ynam
ic and Kom

plex tech system
s user on 17 August 2022



2126 P. BENNER ET AL.

(vii) we have for every y ∈ D ((λ − A)α) with α ∈ (0, 1] and all t > 0,

‖eAty − y‖H � cαtα‖(λ − A)αy‖H .

4.1 Continuity of mild solutions to the controlled system

Next we show some useful properties of the exact mild solution y to the controlled system (2.5). In the
following we use c > 0 as a generic constant, which may take different values at different points.

Lemma 4.2 Let (y(t))t∈[0,T] be the mild solution of system (2.5). If Assumptions 2.1 and 2.3 hold then
there exists a constant c > 0 such that for all t ∈ [0, T],

‖y(t)‖L2(Ω; H) � c
(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
.

Proof. Similar results are well known in the theory of SPDEs with homogeneous boundary conditions;
see Lord & Tambue (2013), Tambue & Mukam (2019), Wang (2017). Indeed, the mild solution
(y(t))t∈[0,T] of system (2.5) involves mostly linear and bounded operators. By using Lemma 4.1 we
can introduce suitable powers (λ − A)α in front of the remaining unbounded operators to make them
bounded, if we pay by also multiplying the exponential terms by (λ − A)−α . For all α ∈ (1/2, 3/4) this
leads to

‖y(t)‖L2(Ω; H) � c
(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

) + c

t∫
0

(t − s)α−1 ‖y(s)‖L2(Ω; H) ds.

The claim follows by applying a generalized Grönwall inequality; see Ye et al. (2007, Corollary 2). �
Lemma 4.3 Let (y(t))t∈[0,T] be the mild solution of system (2.5). If Assumptions 2.1 and 2.3 hold then
there exists a constant c > 0 such that for all τ1, τ2 ∈ [0, T] with τ1 < τ2 and all γ ∈ (0, 1/4) with
γ < β/2,

‖y(τ2) − y(τ1)‖L2(Ω; H) � c (τ2 − τ1)
γ
(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
.

Proof. Similar results are well known in the theory of SPDEs with homogeneous boundary conditions;
see Kruse (2014), Lord & Tambue (2013), Wang (2017). Here, we state the main steps of the proof. By
definition we get

‖y(τ2) − y(τ1)‖L2(Ω; H) � I1 + I2 + I3 + I4 + I5, (4.1)
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where

I1 =
∥∥∥[eAτ2 − eAτ1

]
ξ

∥∥∥
L2(Ω; H)

,

I2 =
∥∥∥∥∥∥

τ1∫
0

[
eA(τ2−s) − eA(τ1−s)

]
BR−1B∗P(s)y(s) ds +

τ2∫
τ1

eA(τ2−s)BR−1B∗P(s)y(s) ds

∥∥∥∥∥∥
L2(Ω; H)

,

I3 =
∥∥∥∥∥∥

τ1∫
0

(λ − A)
[
eA(τ2−s) − eA(τ1−s)

]
NR−1

b G ∗H (s)y(s) ds

+
τ2∫

τ1

(λ − A)eA(τ2−s)NR−1
b G ∗H (s)y(s) ds

∥∥∥∥∥∥
L2(Ω; H)

,

I4 =
∥∥∥∥∥∥

τ1∫
0

[
eA(τ2−s) − eA(τ1−s)

]
G dW(s) +

τ2∫
τ1

eA(τ2−s)G dW(s)

∥∥∥∥∥∥
L2(Ω; H)

,

I5 =
∥∥∥∥∥∥

τ1∫
0

(λ − A)
[
eA(τ2−s) − eA(τ1−s)

]
N dWb(s) +

τ2∫
τ1

(λ − A)e A(τ2−s)N dWb(s)

∥∥∥∥∥∥
L2(Ω; H)

.

Recall that the semigroup (eAt)t�0 is a contraction. By Lemma 4.1(ii), (vii) we obtain

I1 � cγ (τ2 − τ1)
γ ‖ξ‖L2(Ω; D((λ−A)β/2)) . (4.2)

Because the operators B, R−1,P(t) are linear and bounded, using Lemma 4.1(i), (iv)–(vii) and
Lemma 4.2 shows that

I2 � c (τ2 − τ1)
γ
(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
. (4.3)

The operators (λ−A)αN, R−1
b ,G ∗,H (t) with α ∈ (0, 3/4) are also linear and bounded. Lemma 4.1(iv)–

(vii) and Lemma 4.2 therefore give us for all α ∈ (γ , 3/4) that

I3 � c (τ2 − τ1)
γ
(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
. (4.4)

The Itô isometry and Lemma 4.1(ii), (iv)–(vii) yield for β < 1,

I2
4 � c (τ2 − τ1)

2γ
E ‖G‖2

LHS(Q1/2(H); D((λ−A)(β−1)/2))
. (4.5)

For β ∈ [1, 2) the above inequality holds by a similar argument involving the fact that the operator
(λ − A)−(β−1)/2 is bounded. Finally, using the Itô isometry and Lemma 4.1(iv)–(vii) we get for all
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2128 P. BENNER ET AL.

α ∈ (1/2 + γ , 3/4) that

I2
5 � c (τ2 − τ1)

2γ. (4.6)

Substituting inequalities (4.2)–(4.6) into (4.1) yields the result. �

4.2 Continuity of mild solutions to the Riccati equation

We also need similar continuity properties of the mild solution P to the Riccati equation (2.3) and the
transformed version H = (λ − A)1−αP . In the following we use c > 0 as a generic constant that may
change from time to time.

Lemma 4.4 Let (P(t))t∈[0,T] be the mild solution of system (2.3). Then there exists a constant c > 0
such that for all τ1, τ2 ∈ [0, T] with τ1 < τ2 and all γ ∈ (0, 1),

‖P(τ2) − P(τ1)‖L(H) � c (τ2 − τ1)
γ.

Proof. Let y ∈ H. We set, for all t ∈ [0, T],

J (t) = P(t)BR−1B∗P(t), K (t) = H ∗(t)GR−1
b G ∗H (t) − C∗C.

