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IRREDUCIBLE CALIBRATED REPRESENTATIONS OF

PERIPLECTIC BRAUER ALGEBRAS AND HOOK

REPRESENTATIONS OF THE SYMMETRIC GROUP

MEE SEONG IM AND EMILY NORTON

Abstract. We construct an infinite tower of irreducible calibrated representations of
periplectic Brauer algebras on which the cup-cap generators act by nonzero matrices. As
representations of the symmetric group, these are exterior powers of the standard repre-
sentation (i.e. hook representations). Our approach uses the recently-defined degenerate
affine periplectic Brauer algebra, which plays a role similar to that of the degenerate affine
Hecke algebra in representation theory of the symmetric group. We write formulas for
the representing matrices in the basis of Jucys–Murphy eigenvectors and we completely
describe the spectrum of these representations. The tower formed by these represen-
tations provides a new, non-semisimple categorification of Pascal’s triangle. Along the
way, we also prove some basic results about calibrated representations of the degenerate
affine periplectic Brauer algebra.

Introduction

The periplectic Brauer algebra An is an example of a finite-dimensional algebra with
a “local system of generators,” in the terminology of Okounkov and Vershik [27]. It
is a diagram algebra of crossing lines and curving arcs including the usual generators
s1, . . . , sn−1 and relations of the symmetric group Sn, echoed by an additional set of gen-
erators e1, . . . , en−1 and relations which produce a signed Temperley-Lieb algebra TL

−
n

with loops evaluated at 0. Together, the signed Temperley–Lieb algebra and the sym-
metric group generate the periplectic Brauer algebra An, according to additional rules
governing the interaction between the two algebras CSn and TL

−
n in An. The result is a

unique and exceptional algebra: if we impose any other choice of value δ for the loops,
then the algebra cannot exist, and this sets it apart from the usual Brauer algebra Brn(δ)
which can be defined for any loop-value δ.

The representation theory of the periplectic Brauer algebra is like a partner dance
between Sn and TL

−
n with exaggerated binary gender roles. The symmetric group leads

and the algebra of curves follows, embellishing and adding complexity. Cell modules are
labeled not just by partitions of n, but by layer upon layer of partitions – partitions of n,
n− 2, n− 4, . . . and all of these cell modules have an irreducible quotient except for the
cell module labeling the empty partition of 0 when n is even [7]. The filtration of a cell
module labeled by a partition µ contains an irreducible representation labeled by λ in its
Jordan–Hölder filtration exactly once if and only if the Young diagram of µ fits inside the
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2 CALIBRATED REPRESENTATIONS OF PERIPLECTIC BRAUER ALGEBRAS

Young diagram of λ and their difference belongs to a certain set of skew Young diagrams,
and this completely describes the composition series of the cell modules [8, Theorem 1].
Many open questions remain, however, such as determining the branching graph of the
irreducible representations.

A famous paper by Okounkov and Vershik [27] reinvents the representation theory of
the symmetric group Sn starting from the tower of algebras C ∼= CS1 ⊂ CS2 ⊂ CS3 ⊂
· · · ⊂ CSn ⊂ CSn+1 ⊂ . . . and the commutative subalgebra of CSn generated by the
Jucys–Murphy elements X1, . . . , Xn. It is interesting to consider some analogues of this
theory for periplectic Brauer algebras. By adding a strand on the right again and again,
there is a chain of inclusions C ∼= A1 ⊂ A2 ⊂ A3 ⊂ · · · ⊂ An ⊂ An+1 ⊂ . . . going on
forever, making a tower of algebras. Each algebra An has a large commutative subalgebra
generated by the periplectic Jucys–Murphy elements Y1, . . . , Yn defined in [7]. The Jucys–
Murphy elements of An naturally generalize the Jucys–Murphy elements of CSn. Recall
that the Jucys–Murphy elements of the symmetric group are defined recursively as:

X1 := 0, Xj+1 = sjXjsj + sj .

The Jucys–Murphy elements of An are defined recursively as:

Y1 := 0, Yj+1 = sjYjsj + sj + ej .

Just as Xn commutes with CSn−1, Yn commutes with An−1 under the embedding of the
latter as above [7].

A major difference between CSn and An is that An is not a semisimple algebra [24],[7]. In
contrast to the situation for CSn, there is no reason an arbitrary irreducible representation
of An should possess a basis of joint eigenvectors for the Jucys–Murphy elements Yj. It is
an interesting question to determine when this happens. In this paper, we build a natural
series of irreducible representations of An which have a basis on which Yj acts as a diagonal
matrix for all j = 1, . . . , n; we call representations with such a basis calibrated. As an
example of an irreducible calibrated An-representation, one can always take L(λ) for λ
a partition of n, because CSn-mod embeds in An-mod via S(λ) → L(λ), but this is not
an interesting example since the representation theory of the symmetric group is known.
For a fixed n, our family of irreducible calibrated representations cuts transversely across
the filtration layers of An-mod. The calibrated representations we find are very natural:
as Sn-representations they are the exterior powers of the standard representation of Sn,
so are irreducible already as Sn-representations. The matrices by which the generators ei
act are very similar to the matrices by which the si act – they are obtained by removing
the diagonal entries and changing some signs. And there are simple recursive formulas for
the eigenvalues of the Jucys–Murphy elements on these representations; the eigenvalues
of Yj+1 are obtained from the eigenvalues of Yj by adding or subtracting 1.

In order to construct interesting calibrated representations of An, we study the degen-
erate affine periplectic Brauer algebra sVVn defined in [1],[5]. This is the algebra generated
by An and commuting formal variables y1, . . . , yn satisfying the same relations with the
generators si and ei of An as the Jucys–Murphy elements Yj. The definition and use of
this algebra sVVn follow from the same philosophy that leads to the definition and use of
the degenerate affine Hecke algebra Hdeg

n in the representation theory of Sn as in the work
of Okounkov and Vershik [27] and Kleshchev [20].



CALIBRATED REPRESENTATIONS OF PERIPLECTIC BRAUER ALGEBRAS 3

We now summarize the contents of the paper and our results. In Section 1, we introduce
the algebras An and sVVn and discuss how they are related to each other as well as to
more familiar algebras such as CSn and the degenerate affine Hecke algebra, and what
consequences this has for their internal structure and their representation theory. We
explain how sVVn inherits a filtration by “cup-cap ideals” from TL

−, we describe the
Jacobson radical of sVV2 and put some upper and lower bounds on the Jacobson radical
of sVVn. In Section 2 we study calibrated representations of An and sVVn. We prove that
the center of sVVn acts trivially on any calibrated sVVn-representation, that is, viewed as
a symmetric polynomial an element of Z(sVVn) acts by its constant term (Theorem 24,
Corollary 26). Using some basic results about calibrated sVV2-representations, which was
the subject of a previous paper by the authors and other collaborators [11], we analyze the
eigenvalues of y1, . . . , yn on calibrated sVVn-representations and show that the eigenvalues
of yj are integers so long as the eigenvalues of y1 are integers (Theorem 28); as a corollary,
the eigenvalues of Yj on any calibrated An-representation are always integers (Corollary
30). Furthermore, we work out conditions under which we can write a simple formula for
these eigenvalues (Lemma 31); this formula is used to study the family of representations
constructed in Section 3.

In Section 3 we tackle the construction of a family of irreducible calibrated An-
representations endowed with a nonzero action of TL−n for any n > 2. The starting point is
Theorem 34. With the right choice of representing matrices for si, the (n−1)-dimensional
standard representation Vn of Sn extends to a one-parameter family of calibrated repre-
sentations Cα(Vn) of sVVn factoring through An when the parameter α is set equal to 0.
This gives us the first explicit example of an irreducible calibrated representation of sVVn

or An for any n > 2 which has a nonzero action of the ei’s. Once we have the representa-
tion Cα(Vn) in hand, we compute the exterior powers ΛkVn as CSn-representations with
respect to the basis of y-eigenvectors, and then extend these to calibrated representations
Cα(Λ

kVn) of sVVn by writing formulas for the actions of ei and yj similar to those used for
Cα(Vn). We prove in Theorem 38 that this does indeed define a representation of sVVn,
and thus of An when α = 0. Since ΛkVn is already irreducible as a CSn-representation,
Cα(Λ

kVn) is irreducible as an An- or sVVn-representation.
The results of Section 3 considered for all n give us an infinite series of irreducible

calibrated representations of the tower of algebras A1 ⊂ A2 ⊂ A3 ⊂ . . . under the sequence
of embeddings An−1 →֒ An adding a vertical strand on the right. A natural question is
how these representations are related by restriction. In Section 4 42, we prove that our
collection of irreducible calibrated representations {C0(Λ

kVn) | n ∈ N, 0 ≤ k ≤ n− 1} is
closed under taking composition factors of restriction from An to Am, m < n. Theorem
42 states that the restriction of C0(Λ

kVn) from An to An−1 is always indecomposable with
two irreducible composition factors if 1 ≤ k ≤ n − 2: the head C0(Λ

k−1Vn−1) and the
socle C0(Λ

kVn−1). As for the representations C0(Λ
0Vn) and C0(Λ

n−1Vn), they are just the
trivial and the sign representation of Sn, respectively, with ei acting by 0.

The Bratteli diagram (i.e. branching graph) of {C0(Λ
kVn) | n ∈ N, 0 ≤ k ≤ n − 1}

thus yields a new categorification of Pascal’s triangle with a non-semisimple rule for the
arrows in the interior of the triangle. This is not the first time Pascal’s triangle has
been categorified by a branching rule in a module category: other notable instances
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of Pascal categorification include the category of modules over planar rook algebras (a
semisimple categorification) [16] and the branching rule for the standard modules over
the blob algebra [18] (furthermore, the irreducible quotients of these blob modules have
bases given by paths in Pascal’s triangle that avoid certain hyperplanes, see [4] and take
the case ℓ = 2 and h = 1). Our Bratteli diagram also gives a combinatorial rule for
computing the eigenvalues of the Jucys–Murphy elements on any irreducible calibrated
An-representation of the form C0(Λ

kVn). We substitute one-row and one-column partitions
for the representations C0(Λ

kVn) forming the vertices of the Bratteli diagram, and then
consider all directed paths from the source vertex to a vertex λ. The content sequence
determined by the unique removable box of each partition µ along such a path gives an
element of the spectrum of C0(Λ

kVn), where λ is determined from k and n by an easy
formula. See Section 4.

1. The finite and degenerate affine periplectic Brauer algebras

1.1. Definitions of the algebras. The degenerate affine Hecke algebra, also called the
graded Hecke algebra, has an easy presentation by generators and relations.

Definition 1. [12],[23] The degenerate affine Hecke algebra Hdeg
n is the C-algebra gener-

ated by si for i = 1, . . . , n− 1 and by yj for j = 1, . . . , n with relations:

s2i = 1 for 1 ≤ i ≤ n− 1, sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2,

sisj = sjsi if |j − i| > 1, yiyj = yjyi for 1 ≤ i, j ≤ n,

yj+1 = sjyjsj + sj for 1 ≤ j ≤ n− 1.

We see the group algebra CSn of Sn defined in the first three relations. The last relation
echoes the recursive definition of the Jucys–Murphy elements of CSn, but since y1 is a
free variable, in Hdeg

n these have become abstract entities yj which generate a polynomial
algebra. The idea behind the degenerate affine periplectic Brauer algebra is similar and
has a Brauer algebra precursor in [26].

Definition 2. [5, Def. 3.1], [1, Def. 39] The degenerate affine periplectic Brauer algebra
sVVn is the C-algebra generated by si and ei for i = 1, . . . , n− 1 and by yj for j = 1, . . . , n
subject to the relations:

(VV1) s
2
i = 1 for 1 ≤ i < n,

(VV2) (i) siej = ejsi if |i− j| > 1, (ii) eiej = ejei if |i− j| > 1,

(iii) eiyj = yjei if j 6= i, i+ 1, (iv) yiyj = yjyi for 1 ≤ i, j ≤ n,

(VV3) (i) sisj = sjsi if |i− j| > 1, (ii) sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2,

(iii) siyj = yjsi if j 6= i, i+ 1,

(VV4) (i) ei+1eiei+1 = −ei+1, (ii) eiei+1ei = −ei for 1 ≤ i ≤ n− 2,

(VV5) (i) eisi = ei and siei = −ei for 1 ≤ i ≤ n− 1, (ii) siei+1ei = si+1ei,

(iii) si+1eiei+1 = −siei+1, (iv) ei+1eisi+1 = ei+1si, (v) eiei+1si = −eisi+1

for 1 ≤ i ≤ n− 2,

(VV6) e
2
i = 0 for 1 ≤ i ≤ n− 1,
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(VV7) (i) siyi − yi+1si = −ei − 1, (ii) yisi − siyi+1 = ei − 1 for 1 ≤ i ≤ n− 1,

(VV8) (i) ei(yi − yi+1) = −ei, (ii) (yi − yi+1)ei = ei for 1 ≤ i ≤ n− 1.

Remark 3. Relation (VV7) can be conveniently packaged as the single relation

yj+1 = sjyjsj + sj + ej

emphasizing the origin of the yj’s as Jucys–Murphy elements – multiply each side of the
equation by si to recover (VV7). The algebra sVVn is generated by ei and si, 1 ≤ i ≤ n− 1,
together with y1.

Remark 4. Our sign conventions follow [1, Def. 39] and differ in some relations from
those in [5, Def. 3.1],[24],[7]. We have omitted the relation e1y

k
1e1 = 0 which was proved in

([1],[5]) to follow from the other relations. The list of relations above is still not minimal
[1, Rem. 40]. For example, (VV5)(ii) follows by multiplying (VV5)(iii) on the right by ei
then simplifying using (VV4)(ii). Similarly, (VV5)(iv) follows from (VV5)(v) and (VV4)(i).

The algebra sVVn has several important subalgebras. First, there is the polynomial
subalgebra C[y1, . . . , yn]. Second, there is the periplectic Brauer algebra.

Definition 5. The periplectic Brauer algebra An is the subalgebra of sVVn generated by
ei and si for 1 ≤ i ≤ n− 1.

This algebra was first introduced by Moon to study Schur–Weyl duality for the periplectic
Lie superalgebra p(n) [24] and has recently been the focus of much attention [22],[7],[8],[9].
The traditional way to work with such algebras is as diagram algebras: si is a crossing,
ei is a cup-cap, and the elements of An are linear combinations of Brauer diagrams. A
Brauer diagram is a pairing of 2n points, n of them equally spaced on a horizontal line
of height 0 and n of them equally spaced directly above on a horizontal line of height 1.
If two points are paired, they are drawn with a line or strand connecting them. We do
not draw the 2n points in our diagrams but only the strands. The strands which connect
a point at the bottom of the diagram with a point at the top of the diagram are called
through strands. The strands connecting points on the top horizontal line are called cups ;
on the bottom horizontal line, caps.

