
MUTATION OF FROZEN JACOBIAN ALGEBRAS

MATTHEW PRESSLAND

Abstract. We survey results on mutations of Jacobian algebras, while simultaneously extending
them to the more general setup of frozen Jacobian algebras, which arise naturally from dimer
models with boundary and in the context of the additive categorification of cluster algebras
with frozen variables via Frobenius categories. As an application, we show that the mutation
of cluster-tilting objects in various such categorifications, such as the Grassmannian cluster
categories of Jensen–King–Su, is compatible with Fomin–Zelevinsky mutation of quivers. We
also describe an extension of this combinatorial mutation rule allowing for arrows between frozen
vertices, which the quivers arising from categorifications and dimer models typically have.

1. Introduction

Jacobian algebras, defined via the data of a quiver with potential, play an important role in
the theory of cluster algebras, particularly in the context of their categorification by triangulated
categories [1, 12, 15, 30]. However, the concept predates this subject, appearing for example in
the mathematical physics of dimer models [22], which has then found applications in algebraic
and noncommutative geometry [6, 9, 10, 14] and mirror symmetry [8]. More recently, it has been
fruitful to replace the quiver by an ice quiver, by declaring a particular subquiver to be frozen,
leading to the more general notion of a frozen Jacobian algebra. These algebras appear naturally
when considering dimer models on surfaces with boundary [18], as well as endomorphism algebras
of cluster-tilting objects in Frobenius categorifications of cluster algebras with frozen variables [4,
12, 34].

The goal of the present paper is to fill a literature gap by extending several key results about
ordinary Jacobian algebras to the frozen case. In outline, our results are as follows.

(i) In Section 3, we explain how to modify an ice quiver with potential, without changing the
isomorphism class of the frozen Jacobian algebra it defines, so that the quiver is the Gabriel
quiver of this algebra.

(ii) In Section 4, we explain how ice quivers with potential are transformed under a local move
called mutation, and conditions on the potential which make this process compatible with
Fomin–Zelevinsky mutation of quivers. Fomin–Zelevinsky mutation is usually defined for
ice quivers not having any arrows between their frozen vertices; since we want to allow such
arrows, we extend the definition accordingly. While this extension is likely already known
to experts, we are not aware of it having been previously formalised in the literature.

(iii) In Section 5, we consider frozen Jacobian algebras arising as endomorphism algebras of
cluster-tilting objects in Frobenius cluster categories [35, Defn. 3.3], which are certain stably
2-Calabi–Yau Frobenius categories well-suited to the additive categorification of cluster
algebras and appear frequently in the literature [12, 20, 26, 34]. Such an algebra can be
mutated in two ways; firstly as a frozen Jacobian algebra, using the combinatorial mutation
procedure of Section 4, and secondly by mutating the cluster-tilting object in the sense of
Iyama–Yoshino [25] and taking the endomorphism algebra of the result. We give sufficient
conditions on the category for these two operations to coincide, and for them to induce an
extended Fomin–Zelevinsky mutation of the Gabriel quiver of the endomorphism algebra.
This leads to new results on several well-studied classes of Frobenius cluster category, such
as the Grassmannian cluster categories of Jensen–King–Su [26].
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2 MATTHEW PRESSLAND

We stress that this paper owes a significant debt to the work preceding it, particularly that
of Derksen–Weyman–Zelevinsky [15] (who deal with points (i) and (ii) in the case of ordinary
Jacobian algebras) and Buan–Iyama–Reiten–Smith [12] (who deal with (iii) for ordinary Jacobian
algebras and triangulated categories), and for this reason we consider the present paper to be in
part a survey of their results. At the same time, the generalisations we present here are by now
applicable enough that we felt it necessary to make them explicit in the literature—the lack of a
clean reference for these statements may be partly responsible for the fact that papers providing
Frobenius categorifications of cluster algebras with frozen variables have often avoided commenting
explicitly on compatibility of mutations in the sense of (iii).

We note that an earlier version of Section 5 was included in the first arXiv version of [34], where
some of the results are applied.

Throughout, all algebras are K-algebras, and all categories K-categories, over a field K. Without
further explanation, ‘module’ is taken to mean ‘left module’. Arrows and functions are composed
from right to left.

2. Frozen Jacobian algebras

We begin by introducing the various pieces of combinatorial data needed to define a frozen
Jacobian algebra.

Definition 2.1. A quiver is a tuple Q = (Q0, Q1, h, t), where Q0 and Q1 are sets, and h, t : Q1 → Q0
are functions. Graphically, we think of the elements of Q0 as vertices and those of Q1 as arrows, so
that each α ∈ Q1 is realised as an arrow α : tα→ hα. We call Q finite if Q0 and Q1 are finite sets.

Definition 2.2. Let Q be a quiver. A quiver F = (F0, F1, h
′, t′) is a subquiver of Q if it is a quiver

such that F0 ⊆ Q0, F1 ⊆ Q1 and the functions h′ and t′ are the restrictions of h and t to F1. We
say F is a full subquiver if F1 = {α ∈ Q1 : hα, tα ∈ F0}, so that a full subquiver of Q is completely
determined by its set of vertices.

Definition 2.3. An ice quiver is a pair (Q,F ), where Q is a quiver, and F is a (not necessarily
full) subquiver of Q. We call F0, F1 and F the frozen vertices, arrows and subquiver respectively.
Vertices of Q not in F0 will be called mutable (cf. Definition 4.1), whereas arrows of Q not in F1
will be simply called unfrozen.

Remark 2.4. We note that by not insisting that F is a full subquiver in the above definition, our
subsequent definitions will differ slightly from those of other authors, e.g. [12, Defn. 1.1], who do
make this insistence. Aside from being more general, allowing for the case that F is not a full
subquiver of Q is convenient when it comes to describing mutations of ice quivers with potential in
Section 4.

We also note that an ice quiver is part of the data of a seed in a cluster algebra; we recommend
Keller’s survey [28] for an overview of this construction. In this context, while the choice of frozen
vertices is important, since they correspond to the frozen variables appearing in every cluster,
frozen arrows (or indeed any arrows between the frozen vertices) play no role, and so are often
omitted. However, in the context of categorification of cluster algebras, which we will discuss more
in Section 5, these arrows become relevant again; the categorification enhances the data of a seed
by replacing the ice quiver by an algebra, and the Gabriel quiver of this algebra typically does have
arrows between its frozen vertices. Another situation in which such arrows appear naturally is in
the context of dimer models on surfaces with boundary, as we now explain.

Example 2.5. A dimer model is a pair (Σ, G) in which Σ is an oriented surface, possibly with
boundary, and G is a bipartite graph embedded in Σ such that ∂Σ does not intersect the vertex
set of the graph, together with a collection of arcs in Σ which intersect the graph in a vertex and
∂Σ in one point, such that Σ \G is a disjoint union of discs. We usually think of G simply as a
graph, with the additional arcs being half-edges that have one end-point ‘outside’ of Σ. Indeed,
if Σ is a closed surface, then G is an honest graph, and any dimer model (Σ, G) can be realised
as (Σ,Σ ∩ Ĝ) for some dimer model (Σ̂, Ĝ), where Σ̂ is a closed surface containing Σ. A concrete
example of a dimer model drawn in the disk is shown in Figure 1.
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Figure 1. A dimer model
in the disk.
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Figure 2. The ice quiver of the dimer
model shown in Figure 1. Frozen ar-
rows are dashed, and frozen vertices
shown as white diamonds.

