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Abstract

A multi-species linearized collision operator based on the model developed by Sugama et al.
has been implemented in the nonlinear gyrokinetic code, GENE. Such a model conserves particles,
momentum, and energy to machine precision, and is shown to have negative definite free energy
dissipation characteristics, satisfying Boltzmann’s H-theorem, including for realistic mass ratio.
Finite Larmor Radius (FLR) effects have also been implemented into the local version of the
code. For the global version of the code, the collision operator has been developed to allow
for block-structured velocity space grids, allowing for computationally tractable collisional global
simulations. The validity of the collision operator has been demonstrated by relaxation tests,
neoclassical simulations, comparisons of the simulated damping of zonal flows with theoretical
predictions, and a microinstability benchmark. The newly implemented operator shall be used in
future simulations to study plasma turbulence and transport in the highly collisional edge.

1 Introduction

Any realistic simulation of plasma turbulence near the edge of fusion devices such as tokamaks or
stellarators must include more than just the collective motion of particles and the evolution of the
electromagnetic fields based on the Maxwell equations. To more realistically model the plasma behav-
ior, one must include discrete particle effects, where the ions and electrons occasionally interact with
each other, and not just the fields arising from the bulk motion of particles. These effects act as an
important sink of free energy and contribute to the dampening/growth of certain plasma instabilities.
Within the core of fusion devices, particles may be at a high enough temperature such that when they
cross near each other, they would go by at a high enough speed that they have little time for the
interactions to play much of a role. This is certainly not true in the edge, where one encounters lower
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temperatures. For this reason, a collision operator which models the physics of such interactions has
been implemented in the GENE code [1, 2] to study plasma turbulence and transport in the edge.

Many different collision operators have been derived in the literature for use with gyrokinetic
models, see Ref. [3, 4, 5, 6, 7, 8, 9]. Different codes may use different collision operators depending on
whether they are delta-f/full-f and Eulerian/Lagrangian/Semi-Lagrangian codes. A diverse selection
of collision operators have been implemented in ORB5 [10], GYSELA [11], XGC [12], GKW [13], GKV
[14], GS2 [15], and more.

GENE is a delta-f grid-based code and the collision operator implemented in GENE is based on the
model derived by Sugama et al. [3]. The model contains no velocity-space convolution integrals, and its
linear nature allows for optimized time-stepping schemes. Furthermore, the use of the local flux-tube
approximation, as well as the recently developed block-structured velocity space grids [16, 17] for the
global version of the code, allow for the capability of collisional gyrokinetic simulations without the
need for the large velocity space resolution that would inhibit other gyrokinetic codes. The amount
of physics contained within the operator (pitch-angle scattering, energy diffusion, FLR corrections,
etc.), as well as its good numerical properties (particle, momentum, and energy conservation, as well
as free energy dissipation) and computational tractability allow for unique, cutting-edge simulations
exploring collisional plasma turbulence in the edge.

This paper is outlined as follows: Section 2 describes the analytical model for the collision operator
implemented in GENE. Section 3 describes the numerical implementation of the collision operator in
GENE. The numerical implementation is based on a second-order finite volume scheme as opposed to
the implementation described in [14] which is based on a finite difference scheme. Section 4 presents
the results of tests that verify that the operator behaves as expected for realistic mass ratio systems.
This includes relaxation and conservation tests, neoclassical tests, a study of the effects of collisions
on zonal flows, and a microinstability benchmark. Conclusions are drawn in section 5.

2 Analytical collision model used in GENE

The previous linearized Landau-Boltzmann collision operator implemented in GENE and documented
in [18] and [19] has been upgraded to a linearized Sugama collision operator [3] to ensure that an
appropriate H-theorem is satisfied for a nonisothermal parameter set. With these modifications, the
change in free energy in the system by collisions is guaranteed to be negative definite. In addition, the
collision operator has been refactored to incorporate FLR corrections in the local version of the code.
The task of upgrading collisional FLR corrections for use with the global version of the code will be
left for future work.

2.1 Assumptions and use of models in collisional dissipation term

Since GENE is a delta-f gyrokinetic code, the collisions must evolve the perturbed distribution while
keeping the background distribution fixed. As such, the collisional dissipation term is split into four
parts:

Cab(Fa, Fb) = Cab(FMa, FMb) + Cab(fa, FMb) + Cab(FMa, fb) +O(ε2) (1)

The first term is responsible for the equilibration of the background distributions, and is neglected
in the model because it is assumed to be small, and because the background profiles are regarded as
fixed throughout the course of the simulation. The last nonlinear term is also neglected because it is
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assumed to be of second order importance in the model. The second term, Cab(fa, FMb), is called the
test-particle part of the collision operator, CT

ab(fa), and can be interpreted as the term which modifies
the perturbed distribution function, fa, as a result of collisions with the background, FMb. For a
linearized Landau-Boltzmann collision operator, the test-particle part is given by:

CT
ab(fa) = CT0

ab (fa) +
ma

Tb

(
1− Tb

Ta

)
1

v2
∂

∂v

(
νab‖ (v)

2
v5fa

)
(2)

In the above expression, ma and Ta represent the mass and temperature of species a, respectively.
The radial velocity space coordinate is given by v. CT0

ab is given by:

CT0
ab (fa) = νabD (v)Lfa +

1

v2
∂

∂v

(
v4

2
νab‖ (v)FMa

∂

∂v

(
fa
FMa

))
(3)

For the purposes of transparency, a similar notation to Ref. [3] has been used. In the above expres-
sion, νabD (v) and νab‖ (v) represent the pitch-angle scattering and energy diffusion frequency respectively.
The pitch-angle scattering operator is deonoted by L. The test-particle part has been separated into
a part which is self-adjoint, CT0

ab , and a part which only exists for a nonisothermal case, and which
breaks self-adjointness symmetry. The latter term can be responsible for the creation of free energy in
the system. This is because when the collision operator was linearized, the background was regarded
as fixed compared to the perturbations, and that leads to a complication. In the isothermal case, free
energy would always flow from the perturbation to the Maxwellian background distribution, otherwise
the second law of thermodynamics would be violated. However, if the background distributions are
at different temperatures, then free energy can flow from the background distribution of one species
to the perturbation of another species. For a situation where the background is kept fixed, this can
result in free energy flowing into the system.

It is highly desirable to have a collision operator which acts as a pure sink of free energy and
satisfies an H-theorem. Otherwise, one may observe numerical instabilities in any simulation which
uses collisions. For this reason, the test-particle operator is replaced with a model term which satisfies
an H-theorem and has a collisional asymptotic limit which is a generalization of the isothermal one.
For an isothermal case with a linearized Landau-Boltzmann operator, all perturbations are driven to
a distribution of the form:

fa → FMa

(
δna
na

+
ma

Ta
u‖v‖ +

δT

T

(
v2

v2Ta

− 3

2

))
(4)

where u‖ and δT/T is the same between all species in the relaxed state. This property holds in
the isothermal case, and the Sugama collisional model is constructed such that this holds also in
the nonisothermal case. In creating such a model, the above formula is regarded as the collisional
equilibrium for simulations where the background distributions are fixed, even though it is not a true
thermal equilibrium.