Note that the operators J (t) and K(t) are linear and bounded. By definition and Lemma 4.1(iv), (v)
we get

‖P(τ2)y − P(τ1)y‖H � I1 + I2, (4.7)

where

I1 =
T∫

τ2

∥∥∥[I − eA(τ2−τ1)
]

eA(s−τ2)J (s)eA(s−τ2)y
∥∥∥

H
ds +

T∫
τ2

∥∥∥eA(s−τ1)J (s)
[
I − eA(τ2−τ1)

]
eA(s−τ2)y

∥∥∥
H

ds

+
τ2∫

τ1

∥∥∥(λ − A)1−γ eA(s−τ1)(λ − A)γ−1J (s)eA(s−τ1)y
∥∥∥

H
ds

and

I2 =
T∫

τ2

∥∥∥[I − eA(τ2−τ1)
]

eA(s−τ2)K (s)eA(s−τ2)y
∥∥∥

H
ds +

T∫
τ2

∥∥∥eA(s−τ1)K (s)
[
I −eA(τ2−τ1)

]
eA(s−τ2)y

∥∥∥
H

ds

+
τ2∫

τ1

∥∥∥(λ − A)1−γ eA(s−τ1)(λ − A)γ−1K (s)eA(s−τ1)y
∥∥∥

H
ds.
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Recall that the semigroup (eAt)t�0 is a contraction and that the operators P(t), B and R−1 are linear and
bounded for all t ∈ [0, T]. Lemma 4.1(i), (vi), (vii) give us

I1 � c

⎡
⎣(τ2 − τ1)

γ

T∫
τ2

(s − τ2)
−γ ds +

τ2∫
τ1

(s − τ1)
γ−1 ds

⎤
⎦ ‖y‖H � c (τ2 − τ1)

γ ‖y‖H . (4.8)

Recall that the operators H (t), G, R−1
b and C are linear and bounded for all t ∈ [0, T]. Similarly to the

above we obtain

I2 � c (τ2 − τ1)
γ ‖y‖H . (4.9)

Substituting inequalities (4.8) and (4.9) into (4.7) yields the result. �
Lemma 4.5 Let (H (t))t∈[0,T] be given by

H (t) = (λ − A)1−αP(t)

for α ∈ (1/2, 3/4), where (P(t))t∈[0,T] is the mild solution of system (2.3). Then there exists a constant
c > 0 such that, for all τ1, τ2 ∈ [0, T) with τ1 < τ2 and all γ ∈ (0, α),

‖H (τ2) − H (τ1)‖L(H) � c (τ2 − τ1)
γ.

Proof. Let y ∈ H. We set, for all t ∈ [0, T],

J (t) = P(t)BR−1B∗P(t), K(t) = H ∗(t)GR−1
b G ∗H (t) − C∗C.

Note that the operators J (t) and K (t) are linear and bounded. By definition and Lemma 4.1(iv), (v)
we get

‖H (τ2)y − H (τ1)y‖H = ‖(λ − A)1−αP(τ2)y − (λ − A)1−αP(τ1)y‖H � I1 + I2, (4.10)

where

I1 =
T∫

τ2

∥∥∥[I − eA(τ2−τ1)
]
(λ − A)1−αeA(s−τ2)J (s)eA(s−τ2)y

∥∥∥
H

ds

+
T∫

τ2

∥∥∥(λ − A)1−αeA(s−τ1)J (s)
[
I − eA(τ2−τ1)

]
eA(s−τ2)y

∥∥∥
H

ds

+
τ2∫

τ1

∥∥∥(λ − A)1−αeA(s−τ1)J (s)(λ − A)α−γ eA(s−τ1)(λ − A)γ−αy
∥∥∥

H
ds
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and

I2 =
T∫

τ2

∥∥∥[I − eA(τ2−τ1)
]
(λ − A)1−αeA(s−τ2)K(s)eA(s−τ2)y

∥∥∥
H

ds

+
T∫

τ2

∥∥∥(λ − A)1−αeA(s−τ1)K(s)
[
I − eA(τ2−τ1)

]
eA(s−τ2)y

∥∥∥
H

ds

+
τ2∫

τ1

∥∥∥(λ − A)1−αeA(s−τ1)K(s)(λ − A)α−γ eA(s−τ1)(λ − A)γ−αy
∥∥∥

H
ds.

Recall that the semigroup (e At)t�0 is a contraction and that the operators P(t), B and R−1 are linear and
bounded for all t ∈ [0, T]. Lemma 4.1(i), (vi), (vii) show that

I1 � c

⎡
⎣(τ2 − τ1)

γ

T∫
τ2

(s − τ2)
α−1−γ ds

+(τ2 − τ1)
−α+1+γ

T∫
τ2

(s − τ1)
α−1(s − τ2)

α−1−γ ds +
τ2∫

τ1

(s − τ1)
γ−1 ds

⎤
⎦ ‖y‖H

� c (τ2 − τ1)
γ ‖y‖H . (4.11)

Since the operators H (t), G, R−1
b and C are linear and bounded for all t ∈ [0, T] a very similar argument

leads to

I2 � c (τ2 − τ1)
γ ‖y‖H . (4.12)

Substituting inequalities (4.11) and (4.12) into (4.10) yields the result. �

4.3 Discretized solution operators

Finally, we collect some results that compare the spatially discretized solution operator eAht to the exact
solution operator eAt and to the fully discretized time stepping operator Sh,Δt.

Lemma 4.6 There exists a constant c > 0 such that

(i) for every y ∈ D((λ − A)ρ/2) with ρ, r ∈ [0, 2] satisfying ρ � r and all t > 0,

∥∥∥eAty − eAhtPhy
∥∥∥

H
� c hrt−(r−ρ)/2‖y‖ρ/2;
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(ii) for every y ∈ D((λ − A)−ρ/2) with ρ ∈ [0, 1] and all t > 0,

∥∥∥eAty − eAhtPhy
∥∥∥

H
� c h2−ρ t−1‖y‖−ρ/2;

(iii) for every y ∈ D((λ − A)α) with α ∈ [1/2, 1] and all t > 0,

∥∥∥(λ − A)eAty − eAht(λ − Ah)Rhy
∥∥∥

H
� c h2αt−1‖y‖α .

Proof. A proof of (i) can be found in Lord & Tambue (2013, Lemma 3.1) for r ∈ {1, 2}. For r = 0
the inequality is an immediate consequence of the fact that the semigroups (eAt)t�0 and (eAht)t�0 are
contractions. The result holds for all r ∈ [0, 2] applying interpolation techniques, which is demonstrated
in Thomeé (2006, Theorem 3.5). For assertion (ii) we can follow Tambue & Mukam (2019, Lemma
3.2 (iii)). It remains to show (iii). Let us first assume that y ∈ D(A). By Equation (3.2), Lemma 4.1(iv),
(v) and claim (ii) with ρ = 2 − 2α we obtain

∥∥∥(λ − A)eAty − eAht(λ − Ah)Rhy
∥∥∥

H
=

∥∥∥eAt(λ − A)y − eAhtPh(λ − A)y
∥∥∥

H

� c h2αt−1
∥∥∥(λ − A)α−1(λ − A)y

∥∥∥
H

= c h2αt−1 ‖y‖α .

