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Abstract
Wavefunctions for large electron numbers N are plagued by the Exponential Wall Problem

(EWP), i.e., an exponential increase in the dimensions of Hilbert space with N . Therefore they

loose their meaning for macroscopic systems, a point stressed in particular by W. Kohn. The EWP

has to be resolved in order to be able to perform electronic structure calculations, e.g., for solids.

The origin of the EWP is the multiplicative property of wavefunctions when independent subsys-

tems are considered. Therefore it can only be avoided when wavefunctions are formulated so that

they are additive instead, in particular when matrix elements involving them are calculated. We

describe how this is done for the ground state of a macroscopic electron system. Going over from a

multiplicative to an additive quantity requires taking a logarithm. Here it implies going over from

Hilbert space to the operator- or Liouville space with a metric based on cumulants. The operators

which define the ground-state wavefunction generate fluctuations from a mean-field state. The

latter does not suffer from an EWP and therefore may serve as a vacuum state. The fluctuations

have to be connected like the ones caused by pair interactions in a classical gas when the free energy

is calculated (Meyer’s cluster expansion). This fixes the metric in Liouville space. The scheme

presented here provides a solid basis for electronic structure calculations for the ground state of

solids. In fact, its applicability has already been proven. We discuss also matrix product states,

which have been applied to one-dimensional systems with results of high precision. Although these

states are formulated in Hilbert space they are processed by using operators in Liouville space. We

show that they fit into the general formalism described above.
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I. INTRODUCTION

Electronic structure calculations for large molecules and macroscopic systems like solids

remain one of the most active and challenging fields in quantum chemistry and condensed

matter physics, respectively. They are pivotal for modern chemistry and of great importance

for material sciences, which form the basis for many technical applications.

The first calculations of this kind started shortly after Heisenberg [1] and Schrödinger [2]

formulated the rules for treating quantum mechanical systems. They were concerned with

a deeper understanding of chemical binding. Naturally, the first system treated was the

simplest one, i.e., the H2 molecule. It revealed already a basic problem, namely the proper

treatment of the mutual electron repulsion. Depending on the relative size of the repulsion

energy as compared with the kinetic energy of the electrons we speak of weakly or strongly

correlated electrons. The early work of Heitler and London [3], Hund [4], Mulliken [5] and

Hartree [6] stands here for many others. With increasing time the molecules which could be

treated computationally increased continuously. Recently calculations of various electronic

properties for molecules were reported consisting of several hundred atoms [7, 8].

In parallel to electronic structure calculations on molecules also those for periodic solids,

i.e., macroscopic systems were performed, thereby applying more approximate techniques.

For reviews see, e.g., [9–12]. Here a big obstacle is the fact that wavefunctions in Hilbert

space are no longer meaningful for large, in particular macroscopic electron systems. This

has been known for long time [13] and recently reemphasized by W. Kohn [14]. There are

different reasons for such a statement. One is that the dimensions of Hilbert space for

the description of, e.g., the ground state of a system of N interacting electrons increase

exponentially with N . This was termed by Kohn the Exponential Wall Problem (EWP). A

second reason is that strictly speaking a macroscopic system can never be in a stationary

state due to the interactions of the system with it surroundings. This holds true even if this

interaction is extremely small like in nearly isolated systems [13].

Concerning the EWP, Kohn’s arguments were summarized in the following statement [14]:

for a system with N > N0 electrons, where N0 ' 103 a wavefunction ψ(r1σ1, . . . , rNσN) is

no longer a legitimate scientific concept! Here ri, σi are the position and spin of the i-th

electron. In order to be meaningful two conditions have to be fulfilled by a wavefunction:

it must be possible to approximate it to a reasonable degree of accuracy and one has to
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be able to document it. Both conditions cannot be met when N > N0. In this case the

dimensions of Hilbert space and hence the number of parameters which have to be fixed in

order to describe the wavefunction become so large that the overlap of any approximation

|ψapp〉 to the exact ground-state wavefunction |ψ0〉 is zero for all practical purposes. The

latter is |〈ψapp|ψ0〉| ∼ (1− ε)N where ε is a typical error in a parameter attached to a given

dimension. A similar argument holds for the documentation of an exponential number of

parameters, which is at least of order 2N .

The second argument, namely the absence of stationary states in a macroscopic electron

system is based on the fact that it is never possible to decouple a system completely from its

surrounding. Therefore the energy of the system is broadened by an amount of order of this

interaction energy. Even when we speak of a closed system it is only quasi-closed, since in

the real world there always remain some residual interactions with the surrounding. Their

energy is enormous when compared with the energy level splitting in the macroscopic system.

The number of levels in a given energy interval grows exponentially with particle number N .

Therefore, the energy uncertainty due to the interactions with its the surrounding is always

bigger than the energy level splitting and therefore no stationary wavefunction is strictly

speaking possible. Also, it would require on astronomical time to bring a macroscopic system

into a stationary state given the smallness of the energy splittings [13].

In order to resolve the problem of a proper description of the ground state of a macro-

scopic electron system we first neglect completely the interactions of the system with its

surrounding and concentrate on the EWP. Subsequently we discuss the inclusion of the ne-

glected interactions. When we consider the system as completely isolated, we can define

stationary states in Hilbert space. Thus, the EWP remains and must be dealt with.

The EWP has its origin in the multiplicative property of wavefunctions. When |ψA〉

and |ψB〉 are the wavefunctions of two separate systems A and B, then the wavefunction

of the total system is |ψA/B〉 = |ψA〉 ⊗ |ψB〉. The relevance of this feature for the EWP is

seen by considering a system consisting of NA nearly noninteracting atoms with nA electrons

each. Assume, that the correlations among the electrons on one atomic site can be described

with sufficient accuracy by a superposition of M electronic configurations. Then the total

number of configurations required for the description of, e.g., the ground state of the total

system is MNA and, as expected, exponentially exploding. Yet, the information we obtain

from this wavefunction is all contained in the one for a single atom. Information about
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extremely small interactions of electrons on different atoms is irrelevant for reasons pointed

out above and need not be considered. Therefore, in order to avoid the EWP we have to

find a representation of the wavefunction in which all the redundant configurations do not

appear. They have to be eliminated from the beginning. Only those configurations should

appear in the description of the wavefunction which provide new information about the

system. This requires giving up the multiplicative character of a wavefunction and finding

instead a description of wavefunctions which is additive in particular when matrix elements

are calculated.