A dimer model (Σ, G) determines an ice quiver (Q,F ), also embedded in Σ, as follows. The
vertices of Q are the connected components of Σ \ G, which we call the faces of the dimer, and
each edge (or half-edge) of G determines an arrow between the faces it separates; we think of the
arrow and this edge as dual, and orient the arrow so that the black vertex of the dual edge is on its
left. The vertices of F are the components of Σ \G meeting ∂Σ, and its arrows are those arrows of
Q dual to a half-edge of G. An explicit example is shown in Figure 2.

Each vertex of G determines a cycle in Q, by composing the arrows dual to edges incident with
the vertex. This cycle is oriented in a way consistent with the orientation of the surface when the
vertex is black, and with the opposite orientation when the vertex is white.

Originally appearing in the context of statistical mechanics [27, 37], these constructions have
been well-studied in the mathematics and physics literature; see for example [10, 14, 22, 33] in the
case that Σ is closed, and [4, 18] in the general case.

Definition 2.6. Let Q be a quiver, and let S be the semisimple K-algebra whose underlying vector
space has the basis {ev : v ∈ Q0}, with multiplication induced from ev · ew = δvwev. Equip KQ1
with the structure of an S-bimodule by defining

ehααetα = α,

noting that this implies evαew = 0 whenever v 6= hα or w 6= tα. Then the complete path algebra of
Q is the complete tensor algebra

K〈〈Q〉〉 := S〈〈KQ1〉〉,
so K〈〈Q〉〉 has underlying vector space

∞∏
d=0

(KQ1)⊗Sd,

and multiplication induced from the tensor product. In practice, the elements of K〈〈Q〉〉 are possibly
infinite K-linear combinations of paths of Q, and the product of two paths is their concatenation
when this is well-defined, and zero when it is not. We treat K〈〈Q〉〉 as a topological algebra by
equipping it with the J-adic topology, where J is the two-sided arrow ideal

J =
∞∏
d=1

(KQ1)⊗Sd.

This allows us to talk about closed ideals in K〈〈Q〉〉; the closure of the ideal generated by a set
R ⊆ K〈〈Q〉〉 is

〈R〉 =
{ ∞∑
i=1

airibi : ai, bi ∈ K〈〈Q〉〉, ri ∈ R
}
.
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We may identify S with the subalgebra of K〈〈Q〉〉 spanned by the length-zero paths, i.e. with KQ0,
by associating each vertex v with the generator ev of S.

Example 2.7. The reader is warned that, when Q has oriented cycles, the complete path algebra
K〈〈Q〉〉 can be rather different from the ordinary (uncompleted) path algebra KQ, whose elements are
finite linear combinations of paths. The key fact is that idempotents can be lifted from S ∼= K〈〈Q〉〉/J
to K〈〈Q〉〉 (cf. [3, Lem. I.4.4]), meaning that many techniques used in the representation theory of
finite-dimensional algebras apply equally well to the (often infinite-dimensional) algebra K〈〈Q〉〉.

An instructive example is to consider the case that Q consists of a single vertex and a loop x, so
that KQ = K[x] is a polynomial ring in one variable, whereas K〈〈Q〉〉 = K[[x]] is a ring of power
series. Thus KQ has maximal ideals 〈x− λ〉 for each λ ∈ K, so it has one simple module for each
element of K and its Jacobson radical is zero. On the other hand, K〈〈Q〉〉 is in many ways more like
a finite-dimensional path algebra—its unique maximal ideal is J = 〈〈x〉〉, generated by the arrow,
so the arrow ideal is the Jacobson radical, and there is a unique simple module, up to isomorphism,
corresponding to the unique vertex of Q.

Definition 2.8. Let Q = (Q0, Q1, h, t) be a finite quiver. We may grade K〈〈Q〉〉 by path length;
since K〈〈Q〉〉 is generated by vertices and arrows, which are homogeneous, we get an induced
grading on the quotient K〈〈Q〉〉/[K〈〈Q〉〉,K〈〈Q〉〉] by the ideal generated by commutators. Then a
potential on Q is an element W ∈ K〈〈Q〉〉/[K〈〈Q〉〉,K〈〈Q〉〉] expressible as a (possibly infinite) linear
combination of homogeneous elements of degree at least 2, such that any term involving a loop
has degree at least 3. An ice quiver with potential is a tuple (Q,F,W ) in which (Q,F ) is a finite
ice quiver, and W is a potential on Q. If F = ∅ is the empty quiver, then (Q,∅,W ) =: (Q,W ) is
called simply a quiver with potential.

Remark 2.9. While the definition in [15] of a quiver with potential does not allow any loops in
the quiver Q, our weaker assumption controlling how they appear in the potential will be sufficient
for some purposes; see Section 3 for some comments on how this assumption is used. We want
to allow this increased level of generality where possible, since quivers with potential including
loops appear naturally in certain contexts, e.g. as contraction algebras in the sense of Donovan and
Wemyss [16]. When we move on to discussing mutations in Sections 4 and 5, we will need stronger
assumptions on the non-existence of loops.

One may think of a potential as a formal linear combination of cyclic paths in Q (of length at
least 2), considered up to the equivalence relation on such cycles induced by

αn · · ·α1 ∼ αn−1 · · ·α1αn,

since every element K〈〈Q〉〉/[K〈〈Q〉〉,K〈〈Q〉〉] is uniquely expressible as a (possibly infinite) linear
combination of equivalence classes of cycles under this relation.

The combinatorial data of an ice quiver with potential can be used to define an algebra, which is
our main object of study.

Definition 2.10. Let p = αn · · ·α1 be a cyclic path, with each αi ∈ Q1, and let α ∈ Q1 be any
arrow. Then the cyclic derivative of p with respect to α is

∂αp :=
∑
αi=α

αi−1 · · ·α1αn · · ·αi+1.

Extending ∂α by linearity and continuity, it determines a map K〈〈Q〉〉/[K〈〈Q〉〉,K〈〈Q〉〉]→ K〈〈Q〉〉.
For an ice quiver with potential (Q,F,W ), we define the frozen Jacobian algebra

J (Q,F,W ) = K〈〈Q〉〉/〈∂αW : α ∈ Q1 \ F1〉.
If F = ∅, we omit it from the notation, and call J (Q,W ) := J (Q,∅,W ) the Jacobian algebra of
the quiver with potential (Q,W ).

Remark 2.11. To compute the cyclic derivatives ∂αW , we pick a representative of W in K〈〈Q〉〉.
It is straightforward to check that the result is independent of this choice. Note that not all of the
data in the frozen subquiver F is used in the definition; rather, we need only the set F1 of arrows.
Said differently, any vertices of F0 not incident with any arrows in F1 can be freely chosen to be
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mutable or frozen without affecting the algebra J (Q,F,W ). However, recording all the frozen
vertices is more compatible with the defining data of a cluster algebra with frozen variables, and the
choice of which vertices are frozen plays a role in some of our later results, primarily in Section 5.
The choice of frozen vertices—or more precisely the sum of vertex idempotents at these vertices—is
also important in [35, §5].

Jacobian algebras are somewhat ubiquitous; it has been shown by Buan–Iyama–Reiten–Smith
[12, Cor. 6.8] (see also Keller [29, Thm. 6.12]) that cluster-tilted algebras are finite-dimensional
Jacobian algebras, and Bocklandt [7, Thm. 3.1] has shown that any graded 3-Calabi–Yau algebra is
a (necessarily infinite-dimensional) Jacobian algebra. The author [35, §5] has shown that frozen
Jacobian algebras are good candidates for internally 3-Calabi–Yau algebras (defined in loc. cit.)
which, under some additional ‘smallness’ conditions, can be used to construct Frobenius cluster
categories [35, Thm. 4.1].