Example 6.

a crossing a cup-cap a Brauer diagram in A7

Multiplication ab of elements a, b ∈ An corresponds to stacking the diagram of a on top
of the diagram of b. Any closed loop occurring in a diagram makes the whole diagram 0:

= 0.

The elements s1, . . . , sn−1 generate the subalgebra CSn ⊂ An ⊂ sVVn, while the elements
e1, . . . , en−1 together with 1 generate a copy of an algebra we denote by TL

−
n ⊂ An ⊂ sVVn,
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which can be thought of as a signed or super version of a Temperley–Lieb algebra, again
with any closed loop evaluated at 0. Note that the subalgebra generated by e1, . . . , en−1

is not unital; we throw in 1 to make TL
−
n a unital subalgebra. Together the algebras

TL
−
n and C[y1, . . . , yn] also generate a subalgebra of sVVn. However, CSn and C[y1, . . . , yn]

together generate all of sVVn as every ei = yi+1 − siyisi − si, see Remark 3.

an element of S5 an element of TL−5

An intuitive way to think about sVVn is as the diagram algebra generated by the diagram
algebra An together with C[y1, . . . , yn] where yi is a bead in position i at the top or bottom
of the diagram, subject to some local relations for moving a bead across a cup or cap, or
through a crossing:

= − − = + −

= + = +

and such that beads that are “far away” (somewhere off to the left or right) commute
with a crossing or a cup-cap, and the beads commute with each other. It is not at all
obvious that such an algebra has the basis one would like: a basis of Brauer diagrams with
some number of beads (corresponding to yi’s) on each string, pushed to an agreed-upon
end of the string in a neat and orderly fashion. Such a beaded Brauer diagram is called
a normal diagram. Rather than belabor the precise definition, we draw a picture of a
normal diagram in sVV7:

An important first result about the algebra sVVn is therefore:

Theorem 7. [5],[1] The algebra sVVn has a C-basis consisting of all normal diagrams.

This can be thought of as an analogue of classical PBW theorems for universal enveloping
algebras and flat deformations of skew group rings 1.

1The proof in [5] is a signed version of the proof given by Nazarov for the degenerate affine Brauer
algebra [26]. The proof in [1] proceeds by constructing an explicit faithful representation of sVVn using
the intrinsic connection of sVVn with periplectic Lie superalgebras [1, Theorem 2].
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1.2. Some relations in sVVn. In addition to the formulas written in [1, Lemmas 4-9]
there are nice formulas for disentangling a bunch of beads stuck between a crossing and
a cup or cap. The proofs of the formulas follow from easy induction arguments and the
formulas in [1, Lemmas 4-9].

Lemma 8. Let a, b ∈ N. The following equalities hold in sVVn:

(i) siy
b
i+1ei = −ybi+1ei, (ii) siy

a
i ei = −yai ei, (iii) eiy

b
i+1si = eiy

b
i+1,

b = −
b a = −

a
b = b

(iv) eiy
a
i si = eiy

a
i , (v) eiy

a
i y

b
i+1si =

b∑

k=0

(
b

k

)
eiy

a+k
i , (vi) siy

a
i y

b
i+1ei = −

a∑

k=0

(
a

k

)
yb+k
i+1 ei.

a = a a b =

b∑

k=0

(
b

k

)

a+k
a b = −

a∑

k=0

(
a

k

)
b+k

1.3. Basics from representation theory. Write sVVn-mod for the category of finite-
dimensional sVVn-representations and An-mod for the category of finite-dimensional An-
representations. We will only consider finite-dimensional representations in this paper and

may often just write “representation” when we mean finite-dimensional representation.

Practically speaking, we will think of the elements of V as column vectors in CdimV with
respect to a fixed basis, and if ρ : sVVn → End(V ) is a representation then we will think of
the linear transformations ρ(h), h ∈ sVVn, as matrices with respect to that basis. We will
abuse notation and define representations by writing the generators directly as matrices,
dropping the notation ρ.

The categories sVVn-mod and An-mod are Krull-Schmidt, that is, any finite-dimensional
sVVn- or An-representation has a unique decomposition as a direct sum of indecomposable
representations up to isomorphism and permuting the factors. However, sVVn-mod and
An-mod are not semisimple, that is, not every finite-dimensional sVVn- or An-representation
can be decomposed into a direct sum of irreducible representations. In order to determine
when a representation V of an algebra A is indecomposable, we will use the criterion that
V is indecomposable if and only if EndA(V ) is a local ring. In particular, if EndA(V ) ∼= C
then certainly V is indecomposable (but not necessarily irreducible).

1.4. Quotient maps and inflated representations. It follows immediately from Def-
inition 2 and Theorem 7 that the degenerate affine Hecke algebra is a quotient of the
degenerate affine periplectic Brauer algebra:

Lemma 9. There is a surjective homomorphism of algebras

Φn : sVVn ։ Hdeg
n

given by quotienting sVVn by the two-sided ideal (e1, e2, . . . , en−1).

This allows us to construct a pile of representations of sVVn for free by “inflation”:
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Definition 10. Let M be an Hdeg
n -representation. Define an sVVn representation M :=

InflM by precomposing the Hdeg-action on M with the map Φ. That is, M has the same
underlying C-vector space as M with si and yj acting the same on M as on M, and ei
acting by 0.

In particular, any irreducible representation of Hdeg
n gives rise to an irreducible represen-

tation of sVVn by inflation.
In addition to the surjection Φn, sVVn also comes equipped with a surjection to An.

Definition 11. The j’th Jucys–Murphy element Yj of An is defined inductively by Y1 := 0,
Yj+1 := sjYjsj + sj + ej for 1 ≤ j ≤ n− 1.

Lemma 12. [1] There is a surjective algebra homomorphism

Πn : sVVn ։ An

given by Πn(ei) = ei, Πn(si) = si, and Πn(yj) = Yj, the j’th Jucys–Murphy element, for
1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n.

The kernel of Πn is the two-sided ideal (y1). Any irreducible representation L of An also
gives rise by inflation to an irreducible representation L = InflL of sVVn by declaring y1
to act by 0, thus extending the action from An to all of sVVn by making yj act by the j’th
Jucys–Murphy element Yj = Πn(yj).

The algebra An not only contains CSn as the subalgebra generated by s1, . . . , sn−1

but also has CSn as a quotient by the two-sided ideal (e1) = (e1, . . . , en−1). The irre-
ducible representations of CSn are labeled by partitions of n. Using the same method
of inflating representations along the quotient map then yields, for every partition λ of
n, an irreducible An-representation L(λ) = InflS(λ) where S(λ) is the irreducible CSn-
representation labeled by λ. By construction, every ei acts on L(λ) by 0. The module
category An-mod thus contains CSn-mod as the full subcategory generated by all the L(λ)
for λ a partition of n.

1.5. Filtration by cup-cap ideals. There are filtrations of An and sVVn by two-sided
ideals consisting of diagrams with “at least k cup-caps,” equivalently, “at most n − 2k
through strands.” The cup-cap filtration organizes the parametrization of irreducible An-
representations by partitions of n, partitions of n − 2, partitions of n − 4, . . . (except
that the unique partition ∅ of 0 does not label an irreducible representation) [7]. The
irreducibles labeled by partitions of n have ei acting by 0 (as we just saw), the ones labeled
by partitions of n − 2 have ei acting nontrivially but ei1ei2 acting by 0 for |i1 − i2| > 1,
and so on. We expect the cup-cap filtration to play a similar role in the description of
irreducible sVVn-representations.

If we do not say otherwise, “ideal” will always mean two-sided ideal.

Lemma 13. Consider ei for an arbitrary i ∈ {2, . . . , n − 1}. The following statements
are true:

(1) The ideal (e1) is equal to the ideal (ei) for any 1 < i ≤ n− 1, and moreover, this
is true in the subalgebra TL

−
n generated by e1, . . . , en−1, and 1;

(2) Let M ∈ sVVn−mod, then ei acts by 0 on M if and only if e1 acts by 0 on M;
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(3) Let M ∈ An−mod and suppose L ⊂ M is a subspace preserved by CSn. Then
either no ei preserves L, or L is an An-subrepresentation of M.

Proof. (1) Let 1 < i ≤ n− 1. We have

ei = −eiei−1ei = ei (ei−1ei−2ei−1) ei = . . . = (−1)i−1eiei−1ei−2 · · · e2e1e2 · · · ei−2ei−1ei.

and

e1 = −e1e2e1 = e1e2e3e2e1 = . . . = (−1)i−1e1e2 · · · ei−2ei−1eiei−1ei−2 · · · e2e1.

(2) This follows from the first part: if the generator of a principal ideal annihilates a
module then clearly so does every element in that ideal.

(3) Using relations (sVV5) in Definition 2 shows that for all k = 2, . . . , n− 1:

sk−1eksk−1 = sk−1ekek−1sk = −skek−1ekek−1sk = skek−1sk,

so for any i 6= j, ei = wejw
−1 for some w ∈ Sn. It follows that if some ei preserves

an Sn-subrepresentation L then all of An does.
�

Consequently, the ideal KerΦn is a principal ideal and any ei, i ∈ {1, . . . , n− 1}, can be
taken as its generator. That is to say, we can obtain Hdeg

n from sVVn by just setting ei = 0
for some i.

In fact, the ideal (e1) is not only a principal ideal but has an interesting filtration
by principal ideals. Set I0 = sVVn, I1 = (e1), I2 = (e1e3), I3 = (e1e3e5), . . . , Ip =
(e1e3e5 . . . e2p−1), Ip+1 = {0}, where p = n

2
if n is even and p = n−1

2
if n is odd.

Lemma 14. (1) The ideal Ir consists of all elements of sVVn whose diagrams contain
at most n − 2r through strands. It can be generated by any element of the form
ei1ei2 · · · eir such that |ij − ak| > 1 for all j, k = 1, . . . , r.

(2) There is a filtration of sVVn given by

0 = Ip+1 ( Ip = (e1e3 · · · e2p−1) ( Ip−1 = (e1e3 · · · e2p−3) ( . . . ( I1 = (e1) ( I0 = sVVn .

Proof. The statement is obvious for An. For sVVn, the relations ei(yi − yi+1) = −ei and
(yi−yi+1)ei = ei of Definition 2 (VV8) preserve the number of cup-caps in a diagram, while
the relation yi+1 = siyisi + si + ei (VV7) preserves the number of cup-caps in the leading
term and has a lower order term with one more cup-cap. Far away things commuting
(Definition 2 (VV2),(VV3)) obviously preserves the number of cup-caps. Using the relations
ei = −eiei±1ei it is clear as in Lemma 13 that e1e3 · · · e2k−1 generates the ideal of diagrams
with at most k cup-caps, and that any other collection of k independent cup-caps will
also do the job. �

1.6. The Jacobson radical. The determination of the Jacobson radical of An and sVVn

is an open problem. In this section we establish some obvious lower and upper bounds
on the Jacobson radical of sVVn in terms of the ideals introduced in Section 1.5 and we
determine J(sVV2).

Recall that if A is an associative algebra, the Jacobson radical J(A) is defined to be the
intersection of all maximal left ideals of A. Well-known facts about it include [13]:
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Lemma 15. (1) Let z ∈ A, then z ∈ J(A) if and only if 1 − az has a left inverse for
all a ∈ A;

(2) The Jacobson radical J(A) is a two-sided ideal of A;
(3) J (A/J(A)) = 0;
(4) A is semisimple if and only if J(A) = 0 and A is artinian;
(5) If e2 = e then e /∈ J(A);
(6) If φ : A ։ B is a surjective homomorphism of algebras then φ(J(A)) ⊆ J(B);
(7) J(A) acts by 0 on every irreducible A-representation.

Let J(An) be the Jacobson radical of An and let J(sVVn) be the Jacobson radical of
sVVn. Lemma 12 provides a surjective algebra homomorphism Πn : sVVn ։ An, so by
Lemma 15(6) we know that Πn(J(sVVn)) ⊆ J(An). The algebra An is finite-dimensional
and non-semisimple [24], so by Lemma 15(4) it holds that J(An) 6= 0 [7]. For very small
n it is possible to calculate J(An) by hand: when n = 2, A2 is only 3-dimensional with
C-basis {1, s, e}, and J(A2) = Ce. When n = 3, A3 is 15-dimensional. Moon calculated
J(A3) and found that it is 5-dimensional; consequently, the maximal semisimple quotient
of A3 has dimension dimC A3/J(A3) = 10. For any n > 3, Coulembier defined a central
element Θ given by a polynomial in the Jucys–Murphy elements Y2, . . . , Yn and he proved
that Θ ∈ J(An) [7, Equation (6.3)]:

Θ =
∏

2≤i<j≤n

(1− (Yi − Yj)
2) = (1− (Y2 − Y3)

2)(1− (Y2 − Y4)
2) · · · (1− (Yn−1 − Yn)

2).

However, it is unknown if Θ is nonzero for general n, see the remark preceding [7, Propo-
sition 6.4.3].

We could not find the next lemma in the literature, so we include a proof.

Lemma 16. Let J(Hdeg
n ) denote the Jacobson radical of Hdeg

n . Then J(Hdeg
n ) = 0.

Proof. Let h ∈ J(Hdeg
n ) and using the relation yi+1 = siyisi + si, write h as a polynomial

in y1 with coefficients in C[Sn]. As a polynomial in y1, h has the same degree as it does
as a polynomial in y1, . . . , yn. Let Ha1,...,aℓ be the finite-dimensional quotient of Hdeg

n by
the two-sided ideal generated by (y1 − a1)(y1 − a2) · · · (y1 − aℓ) where (a1, . . . , aℓ) ∈ Cℓ.
For generic (a1, . . . , aℓ), the algebra Ha1,...,aℓ is semisimple and has basis given by the basis
elements of Hdeg

n up to degree ℓ − 1. Let π : Hdeg
n → Ha1,...,aℓ be the quotient map, then

π(J(Hdeg
n )) ⊆ J(Ha1,...,aℓ) = 0 and so π(h) = 0 for any generic ℓ-tuple of complex numbers

(a1, . . . , aℓ). Taking ℓ to be bigger than the degree of h we have π(h) = h, but for a
generic ℓ-tuple of parameters (a1, . . . , aℓ) we have π(h) = 0, so h = 0. �

Note that the algebra Hdeg
n , however, still fails to be semisimple as it is not artinian, and

its representation theory contains plenty of examples of non-semisimple modules.

Lemma 17. Suppose n = 2. Then J(sVV2) = (e1).

Proof. Write e := e1. We have J(sVV2) ⊆ KerΦ2 = (e) since Φ(J(sVV2)) ⊆ J(Hdeg
2 ) = 0.

