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Abstract
The eddy covariance (EC) technique is used to measure the net ecosystem exchange 
(NEE) of CO2 between ecosystems and the atmosphere, offering a unique opportu-
nity to study ecosystem responses to climate change. NEE is the difference between 
the total CO2 release due to all respiration processes (RECO), and the gross carbon 
uptake by photosynthesis (GPP). These two gross CO2 fluxes are derived from EC 
measurements by applying partitioning methods that rely on physiologically based 
functional relationships with a limited number of environmental drivers. However, 
the partitioning methods applied in the global FLUXNET network of EC observations 
do not account for the multiple co-acting factors that modulate GPP and RECO flux 
dynamics. To overcome this limitation, we developed a hybrid data-driven approach 
based on combined neural networks (NNC-part). NNC-part incorporates process knowl-
edge by introducing a photosynthetic response based on the light-use efficiency (LUE) 
concept, and uses a comprehensive dataset of soil and micrometeorological variables 
as fluxes drivers. We applied the method to 36 sites from the FLUXNET2015 dataset 
and found a high consistency in the results with those derived from other standard 
partitioning methods for both GPP (R2 > .94) and RECO (R2 > .8). High consistency 
was also found for (a) the diurnal and seasonal patterns of fluxes and (b) the eco-
system functional responses. NNC-part performed more realistic than the traditional 
methods for predicting additional patterns of gross CO2 fluxes, such as: (a) the GPP 
response to VPD, (b) direct effects of air temperature on GPP dynamics, (c) hysteresis 
in the diel cycle of gross CO2 fluxes, (d) the sensitivity of LUE to the diffuse to direct 
radiation ratio, and (e) the post rain respiration pulse after a long dry period. In con-
clusion, NNC-part is a valid data-driven approach to provide GPP and RECO estimates 
and complementary to the existing partitioning methods.
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1  | INTRODUC TION

The eddy covariance (EC) technique offers a unique opportunity for 
monitoring carbon and energy exchanges between land ecosystems 
and the atmosphere (Baldocchi, 2003) allowing near-continuous 
measurements integrated at the ecosystem scale. The number of 
study sites equipped with EC systems has increased over the years 
(Baldocchi,  2014; Chu, Baldocchi, John, Wolf, & Reichstein,  2017; 
Pastorello et al., 2017), and now we estimate that more than 1,400 
globally distributed sites (Chu et al., 2017) are monitoring the most 
representative land ecosystems in different climate conditions. Most 
of the EC study sites are organized in regional networks such ICOS, 
AmeriFlux, and AsiaFlux, and contribute to the global FLUXNET net-
work (Baldocchi, 2014).

The EC method allows for the measurement of the net ecosys-
tem exchange (NEE) which is the difference between two larger flux 
components: gross primary production (GPP) and ecosystem respi-
ration (RECO). GPP is the gross amount of carbon uptake by pho-
tosynthesis from vegetation while RECO is the total carbon efflux 
by the respiration processes of all organisms. Estimating GPP and 
RECO is a key step to better understand the underlying mechanisms 
constraining ecosystem function. Moreover, GPP and RECO esti-
mates from EC are useful for modeling, supporting process-based 
model parameterization and validation, data assimilation, plant trait 
retrieval by model inversion (Dutta, Schimel, Sun, van der Tol, & 
Frankenberg, 2019; Pacheco-Labrador et al., 2019), upscaling (Jung 
et al., 2020; Tramontana et al., 2016), as well as photosynthesis es-
timates based on remote sensing (e.g., Arnone et al., 2008; Verrelst 
et al., 2016; Zhang et al., 2016).

The EC technique does not directly measure GPP and RECO, 
and for this reason, numerical methods (termed partitioning meth-
ods) have been proposed for estimating GPP and RECO from NEE 
measurements (e.g., Desai et al., 2008; Keenan et al., 2019; Lasslop 
et al., 2010; Reichstein et al., 2005; Sulman, Tyler Roman, Scanlon, 
Wang, & Novick,  2016). The most widely used approaches are 
based on the use of NEE measurements for fitting simple physio-
logically based nonlinear relationships to estimate GPP and RECO 
using few meteorological drivers. These functional relationships 
are in general either light response functions linking global in-
coming radiation and GPP (Gilmanov et al., 2003), or respiration 
functions based on temperature (Reichstein et al., 2005), or also 
combinations of the two approaches (Keenan et al., 2019; Lasslop 
et al., 2010). The simple implementation and the robustness of the 
results (Lasslop et al., 2010) have led to their adoption as standard 
processing tools in the FLUXNET community (Pastorello et al., 
2020, accepted).

However, these partitioning methods rely on important assump-
tions about the flux dynamics and their relationship with environ-
mental drivers. Importantly, the assumed functional relations used 
can be similar to those applied in ecosystem models that make use 
of these data for their validation, creating a risk of circularity. In ad-
dition, although the functional relationships used in standard parti-
tioning approaches are known to be valid at the organ level (where 

they can be measured), their direct application at the ecosystem 
spatial scale should be evaluated carefully (Medlyn, 1998; Medlyn 
et  al.,  2017; Musavi et  al.,  2016). Furthermore, to guarantee their 
wide applicability, partitioning methods use a limited number of driv-
ers (i.e., air temperature, vapor pressure deficit, and global radiation). 
However, fluxes dynamics are also potentially affected by many im-
portant environmental factors, such as soil moisture, soil tempera-
ture, or the ratio of diffuse to direct radiation, among others, that 
are generally not considered in the partitioning methods (Lasslop 
et al., 2012; Wohlfahrt & Galvagno, 2017). These limitations are par-
tially compensated by the use of short temporal moving windows for 
parameters estimation, which takes more slowly changing factors 
indirectly into consideration (such as phenology, water, or substrate 
availability), but does not handle fast ecosystem responses well, 
like for example respiration pulses following rain events (Williams, 
Hanan, Scholes, & Kutsch, 2009).

Some studies have attempted to solve the limitation of FLUXNET 
standard partitioning methods by developing more comprehensive 
approaches. For instance, Scanlon and Kustas (2010) coupled CO2 
and H2O fluxes dynamics in the flux variance similarity approach for 
simultaneously partitioning carbon and water fluxes. The method, 
although interesting, requires canopy scale estimates of water-use 
efficiency (WUE), which introduces assumptions and uncertainty. 
More recently, the estimation of gross CO2 fluxes from NEE has 
been approached using the EC method in combination with par-
allel measurements of a trace gas such as carbonyl sulfide (COS; 
Commane et al., 2015) or 13C isotopes (Ogée, Peylin, et al., 2003; 
Oikawa et al., 2017; Wehr et al., 2016; Wehr & Saleska, 2015) with 
the aim to disentangle the photosynthesis signals from respiration in 
daytime NEE measurements. Both methods are promising and are 
starting to be applied in the field; however, they currently require 
extensive and expensive instrumentation and the uncertainty in the 
results is still large (Oikawa et al., 2017; Whelan et al., 2018), limit-
ing, for now, their application to a restricted number of study sites. 
These methods, however, are all subject to assumptions that could 
affect the resulting estimates of GPP and RECO. A possible alterna-
tive approach, based on existing measurements and not subject to 
the limitation of the standard methods, could be provided by ma-
chine learning methods.

Machine learning methods are generally used to model under-
lying complex relationships linking a set of predictors with one or 
more outputs. The core characteristics of machine learning methods 
are that predictors are not prescribed and the relationships between 
input (drivers) and output (fluxes) are inferred from the data. Several 
studies have reported the capability of machine learning to repro-
duce complex patterns in ecological studies, and in particular in re-
lation to EC measurements (e.g., see Moffat, Beckstein, Churkina, 
Mund, & Heimann,  2010; Moffat et  al.,  2007; Papale & Valentini, 
2003; Reichstein et al., 2019; Tramontana et al., 2016).