Example 2.12. Let (Σ, G) be a dimer model, as in Example 2.5, defining an ice quiver (Q,F ).
We already noted that each vertex v of G determines a cycle Cv of Q, with orientation (relative to
that of Σ) determined by the colour of v. We use these cycles to define a potential on Q, by

W =
∑

v black
Cv −

∑
v white

Cv.

The Jacobian algebra J (Q,F,W ) is called the dimer algebra of (Σ, G). The relations arising from
the potential are sometimes known as F-term relations, and can be described as follows: each
unfrozen arrow α can be completed in two ways to a cycle around one of the vertices of G, one
winding around a black vertex and the other around a white vertex, and the relation ∂αW = 0
means that the two paths obtained by removing α from these cycles are equal in the Jacobian
algebra. When α is a frozen arrow, dual to a half-edge, only one of the two cycles will exist, and
the path obtained by removing α from this cycle defines a non-zero element of J (Q,F,W ).

In the case that Σ is closed, Broomhead [10] showed that under various consistency conditions on
G (the strongest of which implies that Σ ∼= S1×S1 is a torus), the dimer algebra is a 3-Calabi–Yau
noncommutative crepant resolution of a toric singularity. In the case that Σ is a disk, Baur–King–
Marsh [4] show, for careful choices of G, that the dimer algebra is the endomorphism algebra of a
cluster-tilting object in Jensen–King–Su’s Grassmannian cluster category [26].

3. Reduction

In this section, we discuss some operations on an ice quiver with potential (Q,F,W ) that do not
affect the isomorphism class of J (Q,F,W ). Our first reduction is straightforward, and only applies
when the subquiver F has cycles.

Definition 3.1. Let (Q,F,W ) be an ice quiver with potential. We call W , and also (Q,F,W ),
irredundant if each term of W includes at least one unfrozen arrow.

Proposition 3.2. Let (Q,F,W ) be an ice quiver with potential. Then there is an irredundant
potential W ◦ such that J (Q,F,W ) ∼= J (Q,F,W ◦).

Proof. Collecting terms containing only frozen arrows, there is a unique expression W = W ◦ +W ∂

in which W ◦ is irredundant and W ∂ is a potential on F . Then ∂αW ∂ = 0 for any α ∈ Q1 \ F1, so
J (Q,F,W ) ∼= J (Q,F,W ◦). �

The main reduction operation of this section is motivated by the fact that the ideal of K〈〈Q〉〉
generated by the cyclic derivatives ∂αW may not be admissible, in the following sense.

Definition 3.3. Let Q be a quiver. An ideal of K〈〈Q〉〉 is called admissible if it is contained in
J2 =

∏∞
d=2(KQ1)⊗Sd. We call an ice quiver with potential (Q,F,W ) reduced if W is irredundant

and the Jacobian ideal of K〈〈Q〉〉 determined by F and W is admissible.

Remark 3.4. Since we sometimes wish to consider infinite-dimensional algebras, our definition of
admissibility differs from the usual one (e.g. [3, Defn. II.2.1]) by dropping the requirement that
the ideal is contained in Jn =

∏∞
d=n(KQ1)⊗Sd for some n ∈ N. Since we defined J (Q,F,W ) using
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the complete path algebra of Q, its quotient by its Jacobson radical is semisimple, and it has the
idempotent lifting property (cf. Example 2.7) and so it has a well-defined Gabriel quiver. It is a
direct consequence of the definition that if (Q,F,W ) is reduced, this Gabriel quiver is Q.

Remark 3.5. The Jacobian ideal of an irredundant potential W is admissible if and only if no
term of W is a 2-cycle (recalling that we already insist in the definition that no term of W may be
a loop). Thus our definition of reduced is equivalent to that of Amiot–Reiten–Todorov [2, §1.3],
and also agrees with Derksen–Weyman–Zelevinsky’s definition [15, §4] in the case F = ∅, in which
case every potential is automatically irredundant.

The main result of this section allows us to replace any ice quiver with potential by a reduced
one, without affecting the isomorphism class of the Jacobian algebra. This is a version of Derksen–
Weyman–Zelevinsky’s splitting theorem [15, Thm. 4.6] for ordinary quivers with potential. Indeed,
our proof will be very similar, so we refer heavily to [15] when the arguments apply essentially
without change, focussing instead on where some adaptation is necessary to deal with frozen arrows.

Theorem 3.6. Let (Q,F,W ) be an ice quiver with potential. Then there exists a reduced ice quiver
with potential (Qred, Fred,Wred) such that J (Q,F,W ) ∼= J (Qred, Fred,Wred).

The proof of this theorem follows closely that of [15, Thm. 4.6], and so we reproduce the necessary
definitions and results from loc. cit., generalising to ice quivers with potential where necessary.

Definition 3.7 (cf. [15, Def. 4.2]). Let (Q,F ) and (Q′, F ′) be ice quivers such that Q0 = Q′0 and
F0 = F ′0. In particular, this means that K〈〈Q〉〉 and K〈〈Q′〉〉 are complete tensor algebras over the
same semisimple algebra S = KQ0. An isomorphism ϕ : K〈〈Q〉〉 → K〈〈Q′〉〉 is said to be a right
equivalence of the ice quivers with potential (Q,F,W ) and (Q′, F ′,W ′) if

(i) ϕ|S = idS ,
(ii) ϕ(K〈〈F 〉〉) = K〈〈F ′〉〉, whereK〈〈F 〉〉 andK〈〈F ′〉〉 are treated in the natural way as subalgebras

of K〈〈Q〉〉 and K〈〈Q′〉〉 respectively, and
(iii) ϕ(W ) is cyclically equivalent to W ′.

Remark 3.8. If ϕ is a right equivalence, then so is ϕ−1. The right equivalences of (Q,F,W ) and
(Q′, F ′,W ′) are precisely the right equivalences of the ordinary quivers with potential (Q,W ) and
(Q′,W ′) [15, Def. 4.2] that also satisfy (ii), i.e. they take K〈〈F 〉〉 to K〈〈F ′〉〉. Thus the main way in
which arguments from [15] must be modified to fit our context is by ensuring that the necessary
right equivalences can be chosen to respect the frozen subquivers.

We introduce some more notation. Let
K〈〈Q〉〉 ⊗̂K K〈〈Q〉〉 =

∏
m,n≥0

(KQ1)⊗Sm ⊗K (KQ1)⊗Sn,

recalling that S = KQ0. For any path p = αk · · ·α1 of Q, and any α ∈ Q1, we may define

∆α(p) =
∑
αi=α

αk · · ·αi+1 ⊗ αi−1 · · ·α1 ∈ K〈〈Q〉〉 ⊗̂K K〈〈Q〉〉

and extend by linearity and continuity to a map ∆α : K〈〈Q〉〉 → K〈〈Q〉〉 ⊗̂K K〈〈Q〉〉. For f ∈
K〈〈Q〉〉 ⊗̂K K〈〈Q〉〉 and g ∈ K〈〈Q〉〉, we define f • g ∈ K〈〈Q〉〉 by setting (u ⊗ v) • g = vgu and
extending linearly. These definitions allow us to state a chain rule for cyclic derivatives, proved by
Derksen–Weyman–Zelevinsky.