Note that the EWP does not exist for a system of noninteracting electrons or electrons

for which the interactions are treated in a molecular-field approximation. In these cases the

ground state of the system consists of a single configuration, e.g., a single Slater determinant

or a Néel state. Note that an approximation to this configuration will also have a strongly

reduced overlap with the exact eigenstate of H0. Yet, it is not exponentially small and can be

corrected by single-particle excitations. The EWP does also not occur in density-functional

theory (DFT) [15, 16], where all electronic variables are traced out except for those needed,

e.g., for the description of the density n(r). This approach is a molecular-field type theory

too.

The above suggests to split the Hamiltonian H for a macroscopic system like a solid into

two parts H = H0 +H1 with a known ground state of H0, i.e., when H0 is the Hamiltonian

in SCF approximation

H0|Φ0〉 = ESCF|Φ0〉 . (1)

The residual part H1 describes the fluctuations with respect to |Φ0〉. If |Φ0〉 is identified

with the SCF- or Hartree-Fock ground state of the electron system, then H1 generates one-,

two-, three-, four- etc. particle excitations out of |Φ0〉. When we call |Φ0〉 the vacuum state

of the system, then H1 generates vacuum fluctuations. In order to describe the ground-

state wavefunction of a macroscopic system we have to restrict ourselves to describing those

vacuum fluctuations which contain new information. This is generally not possible in Hilbert

space where the wavefunction is multiplicative and contains redundant information. But it

can be realized in Liouville- or operator space.

Vacuum fluctuations are described by opertors and therefore we have to consider the

operator- or Liouville space. However, the restriction to fluctuations (or operators) which

contain new information, requires a special metric in Liouville space, namely one based on
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cumulants. We denote in the following by |Ω) the point in Liouville space which specifies the

ground state of the electronic system. The rounded ket indicates that the metric in Liouville

space is a special one. In order to specify |Ω) we have also to reexpress the corresponding

Schrödinger equation in Liouville space. As we will see this poses no problem.

At this stage it should be pointed out that for extended one-dimensional systems it has

been possible to determine ground-state properties with very high, i.e., machine accuracy

by working seemingly in Hilbert space. Under quite general conditions [17] the ground state

wavefunction of a one-dimensional system can be written in form of a matrix-product state

[18–22]. High precision results for various physical properties can be obtained when for

a system with a MPS an area law holds [23]. Then the ground-state wavefunction does

not face the EWP and we explain why this is so. Yet, calculations with matrix product

states are until now feasible only for low dimensional systems, i.e., chains and in some cases

two-dimensional structures. The treatment of matrix-product states is intimately related

to the density-matrix renormalization group (DMRG) [24–28]. By providing a connection

between MPS and the Liouville space approach we hope to stimulate discussions about

possible extensions of MPS to higher dimensions.

This thematic review is structured as follows. In order to familiarize the reader with the

use of cumulants we start with a brief reminder, how the free energy of a classical imperfect

gas is calculated. This is followed by a summary of the most important properties of cu-

mulants. They demonstrate their usefulness. In a next step we discuss briefly the inclusion

of the coupling of a macroscopic electron system to its surrounding. Next the form of |Ω)

and of the Schrödinger equation for |Ω) are discussed. This is followed by an incremental

decomposition of |Ω), which is an important feature used in numerical applications. Finally,

a list of applications of the above formalism is given. A comparison of the Liouville-space

approach with the one for extended chains based on MPS completes this overview.

II. A BRIEF REMINDER: THE IMPERFECT CLASSICAL GAS

It was Kubo [29] who pointed out many years ago the important role which cumulants are

playing in classical and quantum statistics. They are required when multiplicative functions

(e.g., the partition function, density matrices, wavefunctions etc.) are set in relation with

additive functions (e.g., free energy, densities, momenta, etc.). We demonstrate this here by
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choosing the partition function and the free energy of a classical gas [30]. In the following

Sections we want to apply cumulants for the replacement of the wavefunction in Hilbert

space, which is multiplicative by one in Liouville space, which is additive.

We denote with Z the partition function of a gas which factorizes as Z = Zid · ZU . Here

Zid is the partition function of an ideal gas and ZU the modification due to the mutual

interactions of the gas particles. The latter depend on the potential energy U =
N∑
i>j

φij of

the N particles with pair interactions φij. The corresponding free energy is F (T ) = Fid+FU .

We define

fij = exp (−βφij)− 1 ; β = (kBT )−1 (2)

and write

e−βU =
∏
i>j

e−βφij =
∏
i>j

(1 + fij) . (3)

Therefore, the interaction part ZU of the partition function is

ZU = 〈e−βU〉

= 〈
∏
i>j

(1 + fij)〉 (4)

where 〈. . . 〉 is the average over all configurations of the gas. Consequently

FU = −kBT ln〈
∏
i>j

(1 + fij)〉 . (5)

Cumulants avoid working with the logarithm of a configurational average. As discussed in

the next Section, they eliminate all statistically independent, i.e., factorizable contributions

to the configuration average. One definition often used is

ln〈eλA〉 = 〈eλA − 1〉c (6)

where A is an arbitrary operator or function and c indicates taking the cumulant. It ensures

that both sides are identical when they are expanded in powers of λ. A more general

definition is given in the next Section where also their most important properties are pointed

out. Here we use Eq. (6) in order to rewrite Eq. (5) in the form

FU = −kBT

〈∏
i>j

(1 + fij)− 1

〉c

= −kBT
∑
i>j

〈fij〉+
∑
k<l
k,l6=ij

(〈fijfkl〉 − 〈fij〉〈fkl〉) + . . .

 . (7)
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It demonstrates that only linked pair interactions contribute to the free energy, an observa-

tion also termed Mayer’s cluster expansion [31]. The close relation of these findings with

the EWP in the quantum case will become visible below.

III. CUMULANTS AND THEIR PROPERTIES

For a general definition of cumulants we consider first the following function depending

on M parameters λ1, . . . λM ,

f (λ1, λ2, . . . , λM) = ln

〈
Φ1

∣∣∣∣∣
M∏
i=1

eλ1Ai

∣∣∣∣∣Φ2

〉
. (8)

The states |Φ1〉 and |Φ2〉 are non-orthogonal vectors in Hilbert space, i.e., 〈Φ1|Φ2〉 6= 0 and

the Ai are arbitrary operators. This function is analytic in the vicinity of λ1 = λ2 = · · · =

λM = 0. Therefore we can expand it around this point. The expansion coefficients define

the cumulants 〈Φ1|A1A2 . . . AM |Φ2〉c, i.e.,

〈Φ1|A1 . . . AM |Φ2〉c =
∂

∂λ1
. . . . . .