In this study, we develop and test an empirical machine learn-
ing-based approach for retrieving GPP and RECO from NEE. The 
main motivation was to evaluate if a purely empirical approach could 
provide estimates of the two components without any predefined 
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relationships and with the flexibility to use multiple sets of meteoro-
logical and biological forcings.

In this experiment, we used artificial neural networks (ANNs), 
which have already been tested as a partitioning tool in a cross-
site intercomparison among several partitioning methods (Desai 
et  al.,  2008; Oikawa et  al.,  2017), without appreciable differences 
with respect to the other methods. In those studies, the ANNs 
were trained using only nighttime measurements and then applied 
to extrapolate RECO during daytime. Here, we revisited the ANN 
implementation by proposing a new scheme in which the ANN is 
constrained using the measured net CO2 fluxes to directly estimate 
the two components GPP and RECO.

Our aim was to design a machine learning-based method flexible 
enough to: (a) use a large set of drivers, accounting for the complex-
ity of the GPP and RECO responses, (b) ensure general applicabil-
ity of the method to allow ANN-based partitioning in the context 
of FLUXNET thanks to the use of generally measured variables. In 
order to evaluate the results, we compared the GPP and RECO pro-
duced by the ANN with the estimates obtained by two partitioning 
methods used in FLUXNET, by analyzing: (a) the consistency of the 
estimates at yearly, seasonal, daily, and (half) hourly time steps; (b) 
the dynamics of the seasonal and diurnal cycles of the estimated 
gross CO2 fluxes; (c) the functional relationships between microme-
teorological inputs and fluxes in output as reproduced by the ANN; 
and (d) the effectiveness of the proposed method to predict addi-
tional patterns of gross CO2 fluxes not (or less) accounted for by the 
standard partitioning methods.

2  | MATERIAL S AND METHODS

2.1 | ANN algorithm

ANNs are nonlinear and nonparametric methods for regression and 
classification that artificially emulate the functioning of a biological 
brain (Haykin, 1999). The base unit of an ANN is the “neuron” where 
the numeric information in the input is weighted, condensed, and 
transformed (by a linear/nonlinear transfer/activation function) to 
be transferred to other neurons. Neurons are organized in layers 
that are interconnected: the outputs of m neurons in one layer are 
the inputs for n neurons of the next layer and the signals are trans-
ferred through connections associated with multiplicative weights. 
The learning (or training) process of an ANN consists of adjusting the 
weights of the network on the basis of specific examples provided as 
input (supervised training).

In this experiment, we developed a new ANN architecture de-
signed to emulate1 the ecosystems processes driving NEE. This cus-
tomized neural network (hereafter NNC-part) is based on the concept 

that NEE, measured by the EC system, is the difference between 
RECO and GPP (Equation 1):

and that these two fluxes have individual drivers and dependencies. 
The uniqueness of our approach consists of imposing physical con-
straints in the proposed neural network, on the basis of the known 
properties of RECO and GPP. The overall structure is based on two 
subnetworks (Figure 1): one for retrieving RECO (sub neural network, 
SNNRECO) and the other for retrieving GPP (SNNGPP). The output of 
these two subnetworks (SRECO and SGPP for SNNRECO and SNNGPP, 
respectively) is combined in the last neuron of the overall structure, 
where NEE is calculated and compared with the measurements in 
order to optimize the network's weights (network training). The out-
put signals of both subnetworks are constrained to be always positive, 
except for SNNGPP, which is constrained to be 0 during nighttime, as 
photosynthesis requires light. However, RECO and GPP have oppo-
site signs; therefore, the connection weight of RECO is fixed to be 
positive (wRECO = 1) and that of GPP to be negative (wGPP = −1), mirror-
ing the sign convention of the measured NEE. Since the last transfer 
function is unbounded and linear, and the bias is fixed to 0, the last 
node effectively reproduces the equation of NEE as:

where

and

The two subnetworks have different input drivers but a similar 
structure including two hidden layers: the first hidden layer has n hid-
den neurons (different for the two fluxes) and a hyperbolic tangent 
sigmoid activation function (“Tansig”), which improved the perfor-
mance of network optimization; the second has only one neuron and 
a log-sigmoidal activation function (“Logsig”) that constrains the out-
put to positive values, allowing the implementation of Equation (2) in 
the last node. The SNNGPP, used to simulate GPP, has also a third layer 
where the measured incoming shortwave radiation enters as input in 
a node where a product is applied. This last node has a positive linear 
transfer function (“Poslin”); thus, the output from the SNNGPP is 0 at 
nighttime and positive during the day. With this structure, the last 
node of the SNNGPP mimics the light-use efficiency (LUE) approach: 
the output coming from the two previous hidden layers is an LUE that 
is then multiplied by the available shortwave radiation to estimate 
GPP. In this way, the drivers are used to estimate an instantaneous 
proxy of the LUE which takes into consideration seasonal and diurnal 
variability of carbon uptake, including photosynthesis saturation at 
high light, while shortwave radiation mainly defines the magnitude of 

 1The use of this term is not incidental: surrogate modeling, also known as emulation, is 
about developing statistical models that learn to mimic costly physical models, such as 
radiative transfer or climate models, using a representative dataset of simulation/
forward runs. ML algorithms learn such parameter–observation relation with high 
accuracy, and after training can be used for forward simulation very efficiently (Bastos 
and O’Hagan, 2009; Camps-Valls et al, 2019; Rivera et al., 2015; Vicent, et al 2018).

(1)NEE=RECO−GPP,

(2)NEEANN=RECOANN+GPPANN,

(3)RECOANN=SRECO ∗wRECO,

(4)GPPANN=SGPP ∗wGPP.
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the flux. This decreases the weight given to the incoming shortwave 
radiation in relation to other driving variables. Up to this step, the out-
put of the two subnetworks (SRECO and SGPP) have positive signs; the 
sign convention of the NEE equation is finally restored in the last neu-
ron of the overall structure by associating a positively signed weight 
to SRECO and a negatively signed weight to SGPP.

2.2 | Dataset used

For the purpose of this experiment, we used data from the 
FLUXNET2015 dataset (http://fluxn​et.fluxd​ata.org) and, as an ad-
ditional comparison, a synthetic dataset generated by the MUlti-
layer Simulator of the Interactions between a vegetation Canopy 
and the Atmosphere (MuSICA) process-based model (Ogée, Brunet, 
Loustau, Berbigier, & Delzon, 2003, see section S4).

FLUXNET2015 includes meteorological and EC measurements 
that were quality checked and processed with standard tools (Papale 
et al., 2006; Pastorello et al., 2020) and provided with per-variable 
quality flags. For more details, see the webpage http://fluxn​et.fluxd​
ata.org/data/fluxn​et201​5-datas​et/.

Data used for training and validation of the neural network were 
taken from the “FULLSET” “TIER 1” collection. Among the sites 
available in this collection, we selected a subset of 36 study sites 
(listed in Table 1) on the basis of the data quality and data availability 

in order to ensure the best conditions for the partitioning methods 
comparison. Site-years were selected if the percentage of meteo-
rological gap-filled data was less than 20% and the measured NEE 
covered at least 10% of both daytime and nighttime periods.

Among the variables stored in the FLUXNET2015 dataset, we 
used the GPP and RECO obtained with the two standard methods: 
the nighttime method (NT) from Reichstein et  al.,  2005, and the 
daytime method (DT) from Lasslop et al., 2010. In the NT method, 
the Arrhenius-type temperature–response curve of respiration as 
modeled by the Lloyd and Taylor equation (Lloyd & Taylor,  1994), 
driven by air temperature, is used for estimating RECO. This method 
makes use of the nighttime (when global incoming radiation <20 W/
m2) NEE observations (assumed as representative of RECO given 
the absence of photosynthesis at night) to fit the Lloyd and Taylor 
equation. There are two parameters to fit in the Lloyd and Taylor 
equation: the activation energy (E0) and the respiration rate at the 
reference temperature (Rref). In the NT method, E0 is estimated at 
an annual scale by calculating E0 values every 15 days and then av-
eraging the three with smaller uncertainty. Once E0 is fixed, the Rref 
parameter is estimated using short-term moving windows (4 days). 
On the basis of Equation (1), GPP is finally calculated by subtracting 
NEE from the daytime RECO extrapolated by the fitted model.