The above inequality holds also for every y ∈ D((λ − A)α) with α ∈ [1/2, 1] by standard density
arguments. Indeed, for every y ∈ D((λ−A)α), there exists a sequence (yk)k∈N ⊂ D(A) such that yk → y
in D((λ − A)α) as k → ∞ resulting from Lemma 4.1(ii), (iii). Due to Lemma 4.1(iv)–(vi) we get for
each k ∈ N,

∥∥∥(λ − A)eAty − eAht(λ − Ah)Rhy
∥∥∥

H

=
∥∥∥(λ − A)eAt(y − yk) − eAht(λ − Ah)Rh(y − yk) + (λ − A)eAtyk − eAht(λ − Ah)Rhyk

∥∥∥
H

�
∥∥∥(λ − A)1−αeAt(λ − A)α(y − yk)

∥∥∥
H

+
∥∥∥eAht(λ − Ah)Rh(y − yk)

∥∥∥
H

+
∥∥∥(λ − A)eAtyk − eAht(λ − Ah)Rhyk

∥∥∥
H

�
(

M1−α tα−1 + c M0

)
‖y − yk‖α + c h2αt−1

∥∥yk

∥∥
α

�
(

M1−α tα−1 + c M0

)
‖y − yk‖α + c h2αt−1

∥∥yk − y
∥∥

α
+ c h2αt−1 ‖y‖α .

Hence, the result follows as k → ∞. �
Lemma 4.7 (Fujita & Mizutani, 1976, Theorem 6.1). For each m = 1, . . . , M we have

∥∥Sm
h,Δt

∥∥
L(H)

� 1,
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where Sm
h,Δt denotes the composition of Sh,Δt with itself m times.

Lemma 4.8 There exists a constant c > 0 such that

(i) for every y ∈ D((λ − A)ρ/2) with ρ ∈ [0, 2] and each m = 0, 1, . . . , M,

∥∥∥eAhtmPhy − Sm
h,ΔtPhy

∥∥∥
H
� c Δtρ/2‖y‖ρ/2;

(ii) for every y ∈ D((λ − A)−ρ/2) with ρ ∈ [0, 1] and each m = 1, . . . , M,

∥∥∥eAhtmPhy − Sm
h,ΔtPhy

∥∥∥
H
� c t−1

m Δt(2−ρ)/2‖y‖−ρ/2;

(iii) for every y ∈ D((λ − A)α) with α ∈ [1/2, 1] and each m = 1, . . . , M,

∥∥∥eAhtm(λ − Ah)Rhy − Sm
h,Δt(λ − Ah)Rhy

∥∥∥
H
� c t−1

m Δtα‖y‖α .

Proof. Claims (i) and (ii) are proven in Tambue & Mukam (2019, Lemma 3.3). It remains to show (iii).
Let us first assume that y ∈ D(A). Using Equation (3.2) and (ii) with ρ = 2 − 2α we get

∥∥∥eAhtm(λ − Ah)Rhy − Sm
h,Δt(λ − Ah)Rhy

∥∥∥
H

=
∥∥∥eAhtmPh(λ − A)y − Sm

h,ΔtPh(λ − A)y
∥∥∥

H

� c t−1
m Δtα

∥∥∥(λ − A)α−1(λ − A)y
∥∥∥

H

= c t−1
m Δtα ‖y‖α .

The above inequality holds also for every y ∈ D((λ − A)α) with α ∈ [1/2, 1] by standard density
arguments as demonstrated in Lemma 4.6(iii). �
Lemma 4.9 There exists a constant c > 0 such that

(i) for every y ∈ D((λ − A)−ρ/2) with ρ ∈ [0, 1] and all t > 0,

∥∥∥∥∥∥
t∫

0

eAsy − eAhsPhy ds

∥∥∥∥∥∥
H

� c h2−ρ‖y‖−ρ/2;

(ii) for every y ∈ D((λ − A)(μ−1)/2) with μ ∈ [0, 2] and all t > 0,

⎛
⎝ t∫

0

∥∥∥eAsy − eAhsPhy
∥∥∥2

H
ds

⎞
⎠

1/2

� c hμ‖y‖(μ−1)/2;
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(iii) for every y ∈ D((λ − A)α) with α ∈ [1/2, 1] and all t > 0,

∥∥∥∥∥∥
t∫

0

(λ − A)eAsy − eAhs(λ − Ah)Rhy ds

∥∥∥∥∥∥
H

� c h2α‖y‖α;

(iv) for every y ∈ D((λ − A)α) with α ∈ [1/2, 3/2] and all t > 0,

⎛
⎝ t∫

0

∥∥∥(λ − A)eAsy − eAhs(λ − Ah)Rhy
∥∥∥2

H
ds

⎞
⎠

1/2

� c h2α−1‖y‖α .

Proof. Claims (i) and (ii) are shown in Tambue & Mukam (2019, Lemma 3.2). It remains to show
(iii) and (iv). First, we assume that y ∈ D(A). Using Lemma 4.1(iv), (v), Equation (3.2) and (i) with
ρ = 2 − 2α we get

∥∥∥∥∥∥
t∫

0

(λ − A)eAsy − eAhs(λ − Ah)Rhy ds

∥∥∥∥∥∥
H

=
∥∥∥∥∥∥

t∫
0

eAs(λ − A)y − eAhsPh(λ − A)y ds

∥∥∥∥∥∥
H

� c h2α‖(λ − A)α−1(λ − A)y‖H

= c h2α‖y‖α . (4.13)

Using Lemma 4.1(iv), (v), Equation (3.2) and (ii) with μ = 2α − 1 we have

⎛
⎝ t∫

0

∥∥∥(λ − A)eAsy − eAhs(λ − Ah)Rhy
∥∥∥2

H
ds

⎞
⎠

1/2

=
⎛
⎝ t∫

0

∥∥∥eAs(λ − A)y − eAhsPh(λ − A)y
∥∥∥2

H
ds

⎞
⎠

1/2

� c h2α−1‖(λ − A)α−1(λ − A)y‖H

= c h2α−1‖y‖α . (4.14)

Inequality (4.13) holds for every y ∈ D((λ − A)α) with α ∈ [1/2, 1] and inequality (4.14) holds for
every y ∈ D((λ − A)α with α ∈ [1/2, 3/2] by standard density arguments as shown in Lemma 4.6(iii).