∂

∂λM
ln

〈
Φ1

∣∣∣∣∣
M∏
i=1

eλiAi

∣∣∣∣∣Φ2

〉
. (9)

For example, the cumulant 〈Φ1|A1A2|Φ2〉c is

〈Φ1|A1A2|Φ2〉c =
〈Φ1|A1A2|Φ2〉
〈Φ1|Φ2〉

− 〈Φ1|A1|Φ2〉
〈Φ1|Φ2〉

〈Φ1|A2|Φ2〉
〈Φ1|Φ2〉

. (10)

When we require that 〈Φ1|Φ2〉 = 1 the cumulant of the product A1A2A3 is written of the

form

〈A1A2A3〉c = 〈A1A2A3〉 − 〈A1〉〈A2A3〉

−〈A2〉〈A1A3〉 − 〈A3〉〈A1A2〉+ 2〈A1〉〈A2〉〈A3〉 (11)

and so on. Here the abbreviation 〈Φ1| . . . |Φ2〉 = 〈. . . 〉 has been introduced. Equation (6)

is reproduced by setting in Eq. (9) A1 = · · · = AM = A multiplying with λM/M ! and

summing over M .

Cumulants have the following properties, which can be easily checked [32]:

Linearity:

〈A(αB + βC)〉c = α〈AB〉c + β〈AC〉c
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and independence from the norm of the vectors |Φ1〉 and |Φ2〉:

〈α1Φ1|AB|α2Φ2〉c = 〈Φ1|AB|Φ2〉c . (12)

Products of statistically independent operators have the property that 〈AB〉 = 〈A〉〈B〉,

implying that the cumulant 〈AB〉c = 0. When two operators A and B are considered as an

entity with respect to cumulants we denote them by (AB)∗ and it is generally

〈A1(A2A3)
∗〉c 6= 〈A1A2A3〉c . (13)

The cumulant of the number 1 is

〈Φ1|1|Φ2〉c = ln〈Φ1|Φ2〉 . (14)

When 〈Φ1|Φ2〉 = 1 it follows that 〈1〉c = 0 while for the unit operator 1op we find

〈1op〉c = 1 , 〈1op · A〉c = 0 . (15)

Equation (14) is obtained by formally setting the number of λ parameters in Eq. (9) equal

to zero.

It is interesting to consider the behaviour of the cumulant when we transform the vector

|Φ2〉 in Eq. (9) into another vector |ψ〉 in Hilbert space. For this purpose we apply a

sequence of infinitesimal transformation eδS taking us on a path in Hilbert space from |Φ2〉

to |ψ〉. We subdivide this path into L steps. After the first step we obtain for the cumulant

of any operator A, but now taken with respect to the vectors 〈Φ1| and eδS1 |Φ2〉

〈Φ1|AeδS1|Φ2〉c = 〈Φ1|A(1 + δS1)|Φ2〉c . (16)

After L steps this results in

〈Φ1|A|ψ〉c = 〈Φ1|AΩ|Φ2〉c (17)

with

Ω = lim
L→∞

L∏
i=1

(1 + δSi)

= (1 + S) . (18)

We draw attention that Ω is not unique since many different paths can be chosen in order

to go over from |Φ2〉 to |ψ〉. Until now |ψ〉 has been any vector unequal |Φ2〉. Later we shall
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choose for it the ground state |ψ0〉 of H and for |Φ2〉 the ground state |Φ0〉 of H0. In this

case the operator Ω transforms the ground state of uncorrelated electrons into the ground

state of the correlated system [33–35]. Note that when |ψ〉 is any eigenstate of H and |Φ〉 is

any vector in Hilbert space with 〈Φ|ψ〉 6= 0, then for any operator A (not a c-number!) the

following equation holds [34]

〈Φ|AH|ψ〉c = 0 . (19)

The matrix element factorizes and therefore the cumulant vanishes.

IV. GROUND STATE AND SCHRÖDINGER EQUATION

We start from a completely isolated macroscopic electron system by neglecting all in-

teractions of the system with its surrounding. Then the Hamiltonian H = H0 + H1 of a

macroscopic electron system can be written down and the ground state |Φ0〉 of H0 consists

of a single configuration, i.e., a Slater determinant (for simplicity we assume that the ground

state is nondegenerated).

We define this state as the vacuum state. As discussed before, in order to describe the

wavefunction in a form which is additive, all vacuum fluctuations which enter the description

of the ground state must be linked, i.e., they should not factorize. We include them by the

following vector in Liouville space

|ψ0〉c = |ΩΦ0〉c . (20)

This notation indicates that whenever a matrix element involving |ψ0〉c is calculated the

cumulant of this matrix element must be taken. We have here adopted the notation of Eqs.

(17,18) and identified |Φ1〉 with |Φ0〉 and |ψ〉 with the ground state |ψ0〉 ofH. In the following

we will always assume that 〈Φ0|ψ0〉 6= 0, although this overlap becomes exponentially small

with increasing electron number N . Equation (20) suggests to introduce the following metric

in Liouville space

(A|B) = 〈Φ0|A+B|Φ0〉c (21)

where A and B are arbitrary operators. The ground-state energy E0 is obtained by the use

of Eq. (12) with A1 = 1 and A2 = H as

E0 =
〈Φ0|H|ψ0〉
〈Φ0|ψ0〉

= 〈Φ0|Hψ0〉c . (22)
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With the help of Eq. (20) this expression is rewritten in condensed form as

E0 = (H|Ω) . (23)

We call |Ω) the cumulant wave operator in analogy to Møller’s wave operator Ω̃. The latter

relates |ψ0〉 and |Φ0〉 in Hilbert space through

|ψ0〉 = Ω̃|Φ0〉 . (24)

As seen from Eq. (18) |Ω) is of the generic form |Ω) = |1 + S) and therefore |S〉 is called a

cumulant scattering operator. It describes those vacuum fluctuations which are connected

and therefore contain new information.