The DT method combines a rectangular hyperbola light response 
curve (Falge et  al.,  2001) for estimating GPP and the Lloyd and 
Taylor equation for estimating RECO (as in the NT method). In the 

F I G U R E  1   The scheme of the customized neural network applied for retrieving gross primary production (GPP) and ecosystem 
respiration (RECO) from net ecosystem exchange (NEE) measurements. The two subnetworks (SNNGPP left, in green, SNNRECO right, in 
brown) are connected in the last step to estimate NEE. Inputs for RECO are air and soil temperature; soil water content; wind speed and 
wind direction; the day of the year (sine and cosine values of angular day of year); the average value of nighttime NEE. Input GPP are, in 
addition to the shortwave incoming radiation used in the product, air temperature; vapor pressure deficit; soil water content; potential and 
actual shortwave incoming radiation; wind speed and wind direction; a proxy of the mean seasonal GPP dynamic derived from the nighttime 
and daytime averaged NEE. See Section 2.3 of the main text for details

http://fluxnet.fluxdata.org
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
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DT method, nighttime NEE is used only to estimate the E0 parame-
ter of the Lloyd and Taylor equation, while the remaining unknown 
parameters, including Rref, are fitted using daytime measurements. 
In DT, the light response curve is driven by the incoming shortwave 

radiation (SW_IN), but it is adjusted for the effect of stomata clo-
sure due to the atmospheric evaporative demand using VPD as an 
additional driver of GPP (Lasslop et al., 2010). Similar to NT: (a) the 
Lloyd and Taylor model is driven by air temperature, (b) the model 

TA B L E  1   List of the subset of FLUXNET2015 study sites used in this experiment for net ecosystem exchange partitioning. The study sites 
used also for NNC-part validation (see section S1) are marked with the symbol (*) in the “Validation” column. Selected study sites represent 
the following International Geosphere–Biosphere Programme (IGBP) vegetation classes: Evergreen Needleleaf Forest (ENF), Deciduous 
Broadleaf Forest (DBF), Mixed Forest, Evergreen Broadleaf Forest (EBF), Grassland (GRA), Cropland (CRO), Woody SAvanna (WSA), Closed 
SHrubland (CSH), and Open SHrubland (OSH). For accurate coordinates, please refer to the FLUXNET2015 website

ID Site code IGBP Lat Lon Validation Reference

1 AU-Cpr SAV −34,00 140,59 * Meyer, Kondrlovà, and Koerber (2015)

2 AU-DaP GRA −14,06 131,32 Beringer et al. (2011)

3 AU-Dry SAV −15,26 132,37 Cernusak, Hutley, Beringer, Holtum, and Turner (2011)

4 AU-How WSA −12,49 131,15 Beringer, Hutley, Tapper, and Cernusak (2007)

5 AU-Stp GRA −17,15 133,35 * Beringer et al. (2011)

6 BE-Lon CRO 50,55 4,75 Moureaux, Debacq, Bodson, Heinesch, and Aubinet (2006)

7 BE-Vie MF 50,31 6,00 Aubinet et al. (2001)

8 CA-Qfo ENF 49,69 −74,34 * Giasson, Coursolle, and Margolis (2006)

9 DE-Geb CRO 51,10 10,91 * Anthoni et al. (2004)

10 DE-Gri GRA 50,95 13,51 * Prescher, Grünwald, and Bernhofer (2010)

11 DE-Kli CRO 50,89 13,52 * Prescher et al. (2010)

12 DE-Obe ENF 50,79 13,72 *

13 DE-Tha ENF 50,96 13,57 * Grünwald and Bernhofer (2007)

14 DK-Sor DBF 55,49 11,64 * Pilegaard, Ibrom, Courtney, Hummelshøj, and Jensen  
(2011)

15 FI-Hyy ENF 61,85 24,29 * Suni et al. (2003)

16 FR-LBr ENF 44,72 −0,77 Berbigier, Bonnefond, and Mellmann (2001)

17 GF-Guy EBF 5,28 −52,92 Bonal et al. (2008)

18 IT-BCi CRO 40,52 14,96 Vitale, Di Tommasi, D’Urso, and Magliulo (2016)

19 IT-Cp2 EBF 41,70 12,36 * Fares, Savi, Muller, Matteucci, and Paoletti (2014)

20 IT-Cpz EBF 41,71 12,38 * Garbulsky, Penuelas, Papale, and Filella (2008)

21 IT-MBo GRA 46,01 11,05 * Marcolla et al. (2011)

22 IT-Noe CSH 40,61 8,15 Papale, Black, et al. (2015)

23 IT-Ro1 DBF 42,41 11,93 Rey et al. (2002)

24 IT-SRo ENF 43,73 10,28 * Chiesi et al. (2005)

25 NL-Loo ENF 52,17 5,74 * Moors (2012)

26 RU-Fyo ENF 56,46 32,92 * Kurbatova, Li, Varlagin, Xiao, and Vygodskaya (2008)

27 US-ARM CRO 36,61 −97,49 Fischer, Billesbach, Riley, Berry, and Torn (2007)

28 US-GLE ENF 41,37 −106,24 * Frank, Massman, Ewers, Huckaby, and Negrón (2014)

29 US-MMS DBF 39,32 −86,41 * Dragoni et al. (2011)

30 US-NR1 ENF 40,03 −105,55 * Monson et al. (2002)

31 US-SRG GRA 31,79 −110,83 * Scott, Biederman, Hamerlynck, and Barron-Gafford (2015)

32 US-SRM WSA 31,82 −110,87 * Scott, Jenerette, Potts, and Huxman (2009)

33 US-UMB DBF 45,56 −84,71 * Gough et al. (2013)

34 US-Whs OSH 31,74 −110,05 * Scott et al. (2015)

35 US-Wkg GRA 31,74 −109,94 Scott, Hamerlynck, Jenerette, Moran, and Barron-Gafford 
(2010)

36 ZA-Kru SAV −25,02 31,50 Archibald et al. (2009)
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parameters are fitted on short-term moving time windows to ac-
count for slow changing factors.

2.3 | Input variables and data preparation

The variable used as target values in the NNC-part training was the half 
hourly NEE (µmol CO2 m−2 s−1) measured with the EC technique. In 
particular, we used the NEE_CUT_USTAR50 variable (Pastorello et al., 
2020). We used a comprehensive subset of micrometeorological vari-
ables measured at the flux towers as candidate drivers for NNC-part, 
and additional variables derived from NEE, with the aim to explain 
variability of carbon fluxes at seasonal, daily, and half hourly resolu-
tions. In particular, in terms of meteorological drivers, we used the 
SW_IN (W/m2), VPD (kPa), air temperature (TA [°C]), soil tempera-
ture (TS [°C]), and soil water content (SWC [%]) in the upper soil layer 
(depth function of the site, see Pastorello et al., 2020), wind speed 
(WS [m/s]), and wind direction (WD [degrees]). Each one of these var-
iables is involved to different degrees in carbon exchange processes 
or in NEE measurements. SW_IN carries the photosynthetically ac-
tive radiation that is a key variable for the light-dependent reactions 
of photosynthesis, while leaves regulate stomatal conductance in re-
sponse to VPD (Lasslop et al., 2010); temperature has a key role in 
chemical reactions of biological processes; thus, it is involved both 
in photosynthesis and in the RECO (Falge et al., 2001). SW_IN and 
VPD are used in the DT method to estimate photosynthesis while 
both DT and NT use TA to estimate RECO only. Wind-related vari-
ables (WS and WD) affect the footprint of flux measurements (Arriga 
et al., 2017; Kljun, Calanca, Rotach, & W. and Schmid, H. P., 2015) 
which is important in particular if WD changes systematically (e.g., 
nighttime vs. daytime, morning vs. afternoon) and if the surround-
ing land cover is heterogeneous. The Julian day of the year (DOY) 
and the potential incoming radiation (SW_IN_POT [W/m2]) were also 
used in order to provide information about seasonality and length 
of the day. The SW_IN_POT was also aggregated at daily resolution 
to better track the seasonality of light conditions; the first deriva-
tives of half hourly and daily SW_IN_POT were also calculated to add 
specific information about the seasonal and diurnal dynamics of light 
(Bodesheim, Jung, Gans, Mahecha, & Reichstein, 2018; Papale, Black, 
et al., 2015; Papale, Migliavacca, et al., 2015).