The Sugama operator is constructed by replacing the nonisothermal problematic term with a new
model term. In the limit of very small mass ratio (in practical simulations, all of the ion species are
considered to have the same temperature, so very small mass ratio always applies), this term vanishes
for electron-ion collisions but not for ion-electron collisions. So the model is weighted by a mass and
temperature dependent coefficient that vanishes for electron-ion collisions. For the case of ion-electron
collisions, the model is constructed such that it gives the same momentum and free energy transfer (not
the same total energy transfer) as the original term, as well as satisfying the appropriate symmetry
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relations (explained in more detail in subsection 2.3). By disregarding the complete energy transfer
and focusing solely on free energy transfer, the nonisothermal parameter set is essentially regarded
as an equilibrium for the simulation. While this is not a true thermal equilibrium, thermalization
occurs on much larger time scales than gyrokinetic transport phenomena, and can be neglected in
a simulation. Furthermore, in any simulation which considers the background profiles as fixed, the
thermalization should be neglected, otherwise one would have a collision operator that does not reliably
drive perturbations to a simple final state.

The third term in Eq. (1), Cab(FMa, fb), is called the field-particle part of the collision operator,
CF

ab(fb). This term represents the evolution of a Maxwellian due to collisions with a perturbation.
Again, since the background distributions have been regarded as fixed, it is not clear how one should
model the effects of such a term. Furthermore, the computation of such a term would be expensive due
to the nonlocal velocity space integral (the analytical model for this has been done by [5]). However,
if one were to ignore such a term, then the model collision operator would be unable to satisfy the
essential conservation laws for momentum and energy:

ˆ
d3vmavCab = −

ˆ
d3vmbvCba (5)

ˆ
d3v

1

2
mav

2Cab = −
ˆ
d3v

1

2
mbv

2Cba (6)

For these reasons, the second term is replaced with a model operator such that the collision operator
as a whole conserves momentum and energy:

CF
ba(fa) = −Ta

Tb

CT
ba(FMbmbv

Tb
) ·
´
d3vmav

Ta
CT

ab(fa)´
d3v

mbv‖
Tb

CT
ba(FMbmbv‖/Tb)

− Ta
Tb

CT
ba(FMbx

2
b)
´
d3vx2aC

T
ab(fa)´

d3vx2bC
T
ba(FMbx2b)

(7)

The complete linearized collision operator thus consists of the test-particle part and the field-particle
part:

Clinear
ab (fa, fb) = CT

ab(fa) + CF
ab(fb) (8)

To account for FLR corrections, the distribution function is transformed from guiding center to
particle coordinates with the pull-back operator, Tgc→p, acted on by the collision operator, transformed
from particle to guiding center coordinates with the inverse operator, Tp→gc, and then gyroaveraged:

CGK
ab =

˛
dφ

2π
Tp→gcC

linear
ab

(
Tgc→pfa, Tgc→pfb

)
(9)

In principle, such transformations should be done between particle and gyrocenter coordinates,
rather than guiding center coordinates. However, considering such terms would severely complicate
the analytical model and numerical implementation. Furthermore, it is not clear that adding such ad-
ditional terms makes sense when other terms have already been replaced with ad-hoc model operators.
Nevertheless, the development of the analytical and numerical theory of more advanced gyrokinetic
collision operators is still an open problem in the community.

One may wonder whether the use of such assumptions and models is justified. It has been argued
that the exact form for collisions does not matter, as long as a sink of free energy is present. It could
be that as long as pitch-angle scattering and energy diffusion are retained in the operator, then the
other terms as well as the exact size of the free energy sink are not as important, so long as appropriate
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conservation and symmetry properties are retained to prevent numerical instabilities in the model. In
addition, in the limit of very small mass ratio, only the ion-electron term is affected in the test-particle
part of the Sugama collision operator. Since ions are far heavier than electrons, the exact functional
form of the ion-electron collision operator should not matter much provided that conservation and
symmetry properties are maintained.

To truly determine the validity of the collision operator, however, requires a comparison with a
full-f code with a more complete collision model. This has already been done for a neoclassical scenario
in [20] for an isothermal parameter set. The agreement between the neoclassical moments in that case
has been found to be reasonably good (the heat and particle fluxes have been found to agree within
∼ 20%). The full analytical form of the collision operator implemented in GENE is displayed in the
following subsection.

2.2 Sugama collision model implemented in GENE

The full gyrokinetic collision operator in the local limit takes the following form (the notation used for
the operator is the same as in [14], which describes another implementation of the Sugama collision
operator):

C
(Gyrokinetic)
ab (hak⊥ , hbk⊥) = CT0

ab (hak⊥)− k2⊥hak⊥

4Ω2
a

(νabD (v)(2v2‖ + v2⊥) + νab‖ (v)v2⊥)

+

6∑
n=1

(Xab
nk⊥

Mab
nk⊥

+ Y ab
nk⊥

M ba
nk⊥

) (10)

The component parts of CT0
ab and the spatial diffusion are defined as follows:

νabD (v) =
4πnb
m2

av
3
e2ae

2
b ln(Λ)(Φ(xb)−G(xb)) (11)

νab‖ (v) =
8πe2ae

2
b ln(Λ)nb
m2

av
3

G(xb) (12)

CT0
ab (fa) = νabD (v)Lfa +

1

v2
∂

∂v

(
v4

2
νab‖ (v)FMa

∂

∂v

(
fa
FMa

))
(13)

L =
1

2

∂

∂v
·
(
v2
←→
I − vv

)
· ∂
∂v

=
1

2

(
1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
+

1

sin2(θ)

∂2

∂φ2

)
(14)

In the expression for the pitch-angle scattering operator given above,
←→
I represents the velocity

space identity tensor. The six integral moments that are calculated for the collision operator are given
by:

Mab
1k⊥

=

ˆ
d3v

mav‖
Ta

CT0
ab (J0(k⊥ρa)hak⊥) (15)

Mab
2k⊥

=

ˆ
d3v

mav‖
Ta

CT0
ab (J1(k⊥ρa)hak⊥v⊥/v‖) (16)
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Mab
3k⊥

=

ˆ
d3vx2aC

T0
ab (J0(k⊥ρa)hak⊥) (17)

Mab
4k⊥

=

ˆ
d3vv‖J0(k⊥ρa)hak⊥ (18)

Mab
5k⊥

=

ˆ
d3vv⊥J1(k⊥ρa)hak⊥ (19)

Mab
6k⊥

=

ˆ
d3vJ0(k⊥ρa)hak⊥

(
x2a −

3

2

)
(20)

The six coefficients of the moments for the test-particle part are given by:

Xab
1k⊥

= (θab − 1)J0(k⊥ρa)FMa

v‖
na

(21)

Xab
2k⊥

= (θab − 1)J1(k⊥ρa)FMa
v⊥
na

(22)

Xab
3k⊥

= (θab − 1)J0(k⊥ρa)FMa(x2a −
3

2
)

2

3na
(23)