�
Lemma 4.10 There exists a constant c > 0 such that

(i) for arbitrary small ε > 0, every y ∈ D((λ − A)−ρ/2) with ρ ∈ [0, 1] and each m = 1, . . . , M,

∥∥∥∥∥∥
m−1∑
k=0

tk+1∫
tk

eAhsPhy − Sk+1
h,ΔtPhy ds

∥∥∥∥∥∥
H

� c Δt(2−ρ)/2−ε‖y‖−ρ/2;
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(ii) for arbitrary small ε > 0, every y ∈ D((λ − A)(μ−1)/2) with μ ∈ [0, 2] and each m = 1, . . . , M,

⎛
⎝m−1∑

k=0

tk+1∫
tk

∥∥∥eAhsPhy − Sk+1
h,ΔtPhy

∥∥∥2

H
ds

⎞
⎠

1/2

� c Δtμ/2−ε‖y‖(μ−1)/2;

(iii) for arbitrary small ε > 0, every y ∈ D((λ − A)α) with α ∈ [1/2, 1] and each m = 1, . . . , M,

∥∥∥∥∥∥
m−1∑
k=0

tk+1∫
tk

eAhs(λ − Ah)Rhy − Sk+1
h,Δt(λ − Ah)Rhy ds

∥∥∥∥∥∥
H

� c Δtα−ε‖y‖α;

(iv) for arbitrary small ε > 0, every y ∈ D((λ − A)α) with α ∈ [1/2, 3/2] and each m = 1, . . . , M,

⎛
⎝m−1∑

k=0

tk+1∫
tk

∥∥∥eAhs(λ − Ah)Rhy − Sk+1
h,Δt(λ − Ah)Rhy

∥∥∥2

H
ds

⎞
⎠

1/2

� c Δt(2α−1)/2−ε‖y‖α .

Proof. Assertions (i) and (ii) are proven in Tambue & Mukam (2019, Lemma 3.5). Claims (iii) and (iv)
can be obtained similarly to Lemma 4.9(iii), (iv). �

5. Proof of Theorem 3.3

After all the preparation in the previous section we can now prove the main result.

Proof of Theorem 3.3. The mild solution of system (2.5) can be rewritten P-a.s.,

y(tm) = eAtmξ −
m−1∑
k=0

tk+1∫
tk

eA(tm−s)BR−1B∗P(s)y(s) ds −
m−1∑
k=0

tk+1∫
tk

(λ − A)eA(tm−s)NR−1
b G ∗H (s)y(s) ds

+
m−1∑
k=0

tk+1∫
tk

eA(tm−s)G dW(s) +
m−1∑
k=0

tk+1∫
tk

(λ − A)eA(tm−s)N dWb(s).

Similarly, the fully discrete scheme (3.6) can be rewritten P-a.s.,

ym
h = Sm

h,ΔtPhξ −
m−1∑
k=0

tk+1∫
tk

Sm−k
h,Δt BhR−1B∗

hP k
hyk

h ds −
m−1∑
k=0

tk+1∫
tk

Sm−k
h,Δt Bb

hR−1
b

(
Bb

h

)∗
P k

hyk
h ds

+
m−1∑
k=0

tk+1∫
tk

Sm−k
h,Δt PhG(tm−1) dW(s) +

m−1∑
k=0

tk+1∫
tk

Sm−k
h,Δt Bb

h dWb(s).
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Therefore, we obtain

‖y(tm) − ym
h ‖L2(Ω; H) � I1 + I2 + I3 + I4 + I5, (5.1)

where

I1 =
∥∥∥eAtmξ − Sm

h,ΔtPhξ

∥∥∥
L2(Ω; H)

,

I2 =
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

eA(tm−s)BR−1B∗P(s)y(s) ds −
tk+1∫
tk

Sm−k
h,Δt BhR−1B∗

hP k
hyk

h ds

∥∥∥∥∥∥
L2(Ω; H)

,

I3 =
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

(λ − A)eA(tm−s)NR−1
b G ∗H (s)y(s) ds −

tk+1∫
tk

Sm−k
h,Δt Bb

hR−1
b

(
Bb

h

)∗
P k

hyk
h ds

∥∥∥∥∥∥
L2(Ω; H)

,

I4 =
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

eA(tm−s)G dW(s) −
tk+1∫
tk

Sm−k
h,Δt PhG dW(s)

∥∥∥∥∥∥
L2(Ω; H)

and

I5 =
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

(λ − A)eA(tm−s)N dWb(s) −
tk+1∫
tk

Sm−k
h,Δt Bb

h dWb(s)

∥∥∥∥∥∥
L2(Ω; H)

.

Lemma 4.6(i) with r = ρ = β and Lemma 4.8(i) with ρ = β give us

I1 �
∥∥∥eAtmξ − eAhtmPhξ

∥∥∥
L2(Ω; H)

+
∥∥∥eAhtmPhξ − Sm

h,ΔtPhξ

∥∥∥
L2(Ω; H)

� c (hβ + Δtβ/2)‖ξ‖L2(Ω; D((λ−A)β/2)). (5.2)

Recall that Bh = PhB. We have

I2 � I2,1 + I2,2 + I2,3 + I2,4 + I2,5 + I2,6, (5.3)
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where

I2,1 =
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

[
eA(tm−s) − eAh(tm−s)Ph

]
BR−1B∗P(s)y(s) ds

∥∥∥∥∥∥
L2(Ω; H)

,

I2,2 =
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

[
eAh(tm−s)Ph − Sm−k

h,Δt Ph

]
BR−1B∗P(s)y(s) ds

∥∥∥∥∥∥
L2(Ω; H)

,

I2,3 =
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

Sm−k
h,Δt BhR−1[B∗ − B∗

h]P(s)y(s) ds

∥∥∥∥∥∥
L2(Ω; H)

,

I2,4 =
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

Sm−k
h,Δt BhR−1B∗

h[P(s)y(s) − P(tk)y(tk)] ds

∥∥∥∥∥∥
L2(Ω; H)

,

I2,5 =
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

Sm−k
h,Δt BhR−1B∗

h

[
P(tk) − P k

hPh

]
y(tk) ds

∥∥∥∥∥∥
L2(Ω; H)

,

I2,6 =
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

Sm−k
h,Δt BhR−1B∗

hP k
hPh

[
y(tk) − yk

h

]
ds

∥∥∥∥∥∥
L2(Ω; H)

.

Recall that the operator P(t) is linear and bounded for all t ∈ [0, T]. Using Lemmas 4.2–4.4 there exists
a constant c > 0 such that for all τ1, τ2 ∈ [0, T] with τ1 < τ2 and all γ ∈ (0, 1/4) with γ < β/2,

∥∥P(τ2)y(τ2) − P(τ1)y(τ1)
∥∥

L2(Ω; H)
�

∥∥P(τ2)
[
y(τ2) − y(τ1)

]∥∥
L2(Ω; H)

+ ∥∥[P(τ2) − P(τ1)
]

y(τ1)
∥∥

L2(Ω; H)

� c (τ2 − τ1)
γ
(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
. (5.4)

We set for all t ∈ [0, T] and P-a.s.,

ỹ(t) = BR−1B∗P(t)y(t).