On the other hand, Lemma 8 and [1, Lemma 8] imply that for any element X of sVV2

it holds that eXe = 0. Then the element (1 − Xe) has left inverse (1 + Xe), so e is
in the Jacobson radical. Therefore it also holds that (e) ⊆ J(sVV2) and the statement is
proved. �
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Lemma 18. Suppose n > 2. Then J(sVVn) ( (e1).

Proof. We know that Φn(J(sVVn)) ⊆ J(Hdeg
n ) = 0 by Lemma 16. Therefore J(sVVn) ⊆

KerΦn = (e1, . . . , en) = (e1). However, ei /∈ J(sVVn) for all i = 1, . . . , n − 2 since the
element 1+ei+1ei is not invertible: multiply 1+ei+1ei on the left by ei to get ei+eiei+1ei =
ei − ei = 0. Similarly, en−1 /∈ J(sVVn) since 1 + en−2en−1 is not invertible (multiply it on
the left by en−1 to get 0). �

Lemma 19. Let n > 2 and suppose n is even. Then e1e3 · · · en−1 ∈ J(sVVn) and J(An).

Proof. Let e = e1e3 · · · en−1. Then e ∈ J(sVVn) if and only if (1 − Xe) has a left inverse
for any X ∈ sVVn. Observe that eXe is a closed loop without any through strands,
possibly with complicated self-crossings and a bunch of beads on it. As in Lemma 17,
using the relations of Lemma 8 and [1, Lemma 4-9], one can show that eXe = 0. To do
this precisely, do downward induction on the number of beads on the loop (i.e. the total
number of y’s appearing in the expression), for which the base case is the statement that
any closed loop in An is 0. Then do downward induction on the number of crossings. The
base case for that is [1, Lemma 8]. If a crossing appears directly below a cap or directly
above a cup, use Lemma 8 to eliminate the crossing, then the result is 0 by induction.
If the crossing is in between two caps or two cups, move any beads out of the way if
necessary across the curve of the cap or cup. These moves produce terms with less beads
that are 0 by induction. Then apply [1, Lemma 4(a)] or its upside-down version to switch
the position of the crossing and the cup or cap, then apply braid relations if necessary
until the crossing can be canceled either using s2i = 1 or using [1, Lemma 8]. Either way,
the number of crossings has been reduced and the result is 0 by induction. Therefore
eXe = 0, and so (1+Xe)(1−Xe) = 1−XeXe = 1 showing that (1+Xe) is a left inverse
to (1−Xe) for any X ∈ sVVn. It follows from Lemma 15 that e ∈ J(sVVn). Since e ∈ An,
it also holds that e ∈ J(An). �

Remark 20. The reason n is required to be even is that if n is odd, the corresponding
element e := e1e3 · · · en−2 (consisting of as many cup-caps placed side by side as will fit)
is definitely not in the Jacobson radical. To see this, consider s := s2s4 · · · sn−1. Then
ese = ±e, so sese = ±se. In the case sese = se, se is idempotent so it can’t be in J(sVVn).
In the case sese = −se, −se is idempotent so it cannot be in J(sVVn) or J(An). In either
case, this means e cannot be in J(sVVn) or J(An) since the Jacobson radical is an ideal.
We illustrate the elements involved in the case n = 7:

e := e1e3e5 = , s := s2s4s6 = ,

and then

ses = = − ,
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where the tangled strand is just pulled straight (with a sign).

2. Calibrated representations and Jucys–Murphy elements

By Definition 2 the variables y1, . . . , yn commute, and moreover, C[y1, . . . , yn] is a max-
imal commutative subalgebra of sVVn [1]. Similarly, Y1, . . . , Yn generate a commutative
subalgebra of An [7]. In parallel with the theory of Jucys–Murphy elements of the sym-
metric group, Yj+1 commutes with Aj ⊂ An, where Aj is the subalgebra generated by
e1, . . . , ej−1 and s1, . . . , sj−1 [7]. Lifting this relation to the affine level, yj+1 commutes
with sVVj ⊂ sVVn for each j = 1, . . . , n − 1, where sVVj denotes the subalgebra of sVVn

generated by e1, . . . , ej−1, s1, . . . , sj−1, and y1, . . . , yj (this follows from Definition 2(VV2)
and (VV3)).

One way to get a grip on some representations of sVVn is to study those representations
on which y1, . . . , yn act semisimply:

Definition 21. (1) A representation V of sVVn is called calibrated if V has a basis
with respect to which yj acts on V by a diagonal matrix for all j = 1, . . . , n.

(2) A representation V of An is called calibrated if V has a basis with respect to which
Yj acts on V by a diagonal matrix for all j = 1, . . . , n.

Calibrated representations of An are a special case of calibrated representations of sVVn:
a representation V of An is calibrated if and only V is a calibrated sVVn-representation on
which y1 acts by 0.

Example 22. Every An-representation of the form InflS(λ) where S(λ) is an irreducible
CSn-representation is calibrated: every ei acts by 0, Y1 = 0 by definition, and so for all

2 ≤ j ≤ n, Yj acts by sj−1Yj−1sj−1 + Yj−1 =: Xj =
j−1∑
k=1

(k, j), the j’th Jucys–Murphy

element of CSn. It is a classical theorem in representation theory of the symmetric group
that any irreducible CSn-representation has a basis with respect to which X2, . . . , Xn act
by diagonal matrices [19],[25]; the foundational work of [27] builds up the representation
theory of Sn from scratch using the Jucys–Murphy elements.

Example 23. Every calibrated Hdeg
n -representation is a calibrated sVVn-representation,

again by inflation.

The irreducible calibrated Hdeg
n -representations were first classified by Cherednik [6] (and

see Kriloff and Ram’s work [21] for the classification of the irreducible calibrated repre-
sentations of degenerate affine Hecke algebras associated to other finite Coxeter groups).
Since they are known, we are interested in studying those irreducible calibrated sVVn-
representations which do not factor through Hdeg

n , so those on which ei does not act by 0
for all 1 ≤ i ≤ n− 1.

2.1. Action of the center of sVVn on calibrated representations. Now recall the
central element Θ ∈ J(An) discussed in Section 1.6. Moving up to sVVn, consider the
similar-looking but Sn- rather than Sn−1-symmetric element:

Θ̃ =
∏

1≤i<j≤n

(1− (yi − yj)
2) = (1− (y1 − y2)

2)(1− (y1 − y3)
2) · · · (1− (yn−1 − yn)

2).
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The element Θ̃ belongs to the center of sVVn [1, Theorem 53]. The surjection Πn : sVVn ։

An sends Θ̃ to Θ
∏

2≤j≤n(1 − Y 2
j ), so by Lemma 15(7) we know that Θ̃ acts by 0 on any

irreducible sVVn-representation which factors through An.
For a representation V of sVVn, write yj for the matrix by which the element yj acts on

V and let (yj)ℓ,m be the matrix entries, and similarly for ei and si.

Theorem 24. Suppose V is an indecomposable calibrated representation of sVVn with a

nonzero action of some ei, 1 ≤ i ≤ n− 1. Then Θ̃ acts by 0 on V .

Proof. Let d = dimV . Let si, ei, yj denote the matrices of those generators acting on V
in the basis of joint eigenvectors v1, . . . , vd for y1, . . . , yn. We must show that for each
ℓ = 1, . . . , d, there exist j, j′ ∈ {1, . . . , n− 1} such that (yj − yj′)ℓ,ℓ = ±1.

By Lemma 13, the matrix ei 6= 0 for all i = 1, . . . , n−1. As in the first part of the proof
of [11, Theorem 11], straightforward computations using Definition 2(VV8) and (VV7) show
that (ei)ℓ,m 6= 0 implies that (yi − yi+1)ℓ,ℓ = 1 and (yi − yi+1)m,m = −1, while (si)ℓ,m 6= 0
implies that (yi − yi+1)ℓ,ℓ = α and (yi − yi+1)m,m = −α for some 0 6= α ∈ C. Therefore
we would be done if for every k = 1, . . . , d, there existed i ∈ {1, . . . , n} such that the
matrix ei had a nonzero entry in row or column k. However, for a general indecomposable
representation there is no reason this should hold (see [11] for counterexamples to such
an expectation when n = 2), and for the rest of the proof we assume this is not the case.

Order the basis of y-eigenvectors as follows: v1, . . . , vr are the basis vectors such that
for some s = 1, . . . , r, there exist j, j′ ∈ {1, 2, . . . , n−1} such that (yj − yj′)vs = ±vs, i.e.,
(yj − yj′)s,s = ±1. We have r > 0 since every ei acts by a nonzero matrix, by the remarks
above, and furthermore, if (ei)uv 6= 0 then u, v ∈ {1, 2, . . . , r}. Supposing that r < d, we
then have vr+1, . . . , vd with the property that for all r+1 ≤ t ≤ d, (yj −yj′)t,t 6= ±1. Now
the representation V is assumed to be indecomposable, but every ei and every yj preserve
the vector space decomposition Span〈v1, . . . , vr〉 ⊕ Span〈vr+1, . . . , vd〉. . Therefore some
si must have a nonzero entry (si)ℓ,m with either (i) 1 ≤ ℓ ≤ r and r + 1 ≤ m ≤ d, or (ii)
1 ≤ m ≤ r and r + 1 ≤ ℓ ≤ d.

Without loss of generality let’s assume (i) (as for situation (ii), the argument is the
same). We will show that this forces (yk − yk′)vm = ±vm for some k, k′, contradicting
the assumption that v1, . . . , vr are all of the basis vectors for which this happens. Since
1 ≤ ℓ ≤ r, there exist some k, k′ ∈ {1, 2, . . . , n − 1} such that (yk − yk′)ℓ,ℓ = ±1. There
are three cases: k, k′ /∈ {i, i+1}, {k, k′} = {i, i+1}, and k ∈ {i, i+1} but k′ /∈ {i, i+1}.
Case 1. Assume k, k′ /∈ {i, i + 1}. Using that yksi = siyk if k 6= i, i + 1 (Definition
2(VV3)(iii)) and that (si)ℓ,m 6= 0, we get (yk)ℓ,ℓ = (yk)m,m and (yk′)ℓ,ℓ = (yk′)m,m and
therefore (yk − yk′)m,m = (yk − yk′)ℓ,ℓ = ±1. Case 2. Suppose k = i and k′ = i + 1.
Then (yi − yi+1)ℓ,ℓ = ±1. But (si)ℓ,m 6= 0 implies that (yi − yi+1)ℓ,ℓ = −(yi − yi+1)m,m,
so (yi − yi+1)m,m = ±1. Case 3. Suppose k′ = i and k /∈ {i, i + 1}. Then (yi − yk)ℓ,ℓ =
±1 and (yk)ℓ,ℓ = (yk)m,m. Considering the ℓ,m’th matrix entry of the matrix equation
siyi − yi+1si = −ei − 1 yields that (yi)m,m = (yi+1)ℓ,ℓ since (ei)ℓ,m = 0 for any m > r;
similarly, (yi)ℓ,ℓ = (yi+1)m,m thanks to the equation yisi−siyi+1 = ei−1. Then (yi+1)m,m =
(yi)ℓ,ℓ = (yk)ℓ,ℓ ± 1 = (yk)m,m ± 1. This completes the proof. �
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The center of An contains a subalgebra given in terms of Θ and symmetric polynomials
in Y2, . . . , Yn [7, Theorem 6.4.2]:

C⊕ΘC[Y2, . . . , Yn]
Sn−1 ⊆ Z(An).

Similarly, the center of sVVn is described (completely) in terms of Θ̃ and symmetric poly-
nomials in y1, . . . , yn.

Theorem 25. [1, Theorem 53] The center Z(sVVn) of sVVn is the subalgebra

Z(sVVn) ∼= C⊕ Θ̃C[y1, . . . , yn]
Sn .

That is, h ∈ Z(sVVn) if and only if h = Θ̃f(y1, . . . , yn) + c for some symmetric polynomial
f(y1, . . . , yn) and some c ∈ C.

Combined with Theorem 25, Theorem 24 immediately implies that Z(sVVn) acts trivially
on those indecomposable calibrated representations of sVVn not factoring through the
degenerate affine Hecke algebra:

Corollary 26. Let h = Θ̃f(y1, . . . , yn) + c ∈ Z(sVVn). Suppose V is an indecomposable
calibrated representation of sVVn with a nonzero action of some ei, 1 ≤ i ≤ n. Then
h · v = cv for all v ∈ V .

2.2. Eigenvalues of calibrated sVVn-representations. For any fixed i, we have a copy
of sVV2 given by ei, si, yi, and yi+1 satisfying the defining relations of Definition 2 in
the case n = 2, with e1, s1, y1, y2 replaced by ei, si, yi, yi+1. We will call such a copy
{ei, si, yi, yi+1} of sVV2 an sVV2-quadruple. In our previous paper [11], we studied the cali-
brated representations of sVV2. The representations of sVV2 are fundamental for studying
calibrated An-representations for n > 2, just as the representations of Hdeg

2 play a fun-
damental role in Okounkov and Vershik’s study of CSn-representations [27, Section 5],
or as sl2-triples appear as the basic building blocks for higher rank groups in Lie theory
(see the Jacobson-Morozov Theorem and its applications, [10, Theorem 3.7.1 and Section
3.7]).

We state some basic facts about calibrated sVV2-representations which follow easily from
the defining relations (sVV7) and (sVV8) in Definition 2 and appeared in our paper about
indecomposable calibrated representations of sVV2 [11, Theorem 11]:

Lemma 27. [11] Let sVV2 = {ei, si, yi, yi+1} be an sVV2-quadruple in sVVn, and let V
be a calibrated sVV2-representation. The matrices of ei, si, yi, and yi+1 in the basis of
y-eigenvectors satisfy:

• (ei)ℓ,ℓ = 0 for all ℓ = 1, . . . , dimV ;
• (ei)ℓ,m 6= 0 implies that (yi − yi+1)ℓ,ℓ = 1 and (yi − yi+1)m,m = −1;
• the formula (ei)ℓ,m = ((yi)ℓ,ℓ − (yi+1)m,m)(si)ℓ,m holds for all ℓ 6= m;
• −1 = ((yi)ℓ,ℓ − (yi+1)ℓ,ℓ)(si)ℓ,ℓ.

These facts are crucial for understanding the yj- or Yj-eigenvalues of a calibrated sVVn- or
An-representation.