Xab
4k⊥

= (θab − 1)J0(k⊥ρa)
1

θabna
CTS

ab

(
FMamav‖

Ta

)
(24)

Xab
5k⊥

=
J1(k⊥ρa)v⊥
J0(k⊥ρa)v‖

Xab
4k⊥

(25)

Xab
6k⊥

= (θab − 1)J0(k⊥ρa)
2

3θabna
CTS

ab (FMax
2
a) (26)

The six coefficients of the transposed moments for the field-particle part are given by:

Y ab
1k⊥

= −Tbθba
γab

CTS
ab (FMa

mav‖
Ta

)J0(k⊥ρa) (27)

Y ab
2k⊥

=
J1(k⊥ρa)v⊥
J0(k⊥ρa)v‖

Y ab
1k⊥

(28)

Y ab
3k⊥

= −Tbθba
ηab

CTS
ab (FMax

2
a)J0(k⊥ρa) (29)

Y ab
4k⊥

= − mbαbaθba

τbaTb
√

1 + α2
ba

Y ab
1k⊥

(30)

Y ab
5k⊥

= − mbαbaθba

τbaTb
√

1 + α2
ba

Y ab
2k⊥

(31)

Y ab
6k⊥

= − 2αbaθba
τba(1 + α2

ba)3/2
Y ab
3k⊥

(32)
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The other miscellaneous terms needed for the coefficients of the moments are defined as follows:

CTS
ab

(
FMa

mav‖
Ta

)
= θab

(
CT0

ab

(
FMa

mav‖
Ta

)
−
FMamaαabv‖(θab − 1)

τabTa
√

1 + α2
ab

)
(33)

CTS
ab (FMax

2
a) = θab

(
CT0

ab (FMax
2
a)− 2FMaαab(θab − 1)

τab(1 + α2
ab)

3/2

(
x2a −

3

2

))
(34)

θab =

√
Ta(ma +mb)

(Tamb + Tbma)
(35)

αab = vTa/vTb (36)

γab = Ta

ˆ
d3v

mav‖
Ta

CTS
ab

(
FMa

mav‖
Ta

)
(37)

ηab = Ta

ˆ
d3vx2aC

TS
ab (FMax

2
a) (38)

3
√
π

4τab
=

2γabnb
m2

av
3
Ta

=
4πnbe

2
ae

2
b ln(Λ)

m2
av

3
Ta

(39)

FMa =
na

(
√
πvTa)3

e
−( v

vTa
)2

(40)

In the above expressions, k⊥ denotes the perpendicular wavenumber, hak⊥denotes the nonadiabatic
part of the perturbed distribution function, Ωa denotes the cyclotron frequency of species a, v‖ denotes
the parallel velocity, v⊥ denotes the perpendicular velocity, na denotes the density of species a, ma

denotes the mass of species a, v denotes the speed, Ta denotes the temperature of species a, vTa =√
2Ta/ma denotes the thermal velocity of species a, xa = v/vTa denotes the speed normalized to

the thermal velocity, ea denotes the charge of species a, ln(Λ) denotes the coloumb logarithm, Φ(x)
denotes the error function, G(x) = (Φ(x)− xΦ′(x))/2x2 denotes the Chandrasekhar function, J0 and
J1 represent the zeroth and first order Bessel functions of the first kind respectively, and ρa denotes
the gyroradius of species a.

The gyrokinetic collision operator for the global version of the code is similar to the local version,
except that the zeroth order bessel function is set to 1, the first order bessel function is set to 0, and
the term proportional to k2⊥ is neglected. All that is needed to extend the FLR corrections to the
global version of such an operator is to generalize the bessel functions to gyroaverage matrices and to
generalize the spatial diffusion term to include derivatives in configuration space. The extension of the
global version of the collision operator to include FLR effects shall be left for future work.

2.3 Properties of the collision operator

The collision operator obtained satisfies conservation of particles, momentum, and energy in the drift-
kinetic limit (k⊥ → 0) :

ˆ
d3vCab = 0 (41)
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ˆ
d3vmavCab = −

ˆ
d3vmbvCba (42)

ˆ
d3v

1

2
mav

2Cab = −
ˆ
d3v

1

2
mbv

2Cba (43)

In addition, the test-particle and field-particle parts of the collision operator satisfy the following
symmetry relations:

ˆ
d3v

fa
FMa

CT
ab(ga) =

ˆ
d3v

ga
FMa

CT
ab(fa) (44)

Ta

ˆ
d3v

fa
FMa

CF
ab(fb) = Tb

ˆ
d3v

fb
FMb

CF
ba(fa) (45)

With these symmetry relations, the following H-theorem can be obtained:

Ta

ˆ
d3v

fa
FMa

Cab + Tb

ˆ
d3v

fb
FMb

Cba ≤ 0 (46)

The differential part of the collision operator will tend to smooth out fine-scale velocity space
structures, and the pitch-angle scattering in the opertator will tend to make the distribution more
isotropic. The asymptotic state of the collision operator (assuming no other terms are present) is a
perturbed Maxwellian in the drift-kinetic limit:

fa → FMa

(
δna
na

+
ma

Ta
u‖v‖ +

δT

T

(
v2

v2Ta

− 3

2

))
(47)

Where u‖ and δT/T is the same between all species in the relaxed state. In addition, the spatial
diffusion term from the FLR corrections will tend to dampen small scale configuration space structures
perpendicular to the magnetic field.

3 Numerical implementation of gyrokinetic collision operator

The collision operator is discretized such that particles, momentum, and energy are conserved to
machine precision in the drift-kinetic limit (k⊥ → 0) where it is simple to write down the appropri-
ate conservation laws, and then the scheme is generalized to incorporate FLR effects. The updated
collision operator in GENE is designed such that it acts on the nonadiabatic part of the perturbed
distribution divided by the background Maxwellian. The division by the background Maxwellian is
done to numerically ensure the following self-adjointness relation:

ˆ
d3v

fa
FMa

CT0
ab (ga) =

ˆ
d3v

ga
FMa

CT0
ab (fa) (48)

And the nonadiabatic part of the distribution is used because the rate of change of free energy,
dF/dt|coll, is defined from the nonadiabatic part of the distribution [21]:

dF

dt

∣∣∣∣
coll

=
∑
j

njTj

ˆ
d3v

hj
FMj

Cj (49)

8



So to numerically ensure the appropriate symmetry properties and H-theorem, the nonadiabatic
distribution, ha, must be used. FLR corrections have only been implemented into the local version of
the GENE code, where the coordinates corresponding to the configuration space perpendicular to the
magnetic field are evaluated in fourier space. Extending FLR corrections to the global version of the
code will be left for future work.