Thus the energy E0 decomposes into E0 = ESCF + Ecorr with

ESCF = (H|1)

Ecorr = (H|S) = (H1|S) . (25)

The accuracy of the correlation energy Ecorr depends on the quality of the description of the

cumulant scattering operator |S). One notices that with Eq. (22) we have gone over from a

wavefunction |ψ0〉 in Hilbert space, which is of a multiplication form to a characterization of

the ground state in Liouville space, i.e., |Ω) which is additive. There is no EWP in the latter

case. Any approximation to |Ω) leads just to a small change |δS) in the cumulant scattering

operator and a corresponding change in the correlation energy δEcorr = (H|δS). Note

that Eq. (23) corresponds to the Schrödinger equation for the ground state formulated in

Liouville space. This equation is in Hilbert space of the form of Eq. (22) with |ψ0〉 = Ω̃|Φ0〉,

and therefore the formulation in Liouville space is the natural one for a wavefunction with

additive rather than multiplicative properties. Thus the form of Eq. (23) has to be used

for macroscopic systems where the EWP invalidates the concept of wavefunctions in Hilbert

space. For small electronic systems both forms, i.e., the one in Hilbert or Liouville space

may be used, which ever is more convenient. Next we shall derive some relations which are

very useful for practical calculations of |Ω).

We start from the identity

lim
λ→∞

e−λH |Φ0〉 = lim
λ→∞

∑
n

e−λH |ψn〉〈ψn|Φ0〉

= lim
λ→∞

e−λH |ψ0〉〈ψ0|Φ0〉 (26)
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where the |ψn〉 are a complete set of orthonormal eigenfunctions of H.

We rewrite the last expression as

|ψ0〉 =
1

〈ψ0|Φ0〉
lim
λ→∞

e−λ(H−E0)|Φ0〉

= Ω̃|Φ0〉 (27)

in accordance with Eq. (24).

From Eqs. (12), (20) and (27) we conclude that

|Ω) = lim
λ→∞
|e−λH) . (28)

The right hand side remains finite in the limit λ→∞. For the extraction of this remaining

part we apply a Laplace transform. Note that a constant term leads to a 1/z contribution

of the Laplace transform. Therefore by multiplying it by z and taking the limit z → 0 we

can extract the desired term from Eq. (28)

lim
z→0

1

z
|Ω) = lim

z→0

∞̂

0

dλ ezλ|e−λH) : <{z} < 0

|Ω) = lim
z→0

∣∣∣∣ 1

z −H
z

)
(29)

The last expression can be rewritten as

|Ω) = lim
z→0

∣∣∣∣1 +
1

z −H
H1

)
or

= lim
z→0

∞∑
n=0

∣∣∣∣( 1

z −H0

H1

)n)
. (30)

We have used that | . . . . . . H0) = 0 since |Φ0〉 is an eigenstate of H0 and therefore any

cumulant vanishes. When Eq. (30) is set into Eq. (25) we obtain the energy contributions

of the linked fluctuations in form of a perturbation expansion. It is equal to the Goldstone

diagrammatic expansion [36] which shows that only linked diagrams contribute to Ecorr.

From the above it is obvious that an expansion of the form of Eq. (30) holds independent

of the splitting of H into H0 and H1. Note the connections to Kato’s expansions [37].

While Eq. (30) enables an evaluation of |Ω) in form of a perturbation expansion, one

may also adopt a quite different approach based on projections. In case that one has a

clear physical picture about the most important fluctuations one may limit oneself to these
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and thus to a relevant subspace <0 of the full Liouville space < which they span [38]. An

example are a strong reduction of double occupancies of certain orbitals as compared with

the vacuum, i.e., |Φ0〉. Let us assume that the orthonormal operators Aν span this subspace

<0. Then an ansatz of the form of

|Ω) =

∣∣∣∣∣1 +
∑
ν

ηνAν

)
(31)

is suggestive. The parameters ην can be determined from Eq. (19), i.e.,

(Aν |HΩ) = 0 . (32)

When (Aν |H1) 6= 0 for all ν the equations for the ην become particularly simple. From Eqs.

(31,32) we obtain

(Aµ|H1) +
∑
ν

ην(Aµ|HAν) = 0 . (33)

with the solution

ην = −
∑
µ

L−1νµ (Aµ|H1) (34)

and

Lρτ = (Aρ|HAτ ) . (35)

When some of the Aν do not couple to H1, that is when for some Aµ it holds that (Aµ|H1) =

0, then these operators, respective fluctuations enter only by modifying the ην via the matrix

elements Lρτ . With the method of projection onto <0, or limitation to the most important

fluctuations Aν one can easily incorporate such size extensive quantum chemical methods

as the Coupled Electron Pair Approximation (CEPA-O) and variations of it [39–41]. At

this stage on might inquire about the relation of the present approach and the Coupled

Cluster (CC) method [42–44]. This topic has been discussed in [45], see also [46]. The

wavefunction is formulated in Hilbert space and therefore suffers from the EWP. Yet, since

in the CC equations only connected fluctuations enter the correlation energy, the method

is size consistent and can be used to compute energies of high quality, depending on the

particular system one is dealing with.

V. RESIDUAL INTERACTIONS WITH THE SURROUNDING

At this stage we want to discuss the effect on |Ω) or |S) of the interaction of the macro-

scopic system with its surrounding.
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This coupling affects the fluctuations of additive physical quantities like the energy. We

subdivide the macroscopic system into macroscopic subsystems. Then we consider the devi-

ations of an additive physical quantity q of the subsystem from its average value q̄ when the

fluctuations caused by the interaction of the subsystem with its surrounding are taken into

account. It is well known that for additive physical quantities these deviations are negligible

[13, 30]. This is seen by determining the relative fluctuations defined by

< = ((∆q)2)1/2/q̄ ; (∆q)2 = q2 − (q̄)2 (36)

where q̄ is the average value of q and (∆q)2 is the mean square average of the fluctuations.

Since (∆q)2 ∼ N , where N is the average particle number of the subsystem and also q̄ ∼ N ,

because q is additive we find that < ∼ 1/
√
N .

As shown above, |Ω) respective |S) is an additive physical quantity. The cumulant scat-

tering operator is a sum of operators Oν multiplied by coefficients αν , i.e., S =
M∑
ν

ανOν .

Their number M depends on the requested accuracy, e.g., of the correlation energy a topic

extensively discussed below. We are interested in the fluctuations δαν of the coefficients

αν caused by the coupling of the subsystem to the surrounding. In analogy to the above,

< ∼ 1/
√
M where M > N because the Oν generate a correlation hole for each of the elec-

trons. This implies that the effect of the residual coupling of a macroscopic electron system

to the surrounding on the αν and hence on |S) can be safely neglected. What remains to be

done is to consider a possible effect of the residual coupling on |Φ0〉, i.e., the ground state

of H0. Remember that the latter is used to define the vacuum. An effect of the coupling on

|Φ0〉 would imply changes by a noticeable amount in the molecular field contained in H0.