Finally, since plant photosynthesis and RECO change seasonally 
also due to substrate availability and management (in case of man-
aged sites), daily average of nighttime NEE (NEENIGHT) and a proxy 
of GPP (GPPprox) were calculated and used in input. In this case, gap-
filled (Reichstein et  al.,  2005) half hourly NEE was used in order to 
have a continuous time series. Proxy of GPP was calculated by using 
NEENIGHT, and the average of daytime NEE (NEEDAY) as follow:

where k is the fraction of daytime hours for each day.
Some of the drivers are periodic, which means that extreme val-

ues have similar meanings (e.g., the DOY 0 and 365 or the WD 0 and 

360). To take this into consideration, we used their sine and cosine 
transformations instead of the original variable's value.

The two subnetworks that estimate RECO and GPP use a differ-
ent set of drivers, selected on the basis of the expected role and tests 
on performances and that are listed in Table 2. In particular, SNNRECO 
used TA, TS, SWC, WS, NEENIGHT, and sine and cosine of WD and 
DOY while the drivers for the SNNGPP were SW_IN, SW_IN_POT 
(half hourly and daily and their first derivatives), VPD, TA, SWC, WS, 
GPPprox, and sine and cosine values of WD. Note that SW_IN is then 
used both as driver and as single input in the GPP subnetwork for the 
product with the LUE (see Figure 1).

2.4 | ANN training

Because our goal is to partition NEE into its two fluxes components, 
the NNC-part was trained at the site level and year-by-year; we used 
only high quality measured half hourly NEE (see Section 2.2) as train-
ing target. The training of the NNC-part was carried out using both 
nighttime and daytime measurements of NEE.

As commonly used in ANN training and application, inputs and 
outputs were normalized in the range +1/−1 by Equation (6):

where Xmin and Xmax are estimated as the maximum of the absolute 
value of X then negative signed in the case of Xmin and positive signed 
in the case of Xmax; this preserved the zero value in both normalized 

(5)GPPprox=

(

NEEDAY−NEENIGHT
)

∗k,

(6)Xnorm=2∗

[(

X−Xmin

Xmax−Xmin

)

−0.5

]

,

TA B L E  2   List of the variables used as drivers to estimate gross 
primary production (GPP) and ecosystem respiration (RECO)

Variable Time resolution GPP RECO

Measured Half hourly SW_INa  TA

SW_IN_POT TS

VPD SWC

TA WS

SWC

WS

Calculated Half hourly SW_IN_POT 
First derivative

Cos WD

Cos WD Sin WD

Sin WD

Daily Daily average 
SW_IN_POT

Sin(DOY)

Daily average 
SW_IN_POT 
first derivative

Cos(DOY)

GPP prox Net ecosystem 
exchange night

aSW_IN is then used both as driver and as single input in the GPP 
subnetwork for the product with the LUE. 
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and original values without affecting the linearity of relationships be-
tween the original and the transformed time series.

Available records with all the inputs and the measured output 
were randomly split 25 times in sets for training (60% of the obser-
vations and, in general, at least 2,000 examples), test (20%) to avoid 
overfitting, and validation (20%) to assess the performances. This 
results in 25 datasets used for the ANN training. The ANN training 
used the mean square error as the cost function and the Levenberg–
Marquardt backpropagation algorithm.

Five ANNs with different numbers of neurons in the first hid-
den layer of both subnetworks were trained: 10–13, 11–14, 12–15, 
13–16, and 14–17 for SNNRECO and SNNGPP, respectively. For each 
one of the 25 training datasets, the five networks with different 
structures were trained five times, changing the initial weights ran-
domly, and then selecting the one with the best performance on the 
validation set. In case the sign of RECO and GPP did not respect the 
expected convention, the weights were reinitialized and the training 
was repeated. At the end of the process, there were 125 trained 
ANNs for each site-year (25 training datasets × 5 structures). To se-
lect the best among them, which were then used for the application, 
the ANN with the highest performances on the validation set was 
selected for each training dataset (obtaining 25 selected ANNs), and 
then, the five ANNs with the best model efficiency in predicting the 
overall NEE time series were finally selected and applied. RECO and 
GPP were calculated by averaging the output of the two subnet-
works SNNGPP and SNNRECO from the five selected ANNs. The ca-
pacity of the ANN to simulate NEE was also analyzed (see Data S1, 
section S1).

2.5 | Statistical analysis and evaluation

Results of this experiment were evaluated by comparing GPP and 
RECO from NNC-part with the NT- and DT-based partitioning meth-
ods in the FLUXNET2015 collection. As complementary informa-
tion, we repeated the same analysis for the gross CO2 fluxes derived 
from the synthetic NEE dataset provided by the MUSICA model 
(hereafter, we explicitly refer the synthetic CO2 fluxes modeled with 
MUSICA as GPPMUSICA, RECOMUSICA, and NEEMUSICA). The GPP and 
RECO estimates from the different methods were compared at half 
hourly, daily, and yearly time resolutions and were further evaluated 
about the consistency among methods for the seasonal cycle and its 
daily anomalies. The seasonal cycle was estimated by averaging the 
fluxes over 5 days while the daily anomalies were estimated by sub-
tracting the seasonal cycle from each daily value. Finally, in order to 
compare the seasonal cycles across sites-years having different flux 
magnitudes, the annual average daily value was subtracted from each 
seasonal cycle. In addition to the seasonal cycles, the mean diurnal 
cycles were calculated and compared. To verify that the different 
drivers used in the NNC-part had the role that is ecologically mean-
ingful, functional relationships between micrometeorological driv-
ers and retrieved gross CO2 fluxes were analyzed. In particular, the 
functional relationship between SW_IN and GPP, VPD and GPP, and 

TA and both GPP and RECO were considered and analyzed. This was 
carried out in two different ways: (a) we simulated the flux responses 
in the NNC-part varying artificially one driver at time, while the other 
drivers were kept fixed to the average condition of the season at mid-
day; and (b) we compared the seasonal variations of gross CO2 fluxes 
with respect to the meteorological forces for both fluxes calculated 
using the NNC-part results and those obtained using the NT and DT 
methods. The responses were obtained by averaging the values of 10 
equal intervals step of the fluxes and drivers for 2 months.

The results of the machine learning approach were finally evalu-
ated by looking at three specific responses of gross CO2 fluxes that 
are not explicitly accounted for by the DT and NT methods but can 
be indirectly considered in the NNC-part method: (a) the instantaneous 
LUE responses to the diffuse to direct radiation ratio, (b) the hyster-
esis of the diel cycles of predicted RECO and GPP with respect to 
TA and SW_IN, and (c) the respiration pulse after a rapid increase in 
SWC occurring frequently in dry environments. Finally, the NNC-part  
algorithm implemented here allows for an analysis of the role and 
importance of the different drivers (see Data S1).