3.1 Numerical Implementation of differential test-particle part

The test-particle part, CT0
ab (ha), is evaluated with a second order finite volume scheme on a grid which

is equidistant in parallel and perpendicular velocity. The collisional fluxes are evaluated on a staggered
velocity space grid from the nonadiabatic part of the distribution function divided by a background
Maxwellian distribution. For this purpose, CT0

ab (Eq. (3)) is written in a form more amenable to a
finite volume discretization:

CT0
ab (ha) = ∇v · Jab (50)

Where the collisional 2D velocity subspace flux, Jab, can be split into a pitch-angle scattering part
and an energy diffusion part:

Jab = Jab,pa + Jab,ed (51)

Jab,pa =
νD(v)

2

(
v2
←→
I − vv

)
FMa ·

∂

∂v

(
ha
FMa

)
(52)

Jab,ed =
v

2
νab‖ (v)FMa

∂

∂v

(
ha
FMa

)
v (53)

From the above expression, it is straightforward to split the collisional flux into a parallel and a
perpendicular part:

J
‖
ab =

1

2

(
v2‖ν

ab
‖ (v) + v2⊥ν

ab
D (v)

)
FMa

∂

∂v‖

(
ha
FMa

)
+

1

2

(
νab‖ (v)− νabD (v)

)
v‖v⊥FMa

∂

∂v⊥

(
ha
FMa

)
(54)

J⊥ab =
1

2

(
νab‖ (v)− νabD (v)

)
v‖v⊥FMa

∂

∂v‖

(
ha
FMa

)
+

1

2

(
v2⊥ν

ab
‖ (v) + v2‖ν

ab
D (v)

)
FMa

∂

∂v⊥

(
ha
FMa

)
(55)

All of the frequencies and the background distribution are evaluated on the staggered grid (if the
standard velocity space coordinates are evaluated from the indices 0, 1, 2, etc., then the staggered
velocity space coordinates are evaluated from the indices 0.5, 1.5, 2.5, etc.) and the derivatives are
interpolated to the staggered grid as follows:

∂g

∂v‖

∣∣∣∣
(l+1/2),(m+1/2)

=
1

2∆v‖

(
g(l + 1,m)− g(l,m)

)
+

1

2∆v‖

(
g(l + 1,m+ 1)− g(l,m+ 1)

)
(56)

The use of the staggered grid is part of the second-order finite volume scheme implementation. In
the above expression, v‖ is indexed by l and v⊥ is indexed by m. The derivatives with respect to v⊥
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are defined in an analogous manner. The collision operator on the standard grid is then evaluated
numerically from the staggered fluxes as:

CT0
ab (ha) =

(
J
‖
ab(l+ 1/2,m)−J‖ab(l− 1/2,m)

)
/∆v‖+

(
J⊥ab(l,m+ 1/2)−J⊥ab(l,m− 1/2)

)
/∆v⊥ (57)

Where the parallel and perpendicular flux elements in the above equation are calculated from the
velocity space integration weights and the flux on the staggered grid via:

J⊥ab(l,m± 1/2) =
∆Va(m± 1/2)

2∆Va(m)
J⊥ab(l − 1/2,m± 1/2) +

∆Va(m± 1/2)

∆Va(m)
J⊥ab(l + 1/2,m± 1/2) (58)

J
‖
ab(l ± 1/2,m) =

∆Va(m+ 1/2)

∆Va(m)
J
‖
ab(l ± 1/2,m+ 1/2) +

∆Va(m− 1/2)

∆Va(m)
J
‖
ab(l ± 1/2,m− 1/2) (59)

All of the fluxes on the staggered grid that fall outside of the simulated velocity space box are set
to zero. This enforces the conservation of particles for the differential part of the collision operator.

3.2 Numerical implementation of the integral terms in the collision oper-
ator

All of the moments are evaluated with the same numerical integration scheme that is used in the rest
of the code:

Mab
1k⊥

=

ˆ
d3v

mav‖
Ta

CT0
ab (hak⊥J0(k⊥ρa)) =

∑
J∆v‖∆v⊥

mav‖
Ta

CT0
ab (hak⊥J0(k⊥ρa)) (60)

Mab
2k⊥

=

ˆ
d3v

mav‖
Ta

CT0
ab (hak⊥J1(k⊥ρa)

v⊥
v‖

) =
∑

J∆v‖∆v⊥
mav‖
Ta

CT0
ab (hak⊥J1(k⊥ρa)v⊥/v‖) (61)

Mab
3k⊥

=

ˆ
d3vx2aC

T0
ab (hak⊥J0(k⊥ρa)) =

∑
J∆v‖∆v⊥x

2
aC

T0
ab (hak⊥J0(k⊥ρa)) (62)

Mab
4k⊥

=

ˆ
d3vv‖J0(k⊥ρa)hak⊥ =

∑
J∆v‖∆v⊥v‖J0(k⊥ρa)hak⊥ (63)

Mab
5k⊥

=

ˆ
d3vv⊥J1(k⊥ρa)hak⊥ =

∑
J∆v‖∆v⊥v⊥J1(k⊥ρa)hak⊥ (64)

Mab
6k⊥

=

ˆ
d3v

(
x2a −

3

2

)
J0(k⊥ρa)hak⊥ =

∑
J∆v‖∆v⊥

(
x2a −

3

2

)
J0(k⊥ρa)hak⊥ (65)

Here, J represents the Jacobian of velocity space integration. To evaluate these moments, the
numerical implementation of CT0

ab defined earlier is utilized. This allows for the conservation of mo-
mentum and energy to machine precision. In order to more effectively evaluate these moments at
every time step, all of the terms which multiply the distribution and Bessel functions are grouped into
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one set of coefficients. So in the end, in order to evaluate the moments, one simply multiplies the
distribution functions, the Bessel functions, and the coefficients, and sums over velocity space.

Now the coefficients of the moments must be considered. The coefficients responsible for maintain-
ing conservation of parallel momentum must be discretized such that the following conservation law is
held to machine precision:

ˆ
d3vmav‖C

T
ab(fa) +

ˆ
d3vmbv‖C

F
ba(fa) = 0 (66)

To accomplish this, Xab
1 , Xab

4 , Y ab
1 , and Y ab

4 are written as:

Xab
1 = (θab − 1)J0(k⊥ρa)

TaFMav‖
ma

´
d3vFMav2‖

(67)

Xab
4 = −(θab − 1)

θabαab

τab
√

1 + α2
ab

J0(k⊥ρa)CTS
ab (FMamav‖/Ta)´

d3vv‖CTS
ab (FMamav‖/Ta)

(68)

Y ab
1 = −J0(k⊥ρa)

Tb
Ta
θba

CTS
ab (FMamav‖/Ta)´

d3vCTS
ab (FMamav‖/Ta)mav‖/Ta

(69)

Y ab
4 = − mb

Tbτba

αba√
1 + α2

ba

(θba − 1)Y ab
1 (70)

Provided that the integrations in the above expressions are carried out numerically, and the nu-
merical form of CT0

ab is used, momentum will be conserved to machine precision in the drift-kinetic
limit. This can be verified by noting that the coefficients of Mab

1 and Mab
4 cancel when plugged into

Eq. (66) (the integral of the differential test-particle part must also be considered when the examining
the coefficients of Mab

1 ). Particles and energy are conserved to machine precision by virtue of the fact
that the integration of any term which is odd in v‖ is zero. The coefficients responsible for perpendic-
ular momentum conservation are obtained from the parallel momentum coefficients by replacing the
J0(k⊥ρa) Bessel function terms with J1(k⊥ρa)v⊥/v‖:

Xab
2 = (θab − 1)J1(k⊥ρa)

TaFMav⊥
ma

´
d3vFMav2‖

(71)

Xab
5 = −(θab − 1)

θabαab

τab
√

1 + α2
ab

J1(k⊥ρa)v⊥CTS
ab (FMamav‖/Ta)

v‖
´
d3vv‖CTS

ab (FMamav‖/Ta)
(72)

Y ab
2 = −J1(k⊥ρa)

Tb
Ta
θba

v⊥CTS
ab (FMamav‖/Ta)

v‖
´
d3vCTS

ab (FMamav‖/Ta)mav‖/Ta
(73)

Y ab
5 = − mb

Tbτba

αba√
1 + α2

ba

(θba − 1)Y ab
2 (74)

Finally, the coefficients responsible for energy conservation must be discretized, where the energy
conservation relation for collisions is given by:

ˆ
1

2
mav

2CT
ab(fa) +

ˆ
d3v

1

2
mbv

2CF
ba(fb) = 0 (75)

The four coefficients needed for energy conservation can be written as:
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Xab
3 = (θab − 1)

FMa(x2a − 3/2)J0(k⊥ρa)´
d3vFMax2a(x2a − 3/2)

(76)

Xab
6 = −(θab − 1)

2θabαabC
TS
ab (FMax

2
a)J0(k⊥ρa)

τab(1 + α2
ab)

3/2
´
d3vx2aC

TS
ab (FMax2a)

(77)

Y ab
3 = −J0(k⊥ρa)

Tb
Ta
θba

CTS
ab (FMax

2
a)´

d3vx2aC
TS
ab (FMax2a)

(78)

Y ab
6 = − 2αba

τba(1 + α2
ba)3/2

(θba − 1)Y ab
3 (79)

To make sure particles are conserved to machine precision, the following numerical replacements
are made:

FMa(x2a − 3/2)→ ˜FMa(x2a − 3/2) =

(
FMa(x2a − 3/2)− FMa´

d3vFMa

ˆ
d3vFMa(x2a − 3/2)

)
(80)

CTS
ab (FMax

2
a)→ ˜CTS

ab (FMax2a) =

(
CTS

ab (FMax
2
a)− FMa´

d3vFMa

ˆ
d3vCTS

ab (FMax
2
a)

)
(81)

The following form is then obtained for the energy conservation coefficients:

Xab
3 = (θab − 1)

˜FMa(x2a − 3/2)J0(k⊥ρa)´
d3vx2a

˜FMa(x2a − 3/2)
(82)

Xab
6 = −(θab − 1)

2θabαab
˜CTS

ab (FMax2a)J0(k⊥ρa)

τab(1 + α2
ab)

3/2
´
d3vx2a

˜CTS
ab (FMax2a)

(83)

Y ab
3 = −J0(k⊥ρa)

Tb
Ta
θba

˜CTS
ab (FMax2a)´

d3vx2a
˜CTS

ab (FMax2a)
(84)

Y ab
6 = − 2αba

τba(1 + α2
ba)3/2

(θba − 1)Y ab
3 (85)

It is straightforward to show that when the same numerical integration scheme is consistently used,
then the above choice of coefficients will conserve energy and particles to machine precision (the proof
that energy conservation is numerically satisfied is similar to the proof of momentum conservation).
Momentum will be conserved to machine precision, because all terms are even in v‖. In the above
formulas, the following form for CTS

ab (FMamav‖/Ta) and CTS
ab (FMax

2
a) are used:

CTS
ab (FMamav‖/Ta) = θab

(
CT0

ab (FMamav‖/Ta)−
FMamaαabv‖(θab − 1)

τabTa
√

1 + α2
ab

)
(86)

CTS
ab (FMax

2
a) = θab

(
CT0

ab (FMax
2
a)− 2FMaαab(θab − 1)

τab(1 + α2
ab)

3/2
(x2a − 3/2)

)
(87)

CT0
ab (FMamav‖/Ta) and CT0

ab (FMax
2
a) are evaluated numerically in the above formulas using the

scheme outlined in subsection 3.1.
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Figure 1: Shapes of stability contours for different stage schemes associated with a given timestep.
The eigenvalues of the collision operator (in the drift kinetic limit) are shown by the red crosses. They
lie purely along the negative real axis. The stability contours are shown by the curves, and they
represent the RKC1 (red), RKC2 (black), RKC3 (blue), and RKC4 (green) time-stepping schemes. As
one goes to higher stage schemes, the number of evaluations of the collision operator is increased, and
the timestep is also increased. The computational effort associated with all schemes is then evaluated,
and the optimal choice is taken [22].

3.3 Explicit time-stepping scheme of collision operator

Since it is expensive to evaluate the collision operator term, and since the collisionality can dramatically
limit the timestep in gyrokinetic simulations (especially in the edge), the code is optimized by evolving
the collision operator with a separate numerical time scheme than the other terms in the gyrokinetic
equation. Currently a first order Runge-Kutta-Chebyshev (RKC) method is employed to evolve the
collision operator as opposed to the default 4th order Runge-Kutta schemes used with the other terms,
as outlined in [22]. There are four different RKC schemes available in GENE to use with the collision
operator, each with a different number of stages (RKC1, RKC2, RKC3, and RKC4). The higher
stage schemes require more evaluations and are more expensive to employ. However, they allow for a
larger timestep. The lower stage schemes require fewer evaluations. However, they require a smaller
timestep. By default, each collisional time-stepping scheme is tested in the initialization phase, and
the least computationally expensive scheme is chosen.

Since the collision operator is linear, the eigenvalue spectra of the collision operator can be precom-
puted and used to determine the maximum possible time step for a given scheme. All of the eigenvalues
of the operator must fit within the stability contour for the corresponding time scheme. Fig. 1 shows
a plot of the stability contours for the various time-stepping schemes.

Since the contours scale with the timestep, one can optimize the timestep value by ensuring that
all of the eigenvalues just barely fit within the stability contours. In all cases, it is the most negative
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real eigenvalue which determines the timestep. So for a given stage scheme, the most negative real
eigenvalue is determined with SLEPc [23, 24], then the stability contour is adjusted (by adjusting the
timestep) such that that eigenvalue barely falls within. The corresponding timestep is the optimized
one. The computational effort associated with RKC1, RKC2, RKC3, and RKC4 schemes are then
compared, and the more optimal choice is used. For practical simulations, such a collisional splitting
scheme can improve performance by up to a factor of∼ 3. However, it is desirable to further improve the
performance of the splitting scheme because it has been found that even with such a scheme, collisions
can highly limit the value of the timestep for simulations in the edge of a magnetic confinement device.
Collisional spatial diffusion in particular can dramatically limit the timestep at high ky. For kyρs ∼ 10,
the spatial diffusion can shrink the timestep by roughly an order of magnitude, making studies of high
ky gyrokinetic turbulence in the edge impractical until alternative schemes can be employed. For more
information, see [22].