By a change of variables we get

I2,1 �

∥∥∥∥∥∥
tm∫

0

[
eAs − eAhsPh

] (
ỹ(tm − s) − ỹ(tm)

)
ds

∥∥∥∥∥∥
L2(Ω; H)

+
∥∥∥∥∥∥

tm∫
0

[
eAs − eAhsPh

]
ỹ(tm) ds

∥∥∥∥∥∥
L2(Ω; H)

.
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Recall that the operators B and R−1 are linear and bounded. Due to Lemmas 4.2, 4.3, 4.6(ii) with ρ = 0,
4.9(i) with ρ = 0 and inequality (5.4) we obtain, for all γ ∈ (0, 1/4) with γ < β/2,

I2,1 � c h2

tm∫
0

s−1
∥∥ỹ(tm − s) − ỹ(tm)

∥∥
L2(Ω; H)

ds + c h2
∥∥ỹ(tm)

∥∥
L2(Ω; H)

� c h2

⎡
⎣ tm∫

0

sγ−1ds + 1

⎤
⎦(

1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)

� c h2 (
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
. (5.5)

We have

I2,2 � I(1)
2,2 + I(2)

2,2 , (5.6)

where

I(1)
2,2 =

∥∥∥∥∥∥
m−1∑
k=0

tk+1∫
tk

[
eAh(tm−s)Ph − Sm−k

h,Δt Ph

] (
ỹ(s) − ỹ(tm)

)
ds

∥∥∥∥∥∥
L2(Ω; H)

and

I(2)
2,2 =

∥∥∥∥∥∥
m−1∑
k=0

tk+1∫
tk

[
eAh(tm−s)Ph − Sm−k

h,Δt Ph

]
ỹ(tm) ds

∥∥∥∥∥∥
L2(Ω; H)

.

By a change of variables we obtain

I(1)
2,2 �

∥∥∥∥∥∥
m−1∑
k=0

tk+1∫
tk

[
I − eAh(tk+1−s)

]
eAhsPh

(
ỹ(tm − s) − ỹ(tm)

)
ds

∥∥∥∥∥∥
L2(Ω; H)

+
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

[
eAhtk+1 Ph − Sk+1

h,ΔtPh

] (
ỹ(tm − s) − ỹ(tm)

)
ds

∥∥∥∥∥∥
L2(Ω; H)

and

I(2)
2,2 =

∥∥∥∥∥∥
m−1∑
k=0

tk+1∫
tk

[
eAhsPh − Sk+1

h,ΔtPh

]
ỹ(tm) ds

∥∥∥∥∥∥
L2(Ω; H)

.

Note that the properties from Lemma 4.1 hold also for the operator Ah and for the corresponding
semigroup (eAht)t�0. Moreover, the operator Bh is linear and bounded. Using Lemmas 4.3, 4.8(ii) with
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ρ = 0 and inequality (5.4) we get, for all γ ∈ (0, 1/4) with γ � β/2,

I(1)
2,2 � c

m−1∑
k=0

tk+1∫
tk

(tk+1 − s)s−1
∥∥Ph

(
ỹ(tm − s) − ỹ(tm)

)∥∥
L2(Ω; H)

ds

+ c Δt
m−1∑
k=0

tk+1∫
tk

t−1
k+1

∥∥ỹ(tm − s) − ỹ(tm)
∥∥

L2(Ω; H)
ds

� c Δt

tm∫
0

sγ−1ds

� c Δt. (5.7)

Due to Lemmas 4.2 and 4.10(i) with ρ = 0 we have

I(2)
2,2 � c Δt1−ε

∥∥ỹ(tm)
∥∥

L2(Ω; H)
� c Δt1−ε

(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
. (5.8)

Substituting inequalities (5.7) and (5.8) into (5.6) yields

I2,2 � c Δt1−ε
(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
. (5.9)

Using Lemmas 4.2, 4.7 and inequality (3.4) with ρ < 1 we obtain

I2,3 � chρ

tm∫
0

∥∥∥(λ − A)ρ/2P(s)y(s)
∥∥∥

L2(Ω; H)
ds � chρ

(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
. (5.10)

Lemma 4.7 and inequality (5.4) give us, for all γ ∈ (0, 1/4) with γ < β/2,

I2,4 � c
m−1∑
k=0

tk+1∫
tk

(s − tk)
γ ds

(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
� c Δtγ

(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
. (5.11)

Due to Assumption 3.1 and Lemma 4.2 we get

I2,5 � c (h2 + Δt)
m−1∑
k=0

tk+1∫
tk

∥∥y(tk)
∥∥

L2(Ω; H)
ds � c (h2 + Δt)

(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
. (5.12)

As a consequence of Lemma 4.7 we have

I2,6 � c Δt
m−1∑
k=0

∥∥∥y(tk) − yk
h

∥∥∥
L2(Ω; H)

. (5.13)
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Substituting inequalities (5.5) and (5.9)–(5.13) into (5.3) yields for sufficiently small ε > 0 that

I2 � c (hρ + Δtmin{1/4−ε,β/2})
(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

) + c Δt
m−1∑
k=0

∥∥∥y(tk) − yk
h

∥∥∥
L2(Ω; H)

. (5.14)

Recall that Bb
h = (λ − Ah)RhN. Similarly to above we get

I3 � I3,1 + I3,2 + I3,3 + I3,4 + I3,5, (5.15)

where

I3,1 =
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

[
(λ − A)eA(tm−s) − eAh(tm−s)(λ − Ah)Rh

]
NR−1

b G ∗H (s)y(s) ds

∥∥∥∥∥∥
L2(Ω; H)

,

I3,2 =
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

[
eAh(tm−s)(λ − Ah)Rh − Sm−k

h,Δt (λ − Ah)Rh

]
NR−1

b G ∗H (s)y(s) ds

∥∥∥∥∥∥
L2(Ω; H)

,

I3,3 =
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

Sm−k
h,Δt (λ − Ah)RhNR−1

b G ∗ [
H (s)y(s) − H (tk)y(tk)

]
ds

∥∥∥∥∥∥
L2(Ω; H)

,

I3,4 =
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

Sm−k
h,Δt (λ − Ah)RhNR−1

b

[
G ∗H (tk) −

(
Bb

h

)∗
P k

hPh

]
y(tk) ds

∥∥∥∥∥∥
L2(Ω; H)

and

I3,5 =
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

Sm−k
h,Δt (λ − Ah)RhNR−1

b

(
Bb

h

)∗
P k

hPh

[
y(tk) − yk

h

]
ds

∥∥∥∥∥∥
L2(Ω; H)

.