3  | RESULTS

3.1 | Cross consistency between NNC-part and 
standard partitioning methods (DT and NT)

The half hourly GPP and RECO retrieved by NNC-part were consist-
ent with the output obtained by the NT and DT methods, with a 
slightly higher correlation (R2 and lower RMSE) with the DT method 
for GPP estimation and with the NT method for RECO, in both cases 
higher than the correlation between DT and NT methods (Table 3). 
The mean squared error of partitioned gross CO2 fluxes between 
NNC-part and the NT/DT methods was <1.53  µmol  CO2  m−2  s−1 on 
average and comparable to the average value of the estimated ran-
dom uncertainty of NEE (“NEE_CUT_USTAR50_RANDUNC,” variable 
provided by FLUXNET 2015). Looking at the bias, the magnitude of 
both GPP and RECO retrieved by NNC-part was slightly lower than the 
DT and NT methods, with the predicted values by NNC-part closer to 
the DT method (though the spread among methods was very small). 
The average values of bias among methods were low on average 
(<27 g C m−2 year−1) and comparatively lower with respect to the NEE 
random uncertainty reported in the FLUXNET2015 database (<10% 
of the reported “NEE_CUT_USTAR50_RANDUNC”). The agreement 
between NNC-part and the two FLUXNET standard methods was sig-
nificantly lower in the case of RECO suggesting that the differences 
occurred in the diurnal and seasonal cycles of RECO between NNC-part 
and both DT and NT methods were comparatively larger than GPP.

High correlation and consistency among NNC-part and the DT and 
NT methods in both GPP and RECO were found for daily, seasonal, 
and yearly values and also for the daily average anomalies with re-
spect to the seasonal values (Figure 2). Daily, growing season, and 
yearly average values from NNC-part were highly correlated with the 
two standard methods (R2  >  .83), in particular for GPP (R2  >  .97). 
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In terms of bias, results by NNC-part were more consistent with the 
DT results confirming the findings from the subdaily comparison. 
High consistency was also found in the case of GPP daily anomalies 
(R2 > .88 and RMSE < 0.52 µmol CO2 m−2 s−1), but it decreased in the 
case of RECO (Figure 2).

This general consistency between NNC-part and standard meth-
ods (DT and NT) was confirmed by comparing the gross CO2 fluxes 
derived by training the methods on synthetic NEE (NEEMUSICA, see 
section S4.1 in Data S1). The main findings from this comparison 

were that: (a) NNC-part and standard methods accurately retrieved 
both GPPMUSICA and RECOMUSICA at daily, yearly, seasonal timescales, 
and also the daily anomalies (see Figures S5 and S6); (b) NNC-part 
slightly outperformed the standard methods to estimate GPPMUSICA 
and RECOMUSICA, particularly in the case of daily anomalies; (c) all 
methods slightly underestimated both GPPMUSICA and RECOMUSICA 
(bias ranging between −0.2 and −0.45 µmol CO2 m−2 s−1) with the 
largest discrepancy found in the case of DT method (for more de-
tails, see section S4.1, Figures S5 and S6).

TA B L E  3   Cross consistency among the retrieved gross primary production (GPP) and ecosystem respiration (RECO) by NNC-part, daytime 
method (DT), and nighttime method (NT) methods at half hourly time step, also after removing the mean daily value of the fluxes. Statistics 
reported in the table are the median of the study sites values, in brackets the 25th and 75th percentile

Gross CO2 flux Variability Comparison

Statistics

R2 RMSE (µmol CO2 m−2 s−1) Bias (µmol CO2 m−2 s−1)

GPP Overall NNC-part versus DT .96 (.93/.97) 1.22 (0.76/1.52) −0.042 (−0.17/0.039)

NNC-part versus NT .94 (.89/.95) 1.53 (0.89/2.02) −0.068 (−0.18/0.025)

DT versus NT .90 (.84/.93) 1.84 (1.20/2.43) 0.020 (−0.16/0.14)

Removing mean 
daily value

NNC-part versus DT .95 (.93/.97) 0.93 (0.59/1.11)

NNC-part versus NT .90 (.86/.92) 1.34 (0.82/1.86)

DT versus NT .86 (.81/.89) 1.55 (1.02/2.13)

RECO Overall NNC-part versus DT .73 (.54/.83) 0.98 (0.70/1.29) −0.023 (−0.19/0.12)

NNC-part versus NT .87 (.72/.92) 0.68 (0.47/0.83) −0.072 (−0.16/0.022)

DT versus NT .78 (.65/.86) 0.95 (0.64/1.21) −0.0045 (−0.21/0.16)

Removing mean 
daily value

NNC-part versus DT .21 (.09/.32) 0.39 (0.28/0.51)

NNC-part versus NT .24 (.11/.38) 0.35 (0.26/0.47)

DT versus NT .68 (.62/.76) 0.20 (0.14/0.26)

F I G U R E  2   Scatter density plot showing the cross-consistency between partitioned gross primary production and ecosystem respiration 
by NNC-part (x-axis) and the ones by the daytime method and nighttime method methods (y-axis) aggregated at daily time step (a, e, i, m), 
yearly (b, f, j, n),), and looking for the seasonal cycle (c, g, k, o) and daily anomalies (d, h, l, p)
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3.2 | Consistency among the seasonal and diurnal 
dynamics of partitioned gross CO2 fluxes

3.2.1 | Seasonal cycle

The seasonal pattern of the retrieved gross CO2 fluxes by NNC-part 
closely matched that of the DT and NT methods, with the only ex-
ception being that predicted RECO by NNC-part was slightly lower 
in late spring/early summer (Figure 3, left). The predicted seasonal 
patterns were also similar among the represented International 
Geosphere–Biosphere Programme vegetation classes (Figure  3, 
right). Results showed a large degree of agreement among the three 
methods, in particular between NNC-part and NT.

The seasonal dynamic of gross CO2 fluxes derived from 
NEEMUSICA by NNC-part, NT, and DT agreed consistently. However, all 
methods underestimated both GPPMUSICA and RECOMUSICA (in par-
ticular the DT method) during the growing season (between April 
and July, see section S4.2 and Figure S7 in Data S1).

3.2.2 | Mean diurnal cycle of GPP

We found a good agreement between the pattern of the mean di-
urnal cycle of GPP predicted by NNC-part and FLUXNET standard 
methods (Figure  4). The GPP diurnal dynamic followed an asym-
metrically bell-shaped curve with the maximum value reached 

before midday (Figure  4, top panels). Analyzing the differences 
more in depth, the mean diurnal cycle of GPP predicted by NNC-part 
systematically diverged from the one predicted by the DT stand-
ard method, following a pattern that was consistent across the sea-
sons (Figure 4, bottom panels). In particular, the GPP estimated by 
NNC-part was lower during the first hours of the morning (just after 
the dawn) and in the late afternoon; instead, the GPP estimated by 
NNC-part was slightly higher than DT from the morning until mid-
day, where NNC-part estimated higher GPP values. A similar pattern 
appeared when comparing the two standard methods (difference 
calculated as NT-DT) although shifted toward positive values, indi-
cating higher values of GPP predicted by the NT method compared 
to the NNC-part. The GPP derived from NEEMUSICA confirmed the dif-
ferences we highlighted between DT and the other methods (see 
Section 4.3; Figure S8).