This is not the case though. Changes in the molecular field would require that the single-

particle excitations contained in the set of operators Oν have their prefactors αν effected

by the coupling to the surrounding. However, as pointed out before all changes in the αν

coefficients are completely negligible.

Having dealt with the EWP as well as with the negligible effect of the coupling of the

subsystem to its surrounding, we have a robust and solid basis for electronic structure

calculations for macroscopic electron systems. What is yet missing up to here are simple

rules for calculating the cumulant scattering operator |S). They are derived in the following

Section.
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VI. DECOMPOSITION OF THE SCATTERING OPERATOR

After having shown that the EWP does not appear if wavefunctions are formulated in

Liouville space by the fluctuations of a mean-field state |Φ0〉 defined as vacuum we review

briefly how the above theory is applied for realistic calculations of the ground state of solids.

The formulation of the wavefunction in Liouville space puts us in a position to reduce the

treatment of electronic correlations to a small number of electrons. This is done as follows.

Starting point is a set of L basis function fi(r) centred at different lattice sites I, J etc.

In terms of them the field operators ψσ(r) are expressed as

ψσ(r) =
L∑
i=1

aiσfi(r)σ . (37)

For the basis functions usually orthogonalized sets of Gauss-type orbitals are chosen. In this

case the corresponding creation and annihilation operators a+iσ, aiσ fulfill the anticommuta-

tion relations

[
a+iσ, ajσ′

]
+

= δijδσσ′ ,
[
a+iσ, a

+
jσ′

]
+

= [aiσ, ajσ′ ]+ = 0 . (38)

The Hamiltonian expressed in terms of these operators is

H =
∑
ijσ

tiσa
+
iσajσ +

1

2

∑
ijkl
σσ′

Vijkla
+
iσa

+
kσ′alσ′ajσ . (39)

We split the Hamiltonian into H = H0 + H1 where H0 is the self-consistent field (SCF)

Hamiltonian HSCF and H1 is the remaining residual interaction part Hres. More explicitly,

the Hamiltonian H1 of the residual interactions is

Hres =
∑
ijkl

[
1

2

∑
σσ′

Vijkla
+
iσa

+
kσ′alσ′ajσ

−
∑
σ

(
Vijkl −

1

2
Vilkj

)
Pkla

+
iσajσ +

1

2

(
Vijkl −

1

2
Vilkj

)
PijPkl

]
(40)

where Pij is the density matrix

Pij =
〈
ΦSCF

∣∣a+iσajσ∣∣ΦSCF

〉
(41)

and |ΦSCF〉 is the ground state of HSCF. We will still use the notation |Φ0〉 and H1 and

switch to |ΦSCF〉 and Hres only when for reason of clarity this is required.
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The SCF ground-state |Φ0〉 which we here call vacuum state is usually written in the

form of |Φ0〉 =
∏
µσ

c+µσ|0〉, where the c+µσ create electrons in the canonical SCF or Bloch spin

orbitals µσ. The index µ includes the momentum k and a subband index while |0〉 is the

empty state. The vacuum fluctuations generated by H1 are rather local and generate the

correlation hole of an electron. Therefore it proves advantageous to replace occupied Bloch

orbitals by Wannier orbitals. The latter are obtained by a unitary transformation U in the

space spanned by the occupied canonical spin-orbitals

c̃+νσ =

N/2∑
µ=1

Uνµc
+
µσ , (42)

so that |Φ0〉 =
N∏
νσ

c̃+νσ|0〉. The unitary transformation is chosen so that the Wannier orbitals

are as localized as possible. For different localization procedures of which the one of Foster

and Boys [47] and Edmiston and Ruedenberg [48] are the most wide spread ones we refer

to the original literature. The unoccupied or virtual SCF spin orbitals are best expressed

in terms of ã+iσ(I), ãiσ(I) operators. They are referring to the modified basis function f̃i(r)

which are the fi(r) orbitals but orthogonalized to the occupied space, i.e., to the Wannier

orbitals. The index I indicates the site (or bond) at which the virtual orbitals are centered.

With these definitions the residual interactions can be decomposed in the form

H1 =
∑
I

HI +
∑
〈IJ〉

HIJ +
∑
〈IJK〉

HIJK +
∑
〈IJKL〉

HIJKL . (43)

The brackets refer to pairs, triplets and quadrupoles of sites or bonds. The residual interac-

tion part of H has one or two destruction- and creation operators and the subscrips I, IJ

etc specify where these two or four operators are centered. For example, HI tells us that

they are all centered at site (bond) I, while IJ implies they are centered at sites (bond) I

and J and so on.

Equation (30) suggests the introduction of operators

Aα = lim
z→0

1

z −H0

Hα (44)

with α running over all contribution to H1, i.e., HI , HIJ , HIJK , HIJKL. Thus from the
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expansion (30) we obtain

|S) = lim
z→0

∣∣∣∣∣
∞∑
n=1

(
1

z −H0

H1

)n)

=
∞∑
n=1

∣∣∣∣∣
(∑

α

Aα

)n)
. (45)

This form is very suitable for the determination of the most important increments to |S)

and the correlation energy Ecorr = (H1|S). In general correlation-energy contributions from

HI , i.e., from electrons on a given site I will be more important than from electrons on

different sites, i.e., HIJ . Also the correlation energy contributions are expected to decrease

as the sites I and J increase their distance. Thus the following ordering of the various terms

in (44) suggests itself

|S) =
∑
α

∣∣∣∣∣
(
∞∑
n=1

Anα

))
+
∑
α 6=β

|Tαβ 〉

=
∑
α

|Sα) +
∑
α 6=β

|Tαβ 〉 . (46)

Obviously the operator |Sα) is the cumulant scattering operator of a Hamiltonian H0 +Hα.

The remaining part in Eq. (45) consists of operators |Tαβ〉 involving more than a single Hα.

A discussion of the |Tαβ〉 in found in Ref. [32].

The largest contributions come without doubts from the |Sα), when α refers to one of the

HI , i.e., a single site or bond. If these are the only contributions to |S), i.e., if |S) =
∑
I

|SI)

we speak of a single-center approximation. In this case |SI) is the cumulant scattering matrix

of a Hamiltonian H1c = HSCF +HI and the correlation energy is determined from

Ecorr =
∑
I

(HI |SI) . (47)

Treating H1c is a many-body problem involving a small electron number only, i.e., those at

site I.