Recall that the operator H (t) is linear and bounded for all t ∈ [0, T). Using Lemmas 4.2, 4.3 and 4.5
there exists a constant c > 0 such that for all τ1, τ2 ∈ [0, T) with τ1 < τ2 and all γ ∈ (0, 1/4) with
γ < β/2,

∥∥H (τ2)y(τ2) − H (τ1)y(τ1)
∥∥

L2(Ω; H)
�

∥∥H (τ2)
[
y(τ2) − y(τ1)

]∥∥
L2(Ω; H)

+ ∥∥[H (τ2) − H (τ1)
]

y(τ1)
∥∥

L2(Ω; H)

� c (τ2 − τ1)
γ
(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
. (5.16)
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We set, for all t ∈ [0, T) and P-a.s.,

y(t) = NR−1
b G ∗H (t)y(t).

By a change of variables we obtain

I3,1 �

∥∥∥∥∥∥
tm∫

0

[
(λ − A)eAs − eAhs(λ − Ah)Rh

] (
y(tm − s) − y(tm)

)
ds

∥∥∥∥∥∥
L2(Ω; H)

+
∥∥∥∥∥∥

tm∫
0

[
(λ − A)eAs − eAhs(λ − Ah)Rh

]
y(tm) ds

∥∥∥∥∥∥
L2(Ω; H)

.

Recall that the operators (λ − A)αN, R−1
b ,G ∗ are linear and bounded for all α ∈ (0, 3/4). Lemmas 4.2,

4.6(iii) with α ∈ [1/2, 3/4), inequality (5.16) and Lemma 4.9(iii) with α ∈ [1/2, 3/4) give us, for all
γ ∈ (0, 1/4) with γ < β/2,

I3,1 � c h2α

tm∫
0

s−1
∥∥(λ − A)α

(
y(tm − s) − y(tm)

)∥∥
L2(Ω; H)

ds + c h2α
∥∥(λ − A)αy(tm)

∥∥
L2(Ω; H)

� c h2α

⎡
⎣ tm∫

0

sγ−1ds + 1

⎤
⎦(

1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)

� c h2α
(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
. (5.17)

We have

I3,2 � I(1)
3,2 + I(2)

3,2 , (5.18)

where

I(1)
3,2 =

∥∥∥∥∥∥
m−1∑
k=0

tk+1∫
tk

[
eAh(tm−s)(λ − Ah)Rh − Sm−k

h,Δt (λ − Ah)Rh

] (
y(s) − y(tm)

)
ds

∥∥∥∥∥∥
L2(Ω; H)

and

I(2)
3,2 =

∥∥∥∥∥∥
m−1∑
k=0

tk+1∫
tk

[
eAh(tm−s)(λ − Ah)Rh − Sm−k

h,Δt (λ − Ah)Rh

]
y(tm) ds

∥∥∥∥∥∥
L2(Ω; H)

.
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By a change of variables we get

I(1)
3,2 �

∥∥∥∥∥∥
m−1∑
k=0

tk+1∫
tk

[
I − eAh(tk+1−s)

]
eAhs(λ − Ah)Rh

(
y(tm − s) − y(tm)

)
ds

∥∥∥∥∥∥
L2(Ω; H)

+
∥∥∥∥∥∥

m−1∑
k=0

tk+1∫
tk

[
eAhtk+1(λ − Ah)Rh − Sk+1

h,Δt(λ − Ah)Rh

] (
y(tm − s) − y(tm)

)
ds

∥∥∥∥∥∥
L2(Ω; H)

and

I(2)
3,2 =

∥∥∥∥∥∥
m−1∑
k=0

tk+1∫
tk

[
eAhs(λ − Ah)Rh − Sk+1

h,Δt(λ − Ah)Rh

]
y(tm) ds

∥∥∥∥∥∥
L2(Ω; H)

.

Recall that the operators (λ − Ah), Rh are linear and bounded. Lemma 4.8(iii) with α ∈ [1/2, 3/4) and
inequality (5.16) yield, for all γ ∈ (0, 1/4) with γ < β/2,

I(1)
3,2 � c

m−1∑
k=0

tk+1∫
tk

(tk+1 − s)s−1
∥∥(λ − Ah)Rh

(
y(tm − s) − y(tm)

)∥∥
L2(Ω; H)

ds

+ c Δtα
m−1∑
k=0

tk+1∫
tk

t−1
k+1

∥∥∥(λ − A)αNR−1
b G∗ (

y(tm − s) − y(tm)
)∥∥∥

L2(Ω; H)
ds

� c

⎡
⎣Δt

tm∫
0

sγ−1ds + Δtα
tm∫

0

sγ−1ds

⎤
⎦(

1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
� c Δtα

(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
. (5.19)

Due to Lemmas 4.2 and 4.10(iii) with α ∈ [1/2, 3, 4) we have

I(2)
3,2 � c Δtα−ε

∥∥∥(λ − A)αNR−1
b G ∗H (tm)y(tm)

∥∥∥
L2(Ω; H)

� c Δtα−ε
(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
. (5.20)

Substituting inequalities (5.19) and (5.20) into (5.18) yields

I3,2 � c Δtμ
(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
(5.21)

with μ ∈ (0, 3/4). By Lemma 4.7 and inequality (5.16) we get, for all γ ∈ (0, 1/4) with γ < β/2,

I3,3 � c
m−1∑
k=0

tk+1∫
tk

(s − tk)
γ ds

(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
� c Δtγ

(
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
. (5.22)
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Using Lemmas 4.2, 4.7 and Assumption 3.1 we have

I3,4 � c
(

h + Δt1/4
) (

1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
. (5.23)

Lemma 4.7 gives us

I3,5 � c Δt
m−1∑
k=0

∥∥∥y(tk) − yk
h

∥∥∥
L2(Ω; H)

. (5.24)

Substituting inequalities (5.17) and (5.21)–(5.24) into (5.15) yields for sufficiently small ε > 0 that

I3 � c
(

h + Δtmin{1/4−ε,β/2}) (
1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

) + c Δt
m−1∑
k=0

∥∥∥y(tk) − yk
h

∥∥∥
L2(Ω; H)

. (5.25)

We set S(t) = Sk
h,Δt if t ∈ [tk−1, tk) for each k = 1, . . . , M. The Itô isometry and a change of variables

give us

I4 �

⎛
⎝E

tm∫
0

∥∥∥[eAs − eAhsPh

]
G
∥∥∥2

LHS(Q1/2(H); H)
ds

⎞
⎠

1/2

+
⎛
⎝E

m−1∑
k=0

tk+1∫
tk

∥∥∥[eAhsPh − Sk+1
h,ΔtPh

]
G
∥∥∥2

LHS(Q1/2(H); H)
ds

⎞
⎠

1/2

.