Theorem 28. Let V be a calibrated sVVn-representation. Suppose the eigenvalues of y1
are in Z. Then the eigenvalues of yj are in Z for all j = 2, . . . , n.
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Proof. Assume by induction that yi has integer eigenvalues for some i ≥ 1, so in the
basis of eigenvectors for V the matrix yi is a diagonal d by d matrix with integer entries,
d = dimV . Let 1 ≤ ℓ,m ≤ d, ℓ 6= m, and suppose first that (ei)ℓ,m 6= 0. Then
(yi−yi+1)ℓ,ℓ = 1 and (yi−yi+1)m,m = −1 so (yi+1)m,m = (yi)m,m+1 and (yi+1)ℓ,ℓ = (yi)ℓ,ℓ−1
and therefore (yi+1)ℓ,ℓ, (yi+1)m,m ∈ Z. If (ei)ℓ,m = 0 there are two possibilities. Either (i)
(si)ℓ,m 6= 0, or (ii) (si)ℓ,m = 0. In case (i), 0 = (ei)ℓ,m = ((yi)ℓ,ℓ − (yi+1)m,m)(si)ℓ,m
implies that (yi+1)m,m = (yi)ℓ,ℓ ∈ Z. So (yi+1)m,m ∈ Z for all m such that column m of
si contains a nonzero off-diagonal entry. Then case (ii) only needs to be dealt with when
there exists some 1 ≤ m ≤ d with (si)ℓ,m = 0 for all ℓ 6= m. Since (si)

2 = 1, we must
have (si)m,m = ±1. The formula −1 = ((yi)m,m − (yi+1)m,m)(si)m,m then gives us that
(yi)m,m − (yi+1)m,m = ∓1, so again (yi+1)m,m ∈ Z by induction. �

In fact, the proof just given tells us more than just that the eigenvalues of yj are in
Z. It also tells us that if ei has nonzero entries in all the off-diagonal spots where si has
nonzero entries (i.e. (ei)ℓ,m 6= 0 whenever (si)ℓ,m 6= 0 for ℓ 6= m) then each diagonal entry
of yi+1 is obtained from the corresponding diagonal entry of yi by adding or subtracting
1 (i.e. yi+1vm = (yi ± 1)vm for all m = 1, . . . , dimV ).

Let us consider in more detail the case that (ei)ℓ,m = 0 but (si)ℓ,m 6= 0 in a calibrated
representation. Let (yi)ℓ,ℓ = c and (yi)m,m = d. If we consider the C-vector subspace of
V spanned by vℓ and vm, then the sVV2-quadruple acting on this subspace is the same as
Hdeg

2 acting on this subspace, since ei acts by 0. The representations of Hdeg
2 were analyzed

in [27, Section 5]. In matrices we have:

yi =

(
c 0
0 d

)
, yi+1 =

(
d 0
0 c

)
, si =

(
−1
c−d

sℓ,m
sm,ℓ

1
c−d

)
, ei =

(
0 0
0 0

)
.

In particular, c 6= d, and using the equations coming from the off-diagonal entries in the
matrix equation s2i = 1 and solving for sm,ℓ, it follows that sm,ℓ 6= 0 as well. As an

Hdeg
2 -representation, this subspace spanned by vℓ and vm is irreducible. Summarizing, we

have:

Theorem 29. Let V be a calibrated sVVn-representation and let v be one of the eigen-
vectors in the basis for V . Then yiv 6= yi+1v for all i = 1, . . . , n− 1.

2.3. Eigenvalues of calibrated An-representations. Applying Theorems 28 and 29
to the case y1 = 0, we obtain:

Corollary 30. Let V be a calibrated An-representation. Then the eigenvalues of Yj are
in Z for all j = 2, . . . , n, and their entries as diagonal matrices satisfy (Yj)ℓ,ℓ 6= (Yj+1)ℓ,ℓ
for all ℓ = 1, . . . , dimV and for each j = 1, . . . , n− 1.

Note that when V is a calibrated An-representation, Y2 = s1Y1s1 + s1 + e1 = s1 + e1
and Y 2

2 = (s1 + e1)
2 = s21 + s1e1 + e1s1 + e21 = Id − e1 + e1 + 0 = Id, so the first step of

determining Y2 produces a diagonal matrix with all 1’s and −1’s for its diagonal entries.
Since e1 has 0’s on the diagonal, Y2 is equal to the diagonal of s1 and so all diagonal
entries of s1 are ±1. If we order the basis so that the −1 diagonal entries of s1 come first,
then we have:

s1 =

(
−Id S
0 Id

)
, e1 =

(
0 −S
0 0

)
, Y2 =

(
−Id 0
0 Id

)
.
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In particular, the non-zero, off-diagonal entries of s1 coincide with the non-zero entries
of e1. In general the entries of ei will not be identical to the off-diagonal entries of si, but
in the situation that for every i = 1, . . . , n− 1, ei has non-zero entries in all of the spots
where si has off-diagonal, non-zero entries then the eigenvalues of Y2, . . . , Yn are easy to
determine. This situation will be illustrated by the class of examples in Section 3.

Lemma 31. Let V be a calibrated representation of An. Suppose that for all i = 1, . . . , n−
1 and all 1 ≤ ℓ 6= m ≤ dim V , (ei)ℓ,m 6= 0 if and only if (si)ℓ,m 6= 0. Then

(Yj+1)m,m = (Yj)m,m + (sj)m,m = (Yj)m,m ± 1

and we have the closed formula

(Yj+1)m,m =

j∑

a=1

(sa)m,m =

j∑

a=1

ǫa

where ǫa ∈ {±1} for each a = 1, . . . , j.

Proof. Lemma 27 implies that (ei)ℓ,m 6= 0 only if (si)ℓ,m 6= 0, so the additional assumption
we are imposing is really only the converse. Suppose that (ei)ℓ,m 6= 0 if (si)ℓ,m 6= 0. By
Lemma 27, (ei)ℓ,m 6= 0 implies that (yi−yi+1)ℓ,ℓ = 1 and (yi−yi+1)m,m = −1. Therefore if
ei has nonzero entries in row ℓ then it has all 0 entries in column ℓ, and if ei has nonzero
entries in column m then it has all 0 entries in row m. Then the same is true for the off-
diagonal entries of si by our assumption. Let d = dim V . Using that s2i = 1, this implies

1 = (s2i )ℓ,ℓ =
∑d

m=0(si)ℓ,m(si)m,ℓ = (si)
2
ℓ,ℓ, and therefore (si)ℓ,ℓ = ±1 for all ℓ = 1, . . . , d.

We compute the equation yj+1 = sjyjsj + sj + ej for the ℓ, ℓ’th matrix entry, and using
the same property of the rows and columns of sj and the fact that ej is 0 on the diagonal,
we find:

(yj+1)ℓ,ℓ =

d∑

m=1

(sj)ℓ,m(yj)m,m(sj)m,ℓ + (sj)ℓ,ℓ = (sj)
2
ℓ,ℓ(yj)ℓ,ℓ + (sj)ℓ,ℓ

= (yj)ℓ,ℓ + (sj)ℓ,ℓ = (yj)ℓ,ℓ ± 1.

The closed formula then follows by induction. �

2.4. Restriction of irreducible calibrated representations and non-

semisimplicity. One might expect based upon experience with more familiar algebras
that an irreducible calibrated An-representation would restrict to a direct sum of
irreducible calibrated An−1-representations. That is, one can ask the question:

Question 32. Let L be an irreducible calibrated representation of An and con-
sider its restriction ResAn

An−1
L where An−1 is the subalgebra of An generated by

e1, . . . , en−2, s1, . . . , sn−2. Clearly ResAn

An−1
L is calibrated since Y2, . . . , Yn−1 act by di-

agonal matrices on L given that Y2, . . . , Yn−1, Yn all do. Does ResAn

An−1
L decompose as a

direct sum of irreducible calibrated representations of An−1?

The whole idea of calibrated representations is that of an inductively defined subal-
gebra acting semisimply so the answer feels like it should be yes. Indeed, in parts of
the literature “calibrated” is used synonymously with “completely splittable,” where the
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latter term means exactly that the restriction of the representation to any Levi or Young
subgroup is semisimple. Even in positive characteristic, calibrated and completely split-
table representations of Hdeg

n (and hence kSn) coincide [28, Theorem 2.13]. But for An,
what is the answer?

Answer 33. No. And the smallest counterexample is 2-dimensional. Let L be the 2-
dimensional representation of A3 given by:

s1 =

(
−1 −1
0 1

)
, s2 =

(
1 0
−1 −1

)
,

e1 =

(
0 1
0 0

)
, e2 =

(
0 0
−1 0

)
,

y1 =

(
0 0
0 0

)
= y3, y2 =

(
−1 0
0 1

)
.

It is easy to check manually that L is irreducible as an A3-representation, and indecom-
posable as a calibrated A2-representation under the action of s1, e1, y1, and y2. And this
is no isolated counterexample, it is the first in an infinite series constructed in the next
section: see Theorem 42.

3. Construction of the irreducible calibrated representations of An and

sVVn given by exterior powers of the standard representation of Sn

3.1. The standard representation of Sn. We showed in [11] that e1 must act by 0
on any irreducible calibrated representation of sVV2. This is no longer true for sVVn when
n > 2: then sVVn has a natural (n− 1)-dimensional irreducible calibrated representation
Cα(Vn), depending on a parameter α ∈ C, on which ei acts by a nonzero matrix for all
i = 1, . . . , n − 1 and which is irreducible as an Sn-representation – the underlying Sn-
representation is the standard representation Vn. When α = 0 we then C0(Vn) = InflL(µ)
is the inflation from An to sVVn of some irreducible representation of An labeled by µ, a
partition of n or n − 2 or n − 4, or so on. The reader might be tempted to guess that
µ = (n− 1, 1); this is incorrect as L(µ) for µ a partition of n is inflated from CSn to An

and so every ei acts on it by 0.
Here are the matrices for the action of the generators of sVVn on the representation

Cα(Vn) when n = 5, to give an idea. Then we write the formula for arbitrary n below.
The si’s act as:

s1 =



−1 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , s2 =




1 0 0 0
−1 −1 −1 0
0 0 1 0
0 0 0 1


 ,

s3 =



1 0 0 0
0 1 0 0
0 −1 −1 −1
0 0 0 1


 , s4 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 −1


 .



18 CALIBRATED REPRESENTATIONS OF PERIPLECTIC BRAUER ALGEBRAS

The ei’s act as:

e1 =



0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , e2 =




0 0 0 0
−1 0 1 0
0 0 0 0
0 0 0 0


 ,

e3 =



0 0 0 0
0 0 0 0
0 −1 0 1
0 0 0 0


 , e4 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 −1 0


 .

Then we require that y1 acts by

y1 =



a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a




for an arbitrary α ∈ C. Since for each i = 2, 3, 4, 5, yi can be expressed in terms of y1,
the ei’s and the si’s, the matrices for y2, y3, y4, y5 are now completely determined. If we
compute them using the formula yi+1 = siyisi + si + ei we find:

y2 =



α− 1 0 0 0
0 α+ 1 0 0
0 0 α+ 1 0
0 0 0 α+ 1


 , y3 =



α 0 0 0
0 α 0 0
0 0 α+ 2 0
0 0 0 α+ 2


 ,

y4 =



α+ 1 0 0 0
0 α+ 1 0 0
0 0 α+ 1 0
0 0 0 α+ 3


 , y5 =



α+ 2 0 0 0
0 α+ 2 0 0
0 0 α+ 2 0
0 0 0 α+ 2


 .

Now we give the general formula for Cα(Vn) as a representation for sVVn, generalizing the
n = 5 example above. Let fi,j be the n− 1 by n− 1 matrix with all 0 entries except a 1
in row i, column j.

Theorem 34. Let Cα(Vn) be the (n− 1)-dimensional C-vector space Vn acted on by the
following matrices in End(Vn):

e1 = f1,2, en−1 = −fn−1,n−2, and ei = −fi,i−1 + fi,i+1 for 2 ≤ i ≤ n− 2,

s1 = −f1,1 − f1,2 +

n−1∑

j=2

fj,j, sn−1 = −fn−1,n−2 − fn−1,n−1 +

n−2∑

j=1

fj,j,

and si = −fi,i−1 − fi,i − fi,i+1 +

i−1∑

j=1

fj,j +

n−1∑

k=i+1

fk,k for 2 ≤ i ≤ n− 2,

y1 = α

n−1∑

j=1

fj,j, yi+1 = yi − fi,i +

i−1∑

j=1

fj,j +

n−1∑

k=i+1

fk,k for 1 ≤ i ≤ n− 1.

Then the matrices ei, si, yj satisfy the defining relation of sVVn given in Definition 2.
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The proof that Cα(Vn) is an sVVn-representation is subsumed by the proof of Theorem
38. A Mathematica code for checking that Vn is an sVVn-representation for a given value
of n is in the Appendix 4.3. For the purposes of setting up Theorem 38, we check:

Lemma 35. Vn is a representation of Sn.

Proof. We need to check that s2i = 1, sisi+1si = si+1sisi+1, and sisj = sjsi for |i− j| > 1.
Write si = ti + pi, where ti = diag(si) is the diagonal part of si and pi = si − ti is the

off-diagonal part of si. Then ti = diag(1, 1, . . . , 1,−1, 1, . . . , 1) with −1 in position i, and
for 1 ≤ i ≤ n − 2, pi = −fi,i−1 − fi,i+1 while p1 = −f1,2 and pn−1 = −fn−1,n−2. Then
t2i = 1, p2i = 0, tipi = −pi, and piti = pi, so s2i = (ti + pi)

2 = 1.
Next we check the braid relation. Compute

sisi+1 =
i−1∑

j=1

fj,j +
n−1∑

k=i+2

fk,k − fi,i−1 + fi,i+1 + fi,i+2 − fi+1,i − fi+1,i+1 − fi+1,i+2

= diag(1, . . . , 1, 0,−1, 1, . . . , 1) + (−fi,i−1 − fi+1,i+2 + fi,i+1 + fi,i+2 − fi+1,i) ,

where the 0 is in row i. Let 1 ≤ i ≤ n− 2 and in the extremal cases i = 1 or i+1 = n− 1
set f0,− and f−,n equal to 0 in the formulas. Then

sisi+1si = sisi+1(ti + pi)

= diag(1, . . . , 1, 0,−1, 1, . . . , 1) + (−fi,i−1 − fi+1,i+2 + fi,i+1 + fi,i+2 + fi+1,i)

+ 0 + (fi+1,i−1 + fi+1,i+1)

= diag(1, . . . , 1, 0, 0, . . . , 1)

+ (fi+1,i−1 − fi,i−1 + fi+1,i + fi,i+1 − fi+1,i+2 + fi,i+2)

si+1sisi+1 = (ti+1 + pi+1)sisi+1

= diag(1, . . . , 1, 0, 1, 1, . . . , 1) + (−fi,i−1 + fi+1,i+2 + fi,i+1 + fi,i+2 + fi+1,i)

− fi+1,i+2 + (fi+1,i−1 − fi+1,i+1 − fi+1,i+2)

= diag(1, . . . , 1, 0, 0, 1, . . . , 1)

+ (fi+1,i−1 − fi,i−1 + fi+1,i + fi,i+1 − fi+1,i+2 + fi,i+2) .