It is well known that for strongly correlated electrons a SCF ground state |Φ0〉 is a poor

starting point. This can be improved at this stage: By freezing all electrons in |Φ0〉 except

those centered at site (or bond) I, we can include in |SI) strong correlations of electrons on

this site, if required. Strong on-site correlations can be treated, e.g., by a complete active

space SCF calculation (CASSCF) of the electrons at site I. With |Ω) = |1 +
∑
I

SI) they are
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taken into account at all sites. In Hilbert space such a generalization is not possible, as this

would require to deal with an exponential number of configurations.

In an improved approximation two-site scattering matrices are included. This implies

including not only HI but also HIJ when the cumulant scattering matrix |S) is determined.

This is called a two-center approximation. Since the index α runs now over all interaction

matrix elements involving sites I, J , and IJ we note that |Sα) contains also contributions

of the form |SIJ).

The operator

|SIJ) =
∞∑
n=1

|(AI + AJ + AIJ)n ) (48)

is then the cumulant scattering operator of the Hamiltonian Htc = HSCF +HI +HJ +HIJ ,

i.e.,

|S) =
∑
I

|SI) +
∑
〈IJ〉

|SIJ − SI − SJ ) . (49)

In the two-center approximation the correlation energy is obtained from

Ecorr =
∑
I

(H1|SI) +
∑
〈IJ〉

(H1|δSIJ) (50)

with |δSIJ) = |SIJ −SI−SJ). All electrons in |Φ0〉 are kept frozen except for those centered

at sites (or bonds) I and J . They are permitted to fluctuate.

The expansion of |S) can be continued so that the cumulant scattering matrix involves

an increasing number of sites on which the electrons fluctuate

|S) =
∑
I

|SI) +
∑
〈IJ〉

|δSIJ) +
∑
〈IJK〉

|δSIJK) + . . . (51)

with |δSIJK) = |SIJK − δSIJ − δSIK − δSJK − SI − SJ − SK) etc.
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A B

Figure 1: 1a: Examples of different vacuum fluctuations SI , SKL, SMNT contributing to |S).

1b: Vacuum fluctuations contributing to the correlation hole around site I. Different colours refer

to vacuum fluctuations involving electrons on different numbers of sites.

In Fig.1 we show examples of different terms in Eq. (51). They represent various vacuum

fluctuations. They take place in Fig. 1a at different sites and in Fig.1b around site I. The

associated correlation energy improves rapidly with increasing number of increments [49, 50].

The decomposition of |S) and with it the computation of the correlation energy in form of

increments has reduced the computations for a macroscopic system to one of a few electrons.

Which of the different quantum chemical methods is the most economical one to treat these

electrons depends on the special system. Often a CC or a CEPA calculation will be the

method of choice. A special comment with respect to metals is in order. Here we deal with

the difficulty that in a metal the occupied Wannier functions fall off only algebraically in

distinction to the exponential drop in systems with an energy gap [51]. One way to improve

localization here is to define from the occupied canonical or Bloch orbitals only as many

localized orbitals that each of these can be doubly occupied. In the case of Li metal this

implies that the localized orbitals φi, determined, e.g., by the method of Pipek and Mezey

[52] are set up with respect to Li2 units [53]. When c̃+iσ is the creation operator of an electron

with spin σ in orbital φi, the SCF ground state is again of the form

|Φ0〉 =

N/2∏
iσ

c̃+iσ|0〉 (52)

where N is the number of electrons in the half-filled conduction band. The different incre-

ments to |S) are calculated by using the c̃+iσ operators [53]. The more general procedure is to

project the localized orbitals φi onto the occupied as well as onto the unoccupied, i.e., vir-

tual SCF space. These projections {Poccφi} and {Pvirt.φi} are, of course, nonorthogonal and
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overcomplete: The overcompleteness can be remedied by finding pairs {φi, φj} with largest

overlap and eliminating from {Poccφi} and {Poccφj} one of the two. This is done until the

overcompleteness is removed. Afterwards the remaining orbitals are pairwise orthogonal-

ized. One notices that this leads in the case of Li metal with cubic structure precisely to

the procedure described above.

VII. APPLICATION

The main purpose of this communication is to present a solid basis for ground-state

calculations based on wavefunctions when the electron systems we deal with are macroscopic.

Yet, it is assuring to see that the theory can and has been successfully applied to solids and

therefore we want to mention a number of applications which have been made. When one

consults the original literature for the given examples, one will notice that the calculations

described there are often using a somewhat different language. This is not surprising since

the condensed form presented here of resolving the EWP problem has been developing over

the years. However, the essence of the applied computational schemes in the given examples

is precisely the same as described here.

Ground-state calculations have been performed for semiconductors of group IV [54], III

- V [54, 55], II - VI [56] compounds, on oxides MgO [57], and CaO [58] to name a few.

Also the rare-earth compound GaN [59] has been treated with the 4f electrons kept in the

core. The accuracy of the results, e.g., for the cohesive energy or the bulk modulus has been

analysed in detail for some of these systems with good results [9, 60].

The overall impression is that connected vacuum fluctuations are of rather small spatial

extent! For example, the correlation energy due to two-body increments |SIJ) falls off

asymptotically like van der Waals interactions do, i.e., like r−6. They model the correlation

hole around an electron. For distances larger than twice the radius of the correlations hole,

electrons behave nearly as independent of each other. An analysis shows that one- and

two-center correlations are usually sufficient to obtain satisfactory results for quantities like

the cohesive energy, bulk modulus or bond length. This assumes that reasonably sized basis

sets of Gaussian type of orbitals (GTO) are used. The influence of the size of the basis sets

on the quality of the calculated physical quantities is also discussed, e.g., in Refs. [9, 60]. A

general finding is that large energy gaps lead to spatially reduced correlations holes.
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Rare-gas solids are special, since binding is not obtained on a SCF level. In this case H0

is chosen so that it describes a collection of free atoms which are considered as the vacuum.

The Hamiltonian H1 and with it the vacuum fluctuations take care for the interactions

between them [61]. The decomposition of |S) starts therefore with the contributions |SIJ)

where the indices refer to different atoms. They lead to binding and are at large distances of

van der Waals type. By including three-body corrections of the form |SIJK) the accuracy of

the calculated cohesive energy can be improved. We refrain from a more detailed discussion

here, since the central issue of the paper is to address the more general problem of resolving

the EWP.