By Lemma 4.9(ii) with μ = β and Lemma 4.10(ii) with μ = β − 2ε we obtain

I4 � c
(

hβ + Δtβ/2
)(

E

∥∥∥(λ − A)−ε(λ − A)(β−1)/2G
∥∥∥2

LHS(Q1/2(H); H)

)1/2

� c
(

hβ + Δtβ/2
) (

E ‖G‖2
LHS(Q1/2(H); D((λ−A)(β−1)/2))

)1/2
. (5.26)

Similarly, we have

I5 �

⎛
⎝ tm∫

0

∥∥∥[(λ − A)eAs − eAhs(λ − Ah)Rh

]
N
∥∥∥2

LHS(Q1/2
b (Hb); H)

ds

⎞
⎠

1/2

+
⎛
⎝m−1∑

k=0

tk+1∫
tk

∥∥∥[eAhs(λ − Ah)Rh − Sk
h,Δt(λ − Ah)Rh

]
N
∥∥∥2

LHS(Q1/2
b (Hb); H)

ds

⎞
⎠

1/2

,
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resulting from the Itô isometry and a change of variables. Lemmas 4.9(iv) and 4.10(iv), both with
α ∈ [1/2, 3, 4), give us for sufficiently small ε > 0 that

I5 � c
(

h1/2−ε + Δt1/4−ε
) ∥∥(λ − A)αN

∥∥
LHS(Q1/2

b (Hb); H)
� c

(
h1/2−ε + Δt1/4−ε

)
. (5.27)

Substituting inequalities (5.2), (5.14), (5.25), (5.26) and (5.27) into (5.1) yields, for sufficiently small
ε > 0,

‖y(tm) − ym
h ‖L2(Ω; H) � c

(
hmin{1/2−ε,β} + Δtmin{1/4−ε,β/2}) (

1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
+ c Δt

m−1∑
k=0

∥∥∥y(tk) − yk
h

∥∥∥
L2(Ω; H)

.

By applying a discrete version of the Grönwall inequality (see Clark, 1987) we therefore get

‖y(tm) − ym
h ‖L2(Ω; H) � c

(
hmin{1/2−ε,β} + Δtmin{1/4−ε,β/2}) (

1 + ‖ξ‖L2(Ω; D((λ−A)β/2))

)
for sufficiently small ε > 0. �

6. Numerical experiments

In order to illustrate the proposed method and the bounds given in Theorem 3.3 we have implemented
the algorithm in MATLAB1 and performed a number of numerical experiments on a two-dimensional
linear quadratic control problem with noise. We ran all the experiments on one node of the Mechthild
computing cluster at the Max Planck Institute Magdeburg. Such a node consists of two Intel Xeon
Skylake Silver 4110 processors with 8 cores/CPU, a clockrate of 2.1 GHz and 384 GB RAM.

6.1 Implementation

Let {φh
k }Nh

k=1 be the standard finite element basis of Yh, consisting of the piecewise linear so-called
hat functions. These take the value 1 at the kth node of Th and 0 at all other nodes. Then for yh ∈ Yh

we have yh = ∑Nh
k=1 ykφ

h
k for some coefficients {yk}Nh

k=1. Similarly, let the distributed noise PhG δWm

with G = I and the boundary noise Bb
h δWm

b be represented by the coefficient vectors δWm and δWm
b ,

respectively. Using these representations in (3.6) and testing with φh
j shows that (3.6) is equivalent to

Nh∑
k=1

ym
k 〈(I − ΔtAh)φ

h
k , φh

j 〉 =
Nh∑

k=1

ym−1
k

(
〈φh

k , φh
j 〉 − Δt〈BhR−1B∗

hP m−1
h φh

k , φh
j 〉

− Δt〈Bb
hR−1

b (Bb
h)

∗P m−1
h φh

k , φh
j 〉

)

+
Nh∑

k=1

(
(δWm)k + (δWm

b )k

)〈φh
k , φh

j 〉,

(6.1)

1 Full code available at www.tonystillfjord.net.
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for j, k = 1, . . . , Nh. To simplify this we introduce the mass matrix M, the stiffness matrix A, the
distributed and boundary input matrices B and Bb, the output matrix C and the weighting matrices R,
Rb and Q, satisfying

Mi,j = 〈φh
j , φh

i 〉, Ai,j = 〈Ahφ
h
j , φh

i 〉,
Bi,j = 〈Bhφ

h
j , φU

i 〉, Bb
i,j = 〈(λ − Ah)RhNφh

j , φV
i 〉, Ci,j = 〈Chφ

h
j , φZ

i 〉,
Ri,j = 〈φU

j , φU
i 〉, Rb

i,j = 〈φV
j , φV

i 〉, Qi,j = 〈φZ
j , φZ

i 〉.

Here, {φU
i }, {φV

i } and {φZ
i } denote orthonormal bases for the input and output spaces Ū, V̄ and Z,

respectively. We omit the dependency on h to reduce notational clutter.
The matrices given above were all generated using the FreeFEM++ library2 (see Hecht, 2012) and

then imported into MATLAB. With these at hand we can first rewrite (3.5) as the matrix-valued equation

M
d

dt
P(t)M = −AP(t)M − MP(t)A + MP(t)BR−1BTP(t)M

+ MP(t)Bb(Rb)−1(Bb)TP(t)M − CTQC,

P(T) = 0,

(6.2)

where P denotes the matrix representation of Ph satisfying

Phz =
Nh∑

i,j=1

Pi,j〈z, φh
j 〉φh

i ;

see, e.g., Målqvist et al. (2018). Further, denote the coefficients at time tm by Pm. Then we can rewrite
(6.1) as an equation for the coefficients ym

k as

ym+1 = Sh,ΔtMym − ΔtSh,ΔtBR−1BTPmMym

− ΔtSh,ΔtB
b(Rb)−1(Bb)TPmMym

+ Sh,ΔtM
(
δWm + δWm

b

)
,

where Sh,Δt = (M − ΔtA)−1. Note the similarity to (3.6), with M taking on the role of the identity
operator.