Finally, the relation sisj = sjsi if |i− j| > 1 is clear. �

Theorem 36. The representation Cα(Vn) is irreducible considered as a CSn-
representation, and therefore is irreducible as an sVVn-representation (and as an An-
representation if α = 0). As a CSn-representation, Cα(Vn) ∼= S(n − 1, 1), the standard
representation.

Proof. Let v = (v1, . . . , vn−1) ∈ Vn, v 6= 0. We must show that CSn · v = Vn. It is clear
that any vector (0, . . . , ⋆, . . . , 0) ∈ Vn with a single nonzero entry ⋆ generates Vn as a
CSn-representation, so if CSn · v contains such a vector then we are done. Let j ∈ N be
minimal such that vj 6= 0. If j > 1 then sj−1 · v = v − (0, . . . , vj, . . . , 0) with vj in the
j−1’st spot, so then (sj−1−1) ·v = (0, . . . , ⋆, . . . , 0) and we are done. So we many assume
that v1 6= 0. Then applying s1 − 1 to v we get that (−2v1 − v2, 0, . . . , 0) is in CSn · v. So
if v2 6= −2v1 then CSn · v = Vn. Suppose v2 = −2v1. Applying s2 − 1 to v we then get
that (0, 3v1 − v3, 0, . . . , 0) is in CSn · v so we are done unless v3 = 3v1. Continuing in this
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way by applying (si − 1) for i = 1, . . . , n − 2 in succession, we see that if CSn · v ( Vn

then v = (v1,−2v1, 3v1,−4v1, . . . , (−1)n−1(n − 1)v1). If this is the case, then consider
(sn−1 − 1)v = (0, . . . , 0, (−1)n−1(n− 2)v1 + (−1)n2(n− 1)v1) = (0, . . . , 0, (−1)nnv1) 6= 0,
which then generates Vn. So CSn · v = Vn.

Now to see which irreducible representation of CSn this representation Vn is, we use
the character χVn

of Vn. We have χVn
(1) = n − 1 and χVn

(s1) = n − 3. The only irre-
ducible character χ of CSn with these properties is χ(n−1,1), the character of the standard
representation. �

Corollary 37. Let α = 0. We then have C0(Vn) = InflL(µ) for some µ ∈ Λ and some
irreducible An-module L(µ). It follows that the Jucys–Murphy elements Yj = Π(yj) act
on L(µ) by the diagonal matrices given by Theorem 34 with α = 0.

3.2. All irreducible representations of A4 are calibrated. Let n = 4. There are
three irreducible representations of S4 of dimension bigger than 1, labeled by the partitions
(3, 1), (22), (2, 12). It turns out that we may extend two of these three irreducible Sn-
representations in a unique way to a representation of A4 over C such that the ei’s act by
nonzero matrices and the yj’s act diagonally with y1 acting by 0.

• C0(3, 1) = C0(V4) is calibrated by Theorem 34. Explicitly, the matrices are given by:

s1 =

(
−1 −1 0
0 1 0
0 0 1

)
, s2 =

(
1 0 0
−1 −1 −1
0 0 1

)
, s3 =

(
1 0 0
0 1 0
0 −1 −1

)
,

e1 =

(
0 1 0
0 0 0
0 0 0

)
, e2 =

(
0 0 0
−1 0 1
0 0 0

)
, e3 =

(
0 0 0
0 0 0
0 −1 0

)
,

y1 =

(
0 0 0
0 0 0
0 0 0

)
, y2 =

(
−1 0 0
0 1 0
0 0 1

)
, y3 =

(
0 0 0
0 0 0
0 0 2

)
, y4 =

(
1 0 0
0 1 0
0 0 1

)
.

• The S4-representation S(3, 1) is the standard representation V4 and S(2, 12) = Λ2V4.
We may then calculate the matrices for si acting on Λ2V4 :

s1 =

(
−1 0 0
0 −1 −1
0 0 1

)
, s2 =

(
−1 −1 0
0 1 0
0 −1 −1

)
, s3 =

(
1 0 0
−1 −1 0
0 0 −1

)
.

It turns out that using the same kind of formulas as we did for Vn for the ei’s and yj’s
results in a representation C0(2, 1

2) of sVV4 and A4, that is we take:

e1 =

(
0 0 0
0 0 1
0 0 0

)
, e2 =

(
0 1 0
0 0 0
0 −1 0

)
, e3 =

(
0 0 0
−1 0 0
0 0 0

)
,

y1 =

(
0 0 0
0 0 0
0 0 0

)
, y2 =

(
−1 0 0
0 −1 0
0 0 1

)
, y3 =

(
−2 0 0
0 0 0
0 0 0

)
, y4 =

(
−1 0 0
0 −1 0
0 0 −1

)
.
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The trick for ei is to take +1’s above the diagonal and −1’s below the diagonal in the
same positions as the nonzero non-diagonal entries of si, and 0’s everywhere else. To get
yj+1 we add the diagonal entries of yj and sj.

• It remains to consider the partition (22). The underlying irreducible S4-
representation is 2-dimensional. We would be forced by the braid relations, by s2i = 1
and e2i = 0, by eiei±1ei = −ei, and the inductive formula for yj, to choose matrices for
the generators of sVV4 up to conjugation by:

s1 =

(
−1 −1
0 1

)
, s2 =

(
1 0
−1 −1

)
, s3 = s1,

e1 =

(
0 1
0 0

)
, e2 =

(
0 0
−1 0

)
, e3 = e1,

y1 = diag(0, 0), y2 = diag(−1, 1), y3 = y1, y4 = y2.

However, this is not an sVV4-representation because then other relations fail: s1e3 6= e3s1
and e2y4 6= y4e2, for example. So (22) does not yield an sVV4- or A4-representation with
nonzero action of the ei’s.

We know from [7] that the irreducible representations of A4 are in bijection with
{(4), (3, 1), (22), (2, 12), (14), (2), (12)}. The irreducible representation L(λ) for λ a par-
tition of 4 is given by the irreducible representation S(λ) of CSn with ei acting by 0
for all i = 1, 2, 3; the Jucys–Murphy elements Yj then act on these representations by
the Jucys–Murphy elements of CS4 so they act semisimply. It must therefore hold that
{C0(3, 1),C0(2, 1

2)} = {L(2),L(12)}. We conclude that Y1, Y2, Y3, Y4 act semisimply on
every irreducible representation of A4.

3.3. The exterior powers of the standard representation of Sn. Theorem 34 and
the n = 4 examples of Section 3.2 generalize to all exterior powers of the standard repre-
sentation of Sn, providing an explicit construction of a family of irreducible calibrated An-
representations. For 1 ≤ k ≤ n− 2, the CSn-representation ΛkVn extends to a calibrated
representation of An and sVVn on which the ei’s act by nonzero matrices. Although the un-
derlying Sn-representation is labeled by the partition (n− k, 1k), the representations con-
structed in the following theorem do not coincide with the irreducible An-representations
labeled L(n− k, 1k) in the classification given in [7] of irreducible An-modules.

Theorem 38. Let Vn be the (n − 1)-dimensional standard representation of Sn and let
1 ≤ k ≤ n− 2. Then the irreducible Sn-representation ΛkVn admits a nonzero action by
every ei and a semisimple action by every yj for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n, with y1
acting by the scalar matrix αId for some α ∈ C, endowing ΛkVn with the structure of
an irreducible calibrated sVVn-representation which we denote by Cα(Λ

kVn). When α = 0
then C0(Λ

kVn) is an irreducible calibrated An-representation .

Proof. The CSn-representation ΛkVn is irreducible with natural basis given by the wedges
Bk := {va1 ∧ va2 ∧ · · · ∧ vak | 1 ≤ a1 < a2 < . . . < ak ≤ n − 1} where {v1, . . . , vn−1} is
the basis of Vn used in Theorem 34; the dimension of ΛkV is

(
n−1
k

)
. We order the basis

elements lexicographically. Write the (ℓ,m)’th matrix entry of X by X(ℓ,m) instead of
Xℓ,m so that it is more visible. The representation Ca(Λ

kVn) is the
(
n−1
k

)
-dimensional
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C-vector space equipped with the following actions of the generators of sVVn, given as
matrices in the basis Bk.

The matrix for si.

The matrix for si acting on ΛkVn for 1 ≤ i ≤ n−1 has 0’s except for the following nonzero
entries:

Diagonal entries:

si(a1 ∧ · · · ∧ ak, a1 ∧ · · · ∧ ak) =

{
−1 if am = i for some 1 ≤ m ≤ k,

1 otherwise.

Above-diagonal entries:

si(i ∧ a2 ∧ · · · ∧ ak, (i+ 1) ∧ a2 ∧ · · · ∧ ak) = −1 for i+ 2 ≤ a2 < . . . < ak,

si(a1 ∧ i ∧ · · · ∧ ak, a1 ∧ (i+ 1) ∧ · · · ∧ ak) = −1 for a1 ≤ i− 1, i+ 2 ≤ a3 < . . . < ak,

...

si(a1 ∧ a2 ∧ · · · ∧ i, a1 ∧ a2 ∧ · · · ∧ (i+ 1)) = −1 for a1 < a2 < . . . < ak−1 ≤ i− 1.

Below-diagonal entries:

si(i ∧ a2 ∧ · · · ∧ ak, (i− 1) ∧ a2 ∧ · · · ∧ ak) = −1 for i+ 1 ≤ a2 < . . . < ak,

si(a1 ∧ i ∧ · · · ∧ ak, a1 ∧ (i− 1) ∧ · · · ∧ ak) = −1 for a1 ≤ i− 2, i+ 1 ≤ a3 < . . . < ak,

...

si(a1 ∧ a2 ∧ · · · ∧ i, a1 ∧ a2 ∧ · · · ∧ (i− 1)) = −1 for a1 < a2 < . . . < ak−1 ≤ i− 2.

The matrix for ei.

The matrix for ei acting on ΛkVn for 1 ≤ i ≤ n − 1 has 0’s on the diagonal, the same
entries as si below the diagonal, and minus the entries of si above the diagonal. That is,
all the entries of ei are 0 except for:

Above-diagonal entries:

ei(i ∧ a2 ∧ · · · ∧ ak, (i+ 1) ∧ a2 ∧ · · · ∧ ak) = 1 for i+ 2 ≤ a2 < . . . < ak,

ei(a1 ∧ i ∧ · · · ∧ ak, a1 ∧ (i+ 1) ∧ · · · ∧ ak) = 1 for a1 ≤ i− 1, i+ 2 ≤ a3 < . . . < ak,

...

ei(a1 ∧ a2 ∧ · · · ∧ i, a1 ∧ a2 ∧ · · · ∧ (i+ 1)) = 1 for a1 < a2 < . . . < ak−1 ≤ i− 1.

Below-diagonal entries:

ei(i ∧ a2 ∧ · · · ∧ ak, (i− 1) ∧ a2 ∧ · · · ∧ ak) = −1 for i+ 1 ≤ a2 < . . . < ak,

ei(a1 ∧ i ∧ · · · ∧ ak, a1 ∧ (i− 1) ∧ · · · ∧ ak) = −1 for a1 ≤ i− 2, i+ 1 ≤ a3 < . . . < ak,

...

ei(a1 ∧ a2 ∧ · · · ∧ i, a1 ∧ a2 ∧ · · · ∧ (i− 1)) = −1 for a1 < a2 < . . . < ak−1 ≤ i− 2.
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The matrix for yj.

The matrix for yj is defined recursively by:

y1 = αId(n−1

k
),

yj+1 = yj + diag(sj) for 1 ≤ j ≤ n− 1.

In closed form, yj+1 = αId +
∑j

m=1 diag(sj).
We have to check that the matrices defined satisfy the relations of sVVn in Definition 2.

It is clear that the relations involving yj hold for α ∈ C if and only if they hold in the case
α = 0. For the rest of the proof, we therefore consider only the case α = 0. In the case
α = 0, the representation factors through An so we really only need to check the relations
defining the subalgebra An generated by e’s and s’s, and that the formula we have declared
for the matrix yj+1 satisfies yj+1 = sjyjsj + sj + ej, the defining relation of the Jucys-
Murphy elements. These are relations 2(VV1),(VV2)(i),(ii),(VV3)(i),(ii),(VV4),(VV5)(i),(iii),(v)
by Remark 4,(VV6), and the repackaging of (VV7) by Remark 3. By Lemmas 35 and 36,
Vn is the standard representation of Sn. Then ΛkVn is an irreducible representation of Sn

[17], and we wrote the formula for si by computing the action of si on ΛkVn using the
action of si on Vn, so it must hold that s2i = 1, sisi+1si = si+1sisi+1, and sjsi = sisj if
|i− j| > 1. This puts (VV1), (VV3)(i),(ii) to rest. Moreover, Cα(Λ

kVn) is irreducible if it is
well-defined as an sVVn-representation, since ΛkVn is an irreducible representation of Sn.

If the matrix ei has entries in a row r then it has 0’s in column r, and vice versa; more
precisely, ei has nonzero entries only in rows involving i in a wedge power, and only in
columns involving i− 1 or i+ 1 in a wedge power but not i. It follows immediately that
(VV6) e

2
i = 0 holds.

Write si = ti + pi where ti = diag(si) and pi = si − ti is the off-diagonal part of si.
Then pi = −|ei| where |ei| is the matrix with entries |(ei)r,s|. As in the proof of Lemma
35, tipi = −pi and piti = ti, tiei = −ei and eiti = ei, and piei = 0 = eipi. Then
siei = tiei = −ei and eisi = eiti = ei, so (VV5)(i) holds.

Now we check (VV4). First, let us compute the nonzero entries of eiei+1:

Diagonal entries:

eiei+1(a1 ∧ · · · ∧ ar ∧ i ∧ ar+2 ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ i ∧ ar+2 ∧ · · · ∧ ak) = −1

where ar ≤ i− 1 and ar+2 ≥ i+ 2.

Above-diagonal entries:

eiei+1(a1 ∧ · · · ∧ ar ∧ i ∧ ar+2 ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (i+ 2) · · · ∧ ak) = 1

where ar ≤ i− 1 and ar+2 ≥ i+ 3.

Below-diagonal entries:

eiei+1(a1 ∧ · · · ∧ ar ∧ i ∧ (i+ 1) ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (i− 1) ∧ i ∧ · · · ∧ ak) = 1

where ar ≤ i− 2 and ar+3 ≥ i+ 2,

eiei+1(a1 ∧ · · · ∧ ar ∧ i ∧ (i+ 1) ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (i− 1) ∧ (i+ 2) ∧ · · · ∧ ak) = −1

where ar ≤ i− 2 and ar+3 ≥ i+ 3.