Lemma 3.9 ([15, Lem. 3.9]). If Q and Q′ share a vertex set Q0, and ϕ : K〈〈Q〉〉 → K〈〈Q′〉〉 is an
algebra homomorphism restricting to the identity on S = KQ0, then for any potential W on Q and
any α ∈ Q′1, we have

∂αϕ(W ) =
∑
β∈Q1

∆α(ϕ(β)) • ϕ(∂βW ).

Proposition 3.10 (cf. [15, Prop. 3.7]). If ϕ is a right equivalence of (Q,F,W ) and (Q′, F ′,W ′),
then ϕ induces an isomorphism J (Q,F,W ) ∼→ J (Q′, F ′,W ′).
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Proof. By Lemma 3.9, for any unfrozen arrow α of Q′, we have

∂αϕ(W ) =
∑
β∈Q1

∆α(ϕ(β)) • ϕ(∂βW ).

Since ϕ restricts to an isomorphism K〈〈F 〉〉 ∼→ K〈〈F ′〉〉, if β ∈ F1 then no term of ϕ(β) can include
the unfrozen arrow α, and so we have ∆α(ϕ(β)) = 0. Thus we may instead write

∂αϕ(W ) =
∑
β∈Qm

1

∆α(ϕ(β)) • ϕ(∂βW ),

and see that
〈∂αW ′ : α ∈ Q′1 \ F ′1〉 = 〈∂αϕ(W ) : α ∈ Q′1 \ F ′1〉 ⊆ 〈ϕ(∂βW ) : β ∈ Q1 \ F1〉,

with the equality coming from the cyclic equivalence of W ′ and ϕ(W ). Applying the same argument
to ϕ−1, which is also a right equivalence (Remark 3.8), we obtain the reverse inclusion, and the
result follows. �

If Q and Q′ are quivers sharing the same vertex set Q0, we can define Q⊕Q′ to be the quiver
with vertex set Q0 and arrows Q1 tQ′1. If F ⊆ Q and F ′ ⊆ Q′ are subquivers, then we write

(Q,F )⊕ (Q′, F ′) = (Q⊕Q′, F ∪ F ′),
where F ∪ F ′ is the subquiver with vertex set F0 ∪ F ′0 and arrow set F1 ∪ F ′1; note that while the
second union is necessarily disjoint, because of the definition of (Q⊕Q′)1, the first may not be.
Finally, if W and W ′ are potentials on Q and Q′ respectively, we can define

(Q,F,W )⊕ (Q′, F ′,W ′) = (Q⊕Q′, F ∪ F ′,W +W ′).

Definition 3.11 (cf. [15, Def. 4.3]). An ice quiver with potential (Q,F,W ) is trivial if J (Q,F,W ) =
KQ0.

Remark 3.12. Just as in [15, Prop. 4.4], trivial ice quivers with potential are, up to right
equivalence, those in which Q1 has exactly 2N arrows α1, β1, . . . , αN , βN , all unfrozen, such that
αiβi is a 2-cycle for all i, and W =

∑N
i=1 αiβi.

Note that if we allowed the square of a loop to be a term of W , this statement would be false;
for Q consisting of a single vertex and a loop α, taking W = α2 gives J (Q,W ) = K[[α]]/〈2α〉 ∼= K
provided charK 6= 2.

Proposition 3.13. Let (Q,F,W ) and (Q′, F ′,W ′) be ice quivers with potential such that Q0 = Q′0
and F0 = F ′0. If (Q′, F ′,W ′) is trivial, then the canonical map K〈〈Q〉〉 → K〈〈Q⊕Q′〉〉 induces an
isomorphism

J (Q,F,W ) ∼→ J (Q⊕Q′, F ∪ F ′,W +W ′).

Proof. The proof is exactly as in the case that F is empty [15, Prop. 4.5], noting for ease of
comparison that the triviality of (Q′, F ′,W ′) implies that F ′1 = ∅. �

Before proving Theorem 3.6, we give one more lemma, which provides a normal form for
irredundant potentials, up to right equivalence.

Lemma 3.14. Let (Q,F,W ) be an ice quiver with potential such that W is irredundant. Then, up
to replacing W by a right equivalent potential, we have

(3.1) W =
M∑
i=1

αiβi +
N∑

i=M+1
(αiβi + αipi) +W1

for some arrows αi and βi and elements pi ∈ J2, where
(i) αi is unfrozen for all 1 ≤ i ≤ N , and βi is frozen if and only if i > M ,
(ii) the arrows αi and βi with 1 ≤ i ≤M each appear exactly once in the expression (3.1),
(iii) the arrows βi, for 1 ≤ i ≤ N , do not appear in any of the pj, and
(iv) the arrows αi and βi, for 1 ≤ i ≤ N , do not appear in the potential W1, and this potential

has no degree 2 terms.
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Proof. Up to cyclic equivalence and rescaling arrows, we have

(3.2) W =
N∑
i=1

(αiβi + αipi + qiβi) +W0

for some pi, qi ∈ J2 =
∏∞
d=2(KQ1)⊗Sd, such that the terms αiβi are the only 2-cycles in W , and

no term of W0 contains αi or βi; cf. [15, Eq. 4.6]. It follows from our definition of an ice quiver
with potential that none of the arrows αi and βi appearing in 2-cycles in W are loops. We can
label these arrows so that αi is always unfrozen, and βi is unfrozen if and only if 1 ≤ i ≤ M for
some M ≤ N , as required by (i). We can also arrange that the arrows βi do not appear in any of
the pj , as required by (iii)—to do this, we cyclically rotate any term of αjpj containing βi until it
ends with this arrow, and relabel so that the rest of this term is incorporated into qi instead.

The proof of [15, Lem. 4.7] applies in our situation to show that, up to right equivalence, we may
assume that pi = 0 whenever βi is unfrozen, and qi = 0 for all i. Indeed, this lemma can be used
to construct a right equivalence ϕ : K〈〈Q〉〉 ∼→ K〈〈Q〉〉 which is the identity on vertices, all frozen
arrows and all unfrozen arrows different from the αi and βi, and takes W to a potential of the
required form. The reader is warned that the various potential terms in [15, Lem. 4.8] should be
relabelled as above to conform to our insistence that the βi do not appear in any of the pj ; this
relabelling then affects the next term of the inductive sequence of right equivalences constructed in
the proof of [15, Lem. 4.7], whose limit is our desired equivalence ϕ.

After applying this equivalence, our potential has the form (3.1), and this expression satisfies
conditions (i), (iii) and (iv). To also impose condition (ii), we apply further right equivalences as
follows. First collect terms involving the arrow β1, and write them as

α1β1 + γβ1

for some linear combination of paths γ; indeed, because of our assumptions on the expression (3.1),
γ is even a sum of some of the unfrozen arrows αi for 1 ≤ i ≤ m. Since α1 is unfrozen, there is a
right equivalence ϕ fixing all arrows except α1 and with ϕ(α1) = α1 − γ. Since β1 is not a loop, it
cannot appear in γ. As a result, the right equivalent potential ϕ(W ) contains β1 exactly once, and
so after relabelling it still has an expression (3.1) satisfying (i), (iii) and (iv). Note that since ϕ(α1)
does not involve any loops, nor can any degree 2 term of ϕ(W ), and so this is a valid potential.
Now we can collect the terms of ϕ(W ) involving α1, writing them as

α1β1 + α1δ

for some linear combination δ of paths. Since β1 is unfrozen, there is a right equivalence ψ fixing
all arrows different from β1, and with ψ(β1) = β1 − δ. Since we already arranged that β1 appears
exactly once in the potential ϕ(W ), the right equivalent potential ψϕ(W ) is obtained by simply
removing the terms α1δ, so that in ψϕ(W ) the arrow α1 also appears exactly once, and this
potential still has an expression of the form (3.1) satisfying (i), (iii) and (iv). Now we can apply
the same argument to the potential ψϕ(W )− α1β1, which involves a strictly smaller number of the
finitely many arrows of Q, and inductively obtain a potential of the required form. �

We are now ready to prove the main result of the section.

