

SUPPLEMENTARY INFORMATION

https://doi.org/10.1038/s41588-020-0643-0

In the format provided by the authors and unedited.

CTCF is dispensable for immune cell transdifferentiation but facilitates an acute inflammatory response

Grégoire Stik¹, Enrique Vidal¹, Mercedes Barrero¹, Sergi Cuartero^{1,2}, Maria Vila-Casadesús¹, Julen Mendieta-Esteban¹, Tian V. Tian^{1,4}, Jinmi Choi⁵, Clara Berenguer^{1,2}, Amaya Abad¹, Beatrice Borsari¹, François le Dily¹, Patrick Cramer¹, Marc A. Marti-Renom^{1,3,6}, Ralph Stadhouders^{1,3,8} and Thomas Graf^{1,9} ≅

¹Centre for Genomic Regulation (CRG) and Institute of Science and Technology (BIST), Barcelona, Spain. ²Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain. ³CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. ⁴Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain. ⁵Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. ⁶ICREA, Barcelona, Spain. ⁷Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands. ⁸Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands. ⁹Universitat Pompeu Fabra (UPF), Barcelona, Spain. [∞]e-mail: gregoire.stik@crg.eu; r.stadhouders@erasmusmc.nl; thomas.graf@crg.eu

SUPPLEMENTARY INFORMATION

Supplementary Notes

Supplementary Note 1. Transdifferentiation of human B cells into macrophages In this study, we used a system consisting of a B leukemia cell line (BLaER) that can be efficiently converted by exogenous C/EBP α expression into functional induced macrophages (iMacs) with only one cell division on average (**Fig.1a**)¹. Given that C/EBP α exerts its lineage-determining capacity by predominantly binding to distal enhancers^{2,3}, we reasoned that our transdifferentiation system would heavily rely on long-range transcriptional control and therefore on CTCF-mediated 3D genome organization. BLaER cells expressing C/EBP α fused to the estrogen receptor were treated with ß-estradiol (ß-est), converting cells to phagocytic iMacs 168 hours post-induction (hpi) (**Fig.1a**).

Supplementary Note 2. Chromatin compartmentalization dynamics during transdifferentiation of B cells into macrophages

First, we studied the A/B chromatin compartmentalization dynamic on the basis of the first eigenvector values of a principal component analysis on the Hi-C correlation matrix (PC1 values), showing local transitions between compartments (Fig.1b-c). Overall, A-B compartmentalization was highly reproducible between biological duplicates and revealed changes across the genome over time (Extended Data Fig.1a-b). PCA highlighted a progressive rewiring of genome compartmentalization during transdifferentiation (Fig.1d). Although most regions assigned to either the A (40%) or B (60%) compartment remained essentially constant throughout transdifferentiation (Extended Data Fig.1c), around 14% were dynamic (Fig.1e). Of these, ~25% switched from B-to-A, ~40% from A-to-B and the remaining regions showed transient transitions (A-B-A and B-A-B) (Fig.1e). Genes associated to regions exhibiting a B-to-A switch were upregulated on average and found to be enriched for 'immune system'-related functions whereas genes in A-to-B switching domains were downregulated and enriched for 'transcription'-related processes (Fig.1f, Extended Data Fig.1d). In contrast, expression of genes in A-B-A regions remained unchanged, while genes in B-A-B domains were slightly upregulated

(**Fig.1f**), raising the possibility of a 'memory effect' of regions that have transiently moved into the A compartment.

Supplementary Note 3. Auxin-inducible degron approach to deplete CTCF during transdifferentiation of B cells into macrophages

We used CRISPR/Cas9 technology to introduce into BLaER cells, a transgene encoding the Tir1 F-box protein from *Oryza sativa* and targeted the stop codon of both CTCF alleles to introduce a 68-amino acid version of the auxin-inducible degron (mAID) tag together with a mCherry cassette. Addition of auxin to culture medium then triggers proteasome-dependent CTCF degradation also resulting in a loss of mCherry⁺ fluorescence (**Fig.2b-c**).

Supplementary Table 1. Sequences of oligonucleotides used for qRT-PCR

Oligonucleotide	Sequence
IL6_Forward	AGTGAGGAACAAGCCAGAGC
IL6_Reverse	ATTTGTGGTTGGGTCAGGGG
IL1B_Forward	CGCCAGTGAAATGATGGCTT
IL1B_Reverse	ATCCAGAGGCAGAGGTCC
TNF_Forward	ACTTTGGAGTGATCGGCCC
TNF_Reverse	CATTGGCCAGGAGGGCATT
CCL2_Forward	ATCAATGCCCCAGTCACCTG
CCL2_Reverse	TCTCCTTGGCCACAATGGTC
CCL1_Forward	CGGAGCAAGAGATTCCCCTG
CCL1_Reverse	TGCCTCTGAACCCATCCAAC
CCL5_Forward	TCATTGCTACTGCCCTCTGC
CCL5_Reverse	CACACTTGGCGGTTCTTTCG
CSF3_Forward	GAGTGTGCCACCTACAAGCT
CSF3_Reverse	CCGCTATGGAGTTGGCTCAA
GAPDH_Forward	CAGCCTCAAGATCATCAGCA
GAPDH_Reverse	TGTGGTCATGAGTCCTTCCA

Supplementary References

- Rapino, F. et al. C/EBPalpha induces highly efficient macrophage transdifferentiation of B lymphoma and leukemia cell lines and impairs their tumorigenicity. Cell Rep 3, 1153–1163 (2013).
- 2. Di Stefano, B. et al. C/EBPalpha creates elite cells for iPSC reprogramming by

- upregulating Klf4 and increasing the levels of Lsd1 and Brd4. *Nat Cell Biol* **18**, 371–381 (2016).
- 3. van Oevelen, C. *et al.* C/EBPalpha Activates Pre-existing and De Novo Macrophage Enhancers during Induced Pre-B Cell Transdifferentiation and Myelopoiesis. *Stem Cell Reports* **5**, 232–247 (2015).