In order to compute eiei+1ei we write eiei+1 as the sum of its four types of nonzero
entries as above and compute their products with ei one by one. The diagonal entry
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−1 of eiei+1 in row a1 ∧ · · · ∧ ar ∧ i ∧ ar+2 ∧ · · · ∧ ak multiplies the entries of ei in row
a1 ∧ · · · ∧ ar ∧ i ∧ ar+2 ∧ · · · ∧ ak by −1, which gives us all the nonzero entries of −ei
except for those with ar+2 = i + 1 which occur only for the lower diagonal entries; these
are obtained from:

1 =1× 1

=eiei+1(a1 ∧ · · · ∧ ar ∧ i ∧ (i+ 1) ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (i− 1) ∧ i ∧ · · · ∧ ak)

× ei(a1 · · · ∧ ar ∧ (i− 1) ∧ i ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (i− 1) ∧ (i+ 1) ∧ · · · ∧ ak)

=eiei+1ei(a1 ∧ · · · ∧ ar ∧ i ∧ (i+ 1) ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (i− 1) ∧ (i+ 1) ∧ · · · ∧ ak)

All other products of off-diagonal entries are 0. This shows eiei+1ei = −ei. A similar
calculation shows that ei+1eiei+1 = −ei+1.

Next, we check relation (VV5)(iii). We have to show that eiei+1si = −eisi+1. As earlier
in the proof we compute products with si by breaking it into the sum of its diagonal part
ti and off-diagonal part pi. Computing eiei+1si we have:

eiei+1ti(a1 ∧ · · · ∧ ar ∧ i ∧ ar+2 ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ i ∧ ar+2 ∧ · · · ∧ ak) = 1

where ar ≤ i− 1 and ar+2 ≥ i+ 2.

Above-diagonal entries:

eiei+1ti(a1 ∧ · · · ∧ ar ∧ i ∧ ar+2 ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (i+ 2) · · · ∧ ak) = 1

where ar ≤ i− 1 and ar+2 ≥ i+ 3.

Below-diagonal entries:

eiei+1ti(a1 ∧ · · · ∧ ar ∧ i ∧ (i+ 1) ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (i− 1) ∧ i ∧ · · · ∧ ak) = −1

where ar ≤ i− 2 and ar+3 ≥ i+ 2,

eiei+1ti(a1 ∧ · · · ∧ ar ∧ i ∧ (i+ 1) ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (i− 1) ∧ (i+ 2) ∧ · · · ∧ ak) = −1

where ar ≤ i− 2 and ar+3 ≥ i+ 3.

and by a computation similar to that used in the check of eiei+1ei = −ei we have

eiei+1pi(a1 ∧ · · · ∧ ar ∧ i ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (i+ 1) ∧ · · · ∧ ak) = 1,

eiei+1pi(a1 ∧ · · · ∧ ar ∧ i ∧ ar+2 ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (i− 1) ∧ ar+2 ∧ · · · ∧ ak) = 1

if ar ≤ i− 1 and ar+2 ≥ i+ 2,

whereas

eiei+1pi(a1 ∧ · · · ∧ ar ∧ i∧ (i+1)∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (i− 1)∧ (i+1)∧ · · · ∧ ak) = −1.

Computing −eisi+1 = −eipi+1 − eiti+1 = ei|ei+1| − eiti+1, we find that ei|ei+1| = eiei+1ti;
while −eiti+1 has entries in the same places as in ei with 1’s except in those below-
diagonal entries where the wedge labeling the column contains i+ 1, and thus we obtain
that eiei+1pi = −eiti+1. It follows that eiei+1si = −eisi+1. A similar calculation verifies
(VV5)(v).

Next, we check the relations in (VV2)(i),(ii). Since ΛkVn is an Sn-representation, the
relations sisj = sjsi if |i− j| > 1 are automatically satisfied. The calculation in the proof
of Lemma 13(3) shows that ei+1 = sisi+1eisi+1si for all i = 1, . . . , n− 2. Thus for (i) it is
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enough to check that e1sj = sje1 for all j ≥ 3, and for (ii) it is then enough to check that
e1e3 = e3e1.

First, we check e1sj = sje1 for all j ≥ 3. The nonzero entries of e1 are given by:

e1(1 ∧ a2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ak) = 1 for all 3 ≤ a3 < . . . < ak.

The nonzero entries in the product e1sj are given by:

−1 = 1(−1)

= e1(1 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak)

× sj(2 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ar ∧ (j + 1) ∧ ar+2 ∧ · · · ∧ ak)

= e1sj(1 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ar ∧ (j + 1) ∧ ar+2 ∧ · · · ∧ ak)

for all j ≥ 3, ar ≤ j − 1, ar+2 ≥ j + 2,

−1 = 1(−1)

= e1(1 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak)

× sj(2 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ar ∧ (j − 1) ∧ ar+2 ∧ · · · ∧ ak)

= e1sj(1 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ar ∧ (j − 1) ∧ ar+2 ∧ · · · ∧ ak)

for all j ≥ 4, ar ≤ j − 2, ar+2 ≥ j + 1,

e1sj(1 ∧ a2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ak)

= e1(1 ∧ a2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ak)sj(2 ∧ a2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ak)

=

{
−1 if j ∈ {a2, . . . , ak},

1 else.

The nonzero entries in the product sje1 are given by:

−1 = (−1)1

= sj(1 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak, 1 ∧ a2 ∧ · · · ∧ ar ∧ (j + 1) ∧ ar+2 ∧ · · · ∧ ak)

× e1(1 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak)

= sje1(1 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ar ∧ (j + 1) ∧ ar+2 ∧ · · · ∧ ak)

for all j ≥ 3, ar ≤ j − 1, ar+2 ≥ j + 2,

−1 = (−1)1

= sj(1 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak, 1 ∧ a2 ∧ · · · ∧ ar ∧ (j − 1) ∧ ar+2 ∧ · · · ∧ ak)

× e1(1 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak)

= sje1(1 ∧ a2 ∧ · · · ∧ ar ∧ j ∧ ar+2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ar ∧ (j − 1) ∧ ar+2 ∧ · · · ∧ ak)

for all j ≥ 4, ar ≤ j − 2, ar+2 ≥ j + 1,

sje1(1 ∧ a2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ak)

= sj(1 ∧ a2 ∧ · · · ∧ ak, 1 ∧ a2 ∧ · · · ∧ ak)e1(1 ∧ a2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ak)

=

{
−1 if j ∈ {a2, . . . , ak},

1 else.
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So e1sj = sje1 for any j ≥ 3. By the remarks above, this implies (VV2)(i) holds.
Let’s check that e1e3 = e3e1. The nonzero entries of e3 whose row entry begins with a

2 or whose column entry begins with a 1 are given by:

e3(2 ∧ 3 ∧ a3 ∧ · · · ∧ ak, 2 ∧ 4 ∧ a3 ∧ · · · ∧ ak) = 1 for all 5 ≤ a3 < . . . < ak,

e3(1 ∧ 3 ∧ a3 ∧ · · · ∧ ak, 1 ∧ 4 ∧ a3 ∧ · · · ∧ ak) = 1 for all 5 ≤ a3 < . . . < ak,

e3(1 ∧ 2 ∧ 3 ∧ a4 ∧ · · · ∧ ak, 1 ∧ 2 ∧ 4 ∧ · · · ∧ ak) = 1 for all 5 ≤ a4 < . . . < ak,

e3(1 ∧ 3 ∧ · · · ∧ ak, 1 ∧ 2 ∧ · · · ∧ ak) = −1 for all 4 ≤ a2 < . . . < ak.

However, because a2 ≥ 3 in the nonzero entries of e1, the last two types of term for e3
never match up to with the rows or columns of the nonzero entries of e1 since e1 has no
entries in rows or columns labeled 1∧ 2∧ · · · . Computing the nonzero entries of e1e3 and
e3e1 we get for all 5 ≤ a3 < . . . < ak:

1 = e1(1 ∧ 3 ∧ a3 ∧ · · · ∧ ak, 2 ∧ 3 ∧ a3 ∧ · · · ∧ ak)e3(2 ∧ 3 ∧ a3 ∧ · · · ∧ ak, 2 ∧ 4 ∧ a3 ∧ · · · ∧ ak)

= e1e3(1 ∧ 3 ∧ a3 ∧ · · · ∧ ak, 2 ∧ 4 ∧ a3 ∧ · · · ∧ ak),

1 = e3(1 ∧ 3 ∧ a3 ∧ · · · ∧ ak, 1 ∧ 4 ∧ a3 ∧ · · · ∧ ak)e1(1 ∧ 4 ∧ a3 ∧ · · · ∧ ak, 2 ∧ 4 ∧ a3 ∧ · · · ∧ ak)

= e3e1(1 ∧ 3 ∧ a3 ∧ · · · ∧ ak, 2 ∧ 4 ∧ a3 ∧ · · · ∧ ak).

So e1e3 = e3e1. By the remarks above, this implies (VV2)(ii) holds.
The last thing to check is (VV7), as the single relation yj+1 = sjyjsj + sj + ej . Break sj

into the sum of its diagonal and off-diagonal parts: sj = tj + pj. By a check similar to
the check that sj and e1 commute, ti and pj commute for all 1 ≤ i ≤ j − 2. Obviously tj
and ti commute since they are diagonal matrices. So ti and sj commute for all i ≤ j − 2.
We then have

sjyjsj + sj + ej = sj

(
j−1∑

i=1

ti

)
sj + sj + ej =

(
j−2∑

i=1

ti

)
+ sjtj−1sj + sj + ej ,

and so the relation yj+1 = sjyjsj + sj + ej holds if and only if sjtj−1sj + sj + ej = tj−1+ tj.
Let’s check this. The diagonal matrix tj−1tj = tjtj−1 has entries given by:

tj−1tj(a1 ∧ · · · ∧ ak, a1 ∧ · · · ∧ ak) =

{
−1 if j − 1 or j ∈ {a1, . . . , ak} but not both,

1 else.

We have

sjtj−1sj = (tj + pj)tj−1(tj + pj) = tj−1 + pj(tj−1tj) + (tj−1tj)pj + pjtj−1pj ,

and an argument similar to that used to verify e2j = 0 also shows pjtj−1pj = 0. We
compute:

pjtj−1tj(a1 ∧ · · · ∧ ar ∧ j ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (j + 1) ∧ · · · ∧ ak)

=

{
(−1)(−1) = 1 if ar = j − 1,

(−1)(1) = −1 if ar 6= j − 1,

pjtj−1tj(a1 ∧ · · · ∧ ar ∧ j ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (j − 1) ∧ · · · ∧ ak) = (−1)(−1) = 1,
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where there is no case distinction for the lower-diagonal term since in that case, ar+2 > j.
On the other hand,

tj−1tjpj(a1 ∧ · · · ∧ ar ∧ j ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (j + 1) ∧ · · · ∧ ak) =

=

{
(1)(−1) = −1 if ar = j − 1,

(−1)(−1) = 1 if ar 6= j − 1,

tj−1tjpj(a1 ∧ · · · ∧ ar ∧ j ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (j − 1) ∧ · · · ∧ ak) = (−1)(−1) = 1,

where there is no case distinction for the lower-diagonal term, this time because
ar < j − 1. The only nonzero terms of tj−1tjpj + pjtj−1tj are then:

(tj−1tjpj + pjtj−1tj)(a1 ∧ · · · ∧ ar ∧ j ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (j − 1) ∧ · · · ∧ ak) = 2

for all a1 < . . . < ar ≤ j − 2, j + 1 ≤ ar < . . . < ak,

and on the other hand, the only nonzero entries of pj + ej are:

(pj + ej)(a1 ∧ · · · ∧ ar ∧ j ∧ · · · ∧ ak, a1 ∧ · · · ∧ ar ∧ (j − 1) ∧ · · · ∧ ak) = −2

for all a1 < . . . < ar ≤ j − 2, j + 1 ≤ ar < . . . < ak.

Therefore, we have:

sjtj−1sj + sj + ej = tj−1 + pjtj−1tj + tj−1tjpj + tj + pj + ej = tj−1 + tj

and so

yj+1 =

j∑

i=0

ti = sjyjsj + sj + ej

as desired.
This finishes the check of the relations giving a calibrated representation of An, and

thus of a calibrated sVVn-representation on which y1 acts by a scalar α ∈ C. �

Corollary 39. The eigenvalues of Yj acting on ΛkVn lie in {−k,−k + 1,−k + 2, . . . , n−
k − 2, n− k − 1}. Moreover, Yn acts by the scalar matrix (n− 1− 2k)Id(n−1

k
).

Proof. The a’th diagonal entry of yj is the sum of the a’th diagonal entries of si for
1 ≤ i ≤ j. The diagonal entries of si are 1 and −1. For a given si, the diagonal entry
corresponding to a wedge a1 ∧ a2 ∧ · · · ∧ ak is −1 if ar = i for some r = 1, . . . , k and 1
otherwise. The number of times −1 occurs in the a’th position on the diagonals of all
the si’s is therefore equal to k, the number of times 1 occurs in the a’th position on the
diagonals of all the si’s is equal to n− k − 1. This gives the bounds on the eigenvalues,
and since yn =

∑n−1
i=1 diag(si) it follows that yn is a scalar matrix with scalar the total

number of 1’s minus the total number of −1’s which is (n− k − 1)− k. �

Example 40. Let us continue with the example of Vn when n = 5. We saw that the stan-
dard representation V5 of S5 extends to a calibrated representation of sVV5 with nonzero
action of ei for 1 ≤ i ≤ 4. Let v1, v2, v3, v4 be the basis of simultaneous eigenvectors for
yj, 1 ≤ j ≤ 5, with respect to which we wrote the matrices in Theorem 34. By Theo-
rem 38, Λ2V5 and Λ3V5 also extend to irreducible calibrated representations of sVV5 with
nonzero action of ei. Here we give the explicit matrices for the actions of the generators
of sVV5 by matrices on these two representations.
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(1) Consider Λ2V5 with basis B2 = {v1∧ v2, v1∧ v3, v1∧ v4, v2∧ v3, v2∧ v4, v3∧ v4}.
The matrices for si are given by

s1 =




−1 0 0 0 0 0
0 −1 0 −1 0 0
0 0 −1 0 −1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




, s2 =




−1 −1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −1 0 −1 0 0
0 0 −1 0 −1 −1
0 0 0 0 0 1




,

s3 =




1 0 0 0 0 0
−1 −1 −1 0 0 0
0 0 1 0 0 0
0 0 0 −1 −1 0
0 0 0 0 1 0
0 0 0 0 −1 −1




, s4 =




1 0 0 0 0 0
0 1 0 0 0 0
0 −1 −1 0 0 0
0 0 0 1 0 0
0 0 0 −1 −1 0
0 0 0 0 0 −1




.