Proof of Theorem 3.6. By Proposition 3.2, we may assume that W is irredundant, and thus further
assume that W has an expression of the form (3.1) satisfying conditions (i)–(iv) from Lemma 3.14.

Take Qtriv to be the subquiver of Q consisting of all vertices and the arrows αi, βi for i ≤M , and
Wtriv =

∑M
i=1 αiβi, so that (Qtriv,Wtriv) is trivial. Let Q′ be the subquiver of Q consisting of all

vertices and those arrows not included in Qtriv, and W ′ = W −Wtriv; we have arranged things so
that W ′ does not involve any arrows of Qtriv, and thus defines a potential on Q′. Then (Q,F,W ) =
(Q′, F,W ′)⊕ (Qtriv,∅,Wtriv), and hence J (Q,F,W ) ∼= J (Q′, F,W ′) by Proposition 3.13.

Thus to finish the proof, it is enough to find a reduced ice quiver with potential (Qred, Fred,Wred)
such that J (Q′, F,W ′) ∼= J (Qred, Fred,Wred). Simplifying our expression for W ′, and relabelling
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arrows for simplicity, we have

W ′ =
K∑
i=1

αiβi +Wred,

where each αi is unfrozen, and each βi is frozen and does not appear in any term of Wred—note
that we used condition (iii) from Lemma 3.14 here.

Let (Qred, Fred) be the ice quiver obtained from (Q′, F ) by deleting βi and freezing αi for
each 1 ≤ i ≤ K. Then, by construction, (Qred, Fred,Wred) is reduced. We claim that the map
ϕ : J (Q′, F,W ′)→ J (Qred, Fred,Wred) acting as the identity on vertices, and on arrows by

ϕ(γ) =
{
γ, γ 6= βi for any 1 ≤ i ≤ K,
−∂αi

Wred, γ = βi,

is an isomorphism.
First we check that ϕ is well-defined. If γ is unfrozen and not equal to αi for any i, then

ϕ(∂γW ′) = ϕ(∂γWred) = ∂γWred = 0,
since βi does not appear in Wred, and γ is unfrozen in Q′. On the other hand,

ϕ(∂αiW
′) = ϕ(βi + ∂αiWred) = −∂αiWred + ∂αiWred = 0.

To see that ϕ is an isomorphism, let ψ : J (Qred, Fred,Wred)→ J (Q′, F,W ′) be the map acting as
the identity on vertices and arrows. This is also well-defined, as for each unfrozen γ in Qred we have

ψ(∂γWred) = ∂γWred = ∂γW
′ = 0,

as γ is not one of the αi, which are arrows of Fred. Moreover,
ψ(−∂αi

Wred) = −∂αi
Wred = −∂αi

W ′ + βi = βi

in J (Q′, F,W ′), so ψ and ϕ are inverses. �

Proposition 3.15. Let (Q,F,W ) be an irredundant ice quiver with potential. Then the ice quiver
with potential (Qred, Fred,Wred) from Theorem 3.6 is uniquely determined up to right equivalence
by the right equivalence class of (Q,F,W ).

Proof. As in [15, Prop. 4.9], if (Q′, F ′,W ′) and (Q′′, F ′′,W ′′) are reduced and (Qtriv,∅,Wtriv)
is a trivial ice quiver with potential such that (Q′ ⊕ Qtriv, F

′,W ′ + Wtriv) is right equivalent to
(Q′′ ⊕ Qtriv, F

′′,W ′′ + Wtriv), then (Q′, F ′,W ′) is right equivalent to (Q′′, F ′′,W ′′). Indeed, the
proof of this proposition goes through without change in our more general setting, with the key
lemmas in fact now being more general than we need—for example, [15, Lem. 4.11] is only used in
the case that bk = 0 whenever ak is a frozen arrow.

Now let (Q,F,W ) be an irredundant ice quiver with potential. Then, as in [15], it is clear
from the construction that the trivial quiver with potential (Qtriv,∅,Wtriv) from the proof of
Theorem 3.6 is determined up to right equivalence by the right equivalence class of (Q,F,W ), and
then the statement of the previous paragraph implies that the same is true of (Qred, Fred,Wred). �

Definition 3.16. When (Q,F,W ) is an irredundant ice quiver with potential, bearing in mind
Proposition 3.15, we call (Qred, Fred,Wred) from Theorem 3.6 the reduction of (Q,F,W ).

Example 3.17. We give a simple example of reduction, illustrating the additional feature appearing
in the case of ice quivers. Consider the ice quiver

(Q,F ) =
1 3

2
γ1 γ2

γ3

γ4

in which F consists of the boxed vertices 1 and 3 and the arrow γ3, with potentialW = γ1γ2γ3+γ3γ4.
This ice quiver with potential is not reduced; while W is irredundant, the relation

∂γ3W = γ1γ2 + γ4
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includes a term consisting of a single arrow, and hence is not admissible. Following the proof of
Theorem 3.6, we rewrite

W = γ3γ4 + γ3γ1γ2.

This expression satisfies the conditions of Lemma 3.14; in the notation of (3.1), N = 1, and we
have α1 = γ3, β1 = γ4, p1 = γ1γ2, and q1 = W0 = 0. Since β1 = γ4 is frozen, we do not require
that p1 = 0.

Since there are no 2-cycles in W consisting only of unfrozen arrows, the quiver (Q′, F,W ′)
constructed in the proof of Theorem 3.6 is just (Q,F,W ) as above; that is, there is no trivial part
to split off. The proof then tells us that (Q,F,W ) has frozen Jacobian algebra isomorphic to that
of the reduced ice quiver with potential (Qred, Fred,Wred) where Wred = γ3γ1γ2 (the term of W
not given by a 2-cycle), and (Qred, Fred) is obtained by deleting γ4, the frozen arrow appearing in
the 2-cycle in W , and freezing γ3, the unfrozen arrow in this term. That is,

(Qred, Fred) =
1 3

2
γ1 γ2

γ3

The reader may readily check that there is an isomorphism J (Q,F,W ) ∼→ J (Qred, Fred,Wred),
given by the recipe in the proof of Theorem 3.6.

4. Mutation

In this section, we discuss how ice quivers with potential transform under a local move at a
mutable vertex, called a mutation. Unlike the operations in Section 3, this does not leave the
isomorphism class of the Jacobian algebra invariant in general, even in the case that F = ∅. The
name is chosen because of the connection to mutation in cluster algebras, which we discuss in more
detail below, and corresponds to the physical operation of Seiberg duality [5, 32] (sometimes called
urban renewal) on the dimer models discussed in Example 2.5; see for example [38]. As in Section 3,
many of the arguments in this section carry over essentially without change from those in [15] for
the unfrozen case, so we focus on pointing out where modifications are necessary.

Definition 4.1. Let (Q,F,W ) be an irredundant ice quiver with potential, and let v ∈ Q0 \ F0 be
a mutable vertex such that no loops or 2-cycles of Q are incident with v. Then the ice quiver with
potential µv(Q,F,W ) = (µvQ,µvF, µvW ), called the mutation of (Q,F,W ) at v, is the output of
the following procedure.