3.4 Implementation of collisions with block-structured grids in the velocity
space

In addition to the timestep optimization scheme, the collision operator has been adapted to be com-
patible with the block-structured grid numerical scheme in GENE [16, 17]. Block-structured grids are
used to optimize global gyrokinetic simulations (particularly nonlinear simulations) with steep tem-
perature gradients. In turbulent simulations, the perturbed distribution function typically varies on
scales of the thermal velocity, vT =

√
2T/m in velocity space. So for standard grids, one would need

a large velocity-space domain to capture all of the physics in the core, and one would also need a fine
velocity space grid to resolve the physics in the edge. This would lead to very expensive high-resolution
simulations. One could get around this problem by having a velocity space grid which continuously
varied with the radial position as the temperature varied, but this would severely complicate the gy-
rokinetic equations and numerical model. To get around this problem, the velocity space domain is
made to discretely vary with radial position. A typical simulation setup with block-structured grids is
shown in Fig. 2.

Block-structured grids are a convenient tool to use with collisions. With block-structured grids,
global simulations can be run with fewer velocity space points, which is very convenient for collisional
runs, because the computational time to evaluate the collisions increases and the value of the timestep
in collisional runs decreases as the number of velocity space points is increased. Furthermore, collisions
also help to enforce the assumptions that are made in using the block-structured grid model. The
block-structured grid model is predicated on the assumption that the turbulent perturbed distribution
function is localized to a structure that varies on the thermal velocity scale. The collisional dissipation
function actively drives the perturbation to that sort of structure, providing more confidence that
the underlying assumption behind block-structured grids is satisfied. In this way, the two numerical
models work to complement each other.

4 Verification Tests

4.1 Relaxation and Conservation Tests

One of the fundamental consequences of the derived collision operator is the relaxation of an arbitrary
distribution function towards a perturbed Maxwellian structure of the following form:
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Figure 2: Block-structured grid setup for a typical global simulation with varying temperature profile.
The upper-left graph depicts the variation of temperature with radial position. The lower-right plot
shows the variation of block sizes with radial position. The larger velocity space boxes are near the
core where the thermal speed is higher, and the smaller velocity space boxes are near the edge where
the thermal velocity is lower. The lower left plot depicts the variation of the parallel velocity space
domain with radial position, and the upper right plot depicts the variation of the magnetic moment
velocity space domain with radial position. The above plots used 30 points in the radial position,
24 points in the parallel velocity, and 12 points in the magnetic moment. Typical simulations would
require much higher resolution, but the above setup was presented with lower resolution for purposes
of clarity.
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Species Mass Temperature Density Charge

Deuterium 1 1 1 1
Boron 5 0.5 0.2 5

Electron 0.0002778 2 2 -1

Table 1: Parameter set for the flow relaxation test. All values in the table are normalized w.r.t. the
deuterium values

fa → FMa

(
δna
na

+
ma

Ta
u‖v‖ +

δT

T

(
x2a −

3

2

))
(88)

where u‖ and δT/T are the same between all species after a sufficiently long time. This suggests
convenient tests for verifying the correct implementation of the collision operator. One could initialize
different species to distributions of the form, fa = AaFMav‖, evolve the species using only the collision
operator, and see if all species are driven towards a smooth distribution with the same final flow while
verifying that momentum is conserved and the change in free energy is negative definite. Similarly,
one could initialize different species to distributions of the form, fa = AaFMa(x2a − 3/2), evolve the
species using only the collision operator, and see if all species are driven towards a smooth distribution
with the same final perturbed temperature while verifying that particles and energy are conserved
and the change in free energy is negative definite. Finally, one can also initialize distributions to
arbitrary structures, and verify that the collisions relax such structures to perturbed Maxwellians
while maintaining negative definite changes in free energy. These tasks have been done in subsections
4.1.1, 4.1.2, and 4.1.3 respectively. These tests have also been done for nonisothermal parameter sets
to verify the correct implementation of the Sugama operator corrections. The standard linearized
Landau-Boltzmann collision operator will not pass these tests in the nonisothermal case. All of the
quantities are normalized to GENE units. The parameters used in this test are outlined in Table 1. For
the following tests, the rate of change of free energy is defined as (all of the quantities are normalized
to GENE units):

dF

dt

∣∣∣∣
coll

=
∑
j

njTj

ˆ
d3v

hj
FMj

Cj (89)

4.1.1 Relaxation of Flow Fluctuations

The derived collision model should act to drive flow perturbations of the form ua‖ =
´
d3vv‖fa/na

towards the same value. To test this property, Deuterium, Boron, and Electron species were initialized
to distributions of the form, fa = FMamaua‖v‖/Ta (where ua‖ is different for different species), and
evolved using only the collision operator in the drift kinetic limit (k⊥ → 0). The time trace of the flow
velocities, free energy dissipation, and momentum conservation error were then examined to verify
correct behavior of the collision operator.

The results of the test are shown in Fig. 3, 4, and 5. Fig. 3 shows that the flows for different species
all relax to the same value and that the free energy change is negative definite. Fig. 4 shows that
the collision operator drives the species towards a smooth final state consistent with the perturbed
Maxwellian shape expected. Fig. 5 shows that the momentum conservation error, ∆M (Eq. (90)), is
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Figure 3: The graph on the left depicts flow equilibration for the relaxation test. Collisions drive all
species towards the same parallel flow velocity. The graph on the right depicts free energy dissipation
vs. time for the flow relaxation test. The change in free energy by collisions is negative definite,
consistent with the second law of thermodynamics.

close to machine precision with a realistic mass ratio system (< 10−10). These tests confirm that the
collision operator behaves as it should.

∆M =

∑
ama

´
d3vv‖fa −

(∑
ama

´
d3vv‖fa

)∣∣∣∣
t=tstart(∑

a

´
d3vv‖fa

)∣∣∣∣
t=tstart

(90)

4.1.2 Relaxation of thermal fluctuations

The derived collision model should act to drive temperature perturbations of the form δTa/Ta =´
d3vmav

2fa/2na towards the same value. To test this property, Deuterium, Boron, and Electron
species were initialized to distributions of the following form:

fn =
δTn
Tn

FMn

(
mnv

2

2Tn
− 3

2

)
(91)

where δTn/Tn is different for different species. The system was then evolved using only the collision
operator in the drift kinetic limit (k⊥ → 0). The time trace of the temperature fluctuation amplitudes,
free energy dissipation, and particle and energy conservation error were then examined to verify correct
behavior of the collision operator.

The results of the test are shown in Fig. 6, 7, and 8. Fig. 6 shows that the temperature fluctuations
for different species all relax to the same value and that the free energy change is negative definite. Also,
the ions equilibrate much faster than the electrons due to the much more similar mass ratio between
the two ion species, which is consistent with intuition. Fig. 8 shows that the collision operator drives
the species towards a smooth final state consistent with the perturbed Maxwellian shape expected.
Fig. 7 shows that the particle and energy conservation error is close to machine precision for a realistic
mass ratio system (< 10−10) over very long time scales. The expressions for the particle conservation
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Figure 4: Electron velocity space distribution function for the flow relaxation test. Collisions drive all
species towards a smooth velocity space distribution resembling the one shown above. The velocity
space coordinates are in normalized units. The distribution for Deuterium and Boron look similar.