The matrices for ei are given by:

e1 =




0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, e2 =




0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 1
0 0 0 0 0 0




,

e3 =




0 0 0 0 0 0
−1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 −1 0




, e4 =




0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0




.

The matrices for yj are given by:

y1 = 0, y2 = diag(−1,−1,−1, 1, 1, 1), y3 = diag(−2, 0, 0, 0, 0, 2),

y4 = diag(−1,−1, 1,−1, 1, 1), y5 = 0.

Observe that ei does not act by 0 and that eiej also does not act by 0. This
means that the irreducible is of the form L(λ) with λ a partition of n− 4 = 2 [7].

(2) Consider Λ3V5 with basis B3 = {v1∧v2∧v3, v1∧v2∧v4, v1∧v3∧v4, v2∧v3∧v4}.
The matrices for si are given by:

s1 =



−1 0 0 0
0 −1 0 0
0 0 −1 −1
0 0 0 1


 , s2 =



−1 0 0 0
0 −1 −1 0
0 0 1 0
0 0 −1 −1


 ,

s3 =



−1 −1 0 0
0 1 0 0
0 −1 −1 0
0 0 0 −1


 , s4 =




1 0 0 0
−1 −1 0 0
0 0 −1 0
0 0 0 −1


 .



CALIBRATED REPRESENTATIONS OF PERIPLECTIC BRAUER ALGEBRAS 29

The matrices for ei are given by:

e1 =



0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , e2 =



0 0 0 0
0 0 1 0
0 0 0 0
0 0 −1 0


 ,

e3 =



0 1 0 0
0 0 0 0
0 −1 0 0
0 0 0 0


 , e4 =




0 0 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 .

The matrices for yj are given by:

y1 = 0, y2 = diag(−1,−1,−1, 1), y3 = diag(−2,−2, 0, 0),

y4 = diag(−3,−1,−1,−1), y5 = diag(−2,−2,−2,−2).

Observe that ei does not act by 0 but eiej does for |j − i| > 1. This means that
the irreducible is of the form L(λ) with λ a partition of n− 2 = 4 [7].

4. Pascal’s triangle and a Bratteli diagram

In this section we continue to follow the Okounkov–Vershik approach [27] in order
to describe the spectrum and branching of the irreducible calibrated An-representations
C0(Λ

kVn) constructed in the previous section. For similar techniques applied to diagram
algebras, see for instance the representation theory of the partition algebra as treated by
[14],[15],[2]; see [3] for an axiomatic approach to towers of diagram algebras admitting a
cellular basis.

Definition 41. If L is a calibrated representation, its spectrum Spec L is the set of all
(α1, . . . , αn) ∈ Cn such that there is a v ∈ L with Yjv = αjv for j = 1, . . . , n.

An element of Spec L corresponding to an eigenvector v is exactly the sequence of the
(a, a)’th matrix entries of y1, . . . , yn if v is the a’th basis vector for L. By considering
the branching graph of the calibrated representations C0(Λ

kVn), we will see how to easily
describe Spec C0(Λ

kVn) in a completely explicit, combinatorial way.

4.1. Restriction of C0(Λ
kVn) from An to An−1. The underlying CSn-representation of

C0(Λ
kVn) is Λ

kVn, which restricts from Sn to Sn−1 as:

ResSn

Sn−1
ΛkVn = Λk−1Vn−1 ⊕ ΛkVn−1.

We would like to know how the irreducible calibrated An-representation C0(Λ
kVn) decom-

poses into irreducible An−1 representations when restricted to the copy of An−1 ⊂ An gener-
ated by e1, . . . , en−2, s1, . . . , sn−2 and whether the restricted representation is semisimple.

Theorem 42. For 1 ≤ k ≤ n − 2, the restriction ResAn

An−1
C0(Λ

kVn) of the irreducible

calibrated An-representation C0(Λ
kVn) is indecomposable, and there is a non-split short

exact sequence of calibrated An−1-representations

0 → C0(Λ
kVn−1) → ResAn

An−1
C0(Λ

kVn) → C0(Λ
k−1Vn−1) → 0.
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For the extremal cases k = 0 and k = n− 1 we have ResAn

An−1
C0(Λ

0Vn) = C0(Λ
0Vn−1) and

ResAn

An−1
C0(Λ

n−1Vn) = C0(Λ
n−2Vn−1).

Proof. The extremal cases of Λ0Vn and Λn−1Vn are obvious since these are the trivial and
the sign representations of Sn, respectively. For the rest of the proof we assume that
1 ≤ k ≤ n − 2. Any An-representation V has a unique decomposition as a direct sum
of irreducible CSn-representations, and if V is irreducible as a CSn-representation then
obviously V is irreducible as an An-representation. So there are two possibilities: either (i)
ResAn

An−1
C0(Λ

kVn) is indecomposable with two distinct composition factors isomorphic to

Λk−1Vn−1 and ΛkVn−1 as CSn−1-representations; or (ii) Res
An

An−1
C0(Λ

kVn) is the direct sum

of two irreducible An−1-representations, isomorphic to Λk−1Vn−1 and ΛkVn−1 as CSn−1-
representations. In case (i), we have to further determine whether ResAn

An−1
C0(Λ

kVn) is
irreducible or whether it has two irreducible composition factors.

First, we establish that case (i) holds: ResAn

An−1
C0(Λ

kVn) is indecomposable for any k =

0, . . . , n−1. To check the cases 1 ≤ k ≤ n−2, we compute EndAn−1
(ResAn

An−1
C0(Λ

kVn)) and

find that it is a local ring. First, we claim that EndAn−1
(ResAn

An−1
C0(Λ

kVn)) is contained
in diagonal matrices. Let us compute the commutant of the matrices for Y2, . . . , Yn−1:
write Comm(Y2, . . . , Yn−1) for the subalgebra of

(
n−1
k

)
×
(
n−1
k

)
matrices commuting with

Y2, . . . , Yn−1. Obviously, EndAn−1
(ResAn

An−1
C0(Λ

kVn)) ⊆ Comm(Y2, . . . , Yn−1). Since not
only Y1 but also Yn is a multiple of the identity matrix by Corollary 39, we may throw in Y1

and Yn at no cost: Comm(Y2, . . . , Yn−1) = Comm(Y1, Y2, . . . , Yn−1, Yn). Let X = (xℓ,m) ∈
Comm(Y1, Y2, . . . , Yn−1, Yn). Now, suppose that for some ℓ 6= m, ℓ,m ∈ {1, . . . ,

(
n−1
k

)
},

and some i ∈ {1, . . . , n−1}, it holds that (Yi)ℓ,ℓ−(Yi+1)ℓ,ℓ = −1 and (Yi)m,m−(Yi+1)m,m =
1. Computing the ℓ,m’th matrix entry of X(Yi−Yi+1) we get that it is minus the ℓ,m’th
matrix entry of (Yi − Yi+1)X , but X(Yi − Yi+1) = (Yi − Yi+1)X , and therefore xℓ,m = 0.
By the same argument, xm,ℓ = 0. However, by the definition of the action in Theorem
38 we have (Yi)ℓ,ℓ − (Yi+1)ℓ,ℓ = −1 whenever (si)ℓ,ℓ = −1 and (Yi)m,m − (Yi+1)m,m = 1
whenever (si)m,m = 1 for all i = 1, . . . , n− 1. It is clear from the definition of the matrix
of si in Theorem 38 that for any ℓ 6= m there is some i such that (si)ℓ,ℓ = −(si)m,m. Thus
all off-diagonal entries of X vanish: xℓ,m = 0 = xm,ℓ for all ℓ 6= m, and so X is a diagonal

matrix. Therefore EndAn−1
(ResAn

An−1
C0(Λ

kVn)) is contained in diagonal matrices.
Next, we claim that the diagonal matrices commuting with e1, . . . , en−2 are just the

scalar matrices. Observe that i = 1, . . . , n − 2 are all of the i such that ei has nonzero
entries above the diagonal, and that all nonzero entries above the diagonal are 1’s. More-
over, if (ei)ℓ,m = 1 then (ej)ℓ,m = 0 for i 6= j, where ℓ < m are wedges of k integers from
{1, . . . , n − 1} with the wedges ordered lexicographically, i.e. the first row of the matrix
is labeled 1 ∧ 2 ∧ · · · ∧ k and the last is labeled (n − k) ∧ (n − k + 1) ∧ · · · ∧ (n − 1). If

we take the sum e :=
∑n−2

i=1 ei then the entries above the diagonal of e are 0’s and 1’s.
The position of the 1’s is defined in terms of increasing some am to am + 1 in the wedge
a1 ∧ a2 ∧ · · · ∧ ak, where am+1 > am + 1. Starting from the first row ℓ = 1 ∧ 2 ∧ · · · ∧ k
and then successively increasing one of the numbers in the wedge by one at a time (where
a can only be increased to a + 1 if a + 1 does not already appear in the wedge), one
traverses every a1∧· · ·∧ak in a row or column. It follows that the only diagonal matrices
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commuting with e are the scalar matrices. Therefore EndAn−1
(ResAn

An−1
C0(Λ

kVn)) = C.

This proves ResAn

An−1
C0(Λ

kVn) is indecomposable.

Now that we know V := ResAn

An−1
C0(Λ

kVn) is indecomposable, we have to determine
whether it is irreducible or an extension of two irreducible representations. Let

I =

{
i ∈

{
1, 2, . . . ,

(
n− 1

k

)}
| (Yn−1 − Yn)vi = −vi

}
,

J =

{
j ∈

{
1, 2, . . . ,

(
n− 1

k

)}
| (Yn−1 − Yn)vj = vj

}
.

Then {1, 2, . . . ,
(
n−1
k

)
} = I⊔J . We claim thatW := {vi | i ∈ I} is an An-subrepresentation

of V isomorphic to C0(Λ
kVn−1) and that V/W ∼= C0(Λ

k−1Vn−1) with basis given by the
images of vj for j ∈ J . First, observe that these vector subspaces indeed have the desired
dimensions:

|I| = #

{
i ∈

{
1, 2, . . . ,

(
n− 1

k

)}
| (Yn−1 − Yn)i,i = −1

}

= #

{
i ∈

{
1, 2, . . . ,

(
n− 1

k

)}
| (sn−1)i,i = 1

}

= #{a1 ∧ a2 ∧ · · · ∧ ak : 1 ≤ a1 < a2 < . . . < ak < n− 1}

=

(
n− 2

k

)
= dimΛkVn−1,

and thus

|J | =

(
n− 1

k

)
−

(
n− 2

k

)
=

(
n− 2

k − 1

)
= dimΛk−1Vn−1.

Next, it is clear from the definition of the matrix si that s1, . . . , sn−2 preserve the
subspace W . Indeed: let 1 ≤ i ≤ n − 2 and consider a wedge (a1 ∧ · · · ∧ i ∧ · · · ∧ n − 1)
labeling a row of si with off-diagonal nonzero entries and labeling a basis vector of the
vector space complement to W in V . Then si has off-diagonal entries in the columns
(a1 ∧ · · · ∧ i± 1 ∧ · · · ∧ ak−1 ∧ n− 1) of this row (so long this does not cause a repeated
entry making the wedge equal to 0.) In either case, the column of the nonzero entry
contains an n − 1 in it so does not label one of the basis vectors of W . Thus if vk ∈ W ,
k ∈ I, is one of the eigenvectors in W then si · vk ∩ Span{vj | j ∈ J} = ∅. Moreover, W
must be irreducible as an Sn-representation since V has exactly two composition factors
as an Sn-representation and 0 ( W ( V .

Moreover, it is clear that e1 preserves W since the only nonzero entries of e1 are given
by e1(1 ∧ a2 ∧ · · · ∧ ak, 2 ∧ a2 ∧ · · · ∧ ak) = 1. Then by Lemma 13(3) it follows that
W is an irreducible An−1-subrepresentation of V . As W ( V and V has at most two
composition factors, it follows that V/W is an irreducible An-representation as well. Now,
W is calibrated, the matrices for s1, . . . , sn−2 acting on V are exactly those of ΛkVn−1,
the matrices of e1, . . . , en−2 have their nonzero entries in exactly the off-diagonal spots
where s1, . . . , sn−2 have nonzero entries with 1s above the diagonal and −1’s below the
diagonal, and the eigenvalues of Y1, . . . , Yn−1 on W are then given by Lemma 31 and



32 CALIBRATED REPRESENTATIONS OF PERIPLECTIC BRAUER ALGEBRAS

match the formula in Theorem 38. So W ∼= C0(Λ
kVn−1). By the same argument, V/W ∼=

C0(Λ
k−1Vn−1). Therefore we have a short exact sequence

0 → C0(Λ
kVn−1) → ResAn

An−1
C0(Λ

kVn) → C0(Λ
k−1Vn−1) → 0

as claimed. �

4.2. A Bratteli diagram. Consider the set of nonempty row or column partitions of
size congruent to n mod 2 and at most n:

RCn :=

{
(k), (1k) | k ∈

{
n− 2r | 0 ≤ r ≤

⌊n− 1

2

⌋}}
.

Label the representations of C0(Λ
kVn), k = 0, . . . , n−1, by the elements ofRCn as follows:

Λ0Vn Λ1Vn Λ2Vn · · · Λn−3Vn Λn−2Vn Λn−1Vn

(n) (n− 2) (n− 4) · · · (1n−4) (1n−2) (1n)

Now define a graph Γ whose vertices at level n are given by RCn. There is an arrow
from λ at level n to µ at level n+1 in Γ if and only if [Res

An+1

An
C0(Λ

kVn+1) : C0(Λ
jVn)] = 1

and C0(Λ
jVn) corresponds to λ, C0(Λ

kVn+1) to µ. Then Γ is the branching graph of the
tower of irreducible calibrated representations we have constructed in this section. The
graph Γ is isomorphic to Pascal’s triangle; from level 1 to level 6 it looks like this:

0

0
-1

0 1

0
-1
-2

00 1 2

0
-1
-2
-3

0
-1

0 10 1 2 3

0
-1
-2
-3
-4

0
-1
-2

00 1 20 1 2 3 4
0
-1
-2
-3
-4
-5

0
-1
-2
-3

0
-1

0 10 1 2 30 1 2 3 4 5

Reading across the row at level n from left to right, the partitions (n), (n − 2),
. . . , (1n−2), (1n) correspond to C0(Λ

0Vn),C0(Λ
1Vn), . . . ,C0(Λ

n−2Vn),C0(Λ
n−1Vn).

Instead of labeling the vertices of the branching graph with partitions, let’s label the
vertices with dimC0(Λ

kVn) using restriction rule for the arrows. Doing this, we obtain
Pascal’s triangle:
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1

11

121

1331

14641

15101051

Thus our Bratteli diagram of irreducible calibrated representations can be seen as a cat-
egorification of Pascal’s triangle. Pascal’s triangle also shows up in the Bratteli diagrams
of the blob algebra [18] and the planar rook algebra [16].