3.2.3 | Mean diurnal cycle of RECO

In comparison to GPP, the diurnal cycle of RECO modeled by NNC-part 
showed larger differences with respect to the DT and NT methods, 
in particular regarding the magnitude of the flux. All the methods 
showed an increased respiration when moving toward midday, in 
particular during the growing season (Figure 5, top plots); neverthe-
less, the NNC-part estimated values were lower than predictions from 
the other methods. Conversely, the differences between the two 

F I G U R E  3   The mean seasonal cycles of gross primary production (GPP; a) and ecosystem respiration (RECO; c) obtained by NNC-part, 
daytime method, and nighttime method. The consistency among methods was evaluated by the determination coefficients (R2) among 
the seasonal patterns of GPP (b) and RECO (d) per International Geosphere–Biosphere Programme (IGBP) vegetation class (the number in 
brackets after each IGBP vegetation class stands for the number of sites in each category). Only FLUXNET2015 study sites at northern 
hemisphere (latitude > +15°N) were used for that analysis. The vegetation classes are the same as Table 1
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standard methods were negligible with a slightly higher RECO by NT 
in comparison to DT (Figure 5, lower plots, calculated as NT-DT).

This finding was not fully mirrored in the patterns of RECOMUSICA 
(see section S4.3 and Figure S9). In that case, NNC-part predicted higher 

RECO in comparison to both DT and NT, but more consistent with 
RECOMUSICA. Conversely, NNC-part predicted lower RECO than the NT 
method (and more consistent with DT) during the morning; the differ-
ences between DT and NT fitted on NEEMUSICA were also enhanced. 

F I G U R E  4   The trends of the mean diurnal cycle of gross primary production (GPP; a–f) retrieved by NNC-part (black line), daytime 
method (DT; red line), and nighttime method (NT; green line). The differences between diurnal cycle of retrieved GPP are also shown (g–l): 
NNC-part-DT (red line), NNC-part-NT (green line), and NT-DT (dashed blue line). Only FLUXNET2015 study sites at northern hemisphere 
(latitude > +15°N), having at least 2 years of data, were used for the analysis

F I G U R E  5   The trends of the mean diurnal cycle of ecosystem respiration (RECO; a–f) retrieved by NNC-part (black line), daytime method 
(DT; gray line), and nighttime method (NT; dashed gray line). The differences between diurnal cycle of retrieved RECO (g–l) are also shown: 
NNC-part-DT (continuous black line), NNC-part-NT (dashed black line), and NT-DT (gray line). Only FLUXNET2015 study sites at northern 
hemisphere (latitude > +15°N), having at least 2 years of data, were used for that analysis
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These differences increased during the nighttime hours, while the pre-
dicted RECO by the two standard methods became closer during the 
daytime hours (particularly when air temperature reached its maximum 
value). It is interesting to note that the peak of the maximum RECO by 
NNC-part was shifted compared to the DT and NT methods and closer 
to the one of RECOMUSICA, suggesting a better capacity to reproduce 
diurnal patterns when multiple drivers were involved (Figure S9).

3.3 | Functional relationships between partitioned 
fluxes and meteorological drivers

The functional response obtained by artificially varying the drivers 
in NNC-part was consistent with the current knowledge. The response 
of GPP to SW_IN was as expected, with an increased photosynthesis 
due to the increased light that resulted as saturated at high radiation 
values (Figure 6a–d). The response to VPD clearly showed the effect 
of VPD limitation on photosynthesis (Körner, 1995) that was evident 
also at relatively low values of VPD (Figure 6e–h).

The response of photosynthesis to air temperature showed a 
strong and positive response at the start of the growing season that 
became flat in the summer period (Figure 6i–l). The functional re-
lationships between RECO and TA followed the expected increase 
of RECO with TA (Figure 6m–p) except for the dry ecosystems (red 
points in Figure 6) where TA was not the main driving factor. These 
general patterns of relationships were consistent across the seasons 
and in the different vegetation types, despite the expected variabil-
ity due to the ecosystem-specific properties.

When applied using the original measurements, the functional 
ecosystem response to the micrometeorological forces was largely 
consistent with the ones obtained using the DT and NT standard meth-
ods, although affected by multiple co-acting and confounding factors 
(Figure 7). The shape of the relations was slightly different in the four pe-
riods analyzed, but it was important to recall that these were average re-
sponses from sites in different climatic conditions. It could be noted that 
an almost perfect match was present in the case of GPP at this broad 
scale; in the case of RECO, the NNC-part showed in general lower res-
piration fluxes at high temperatures (so mainly daytime) as opposed to 
the other methods, although the pattern of response was basically the 
same. This could be an indication of a water resources limitation during 
the summer period and at higher temperatures, that could be detected 
by the NNC-part since it also used SWC as a driver. In fact, the functional 
relationships between RECO and SWC retrieved by NNC-part highlighted 
a clear direct relationship between SWC and RECO in drought condi-
tions, in particular for non-forested ecosystems (Figure S16).

3.4 | Additional ecological patterns simulated by 
NNC-part

3.4.1 | NNC-part instantaneous LUE and the ratio 
between diffuse to direct radiation

The instantaneous LUE estimated by NNC-part showed an increasing 
trend with respect to the increased diffuse to direct radiation ratio 
(here estimated by the proxy 1-SW_IN/SW_IN_POT; Figure 8a–d).

F I G U R E  6   NNC-part predicted responses of gross primary production as function of SW_IN ([W/m2], a–d), VPD, ([kPa], e–h), Ta ([°C], 
i–l), and of ecosystem respiration as function of Ta ([°C], m–p). The functional responses are simulated in the study sites at the northern 
hemisphere (latitude > +15°N) and in fixed seasonal conditions. The average site-specific responses (mean values of at least 3 years of data) 
are reported as colored lines, in particular: forested sites are in green, grassland and cropland sites are in black, and dry sites are reported in 
red. The singular site-year response are dashed light gray lines
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F I G U R E  7   Univariate functional ecosystem relationships between gross CO2 fluxes retrieved by NNC-part (black lines) and FLUXNET 
standard methods (green and red lines for nighttime method and daytime method, respectively): gross primary production (GPP; µmol CO2 
m−2 s−1) and SW_IN (W/m2; a–d), GPP (µmol CO2 m−2 s−1) and VPD (kPa; e–h), ecosystem respiration (µmol CO2 m−2 s−1) and TA (°C; i–l). These 
patterns are derived from study sites located at the northern hemisphere (latitude > +15°N)
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F I G U R E  8   Sensitivity of the light use efficiency (LUE) of NNC-part to the diffuse to direct radiation ratio. The trend of LUE by NNC-part with 
respect to the diffuse radiation ratio is reported in the panels (a–d; here LUE is normalized for comparison purpose). The difference between 
LUE (µmol CO2/W) as estimated by NNC-part and that from the daytime method (DT) standard partitioning method is also reported (e–h); the 
statistics were aggregated per diffuse to direct radiation class (here estimated by the proxy 1-SW_IN/SW_POT and reported as percentage). 
We reported the following statistics of x (x = LUE(NNC-part) − LUE(DT)): the median values (bar), the mean value (*), the interquartile range (by 
brackets). Only LUE at midday is used in this figure
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When compared against the LUE estimated by the DT method, 
NNC-part showed a moderate but consistent higher sensitivity to the 
fraction of diffuse to direct light with a higher LUE when the diffuse 
to direct radiation ratio was higher than 40% (Figure 8e–h).

3.4.2 | Hysteresis of the diel cycle of gross CO2  
fluxes

The diurnal cycle of gross CO2 fluxes exhibited hysteresis, which 
we analyzed through the diurnal cycle of GPP with respect to 

SW_IN (Figure 9a–c) and the diurnal cycle of RECO with respect to 
TA (Figure 9e–g). We generally observed a clockwise cycle for GPP, 
with higher values of GPP in the morning in comparison to the af-
ternoon. All the methods showed this pattern although it was more 
evident in the NNC-part and NT methods. We provided numerical 
estimates by calculating the integral area included in the hysteresis 
pattern (larger area indicates larger hysteresis) that was reported in 
Figure 9d.