Figure 5: Momentum conservation error vs. time for the flow relaxation test. Collisions conserve
momentum to nearly machine precision.
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Figure 6: The graph on the left depicts relaxation of temperature fluctuations. The graph on the right
depicts free energy dissipation during the relaxation test. The change in free energy due to collisions
is negative definite, consistent with the H-theorem.

Figure 7: Particle and energy conservation during the relaxation test. Particles and energy are con-
served to nearly machine precision over very long simulation times.

error, ∆P , energy conservation error, ∆E , and temperature fluctuation amplitude, δTa/Ta, are given
in Eq. (92, 93, and 94). These tests confirm that the collision operator behaves as it should.

∆P =

´
d3vfa −

( ´
d3vfa

)∣∣∣∣
0( ´

d3vfa

)∣∣∣∣
0

(92)

∆E =

∑
a

1
2ma

´
d3vv2fa −

(∑
a

1
2ma

´
d3vv2fa

)∣∣∣∣
0(∑

a
1
2ma

´
d3vv2fa

)∣∣∣∣
0

(93)

δTa
Ta

=
ma

2na0

ˆ
d3vv2fa/(T0aρ

∗
ref ) (94)
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Figure 8: Electron velocity space distribution for temperature fluctuation relaxation test. A similar
distribution is obtained for all species.

r/a=0.5 R/a=3 ŝ=1.0 α=0 q=2.0

a/LTe = 3 a/LTi = 3 a/Ln = 1 Ti/Te = 1 me/mi = 0.0002732

Table 2: General Atomics parameter set [19, 20] for neoclassical benchmark in ŝ − α geometry for 2
species case

4.1.3 Relaxation from an arbitrary distribution

In addition to satisfying the simplistic relaxation tests from simple perturbed Maxwellian structures,
a relaxation test has been performed where the velocity space profiles for different species have been
initialized to arbitrary structures and it has been observed that the H-theorem remains satisfied for
this more general scenario, and that the profiles relax to more simple perturbed Maxwellians. Fig. 9
and 10 show the velocity space distributions and the free energy dissipation vs. time for this test.

4.2 Local Neoclassical benchmark

In an effort to further validate the collision operator, local neoclassical simulations have been per-
formed, and the results compared with another neoclassical code, NEO [20, 25]. This code evaluates
the neoclassical transport fluxes with the option of using either the full Landau-Boltzmann collision
operator (so it does not use approximate model terms in the field-particle part of the operator), or
the linearized Landau-Boltzmann collision operator with the model field-particle part (Eq. (7)). Such
a comparison has already been performed in [19], but since that time, the collision operator has been
rederived and better agreement has been found with the NEO code, particularly for the bootstrap cur-
rent. Since the full Landau-Boltzmann operator uses a different analytical model for the field-particle
part of the collision operator, exact agreement between models should not be expected. However, the
results should be relatively close, and the closeness of the results give an indication of the validity
of the use of model terms for the field-particle part. The analysis is performed on the same General
Atomics parameter set with ŝ−α geometry outlined in [19, 20] and displayed in Table 2. The original
results from the NEO code have been published in [20].
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Figure 9: Velocity space distribution at the beginning and end of the relaxation test. Collisions relax
the distribution to a more localized structure. The graphs at the top are of the initialized distribution,
and the graphs at the bottom are of the corresponding final distribution. The graphs on the left,
middle, and right correspond to deuterium, boron, and electrons respectively.

Figure 10: Free energy dissipation for the relaxation test. Free energy dissipation is negative definite,
consistent with the second law of thermodynamics.
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For the following simulations, the neoclassical heat and particle flux, as well as the bootstrap
current were evaluated with the neoclassical solver in a PETSC library [26] that is available in GENE.
The collisionality was scanned logarithmically. The comparison could not be extended to higher
collisionality due to the computational expense of the neoclassical solver at higher collision frequencies.
In practice however, the collision frequency rarely goes to much higher values before the separatrix
of the device is encountered. The results of the simulations are displayed in Fig. 11 and 12. By
examining the neoclassical equilibrium velocity space distribution at the outboard midplane, one can
see the effects of higher collisionality on the ions and electrons. The distributions are displayed in Fig.
13. At low collisionality, the contours of the trapped/passing particle boundary are clearly visible.
As the collisionality is raised, the contours are extinguished, which is what is to be expected from
intuition, as collisions tend to drive perturbations down towards a perturbed Maxwellian distribution.
The collisionality used in the plots is defined in the following equation:

νc =
πe4nia ln(Λ)

23/2T 2
i

(95)

Both GENE and the ad-hoc Fokker Planck model give close agreement, which again suggests that
the collision operator in GENE has been implemented correctly. In addition, the ad-hoc model gives
relatively close agreement with the full model (the heat and particle fluxes are within ∼ 20%). A
20% discrepancy in neoclassical heat transport is relatively small compared to the normal level of
turbulent transport, and since neoclassical transport is highly sensitive to collisions, this suggests that
the ad-hoc collision model could be justifiably used for studies of collisional plasma turbulence and
transport. However, to truly justify the use of such models, a comparison of the microinstabilities and
the nonlinear transport between different models should be done.

4.3 Global Neoclassical Benchmark

In addition to the local neoclassical test, a global neoclassical benchmark between GENE and ORB5
[10] has been performed to ensure correct implementation of the collision operator for the global version
of the code. The benchmark was performed for a one-species case using a magnetic geometry consisting
of concentric circular flux surfaces. The safety factor profile, temperature gradient profile, and density
gradient profile are given by the following expressions:

q(r) =

[
0.845 + 2.184(r/a)2

]/√
1− (r/R)2 (96)

d ln(T )

d(r/a)
= −2.49

(
cosh(5(r/a− 0.5))

)−2
(97)

d ln(n)

d(r/a)
= −0.79

(
cosh(5(r/a− 0.5))

)−2
(98)

This benchmark was run with ν∗i = 0.5 and ρ∗ = 1/180 with identical analytical collision models,
but different numerical implementations. The results are shown in Fig. 14. There is fairly good
agreement between GENE and ORB5 for both neoclassical moments, suggesting the collisions were
implemented correctly in both codes, at least for the one-species case. The ORB5 data used in this
benchmark is published in [10]. Future benchmarks testing the implementation of collisions between
multiple species for nonisothermal parameters shall be left for future work.
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Figure 11: Comparison of neoclassical bootstrap current and heat flux between GENE, ad-hoc Fokker-
Planck model in NEO, and full Fokker-Planck model in NEO [20]. The bottom plots show the difference
of the bootstrap current and heat flux between the model operators and the full operator. GENE
predicts a slightly smaller heat flux for ions and electrons, but the agreement is still fairly good. The
bootstrap current between the two codes also agree fairly well. Qgb is the gyrobohm heat flux.
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Figure 12: Comparison of neoclassical ion particle flux between GENE, ad-hoc Fokker-Planck model
in NEO, and full Fokker-Planck model in NEO [20]. The plot on the right shows the difference in the
particle flux between the model operators and the full operator. The electron flux has not been shown
because it closely resembles the ion flux. Γgb is the gyrobohm particle flux.
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Figure 13: Neoclassical Equilibrium Ion and Electron velocity space distribution at the outboard
midplane for coll = 0.00001 (left), coll=0.001 (middle), and coll=0.1 (right). For low collisionality, one
can clearly see the complex velocity space contours associated with the trapped-passing boundary. As
collisionality is increased, one can see these structures fade as collisions inhibit the trapped particle
resonance. At very large collisionality, the contours resemble a simple perturbed Maxwellian structure.
The graphs on the top correspond to ions, and the graphs on the bottom correspond to electrons.
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Figure 14: Global Neoclassical Benchmark between GENE and ORB5 [10]. The graphs on the left
depict the heat flux, and the graphs on the right depict the bootstrap current. The middle radial
position was taken for the time trace (r/a=0.5) and the profile measurements were taken at t = 2τii.
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Figure 15: Neoclassical heat flux time trace and profiles for regular and block-structured grids. The
graphs on the top and bottom depict the ion and electron species respectively. The time trace depicts
the flux-surface averaged heat flux at r/a=0.5, and the profiles were observed at the end of the time
trace (t = 500a/cs).