(i) For each pair of arrows α : u → v and β : v → w, add an unfrozen ‘composite’ arrow
[βα] : u→ w to Q. Since v is not incident with loops or 2-cycles, [βα] cannot be a loop.

(ii) Replace each arrow α : u → v by an arrow α∗ : v → u, and each arrow β : v → w by an
arrow β∗ : w → v; these arrows are necessarily unfrozen, since v is.

(iii) Pick a representative of W in K〈〈Q〉〉 such that no term of W begins at v (which is possible
since there are no loops at v). For each pair of arrows α, β as in (i), replace each occurrence
of βα in W by [βα], and add the term [βα]α∨β∨—each term of the resulting potential
still has degree at least 2, since βα cannot be a 2-cycle, and no degree 2 terms involve
loops, since [βα] is not a loop. This potential is also irredundant, since the arrows [βα] are
unfrozen, but it need not be reduced even if (Q,F,W ) is.

(iv) Replace the resulting ice quiver with potential by its reduction, as in Theorem 3.6, this
being unique up to right equivalence by Proposition 3.15.

It will sometimes be useful to consider the ice quiver with potential µ̃v(Q,F,W ) = (µ̃vQ,F, µ̃vW )
obtained after steps (i)–(iii), i.e. before taking the reduction. Note that µ̃v(Q,F,W ) and µv(Q,F,W )
define isomorphic frozen Jacobian algebras, by Theorem 3.6. When F = ∅, this definition of
mutation agrees with that given by Derksen–Weyman–Zelevinsky [15, §5], by Remark 3.5. The
quiver µvQ may have 2-cycles, even if Q did not, although these cannot be incident with v.

For any ice quiver with potential (Q,F,W ), let (Q,W ) be the quiver with potential in which Q
is the full subquiver of Q on the mutable vertices, and W is the image of W under the canonical
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quotient map K〈〈Q〉〉/[K〈〈Q〉〉,K〈〈Q〉〉] → K〈〈Q〉〉/[K〈〈Q〉〉,K〈〈Q〉〉]. If v is a mutable vertex of Q,
and hence also a vertex of Q, it is immediate from the definition that (µ̃vQ, µ̃vQ) = µ̃v(Q,W ).
Bearing in mind Remark 3.5, we even have (µvQ,µvW ) = µv(Q,W ).

We now study further properties of the operations µ̃v and µv. Since µ̃v does not affect the frozen
subquiver (and agrees with µv after taking frozen Jacobian algebras), we will be able to import
even more arguments directly from [15] than in Section 3. For example, we have the following.

Proposition 4.2 (cf. [15, Cor. 5.4]). Let (Q,F,W ) be an ice quiver with potential and v ∈ Q0 \F0
a mutable vertex not incident with any loops or 2-cycles of Q. Then the right equivalence class of
µv(Q,F,W ) is determined by that of (Q,F,W ).

Proof. The proof of [15, Thm. 5.2], for the case that F = ∅, is local to the mutable vertex v,
and so applies equally well in this case to show that the right equivalence class of µ̃v(Q,F,W ) is
determined by that of (Q,F,W ); in particular, the right equivalences of (µ̃vQ, µ̃vW ) constructed
in this argument are also right equivalences of (µ̃vQ, µ̃vF, µ̃vW ), since there are no arrows of F
incident with v. The result then follows from Proposition 3.15. �

Theorem 4.3 (cf. [15, Thm. 5.7]). Let (Q,F,W ) be a reduced ice quiver with potential and
v ∈ Q0 \ F0 a mutable vertex not incident with any 2-cycles. Then µ2

v(Q,F,W ) is right-equivalent
to (Q,F,W ).

Proof. The proof of [15, Thm. 5.7] also applies here, as follows. The quiver µ̃2
vQ differs from Q

only by the addition of a 2-cycle, consisting of unfrozen arrows [βα] : u→ w and [α∗β∗] : w → u,
for each pair of arrows α : u→ v and β : v → w of Q. (Formally, we also make the identifications
(α∗)∗ = α and (β∗)∗ = β for these arrows.) Moreover, the frozen subquiver of µ̃2

v(Q,F,W ) is F by
definition, and

µ̃2
vW = [W ] +

∑
α : u→v
β : v→w

([βα] + βα)[α∗β∗],

where [W ] is obtained from W by replacing each occurrence of a path βα through v by [βα], as in
Definition 4.1(iii) (cf. [15, Eq. 5.20]).

Now let Qtriv be the subquiver of Q consisting of all vertices and the arrows [βα] and [α∗β∗], and

Wtriv =
∑

α : u→v
β : v→w

[βα][α∗β∗],

so that (Qtriv,∅,Wtriv) is a trivial ice quiver with potential. To conclude the argument, one can
show exactly as in [15, Thm. 5.7] that µ̃2

v(Q,F,W ) is right equivalent to (Q,F,W )⊕(Qtriv,∅,Wtriv).
Indeed, the three right equivalences of ordinary quivers with potential constructed by this argument
act as the identity on all arrows of µ̃2

vQ except those incident with v or of the form [βα] or [α∗β∗],
all of which are unfrozen. Since (Q,F,W ) is reduced by assumption, it follows from Proposition 3.15
that µ2

v(Q,F,W ) = (Q,F,W ), as required. �

We now compare mutation of ice quivers with potential to the combinatorial process of Fomin–
Zelevinsky mutation (see [17, Def. 4.2] for the original definition in terms of matrices, or [28, §3.2]
in the language of quivers). First we recall this procedure, while also extending it slightly to cover
the situation of ice quivers (Q,F ) which have arrows between their frozen vertices.

Definition 4.4. Let (Q,F ) be an ice quiver, and let v ∈ Q0\F0 be a mutable vertex not incident with
any loops or 2-cycles. Then the extended Fomin–Zelevinsky mutation µFZ

v (Q,F ) = (µFZ
v Q,µFZ

v F )
of (Q,F ) at v is defined to be the output of the following procedure.

(i) For each pair of arrows α : u→ v and β : v → w, add an unfrozen arrow [βα] : u→ w to Q.
(ii) Replace each arrow α : u → v by an arrow α∗ : v → u, and each arrow β : v → w by an

arrow β∗ : w → v.
(iii) Remove a maximal collection of unfrozen 2-cycles, i.e. 2-cycles avoiding the subquiver F .
(iv) Choose a maximal collection of half-frozen 2-cycles, i.e. 2-cycles in which precisely one

arrow is frozen. Replace each 2-cycle in this collection by a frozen arrow, in the direction of
the unfrozen arrow in the 2-cycle.
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Note that, because of the choices involved in steps (iii) and (iv), this operation is only defined up to
quiver isomorphism. If we ignore all arrows between frozen vertices, as is typical in cluster theory,
then step (iv) has no effect, and we obtain the usual (unextended) definition of Fomin–Zelevinsky
mutation.

Example 4.5. The rules for removing 2-cycles in steps (iii) and (iv) of Definition 4.4 appear
naturally as equivalences of dimer models on surfaces with boundary, where they correspond to
integrating out massive terms—on the bipartite graph, this amounts to removing a bivalent vertex
and, if this vertex is not incident with a half-edge, merging the two adjacent vertices. This has the
effect on the quiver of removing the 2-cycle around this vertex when both arrows in this cycle are
unfrozen, and replacing it by a frozen arrow (with the predicted orientation) if one of the arrows is
frozen; see Figure 3 (cf. [4, Lem. 12.1]).