VIII. MATRIX-PRODUCT STATES

As mentioned in the Introduction wavefunctions in form of matrix-product states can

give highly accurate results for one-dimensional macroscopic electron systems, despite that

all calculations are done in Hilbert space. This might seem puzzling since due to the EWP

the concept of wavefunctions looses its meaning in Hilbert space for N ≥ 103. So does this

limitation not hold for macroscopic chains? The answer is: for any macroscopic interacting

electron system the overlap of the exact ground-state wavefunction with any approximate

form of it is exponentially small. However, for systems with an area law one need not account

for all possible correlations, e.g., of spins in a spin chain. Instead one starts, e.g., from a

molecular-field ground state such as a Néel state for a Heisenberg chain, and improves or

upgrades it stepwise by means of properly chosen operators, i.e., by elements of Liouville

space. When we define the initial configuration again as our vacuum, then these operators

generate vacuum fluctuations and the similarity with Section IV becomes obvious. But in

the special case of one dimension and when the Hamiltonian contains local interactions these

vacuum fluctuations can be chosen so that the stepwise upgradings are the same everywhere

in the chain and they are also connected. Therefore one may remain in Hilbert space

and need not introduce a cumulant metric in Liouville space. These features become most

transparent when the upgrading is done with the method of Infinite Time Evolution Block

Decimation (iTEBD). The method is equivalent to the DMRG which seemingly is more

used in applications. Before a more detailed discussion is given we have to recall some basic

features of MPS [62]. We start with a chain of L� 1 sites and N electrons. In the simplest
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case of one orbital per site, each site n can be in four different configurations, i.e., empty,

singly occupied with a spin up (down) electron or doubly occupied. More generally, a given

site n can be in d different configurations and |jn〉 denotes the corresponding d dimensional

basis. Any wavefunction can therefore be written in the form

|ψ〉 =
∑
j1,...jL

Cj1...jL |j1, j2, . . . , jL 〉 (53)

and there are dL parameters Cj1...jL reduced by the requirement of a fixed electron number

and total spin. Without loss of generality the matrix C of rank L can be rewritten in form

of a sum of matrix products [18–20, 25, 26, 63]

Cj1...jL =
∑
{αn}

A[1]j1α1
· A[2]j2α1α2

· A[3]j3α2α3
. . . . . . AjLαL−1 . (54)

The sum is over all coefficients αn. This factorized form defines a MPS, here with open

boundary conditions. The matrices AAA[n] are rank-3 tensors. The upper index jn labels the

d configurations at site n, while the lower two indices αn−1, αn are called bond indices and

specify the bond dimensions. The step from Eqs. (53) to (54) follows from a sequence of

Schmidt decompositions of the wavefunction |ψ〉 [18–20, 24–26]. In a Schmidt decomposition

the chain is cut into two parts L (left) and R (right). Thereby the Hilbert space H is divided

into two parts H = HL ⊗ HR. The two parts of the chain are built from vectors |α〉L and

|α〉R in the corresponding spaces HL and HR, respectively. Thus |ψ〉 can be written as

|ψ〉 =
∑
α

λα|α〉L ⊗ |α〉R . (55)

The real coefficients λα, named Schmidt coefficients obey the sum rule
∑
α

λ2α = 1 and

are a measure of the entanglement of the two parts of the chain. In case that they are

unentangled, i.e., when the electrons on the right part are uncorrelated with the ones on

the left part, there remains only one Schmidt number λ = 1 in Eq. (55). By consecutive

Schmidt decompositions along the chain the matrices A[n]jn
αn−1,αn can be rewritten in the form

[18–20, 25, 26]

AAA[n]jn = ΓΓΓ[n]jnΛΛΛ[n] (56)

where the ΓΓΓ[n]jn are matrices of dimension αn−1 × αn and the ΛΛΛ[n] are diagonal square ma-

trices of dimension αn. The entries of there matrices are αn Schmidt coefficients λ1, . . . , λαn .
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Remember that αn is the bond index of site n. With this replacement we obtain the canonical

form of the MPS [21, 64]

|ψ〉 =
∑
j1,...,j2

ΓΓΓ[1]j1ΛΛΛ[1] ΓΓΓ[2]j2ΛΛΛ[2] . . . . . .ΓΓΓ[L]jL|j1, j2, . . . , jL〉 . (57)

Figure 2: Graphical representation of the canonical form of a MPS

The conventional graphical representation of this wavefunction is shown in Fig.2. The bond

order and with it the number of Schmidt coefficients increases exponentially like dn as the

site number n increases. This number is counted from a chain end. In order to terminate

this increase, one orders the Schmidt coefficients according to their size and keeps only the

D largest of them. This way the bond dimension αn remains constant when dn & D. Thus

dimαn = min
(
dn, dL−n, D

)
. (58)

This cut neglects correlations between particles which are too small and eliminates the EWP.

Typically D is chosen so that it is reached after a few steps, e.g., D = d6 Of course, when a

system approaches an electronic phase transition D has to increase correspondingly.

In the following we will use the canonical form for further considerations. In order to be

more specific we consider a macroscopic chain with sites I and a local interaction Hamiltonian

for the electrons of the form H =
∑
I

HI,I+1. This Hamiltonian applies to a number of spin

systems and we will have in the following a Heisenberg antiferromagnet H = J
L−1∑
I=1

SISI+1 in

mind. The aim is to determine the ground-state wavefunction, which is commonly written as

|ψ0〉 in Hilbert space, although for macroscopic systems it is not a legitimate concept. Yet,

what is a valid concept is to start from a Néel state |Φ0〉, consider it as the vacuum state and

to improve the description of the ground state by including vacuum fluctuations generated

by the residual interactions. The Néel state is written in form of a canonical MPS with
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Γ[n = even, ↑] = Γ[n = odd, ↓] = 1 and Γ[n = even, ↓] = Γ[n = odd, ↑] = 0. Furthermore,

the Schmidt coefficient is λ = 1 because it is a mean-field state as explained before. The

Néel state is improved or upgraded by applying the infinite Time Evolving Block Decimation

(iTED) according to which

|ψ0〉 = lim
λ→∞

e−λH |Φ0〉
〈Φ0(λ)|Φ0(λ)〉1/2

; |Φ(λ)〉 = e−λH |Φ0〉

= lim
λ→∞

U(λ)|Φ0〉 (59)

This should be compared with the analogous formulations in Liouville space where the

vacuum |Φ0〉 is the same as above and where |ψ0〉 is replaced by |Ω). The fluctuations are

determined from Eq. (28), i.e., |Ω) = lim
λ→∞
|e−λH).