Since (6.2) is matrix-valued, numerically approximating its solution for reasonably fine spatial
discretizations is unfeasible unless we can utilize features such as low-rank structure. For this reason
we assume that the input operators are of the form R

nu 
 u �→ u1Ψ1 + · · · + unu
Ψnu

with Ψj ∈ H and
nu � Nh. Similarly, we assume that the output operator C : H �→ R

nz with nz � Nh. This means

2 Available at https://freefem.org/.
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that B, Bb and C are rectangular matrices, which typically leads to a solution P of low numerical
rank. See, e.g., Stillfjord (2018b) for supporting theory in the operator-valued setting. In order to
approximate the solution we apply the Strang splitting scheme (Stillfjord, 2018a) available in the
MATLAB package DREsplit.3 We note that Strang splitting is a second-order method, which means
that we get a more accurate approximation in time than what we need according to Assumption 3.1.
It is, however, essentially as cheap to apply as the corresponding first-order scheme, which is why we
use it.

Generating the noise can be done in many ways. Since we only consider rectangular domains in our
experiments we compute samples of the distributed noise using FFT techniques as outlined in Lord
et al. (2014, Chapter 10). In particular we assume that the eigenvalues λj,k and corresponding
eigenvectors ϕj,k of the covariance operator Q are given by

λj,k = (j2 + k2)−β−ε and ϕj,k(x1, x2) = cos(jπx1) cos(kπx2)

with β = 1 and ε = 10−4. Then the increments δWm = W(tm) − W(tm−1) are given by

δWm ≈ √
Δt

N∑
j,k=0

√
λj,kϕj,kξ

m
j ,

where ξn
j are the i.i.d. increments of an N(0,1) Gaussian distribution (Lord et al., 2014). This leads to

noise satisfying Assumption 2.3. We note that the sum should actually go to infinity, and the truncation
to (N + 1)2 terms represents a discretization. We use N = Nh in our experiments, which means that the
truncation does not affect the convergence order (Yan, 2005).

A similar procedure could conceivably be followed for the boundary noise. However, we found it
simpler to express the one-dimensional noise δWb,m on each of the edges as

√
Δt

∑N
k=0 λk cos(kπx)

with x ∈ [0, 1] and λk = k−β−ε . Then the map N can be explicitly constructed by using the observation
that the function

ρ(x1, x2) = −cos(kπx1) cosh(c(1 − x2))

c sinh(c)
with c =

√
λ + k2π2

satisfies d
dx1

ρ = 0 at x1 = 0 and x1 = 1, d
dx2

ρ = 0 at x2 = 1 and d
dx2

ρ = cos(kπx1) at x2 = 0. Further, it
satisfies λρ = Δρ in the interior of the domain. The constructions for the other parts of the boundary are
similar. Summing the four parts then gives the solution of (2.1). We then computed the Ritz projections
of these functions in FreeFem++ by solving 〈Rhρ, φ〉Y = 〈ρ, φ〉Y for φ ∈ Yh. Finally, the resulting
coefficient vectors were multiplied by λM − A.

The latter construction was also used for the boundary input operator, by computing N applied to
the constant function 1 on the boundary. This requires no further calculations, since it corresponds to
the first eigenvector.

3 Available at www.tonystillfjord.net.
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Fig. 1. Locations of distributed inputs (red) and outputs (blue, shaded) in the test problem. The red lines indicate intensities of
0.8, 0.4, 0.2 and 0.1, respectively.

6.2 Test problem

For simplicity we consider the problem on the unit square D = [0, 1]2. We let the distributed control
operator B : Rnu �→ L2(D) be defined by

Bu = u1Ψp1 + · · · + unu
Ψpnu ,

where p j = (p j
1, p j

2) are points in the plane and Ψp j(x1, x2) = e−200(x1−p j
1)

2−200(x2−p j
2)

2
. The

interpretation of this is that we have heat sources with high intensity at p j that tapers off exponentially
as we move away radially from p j. The locations of these points are illustrated in Fig. 1. We note that
B ∈ L (Rnu , L2(D)). For this example we picked nu = 9. For the boundary control we consider a single
boundary condition ∂

∂ν
y(t, x) = v with v ∈ R.

As output we take the operator

Cy = 102
∫
D

y(x)χT1
(x) + · · · + y(x)χTnz

(x) dx,

where χS denotes the characteristic function of the set S and the Tj denote different areas, illustrated
in Fig. 1. Thus we attempt to control the mean value of the solution in these areas. We note that
C ∈ L (H,Rnz). Here nz = 3.

Finally, we use a diffusion coefficient of 10−2, λ = 1, and the scaling factors R = 10−2 and Rb = 25.
The latter was chosen such that the distributed and boundary controls influence the solution to a similar
extent.
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Temporal errors Spatial errors

Fig. 2. The errors ‖Pref
h (0)− P0

h‖L(H) ( ) and ‖(Bb
h)∗Pref

h (0)− (Bb
h)∗P0

h‖L(H) ( ) for the various discretizations outlined

in Section 6.3. Reference lines: O(Δt2) ( ), O(h) ( ), O(h2) ( ).

6.3 Results

We first verify Assumption 3.1 by computing the errors

‖Pref
h (0) − P0

h‖L(H) and ‖(Bb
h)

∗P ref
h (0) − (Bb

h)
∗P0

h‖L(H)

for different choices of h and Δt. We first choose h = 2−6 and Δt = 2j+2, j = 1, . . . , 7, with the
reference solution Pref

h having the same h and Δt = 210. The result is shown in Fig. 2 (left) and shows
clear second-order temporal convergence, as expected. We then choose Δt = 29 and take h = 2j,
j = 1, . . . , 6, with the reference solution Pref

h having the same Δt and h = 27. The result is shown in
Fig. 2 (right) and also demonstrates second-order spatial convergence except for the first few coarse
discretizations.

Next we check Theorem 3.3. By choosing h = Δt2 the expected error is O
(
Δt1/4

)
and there is only

one parameter to adjust. We therefore choose h = 2−2j and Δt = 2−j for j = 1, . . . , 6 and compute a
reference solution with j = 7. We start by computing the noise for the finest discretization first. Then
for each coarser discretization we add up the temporal increments and compute the L2-projection onto
the coarser space. In this way we use the same noise for all the discretizations of each of the 100 sample
paths. The resulting errors measured at t = T are shown in Fig. 3, both for the controlled system and
for the corresponding uncontrolled system where b = v = 0. We can observe that they decrease with a
rate that is decidedly less than 1/2 and close to 1/4. Since our theoretical bound is for the worst-case
situation this is fully in line with Theorem 3.3.
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Fig. 3. The computed errors for the experiment outlined in Section 6.3. They are in line with the O(Δt1/4)-prediction of
Theorem 3.3.

7. Conclusions

We have proved convergence with optimal orders of a numerical scheme for an optimal control problem
with both distributed and boundary control, as well as distributed and boundary Q-Wiener noise. Due to
the irregularity of the noise we can expect at most order 1/4 in time and order 1/2 in space. A numerical
experiment confirms that this bound is optimal.
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