7→ 7→

Figure 3. Removing bivalent vertices from a dimer model, either in the interior
(left) or at the boundary (right), and the effect on the dual ice quiver. (The colours
of the vertices are not important, and can be swapped, causing the orientations of
arrows to be reversed.)

Our goal now is to understand conditions on a potential W such that the ice quiver (µvQ,µvF )
of µv(Q,F,W ) coincides with the extended Fomin–Zelevinsky mutation µFZ

v (Q,F ). Since the first
two steps of the two mutation procedures are the same, we need only decide when Definition 4.1(iv),
the reduction step, induces the required cancellation of 2-cycles in Definition 4.4(iii)–(iv). The first
observation is essentially immediate from the proof of Theorem 3.6.

Proposition 4.6. Let (Q,F,W ) be an ice quiver with potential, and v ∈ Q0 \ F0. If (µvQ,µvF )
has no 2-cycles containing unfrozen arrows, then it agrees with µFZ

v (Q,F ).

Proof. The ice quiver of µ̃v(Q,F,W ) is the result of applying the first two steps of the operation
µFZ
v to (Q,F ). The construction of the reduction of µ̃v(Q,F,W ), given in the proof of Theorem 3.6,

modifies the ice quiver only by removing unfrozen 2-cycles, as in Definition 4.4(iii), and performing
the replacement operation on half-frozen 2-cycles described in Definition 4.4(iv). Thus if no 2-cycles
of these types remain in (µvQ,µvF ), the collections of such 2-cycles that were removed or replaced
as part of the reduction process must have been maximal, and so (µvQ,µvF ) = µFZ

v (Q,F ). �

Definition 4.7. We say that an ice quiver with potential (Q,F,W ) is non-degenerate if, for any
(Q′, F ′,W ′) obtained from (Q,F,W ) by a sequence of mutations, (Q′, F ′) has no 2-cycles containing
unfrozen arrows, or equivalently if (Q′, F ′) coincides precisely with the result of performing the
corresponding sequence of extended Fomin–Zelevinsky mutations to (Q,F ).

This condition is typically difficult to check—for a quiver with potential whose Jacobian algebra
is the endomorphism algebra of a cluster-tilting object in a suitable category, sufficient conditions
for non-degeneracy are given in Section 5. Alternatively, non-degeneracy is implied by the following
algebraic condition on J (Q,F,W ).

Definition 4.8. The trace space of A = J (Q,F,W ) is

Tr(A) = A/{A,A},
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where {A,A} is the vector subspace spanned by commutators—note that this is typically different
from the ideal generated by commutators, which we denoted earlier by [A,A]. Abusing notation
by denoting the image of K〈〈F 〉〉 under the projection from K〈〈Q〉〉 to Tr(A) again by K〈〈F 〉〉, and
recalling that we may treat S as the subalgebra of A spanned by the vertex idempotents, the
deformation space of W is Def(Q,F,W ) := Tr(A)/(S + K〈〈F 〉〉). We call W a rigid potential for
(Q,F ) if Def(Q,F,W ) = 0.

Remark 4.9. A potential W for (Q,F ) is rigid if and only if every cycle in Q containing an
unfrozen arrow is cyclically equivalent to an element of the Jacobian ideal; cf. [15, (8.1)].

Proposition 4.10 (cf. [15, Prop. 8.1, Cor. 6.11]). If (Q,F,W ) is rigid and reduced, then it has no
2-cycles containing unfrozen arrows. Moreover, all of its mutations are also rigid and reduced.

Proof. The proof of [15, Prop. 8.1] applies in this context to show that (Q,F,W ) has no 2-cycles
containing unfrozen arrows; in short, such a cycle would violate the condition of Remark 4.9 implied
by rigidity of W . Since we only allow mutation at mutable vertices, and reduction does not affect
the isomorphism class of the Jacobian algebra by Theorem 3.6, the proof of [15, Cor. 6.11] also
applies to show that all mutations of (Q,F,W ) are rigid. They are reduced by definition. �

Combining this with Proposition 4.6, we immediately obtain the following corollary.

Corollary 4.11 (cf. [15, Prop. 7.1]). Let (Q,F,W ) be rigid and reduced. Then for any mutable
vertex v of Q, the ice quiver (µvQ,µvF ) of µv(Q,F,W ) agrees with the extended Fomin–Zelevinsky
mutation µFZ

v (Q,F ).

Example 4.12. Consider the ice quiver with potential (Q,F,W ) given by

Q =
1 3

2
α1 α2

α3

where F is the full subquiver on {1, 3} ⊆ Q0; we denote frozen subquivers in this way, with
boxed vertices and dashed arrows, throughout the example. We pick the potential W = α3α2α1,
which is reduced since every cycle in Q is cyclically equivalent to an element of its Jacobian ideal
〈α1α3, α3α2〉. Mutating at vertex 2 produces

(µ̃2Q,F ) =
1 3

2
α∗1 α∗2

[α2α1]

α3

with potential µ̃2W = α∗2[α2α1]α∗1 + α3[α2α1]; the only frozen arrow is α3. This ice quiver with
potential is not reduced, but µ2(Q,F,W ) is given by its reduction, which is the ice quiver

(µ2Q,µ2F ) =
1 3

2
α∗1 α∗2

[α2α1]

with potential µ2W = α∗2[α2α1]α∗1, as computed in Example 3.17. Note that this ice quiver is the
extended Fomin–Zelevinsky mutation µFZ

2 (Q,F ), as predicted by Corollary 4.11. Mutating at 2
again gives

(µ̃2µ2Q,µ2F ) =
1 3

2
α1 α2

[α∗1α
∗
2 ]

[α2α1]
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where we write (α∗i )∗ = αi for simplicity. The potential is µ̃2µ2W = [α2α1][α∗1α∗2] + [α∗1α∗2]α2α1, so
a similar reduction gives

(µ2
2Q,µ

2
2F ) =

1 3

2
α1 α2

[α∗1α
∗
2 ]

with potential [α∗1α∗2]α2α1. Thus we have recovered the original ice quiver with potential, as
predicted by Theorem 4.3.

5. Cluster-tilting objects

In this section we discuss the mutation of cluster-tilting objects in Frobenius cluster categories,
beginning with some definitions.
Definition 5.1. Let C be an additive category, and D a full subcategory. A left D-approximation
of an object X ∈ C is a morphism f : X → D such that D ∈ D and HomC(f,D′) is surjective for
any D′ ∈ D. It is minimal if any endomorphism g : D → D such that gf = f is an isomorphism. A
minimal right D-approximation is defined dually.
Definition 5.2. An exact category E [13] is a Frobenius category if it has enough projective and
injective objects, and these two classes of objects coincide.
Theorem 5.3 ([23, §I.2]). Let E be a Frobenius category. Then the stable category E, formed
by factoring out all morphisms factoring over a projective object, is a triangulated category, with
suspension induced from the inverse syzygy functor Ω−1, taking the cokernel of an injective envelope.
Definition 5.4. A triangulated category C with suspension functor Σ is said to be d-Calabi–Yau
if Σd is a Serre functor, i.e. there are isomorphisms

HomC(X,Y ) ∼= D HomC(ΣdY,X),
functorial in X,Y ∈ C, where D = HomK(−,K). We call a Frobenius category E stably d-Calabi–Yau
if the stable category E is d-Calabi–Yau.
Definition 5.5. Let C be a triangulated or exact category. We call T ∈ C cluster-tilting if

{X ∈ C : Ext1
C(X,T ) = 0} = addT = {Y ∈ C : Ext1

C(T, Y ) = 0}.
Definition 5.6 ([35, Defn. 3.3]). A Frobenius cluster category is a Krull–Schmidt1 stably 2-Calabi–
Yau Frobenius category E with cluster-tilting objects, such that gl.dim EndE(T )op ≤ 3 for any
cluster-tilting object T ∈ E .