For the upgrading with Eq. (59) we divide H into H =
∑

I=even

HI,I+1 +
∑

I=odd

HI,I+1. This

has the advantage that the terms with I = even compute with each other and so do the

terms with I = odd. The sum in the exponent of e−λH can be converted into a product of

exponentials by means of the Suzuki-Trotter expansion [65]. It its simplest form it is written

as

eδλ(A+B) = eAδλeBδλ +O((δλ)2) (60)

when A and B are noncommuting operators. When applied to the present situation we

obtain

e−δλH =
∏

I=even

exp(−δλHI,I+1)
∏
I=odd

exp(−δλHI,I+1) +O((δλ)2) . (61)

The smaller δλ = λ/M is with M � 1, the better works the decomposition. Methods of

reducing the errors are found, e.g., in Ref. [66]. Equation (61) can be used to first upgrading

simultaneously all bonds with I = odd. This is possible because, as pointed out before, the

different operators commute. The upgrading changes the matrices ΓΓΓ[I] and ΓΓΓ[I+1] into Γ̃ΓΓ[I]

and Γ̃ΓΓ[I + 1]. Also ΛΛΛ[I] is changed to Λ̃ΛΛ[I] The new matrices are obtained from a Schmidt

decomposition of bond I. Because of the simultaneous upgrading at all I = odd sites, the

matrices are modified everywhere in the same way. In a next step all bonds with I = even

are upgraded, now with the new Γ̃ and Λ̃ matrices. Again, the upgrading is done in parallel

for all I = even bonds. This is shown schematically in Fig. 3.
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Figure 3: Starting from a mean-field state |Φ0〉 simultaneous updates an every other bond (site I is

odd) are being made. They are done according to U(δλ) with a local Hamiltonian H =
∑
I

HI,I+1.

Note that the matrix U(λ) is not unitary and therefore the canonical form of a MPS is

not conserved after an upgrading. Yet, it turns out that the deviation from the canonical

form can be kept sufficiently small and therefore may be neglected [21]. The upgrading

is repeated until the energy calculated with the upgraded wavefunction has the required

accuracy. An exponential increase of the bond order with increasing number of imaginary

time steps is prevented by using Eq. (58). For more details of the upgrading procedure we

refer to the original literature [21]. The point we want to make here is that the upgrades (or

alternatively the fluctuations) of the Néel state |Φ0〉 are additive. They are also connected,

i.e., the operators involved in an upgrading with an imaginary time step δλ connect with

operators involved in the previous one. Cumulants need not be introduced here. When we

start from an unentangled mean-field state, the sequence of upgrading steps never generates

unentangled parts of a chain. Otherwise cumulants would have to exclude them.

This explains why calculations with MPSs in Hilbert space are successful despite the

EWP. By starting from a mean-field state which is well defined in Hilbert space, the operators

generating the fluctuations in MPS’s are additive and connected like in a Liouville space

with cumulant metric. Note the similarity to the treatment of |Ω) in Liouville space with

cumulant metric. Yet, the routes taken in the two approaches are different. In the MPS

scheme the ground-state is approached through the operator e−λH (with λ sufficiently large)

by a sequence of small steps δλ. On the other hand, in |Ω) the limit λ→∞ is taken directly

by a Laplace transform (see Eq. (29)) and the ground state is approached in form of an
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expansion in powers of (z −H0)
−1H1. A more detailed comparison of ground-state energy

calculations for a Heisenberg chain by applying the two methods will be the subject of a

separate paper [67]. An application of cumulants to a Heisenberg Hamiltonian on a square

lattice is found in [68].

IX. SUMMARY AND CONCLUSIONS

The aim of this review has been to address and resolve the exponential wall problem

which one is facing in Hilbert space for wavefunctions of macroscopic systems of interacting

electrons. The exponential increase of the dimensions in Hilbert space with electron number

renders the concept of wavefunctions obsolete in this particular space. For all practical

purposes any approximate wavefunction has zero overlap with the exact one. This problem

must be resolved in order to perform wavefunction based electronic structure calculations

for solids. As was demonstrated it is the multiplicative property of a wavefunction with

respect to independent subsystems which is causing the EWP. Therefore it is avoided when

we formulate the wavefunctions so that they are additive instead of multiplicative. This

is possible by choosing a wavefunction in mean-field approximation as a vacuum state and

by using the operators which generate vacuum fluctuations through H1 for the definition

of the ground-state wavefunction |Ω). These fluctuations define a vector in operator- or

Liouville space. However, for the wavefunction to be additive a cumulant metric in Liouville

space is required. The logarithm of a multiplicative function changes it into an additive

one and cumulants avoid dealing with the logarithm. As a good example serves a classical

interacting gas where the logarithm of the multiplicative partition function changes it into

an additive function proportional to the free energy and where working with the logarithm is

avoided by a cumulant expansion (Mayer’s cluster expansion) of the pair interactions. Thus

for a macroscopic electron system we may start from a self-consistent field, e.g., Hartree-

Fock ground state and use the cumulant scattering operator |S) to define the ground-state

wavefunction in Liouville space through |Ω) = |1+S). The round ket refers to the cumulant

metric. As explained in the text |Ω) does not suffer from the EWP and provides a solid

basis for electronic structure calculations for the ground state of solids. Expectation values of

operators A in the ground state of the system are obtained from 〈A〉exp = (Ω|AΩ). With the

help of an incremental decomposition the different contributions to the cumulant scattering
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operator and the correlation energy Ecorr = (H|S) can be determined. Examples for the

application of wavefunction based electronic structure calculations for solids do exist and

were pointed out.

Special attention has been devoted to Matrix Product States. They apply mainly to

one-dimension and are formulated in Hilbert space. Highly accurate results for spin chains

have been obtained with them. We dealt with the question why the EWP does not plague

calculations with MPSs. With the use of iTED the following has been shown: starting from

a mean-field ground-state wavefunction in form of a MPS, the improvements or upgradings

of this wavefunction are done with operators which are additive like different contributions

to |S) and connected. They define a point in Liouville space like |Ω) does. Cumulants need

not be introduced here, since upgrades are connected. This explains why the EWP does not

effect the MPS calculations for macroscopic chains. This holds true at least as long as an

area law is holding. We hope that this topical review will help to give wavefunction based

calculations for macroscopic systems a solid basis and to stimulate further work.
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