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GR decompositions and their relations to Cholesky-like factorizations
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For a given matrix, we are interested in computing GR decompositions A = GR, where G is an isometry with respect to
given scalar products. The orthogonal QR decomposition is the representative for the Euclidian scalar product. For a signature
matrix, a respective factorization is given as the hyperbolic QR decomposition. Considering a skew-symmetric matrix leads
to the symplectic QR decomposition. The standard approach for computing GR decompositions is based on the successive
elimination of subdiagonal matrix entries. For the hyperbolic and symplectic case, this approach does in general not lead
to a satisfying numerical accuracy. An alternative approach computes the QR decomposition via a Cholesky factorization,
but also has bad stability. It is improved by repeating the procedure a second time. In the same way, the hyperbolic and the
symplectic QR decomposition are related to the LDLT and a skew-symmetric Cholesky-like factorization. We show that
methods exploiting this connection can provide better numerical stability than elimination-based approaches.
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1 Introduction and Preliminaries

Bilinear forms on Rm with respect to a nonsingular matrix M ∈ Rm×m are defined as 〈x, y〉M = xTMy [1]. The adjoint of
a matrix A ∈ Rm×m is given as A?M ∈ Rm×m and is uniquely defined by 〈Ax, y〉M = 〈x,A?M y〉M for all x, y ∈ Rm. The
adjoint generalizes the transpose .T. It holds A?M = M−1ATM . Similarly, the adjoint of a rectangular matrix A ∈ Rm×n

is given with respect to two bilinear forms induced by matrices M ∈ Rm×m and N ∈ Rn×n as A?M,N [2]. It is defined
by satisfying the identity 〈Ax, y〉M = 〈x,A?M,N y〉N and it holds A?M,N = N−1ATM . We are interested in computing
decompositions A = GR ∈ Rm×n, m ≥ n, where G ∈ Rm×n is an (M,N)-isometry, i.e. G?M,NG = In and R ∈
Rn×n [3]. (M,N)-isometries are useful for devising structure-preserving methods, for example in the context of eigenvalue
computations [4]. This work considers bilinear forms in real space but the theory is easily extended to complex space or
sesquilinear forms. The most well known representative of this class of decompositions is the (thin) QR decomposition. Here
M = Im,N = In andR is upper triangular. With respect to these matrices, an isometry is a matrix with orthonormal columns.
Typically, the QR decomposition is computed in a stable fashion by successively eliminating subdiagonal entries of the matrix
using orthogonal transformations. The decomposition has a well known connection to the Cholesky factorization. Let A have
full column rank. It holds that A = QR is a thin QR decomposition if and only if R defines a Cholesky decomposition
RTR = ATA. Computing Q := AR−1 provides an alternative to the column elimination approach. For tall and skinny
matrices, this method has a much lower computational effort but is known to be unstable. However, the stability can be
drastically improved by doing a second repetition, i.e. compute the QR decomposition of Q [5]. This is also done in the
context ofH-matrices [6]. In this work, we investigate whether this observation also holds for other QR-like decompositions.

2 GR decompositions and Cholesky-like factorizations

We now consider a scalar product induced by a signature matrix Σm = diag(σ1, . . . , σm), where σ1, . . . , σm ∈ {+1,−1}.
A (Σm,Σn)-isometry H is called hyperbolic and fulfills the property HTΣmH = Σn. For a given Σm, the hyperbolic
QR decomposition A = HR, where H ∈ Rm×n, R ∈ Rn×n upper triangular, exists if all principal submatrices of A are
nonsingular [3]. It can be computed via successive column elimination, similar to the orthogonal case [7]. The diagonal values
of Σn are determined by the used transformations and are a subset of the diagonal values of Σm. The role of the Cholesky
factorization is now played by the LDLT factorization. A = HR is a hyperbolic QR decomposition with respect to Σm and
Σn if and only if RTΣnR = ATΣmA gives a scaled LDLT factorization. As the computation of the LDLT factorization
can be unstable, one typically relies on the slightly altered Bunch–Kaufman factorization [8]. Here, D is allowed to have
2 × 2 diagonal blocks and pivoting is introduced in form of a permutation P . Using this factorization as a starting point, we
arrive at a different variant of the HR decomposition, called indefinite QR decomposition in [9]. It can be computed from the
Bunch-Kaufman (BK) factorization in the following way.

1. Compute BK factorization ATΣA =: PLDLTPT. 2. Diagonalize D =: V ΛV T , Σn := sign(Λ)

3. R := |Λ| 12V TLTPT, H := AR−1

In the resulting QR-like decomposition, R is no longer upper triangular, but block upper-triangular with permuted columns.
In Figure 1 we see how applying this method a second time to H affects the numerical accuracy.
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We now consider scalar products induced by Jm =

[
0 Im
−Im 0

]
. A (Jm, Jn)-isometry S ∈ R2m×2n fulfills the property

STJmS = Jn and is called symplectic. The symplectic QR decomposition A = SR can again be computed by the successive
introduction of zeros in the columns using symplectic transformations. In contrast to the hyperbolic and orthogonal QR

decomposition, R is not upper triangular but of the form R =
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= PT

s R̂Ps, where R̂ is upper triangular with

2 × 2 diagonal blocks on the diagonal and Ps = [e1, e3, . . . , e2n−1, e2, e4 . . . , e2n] is the perfect shuffle. This variant of the
symplectic QR decomposition corresponds to the skew-symmetric Cholesky factorization described in [10, 11]. A = SR is a
symplectic QR decomposition if and only if R̂T(PsJnP

T
s )R̂ is a Cholesky-like decomposition of the skew-symmetric matrix

PsA
TJmAP

T
s . Similar to the hyperbolic case, pivoting in form of a permutation matrix P can be introduced to increase the

stability of the Cholesky-like decomposition, leading to an altered SR decomposition APTPs = SR. A Cholesky-based
computation takes the form

1. Compute Cholesky-like factorization ATJmA =: PR̂TPsJnP
T
s R̂P . 2. R := PT

s R̂Ps. 3. S := APTPSR
−1.

Again there exists the possibility to repeat the procedure for the computed symplectic factor S.
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Fig. 1: Numerical results for computing decompositions of randomly generated matrices of size 500× 500 (HR) or 1000× 1000 (SR).

Figure 1 shows how the accuracy of HR and SR decompositions can be improved by computing them via the LDLT and
the Cholesky-like decomposition. Computing the decompositions via factorizations employing pivoting with two iterations
leads to accuracies that do not derail for badly conditioned matrices.
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