For RECO, only NNC-part detected an appreciable hysteresis 
in the diurnal cycle (Figure 9h); this is expected because both the 
DT and NT methods use the same TA-dependent and invariant 

F I G U R E  9   Hysteresis of the gross primary production (GPP) diel cycle predicted by NNC-part with respect to SW_IN in three sampled 
study sites (a–c). Three different International Geosphere–Biosphere Programme classes are reported: DBF (a), ENF (b), and GRA (c), while 
the period of interest was July–August. (d) Distribution of the GPP hysteresis integral area (then normalized) estimated by NNC-part, nighttime 
method (NT), and daytime method (DT) partitioning methods. The hysteresis of the diel cycle of ecosystem respiration (RECO; here log-
transformed) with respect to the TA dynamic, in three sampled study sites, is reported (e–g). The distribution of the RECO hysteresis integral 
area (then normalized) estimated by NNC-part, NT, and DT partitioning methods is reported (h)

F I G U R E  1 0   The sensitivity of half 
hourly ecosystem respiration (RECO) 
predicted by NNC-part to the SWC “pulse”. 
The investigated study site was US-SRG. 
Fluxes are reported in panel (a) and more 
specifically we reported: RECO predicted 
by NNC-part (blue line), nighttime method 
(green) and daytime method (red) and the 
half hourly net ecosystem exchange (gray). 
Meteorological variables are reported in 
panel (b); more specifically we reported 
the SWC dynamics (blue line) and the rain 
events (P [mm]; red line)
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relationships for the whole diel cycle. In general, the hysteresis 
of RECO is realized as a counterclockwise cycle, with the value 
of RECO, for the same TA, higher during the afternoon and night-
time hours and lower during the morning. However, the counter-
clockwise cycle observed in the RECO patterns was not always 
observed, and in some cases, the opposite hysteresis cycle was 
found.

3.4.3 | RECO pulses due to SWC variations

The evaluation of the capacity to correctly reproduce rapid re-
sponses of RECO (respiration pulse) to changes in SWC (e.g., a 
post rain event after a prolonged drought period in arid envi-
ronments) is in general difficult due to the sporadic nature of 
the events and the noise associated with the measurements. 
We evaluated the performances of the three models in a spe-
cific event that was clearly visible in the NEE time series (US-
SRG site, Figure 10). The analysis of the predicted RECO shows 
that NNC-part was much more sensitive to the fast response of 
respiration pulses. The NT and DT methods, that did not have 
SWC as a direct input, showed a slow changing pattern with 
the peak of respiration significantly delayed compared to the 
measurements.

4  | DISCUSSION

4.1 | Consistency of NNC-part functional response 
with theory on plant physiology and with the DT and 
NT standard methods

The retrieved GPP and RECO as obtained from NNC-part were con-
sistent with the estimates by the DT and NT methods both when 
trained directly on EC measurements and using synthetic data with 
NEEMUSICA (Figure 2; Figures S3 and S4). This was valid also for the 
relationship between micrometeorological drivers and gross CO2 
fluxes calculated by NNC-part and those implemented in the DT and 
NT partitioning methods (Figures 6 and 7).

The GPP response to light used by NNC-part is curvilinear and con-
sistent with the pattern of that used in DT method (despite some small 
but systematic divergences). The pattern of the GPP–VPD relation-
ship captured by NNC-part is consistent with current knowledge about 
the protective (physiological) mechanisms of stomata closure carried 
out by plants in response to the increase in atmospheric evaporative 
demands (Körner, 1995). There is also a general consistency of the 
GPP–VPD dynamics retrieved by NNC-part with those from the other 
methods (Figure 7) although the relationships include also the effect 
of other covarying factors, in particular incoming radiation. This sto-
matal regulation of photosynthesis is explicitly inserted in the formu-
lation only in the DT approach. Interestingly, the NNC-part shows an 
effect of VPD also at very low values (Figures 6e–h and 7e–h), lower 
than the 10 hPa used as threshold in the DT method. The patterns of 

the TA–RECO relationships are also consistent across methods and in 
agreement with the expected trend due to the biochemical reactions 
involved in the organic matter respiration processes that find their op-
timal conditions at high (but not extreme) temperatures, if not limited 
by water availability.

The largest mismatch we found between NNC-part and the two 
standard methods of partitioning (NT and DT) is in late spring/early 
summer, with lower fluxes of daytime RECO predicted by NNC-part 
compared to both standard methods. When evaluated on the syn-
thetic dataset, the mismatch between NNC-part and the standard 
methods was significantly lower except for the anomalies, which were 
better reproduced by NNC-part. In addition, the estimates from NNC-

part better matched the diurnal dynamics of RECOMUSICA than the esti-
mates from the standard methods (Figure S9); conversely the method 
that showed the highest mismatch with respect to RECOMUSICA was 
the DT method. All the methods underestimated both the reference 
GPPMUSICA and RECOMUSICA (despite the differences were very tiny) 
without any relevant effect on NEE. This could be related to a certain 
limitation of these methods to infer the complex relationships of the 
MUSICA model with the reduced set of drivers used in this experi-
ment, but we have also to consider that both NNC-part and standard 
methods of partitioning were trained on noisy NEE signals (see sec-
tion S4 in Data S1 for details) while both GPPMUSICA and RECOMUSICA 
used for reference are noise-free.

Recent papers highlighted possible limitations of the standard 
methods for partitioning stemming from the fact that they do not 
consider the inhibition of daytime leaf respiration (the Kok effect; 
Keenan et al., 2019; Wehr et al., 2016) that produces an overestima-
tion of daytime RECO and GPP in the NT method (Wehr et al., 2016) 
and an underestimation of nighttime respiration (see Keenan 
et al., 2019) in DT. Although some of the differences between the 
RECO estimated by NNC-part and the other methods (see Figures 3 
and 5 and Figure S9) are consistent with experimental data focused 
on this topic (e.g., Keenan et al., 2019; Wehr et al., 2016), it is not 
possible to demonstrate that the NNC-part method, as implemented 
in this experiment, is able to reproduce the light inhibition of leaf 
respiration. Moreover, the consistency between the DT and NT par-
titioned fluxes used as reference in this experiment, and the pattern 
emerged by other modeling experiences (see e.g., Jung et al., 2020, 
where DT and NT partitioned fluxes were globally upscaled) sug-
gests that the Kok effect could have a minor relevance on biases of 
RECO and GPP estimates compared to other sources of NEE mea-
surement uncertainties.

In terms of ecological responses, the NNC-part outputs showed 
a clear and interesting response to the diffuse/direct light with 
an increased LUE in diffuse conditions and with hysteresis of 
the diel cycle of GPP and RECO that are only partially shown by 
the standard methods. The latter showed also strong limitation 
in reproducing the respiration pulse while NNC-part showed this 
capacity, although tested only in one case. In summary, these 
findings highlight the strength of this approach that is able to 
reproduce these patterns even without being trained specifically 
for this.
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4.2 | The advantages of the proposed NNC-part  
approach

One relevant difference between NNC-part and the standard par-
titioning methods is the absence of prescribed relationships be-
tween drivers and fluxes. In fact, only a few constraints have been 
set in the NNC-part structure (RECO and GPP signals must be posi-
tive, weights in the last node have to be consistent with the sign 
convention of NEE) and the relationship between inputs and out-
puts is set on the basis of the data without any assumption (as 
common in all the machine learning methods). This property could 
be a great advantage when used to study a phenomenon that does 
not respond with the same invariant pattern. The synthetic data-
sets used in this experiment are generated using functional rela-
tionships which are more complex than the ones implemented in 
the FLUXNET standard methods. The better matching by NNC-part 
highlights the potential of this algorithm to capture additional pat-
terns of carbon fluxes dynamics. As a direct consequence, this led 
to some systematic differences observed in the GPP and RECO 
patterns compared to standard methods. For instance, the shape 
of the GPP diurnal cycle predicted by the DT method is almost 
symmetrically bell shaped: GPP reached a maximum around mid-
day and only VPD, used as a downregulation function, when higher 
than 10 hPa, can modify this pattern that is otherwise dictated by 
incoming radiation. This is also visible in the modeled NEE, by com-
paring NNC-part and DT outputs with measured data (Figure S10). 
Conversely, the pattern of GPP obtained by the NT method is less 
affected by prescribed relationships because GPP is calculated as 
the difference between RECO and the measured NEE. The diurnal 
dynamic of GPP estimated by NNC-part is more similar to the NT es-
timates, which suggests that the formulation of the DT approach 
could be improved, for example, by using the non-rectangular 
light response function (instead of the rectangular used in DT, 
see Gilmanov et al., 2003) or a different threshold (or a different 
function) for the VPD downregulation effect. Although these dif-
ferences did not lead to large mismatches in terms of magnitude 
and/or seasonal dynamics of GPP, they can have an effect on the 
estimates of ecosystem functional properties such as LUE, WUE, 
or other important physiological parameters (Keenan et al., 2019; 
Reichstein, Bahn, Mahecha, Kattge, & Baldocchi, 2014).