Finally, there is one more natural way to label the vertices of our branching graph.
Consider again the Young diagrams of partitions in ∪n≥1RCn labeling the vertices of Γ.
There is an obvious combinatorial rule to build this graph of Young diagrams: start with
the Young diagram consisting of a single box at level 1 of the graph. The Young diagrams
at level n+1 are built from those at level n by adding or removing a single box so long as
the result is a non-empty Young diagram with a single row or column. There is an arrow
λ → µ if λ ∈ RCn, µ ∈ RCn+1, and µ is obtained from λ by adding or removing a box.
Now, we observe that a single row or column partition has a unique removable box. We
then label the vertex occupied by that partition with the content of its removable box.
This produces a graph whose vertices are integers, and which is generated by starting
with 0 and then has an arrow from a at level n to b at level n+1 if and only if b = a± 1.

0

−11

−202

−3−113

−4−2024

−5−3−1135

This third presentation of the branching graph records the eigenvalues of the Jucys–
Murphy elements acting on the basis of Y -eigenvectors for the vertices C0(Λ

kVn).
Fix a level n of the branching graph Γ, say n = 6. Fix λ at level n of the graph;

sticking with n = 6, take, say, λ = . Consider a path T in the graph from the source
vertex at level 1 to λ. The set of all such paths T label the basis of eigenvectors for
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C0(Λ
kVn) under the correspondence above. For example, we can take T to be the path

(0,−1, 0, 1, 0, 1) from the source of the graph to at level 6. If T ′ is another path from
the source to the same vertex , we can get T ′ from T by modifying T some number of
times by “going the other way around a diamond.” So for example, if T ′ = (0, 1, 0, 1, 0, 1)
then we obtain T ′ from T by going around the left side of the topmost diamond in the

graph through instead of around the right side of the diamond through . On our

third, numerical graph, this corresponds to adding 2 to the eigenvalue of Y2.
In general, let λ be a vertex in Γ. The paths T from the source vertex to λ at level n,

and thus the spectrum of the irreducible representation C0(Λ
kVn) ∈ An-mod, are given

by all n-tuples of integers of the following form:

SpecC0(Λ
kVn) = {(a1, . . . , an) ∈ Zn | a1 = 0, an = ct(bλ), ai+1 = ai ± 1 if 1 ≤ i ≤ n− 1}

where ct(bλ) is the content of the unique removable box of λ, so

ct(bλ) =

{
k − 1 if λ = k,

−k + 1 if λ = (1k).

Starting from any given path from at level 1 to λ at level n, we can obtain any other
path with the same starting and ending points by successively adding or subtracting 2
from various aj, so long as we do not change a1, we do not change an, and at each step of
the process we preserve the property that ai+1 = ai ± 1 for all 1 ≤ i ≤ n− 1. A canonical
way of doing this is to start with the vector v = (0, 1, 2, . . . , n− 2− k, n− 1− k, n− 2−
k, . . . , n − 2k, n − 1 − 2k) which is the path to λ whose first n − k − 1 steps are to the
left and the remaining k steps are to the right. Then generate the rest of the paths by
subtracting multiples of 2 from entries of v in all possible ways while staying in Spec L(λ).
In this way we can easily generate SpecC0(Λ

kVn) for any λ a vertex in Γ, that is, we can
algorithmically generate the matrices y1, . . . , yn which act diagonally on C0(Λ

kVn).

Example 43. Let n = 12 and let λ = (10). We calculate SpecC0(Λ
1V12):

SpecC0(Λ
1V12) = {(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9),

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9),

(0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 8, 9),

(0, 1, 2, 3, 4, 5, 6, 7, 6, 7, 8, 9),

(0, 1, 2, 3, 4, 5, 6, 5, 6, 7, 8, 9),

(0, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9),

(0, 1, 2, 3, 4, 3, 4, 5, 6, 7, 8, 9),

(0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 8, 9),

(0, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9),

(0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9),

(0,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9)}.

We can then read off the matrix for Yj, j = 1, . . . , n, as the j’th column of this array:
Y1 = diag(0, 0, . . . , 0), Y2 = diag(1, . . . , 1,−1), Y3 = diag(2, . . . , 2, 0, 0), and so on. In



CALIBRATED REPRESENTATIONS OF PERIPLECTIC BRAUER ALGEBRAS 35

particular we see that Yj acting on C0(Λ
1Vn) has a simple closed form: it is given by the

diagonal matrix whose first n− j entries are j − 1 and whose last j − 1 entries are j − 3.
Symmetrically, there is an easy formula for the matrices of Yj acting on C0(Λ

n−2Vn), and
we leave this for the reader.

4.3. Final remarks. 1. We expect that the irreducible module C0(Λ
kVn) is identified in

the labeling conventions of [7] (and possibly up to taking the transpose) as follows:

C0(Λ
kVn) =

{
L(n− 2k) if k ≤ n−1

2
,

L(12(k+1)−n) if k ≥ n−1
2
.

That is, we should have:

C0(Λ
0Vn) C0(Λ

1Vn) C0(Λ
2Vn) · · · C0(Λ

n−3Vn) C0(Λ
n−2Vn) C0(Λ

n−1Vn)

L(n) L(n− 2) L(n− 4) · · · L(1n−4) L(1n−2) L(1n)

However, at the time of writing we don’t understand how to make this identification
rigorous. Our construction is self-contained and doesn’t use cell modules, whereas the
irreducible representation L(λ), λ 6= ∅ a partition of n or n− 2 or n− 4 or . . . is defined
as the quotient of the cell module W(λ) by its radical. The rule for eigenvalues in our
Bratteli diagram does not completely match the rule for the eigenvalues of the Jucys–
Murphy elements on the cell modules in the Bratteli diagram of up-down tableaux: it
differs in the case where a box is removed and the content of the removed box is positive
[7, Lemma 6.2.5]. In [7, Lemma 6.2.5] the eigenvalue is always ct(b) + 1 where b is the
box removed. But in our branching graph of irreducible calibrated representations, the
eigenvalue produced by removing a box is ct(b) + 1 if ct(b) < 0 and ct(b)− 1 if ct(b) > 0.
It is worth remarking that our sign conventions for the defining relations of An that mix
e’s and s’s are opposite to those of [24] and [7]. This has the consequence that when
n = 2 for example, the cell module W(∅) would have content sequence (0,−1) in our
convention, and (0, 1) in the conventions of [7]. We expect that once the differing sign
conventions are taken into account, the rest of the discrepancy arises because the cell
module W(∅) ∈ An-mod, n even, is actually irreducible and isomorphic to Λ

n

2 Vn. The
cell module W(∅) is the unique cell module equal to its radical and ∅ does not label an
irreducible representation. Perhaps some of the paths we have found factor through ∅
at even levels and this accounts for the discrepancy between the rule for cell modules in
general and the rule for this particularly special tower of irreducible representations.

2. Which irreducible An-representations are calibrated? Between the representations
C0(Λ

kVn) constructed in this paper and the representations L(λ) where λ is a partition
of n (the embedding of CSn-mod in An-mod), have we found all of them or are there
more? To frame the question in terms of Spec L where L is an irreducible calibrated
representation: in this paper we constructed all irreducible L ∈ An-mod such that
the n-tuples of eigenvalues (α1, α2, . . . , αn) ∈ Spec L satisfy αj − αj+1 = ±1 for all
j = 1, . . . , n − 1. Are there irreducible calibrated representations L ∈ An-mod for which
αj − αj+1 is not always ±1 but on which ei doesn’t act by 0?
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Appendix

4.4. Code for Theorem 34. We check that the matrices given in Theorem 34 satisfy
the defining relations of sVVn in Definition 2 using the code below.

Listing 1. Code for Theorem 34
1 n=7; (∗number of strands∗)
2 m=n−1; (∗size of matrix representation ∗)
3 a; (∗eigenvalue of y [1]∗)
4 y[1]=a IdentityMatrix[m];
5 e[1]=DiagonalMatrix[{1},1,m];
6 s[1]=IdentityMatrix[m]+DiagonalMatrix[{−2},0,m]+DiagonalMatrix[{−1},1,m];
7 e[m]=Reverse/@(Transpose[Reverse/@DiagonalMatrix[{−1},−1,m]]);
8 s [m]=Reverse/@(Transpose[Reverse/@DiagonalMatrix[{−1},−1,m]])+Reverse/@(
9 Transpose[Reverse/@DiagonalMatrix[{−2},0,m]])+IdentityMatrix[m];

10 For[ i=2,i<m,i++,{e[i]=DiagonalMatrix[Table[−KroneckerDelta[i−1,k],{k,i−1}],−1,m]+
DiagonalMatrix[Table[KroneckerDelta[i,k],{k,i}],1,m],s[i]=DiagonalMatrix[Table[−2
KroneckerDelta[i,k],{k,i}],0,m]+DiagonalMatrix[−Table[KroneckerDelta[i−1,k],{k,i−1}],−1,m]+
DiagonalMatrix[−Table[KroneckerDelta[i,k],{k,i}],1,m]+IdentityMatrix[m]}];

11 For[ i=2,i<=n,i++,y[i]=y[i−1]+DiagonalMatrix[−2
12 Table[KroneckerDelta[i−1,k],{k,i−1}],0,m]+IdentityMatrix[m]];
13 For[ i=1,i<n,i++,Print[”sVW1,i=”, i,”,”,MatrixForm[s[i].s[ i ]−IdentityMatrix[m]]]]
14 For[ j=1,j<n,j++,For[i=1,Abs[i−j]>1,i++,Print[”sVW2(i),{j,i}=”,{j,i},”,”,
15 MatrixForm[s[i].e[ j]−e[j ]. s [ i ]]]]]
16 For[ j=1,j<n,j++,For[i=1,Abs[i−j]>1,i++,Print[”sVW2(i),{j,i}=”,{j,i},”,”,
17 MatrixForm[s[j].e[ i ]−e[ i ]. s [ j ]]]]]
18 For[ j=1,j<n,j++,For[i=1,Abs[i−j]>1,i++,Print[”sVW2(ii),{j,i}=”,{j,i},”,”,
19 MatrixForm[e[i].e[ j]−e[j ]. e[ i ]]]]]
20 For[ j=1,j<=n,j++,For[i=1,Abs[i−j]>1,i++,Print[”sVW2(iii),{j,i}=”,{j,i},”,”,
21 MatrixForm[e[i].y[ j]−y[j ]. e[ i ]]]]]
22 For[ i=1,i<n,i++,For[j=1,Abs[i−j]>1,j++,Print[”sVW2(iii),{j,i}=”,{j,i},”,”,
23 MatrixForm[e[i].y[ j]−y[j ]. e[ i ]]]]]
24 For[ i=2,i<=n−1,i++,Print[”sVW2(iii),{j=i−1,i}=”,{i−1,i},”,”,
25 MatrixForm[e[i].y[ i−1]−y[i−1].e[i ]]]]
26 For[ i=1,i<=n,i++,For[j=1,j<=n,j++, Print[”sVW2(iv),i=”,i,”,”,
27 MatrixForm[y[i].y[ j]−y[j ]. y[ i ]]]]]
28 For[ i=1,i<n,i++,For[j=1,Abs[i−j]>1,j++,Print[”sVW3(i),{j,i}=”,{j,i},”,”,
29 MatrixForm[s[i].s [ j]−s[ j ]. s [ i ]]]]]
30 For[ i=1,i<n−1,i++,Print[”sVW3(ii),i=”,i,”,”,
31 MatrixForm[s[i].s [ i+1].s [ i ]−s[ i+1].s[ i ]. s [ i +1]]]]
32 For[ j=1,j<=n,j++,For[i=1,Abs[i−j]>1,i++,
33 Print[”sVW3(iii),{ j , i}=”,{j, i },”,”,MatrixForm[s[i].y[ j ]−y[j ]. s [ i ]]]]]
34 For[ i=1,i<n,i++,For[j=1,Abs[i−j]>1,j++,
35 Print[”sVW3(iii),{ j , i}=”,{j, i },”,”,MatrixForm[s[i].y[ j ]−y[j ]. s [ i ]]]]]
36 For[ i=2,i<=n−1,i++,Print[”sVW3(iii),{j=i−1,i}=”,{i−1,i},”,”,MatrixForm[s[i].y[i−1]−y[i−1].s[i ]]]]
37 For[ i=1,i<n−1,i++,Print[”sVW4(i),i=”,i,”,”,MatrixForm[e[i+1].e[i].e[ i+1]+e[i+1]]]]
38 For[ i=1,i<n−1,i++,Print[”sVW4(ii),i=”i,”,”,MatrixForm[e[i].e[i+1].e[ i ]+e[ i ]]]]
39 For[ i=1,i<n,i++,Print[”sVW5(i)a,i=”,i,”,”,MatrixForm[e[i].s [ i ]−e[ i ]], ”,sVW5(i)b,i=”,i,”,”,
40 MatrixForm[s[i].e[ i ]+e[ i ]]]]
41 For[ i=1,i<n−1,i++,Print[”sVW5(ii),i=”,i,”,”,MatrixForm[s[i].e[ i+1].e[ i ]−s[ i+1].e[ i ]]]]
42 For[ i=1,i<n−1,i++,Print[”sVW5(iii),i=”,i,”,”,MatrixForm[s[i+1].e[i ]. e[ i+1]+s[i ]. e[ i +1]]]]
43 For[ i=1,i<n−1,i++,Print[”sVW5(iv),i=”,i,”,”,MatrixForm[e[i+1].e[i].s[ i+1]−e[i+1].s[ i ]]]]
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44 For[ i=1,i<n−1,i++,Print[”sVW5(v),i=”,i,”,”,MatrixForm[e[i].e[i+1].s[ i ]+e[ i ]. s [ i +1]]]]
45 For[ i=1,i<n,i++,Print[”sVW6,i=”,i,”,”,MatrixForm[e[i].e[i ]]]]
46 For[ i=1,i<n,i++,Print[”sVW7(i),i=”,i,”,”,MatrixForm[s[i].y[ i ]−y[ i+1].s [ i ]+e[ i ]+IdentityMatrix[m]]]]
47 For[ i=1,i<n,i++,Print[”sVW7(ii),i=”,i,”,”,MatrixForm[y[i].s [ i ]−s[ i ]. y[ i+1]−e[i]+IdentityMatrix[m]]]]
48 For[ i=1,i<n,i++,Print[”sVW8(i),i=”,i,”,”,MatrixForm[e[i].(y[ i ]−y[ i+1])+e[i ]]]]
49 For[ i=1,i<n,i++,Print[”sVW8(ii),i=”,i,”,”,MatrixForm[(y[i]−y[i+1]).e[ i ]−e[ i ]]]]
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