In addition to the benchmark between GENE and ORB5, a two species neoclassical benchmark
has been performed between the version of GENE with the standard velocity space grids, and the
version of GENE with the block-structured grids. This is done to ensure that the generalization of the
numerical scheme to multiple species has been done correctly. The setup for this case is the same as the
previous one, except that an additional electron species is considered in the simulation. The heat flux
and bootstrap current output is displayed in Fig. 15 and 16 respectively. The neoclassical time traces
and profiles agree fairly well between both versions of the code, suggesting that the block-structured
grids have been implemented correctly, and provide no significant numerical challenges. Furthermore,
introducing these types of grids requires minimal modifications of already existing code.

4.4 Effect of Collisions on Geodesic Acoustic Mode (GAM) oscillations

While neoclassical tests are useful for the verification of the collision operator, it is desirable not
just to replicate neoclassical moments, but to incorporate the effect of collisions in simulations of
gyrokinetic plasma turbulence. One of the major effects of collisions is the damping of zonal flows,
which regulate plasma turbulence by shearing vortices [27]. By failing to replicate the correct level of
collisional damping of zonal flows, one would fail to capture the true plasma turbulence and transport.
It is essential that the collisional damping rate of zonal flows be modeled correctly. To test that this
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Figure 16: Neoclassical bootstrap current time trace and profiles for regular and block-structured grids.
The graphs on the top and bottom depict the ion and electron species respectively. The time trace
depicts the flux-surface averaged bootstrap current at r/a=0.5, and the profiles were observed at the
end of the time trace (t = 500a/cs).
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property holds, a simulation has been performed examining the ky = 0 mode, otherwise known as the
geodesic acoustic mode (GAM). There is a well established theory of how these modes are dampened
by collisions [28]. According to the Rosenbluth-Hinton theory, the short-time behavior of the residual
potential in the collisional limit is given by the following formulas:

φk(t)

φk(0)
∼= Ak(t) +Bk(t) (99)

Ak(t) =

(
1− Λ

)
exp

(
− exp(−q2)t/(τiiR)

)
cos(t/(τiiR)) (100)

Bk(t) = Λ exp(Λ2β)erfc(Λ
√
β) (101)

β =
9π2q40.61

ε2 ln(16ετii/(0.61t))3
t

τii
(102)

In the above formulas, Ak(t) corresponds to the high frequency GAM oscillation part, Bk(t) corre-
sponds to nonoscillatory part of the potential, Λ is the residual value of the potential in the collisionless
limit, q is the safety factor, R is the major radius of the tokamak, ε is the inverse aspect ratio for the
magnetic geometry, t is time, and τii is the ion-ion collision time [29]:

τii =
3
√
miT 3

i

4ne4
√
π ln(Λ)

(103)

In the above formula, mi is the ion mass, Ti is the ion temperature, n is the plasma density, e is the
ion charge, and ln(Λ) is the Coloumb logarithm. A collisional simulation of GAM oscillations has been
performed and the spatially averaged simulated electrostatic potential has been plotted vs. time and
compared to Bk(t) to see if the short term collisional decay resembles the prediction by Rosenbluth and
Hinton. The results, as well as the parameters of the simulaton, are shown in Fig. 17. It is apparent
from the following figure that GENE gives reasonable agreement with the theory of Rosenbluth and
Hinton. More information on GAM oscillations can be found in [3, 27, 30].

4.5 Collisional Microinstability Benchmark

In addition to studying the effects of collisions on the damping of zonal flows, the collision operator has
also been benchmarked in a local microinstability analysis against the operator in another gyrokinetic
code, CGYRO [31]. The kyρs scan displayed in figure 5 of [32] depicting a trapped electron mode
(TEM) has been repeated in GENE. This scenario was based on the General Atomics standard test
case, and was run with two species (deuterium and electrons) with no temperature gradients, a/Lni =
a/Lne = 3, R/a = 3, r/a = 0.5, q = 2, ŝ = 1, Ti = Te, and ν̄e =

√
2πe4ane ln(Λ)/(cs

√
meT 3

e ) = 0.2.
The geometry for this scenario is an unshifted miller equilibrium [33, 34]. The results are displayed
in Fig. 18. Very good agreement was obtained between the codes. This benchmark in particular,
validates the implementation of the FLR correction terms. The CGYRO results are publicly available
in Ref. [31].
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Figure 17: Simulations of collisional GAM oscillations are performed and compared to the short-term
decay of the non-oscillatory part of the mode. The above plots demonstrate fairly good agreement
between GENE simulations and the theory of Rosenbluth and Hinton [28]. The data for the above
graphs was taken from a one species simulation with 48 points in z, 100 points in the magnetic moment,
and 200 points in the parallel velocity at kx = 0.01. The size of the velocity space box was 4 and 16
in the parallel velocity and the magnetic moment. The magnetic geometry was circular with a safety
factor of 1.4, an inverse aspect ratio of 0.18, and a major radius of 1.0. The ion-ion collision time for
the simulation was τii = 47 in units of a/cs.
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5 Conclusion

A new multi-species collision operator based off of a second-order finite volume discretization has been
implemented in the GENE code which conserves particles, momentum, and energy to machine pre-
cision, and satisfies an appropriate H-theorem such that collisions tend to drive distributions toward
perturbed Maxwellian structures. The version of the collision operator implemented for the global
version of GENE has also been developed in accordance with the block-structured grid scheme, al-
lowing for more computationally affordable collisional simulations. The collision operator has been
validated by confirming that temperature and flow perturbations relax to the same level, confirming
that the moments of neoclassical simulations gives close agreement with the NEO and ORB5 codes,
confirming that the damping of zonal flows in simulations is close to the theoretical predictions, and
benchmarking GENE with CGYRO for a microinstability analysis. This implementation also includes
FLR corrections for the local version of the code. Implementing the corrections for the global version
of the code shall be left for future work. The developments of the collision operator detailed in this
paper enable the study of highly collisional turbulence in the plasma edge.
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