Machine learning algorithms, such as the one implemented in 
this experiment, are also more effective at extracting relevant fea-
tures from the comprehensive set of drivers used as input. For ex-
ample, NNC-part indirectly derived information on diffuse radiation 
from the measured and potential incoming radiation used as drivers 
to scale the LUE, as consistently found in other studies (Alton, North, 
& Los, 2007). In addition, NNC-part directly uses additional input to 
improve the estimates of GPP. For example: (a) TA shows a role in 
spring and then a less strong effect possibly due to acclimation 
(Figure 6i–l); (b) SWC could play a role in downregulating the GPP 
response to VPD, with the effect of the atmospheric evaporative 
demand being stronger in the case of reduced soil water availability 
from soil and effective water stress condition.

In the case of RECO, both DT and NT used the same modeling 
approach, based on the Lloyd and Taylor model driven by the air 
temperature, resulting in high consistency between their results. 
However, it is known that soil temperature is also an important 
driver of RECO in particular to define its temporal (diurnal) dy-
namic (Lasslop et al., 2012; Wohlfahrt & Galvagno, 2017) because 
it is directly linked to soil respiration, which is a large contribution 
to the total RECO (Misson et al., 2007). The NNC-part method uses 
soil temperature (in addition to air temperature) as a direct driver 
of RECO and the analysis of the functional responses highlighted an 
important and direct effect (Figure S3). By looking at the analysis 
of RECO driver importance (see section S8 and Figure S20 in Data 
S1), it seems that TS and TA had, in general, a similar importance, 
but their relative weights changed by site. For this reason, it could 
be difficult to use both TA and TS in the same Lloyd and Taylor rela-
tionship without a priori information about the relative importance 
of the two variables. The multiple drivers approach implemented in 
NNC-part where both TA and TS are used as drivers of RECO without 
any a priori assumptions also allows for the detection of hysteresis 
in the diurnal cycle of RECO (see Wohlfahrt & Galvagno, 2017 for 
details on the topic).

Another important driver of RECO that is not explicitly accounted 
for in the standard methods was SWC that is particularly important 
in dry sites (see section S8). The DT and NT methods use a dynamic 
parameter (Rref) estimated using moving windows to indirectly con-
sider the slow changes in water availability (Reichstein et al., 2005). 
Soil water content, however, also has instantaneous effects in some 
ecosystems (e.g., the respiration pulses after short rain events, see 
Jarvis et al., 2007) that need the direct use of SWC as input, like in 
the NNC-part method, to be effectively modeled.

Other slow changing factors affecting the fluxes, such as phe-
nological state, substrate availability, and management or other dis-
turbance events, that are considered indirectly through Rref in the 
standard methods, are represented in the NNC-part approach through 
the use of averaged NEE-derived quantities as drivers.

Finally, the standard methods do not account for EC footprint 
variability, which can significantly affect the magnitude of the 
measured fluxes if the fetch is small and not fully homogeneous 
(see section S8). This could be considered, for example, by fitting 
the models per wind sectors and wind speed classes (or using foot-
print models), but the amount of available data could become crit-
ically low in less represented conditions. In the NNC-part, we used 
wind variables (direction, speed) as input in order to indirectly take 
into consideration footprint variability. Wind-related variables ap-
peared to be important in a few study sites (see Figures S15, S16, 
and S17). By comparing the ANN trained by including/excluding 
wind variables, we detected an effect on performance (increase 
of RMSE), which highlights an important effect on the instanta-
neous estimated flux values. However, the role of wind variables 
is reduced in the yearly budget calculation of gross CO2 fluxes 
(~6 g C m−2  year−1, average value across study site) even though 
differences were detected site by site (site-specific differences 
ranged between −169 and +122 g C m−2 year−1). In summary, the 
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implemented machine learning approach gives the possibility to 
use variables as drivers which would be difficult to consider in 
process-based approaches, which require that the role and effects 
of each single variable being known and correctly encoded (at the 
ecosystem scale).

4.3 | Uncertainty and limitation of the 
proposed method

Despite the encouraging results, there are also limitations and un-
certainty sources to consider when a pure machine learning ap-
proach is used. The absence of prescribed relationships and the few 
constraints fixed made the method robust against incorrect or in-
complete formulations used in the standard methods but also led 
to higher sensitivity to the uncertainty in the data used in the train-
ing phase of machine learning, particularly when both NEE and the 
meteorological variables used as drivers are affected by long gaps. 
In the NNC-part, the weights of the ANN are optimized against NEE; 
thus, the uncertainty of NEE could have a significant impact on their 
estimation. This could be particularly relevant for nighttime NEE 
measurements that can be affected by higher uncertainty (e.g., ad-
vection, large footprint) that, even if filtered, lead to long gaps. In 
these situations, a model based on ecological responses is in general 
more robust, and needs less data for a proper calibration than a data-
driven approach.

Another limitation is related to the availability of the large set 
of input data that this approach requires in order to fully exploit its 
advantages, which are often not fully available at all FLUXNET sites. 
In this situation, the model can be used with a reduced set of drivers, 
but this could also lead to higher uncertainty and lower performance 
in specific sites, while models based on ecological processes like the 
NT and DT may be more robust because the response pattern is al-
ready prescribed.

5  | CONCLUSIONS

In this study, we propose a machine learning method for NEE parti-
tioning (NNC-part) using an ANN approach with a tailored structure 
to simultaneously retrieve GPP and RECO. From a methodological 
point of view, this approach is an example of simple hybrid modeling 
(Reichstein et al., 2019), combining a neural net with a “theoretical” 
ecosystem equation based on LUE.

The NNC-part is designed to use as input a comprehensive set of 
drivers selected among the most commonly measured variables at 
EC sites. This property of NNC-part (and of machine learning in gen-
eral) can be exploited in future studies, for example, using as input 
other variables such as diffuse radiation, COS, 13C isotopes, or SIF. 
Additionally, NNC-part does not make use of prescribed relationships 
between inputs and outputs and only a few constraints are intro-
duced. Results in terms of the consistency of the gross CO2 esti-
mated fluxes by NNC-part with the estimates from FLUXNET standard 

methods were good and the proposed model is able to reproduce 
magnitudes, patterns, and functional responses. However, the sys-
tematic differences emerged by the cross-consistency analysis and 
the ecological patterns captured by NNC-part suggest that the imple-
mented ANN reproduces fluxes dynamics more realistic than stan-
dard methods of partitioning. Being that said, further investigation 
are required in order to clarify the impact of the additional drivers 
used in NNC-part, or possible missing functions and relationships in 
the standard methods.

Altogether, this new method provides GPP and RECO estimates 
that are based on purely data-driven empirical relationships with-
out any assumption of the driver–output relations. This product 
would be of high interest for process model parameterization and 
validation as it avoids unwanted circularity, and for this reason, we 
propose it as a complement to the standard processing in large net-
works such ICOS, AmeriFlux, or FLUXNET.
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