Most of the results in this section hold in more general situations than that of Definition 5.6, since
we will not require the assumption on the global dimension of endomorphism algebras (although
this assumption is not as strong as it might appear, and holds for most examples of Frobenius
categorifications of cluster algebras; see Example 5.13).

Let E be a Frobenius category, and let T =
⊕n

k=1 Tk ∈ E be a cluster-tilting object. If E is
2-Calabi–Yau, then Iyama–Yoshino’s mutation theory for such triangulated categories [25] allows us
to mutate T ∈ E at any indecomposable summand Tk—the indecomposable summands of T in the
stable category are precisely the non-projective indecomposable summands of T ∈ E . This induces
a mutation of T in the Frobenius category E , at any non-projective indecomposable summand Tk,
summarised as follows.
Theorem 5.7 ([25]). Let E be a stably 2-Calabi–Yau Frobenius category, and let T =

⊕n
k=1 Tk ∈ E

be a cluster-tilting object, decomposed into indecomposable summands. Choose a non-projective
summand Tk, and a minimal left add(T/Tk)-approximation Tk → Xk of Tk. Then this map is an
admissible monomorphism, meaning it yields a short exact sequence

0 Tk Xk T ∗k 0,

1This strengthens the original definition in [35], which required only idempotent completeness.
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in the exact structure of E. If the Gabriel quiver of EndE(T )op has no loops or 2-cycles incident
with the vertex corresponding to Tk, then T ∗k is indecomposable and µkT := (T/Tk)⊕ T ∗k is again
cluster-tilting. One can also compute T ∗k as the kernel of a minimal right add(T/Tk)-approximation
of Tk, which is necessarily an admissible epimorphism.

Under the assumptions of Theorem 5.7, if EndE(T )op ∼= J (Q,F,W ) is a frozen Jacobian algebra,
with Gabriel quiver Q, we would like the categorical mutation of T at Tk to be compatible with
the combinatorial mutation of (Q,F,W ) at the vertex k corresponding to this indecomposable
summand. Precisely, we want an isomorphism

EndE(µkT )op ∼= J (µkQ,µkF, µkW ).

In this section, we explain conditions on E , T and Tk which ensure this compatibility, by generalising
results of Buan, Iyama, Reiten and Smith [12], who provide an analogous theory in triangulated
categories. Our arguments and exposition follow [12] closely, with modifications as necessary to
handle the frozen arrows and vertices appropriately.

This result has applications to cluster categorification. It is employed by the author in [34] to show
that mutation of cluster-tilting objects in categorifications of polarised principal coefficient cluster
algebras, constructed in loc. cit., is compatible with Fomin–Zelevinsky mutation of quivers. We will
explain at the end of the section how to deduce the corresponding result for the Grassmannian
cluster categories of Jensen, King and Su [26], for which it was not previously known.

Let (Q,F,W ) be a quiver with potential, and let k ∈ Qm
0 . Let (Q′, F,W ′) := µ̃k(Q,F,W ) be the

ice quiver with potential obtained after step (iii) of the calculation of the mutation (µkQ,µkF, µkW ),
i.e. before the reduction step. By Theorem 3.6, there is an isomorphism

J (Q′, F,W ′) ∼= J (µkQ,µkF, µkW ),

but the former description of the algebra is more useful for the homological arguments in this
section. The reader should note, however, that one may need to pass to the reduction in order to
carry out iterated mutations, since this step can remove 2-cycles that would otherwise prohibit
mutations at their vertices.

For each arrow α ∈ Q1, there is an operation ∂rα : K〈〈Q〉〉 → K〈〈Q〉〉 of right differentiation,
defined on paths by

∂rααk . . . α1 =
{
αk · · ·α2, α1 = α,

0, otherwise.

There is also a left derivative ∂lα, defined analogously. The main advantage of using W ′ rather than
µkW in this section is that we may use the more explicit description of W ′ to compute the right
derivatives of the relations it defines. For later use, we record these right derivatives, which are
calculated directly from the definition, in the following lemma.

Lemma 5.8 (cf. [12, Lem. 5.8]). Let (Q,F,W ), (Q′, F,W ′) and k be as above. Let α, β ∈ Q1 be
arrows with tα = k = hβ, and let γ, γ′ ∈ Q1 ∩Q′1. Then

(i) ∂rγ∂γ′W ′ = ∂rγ∂γ′W ,
(ii) ∂rγ∂[αβ]W

′ = ∂rγ∂[αβ][W ] = ∂rγ∂
r
α∂βW and ∂r[αβ]∂γW

′ = ∂r[αβ]∂γ [W ] = ∂rα∂
r
β∂γW ,

(iii) ∂r[αβ]∂α∗W
′ = β∗,

(iv) ∂rβ∗∂[αβ]W
′ = α∗,

(v) ∂rα∗∂β∗W ′ = [αβ], and
(vi) For any δ, δ′ ∈ Q′1 such that ∂rδ∂δW ′ was not calculated in (i)–(v), we have ∂rδ∂δW ′ = 0. �

Given an additive category C, and objects X,Y ∈ C, let RadC(X,Y ) denote the subspace of
HomC(X,Y ) consisting of maps f such that idX − gf is invertible for all g : Y → X. We then
define RadmC (X,Y ) to be the subspace of HomE(X,Y ) consisting of maps that may be written as a
composition fm ◦ · · · ◦ f1 with fi ∈ RadC(Xi−1, Xi) for some Xi ∈ C (so that necessarily X0 = X
and Xm = Y ). We extend this notation by

Rad0
C(X,Y ) := HomC(X,Y ).
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Note that, for any m, the subspace RadmC (X,X) is an ideal of EndC(X)op. Moreover, if D ⊆ C is a
full subcategory, then RadmD (X,Y ) = RadmC (X,Y ) if m = 0 or m = 1, but this equality need not
hold if m > 2. More information about the radical of a category may be found in [3, §A.3].

We will consider K-linear categories C satisfying the conditions
(C1) C is Krull–Schmidt, and
(C2) for any non-zero basic object X ∈ C, we have

(A1) EndC(X)op/RadC(X,X) ∼= Kn for some n > 0, and
(A2) EndC(X)op ∼= lim←−m≥0 EndC(X)op/RadmC (X,X).

For example, if B is a finite-dimensional Iwanaga–Gorenstein algebra, then the category
GP(B) = {X ∈ modB : Exti(X,B) = 0 for all i > 0}

of Gorenstein projective B-modules is a Frobenius category satisfying (C1) and (C2); indeed, (C2)
is satisfied by any Hom-finite K-linear category.

Let C be a category satisfying (C1) and (C2), and let Q be a finite quiver. For each vertex i ∈ Q0,
choose an indecomposable object Ti ∈ C, and for each arrow a : i → j in Q, choose a morphism
Φa ∈ HomC(Tj , Ti). This data is equivalent to specifying an algebra homomorphism

Φ: K〈〈Q〉〉 → EndC(T )op,

where T =
⊕

i∈Q0
Ti [12, Lem. 3.5], with Φ(ei) = idTi for each vertex idempotent ei. Let R be

a finite subset of the closed ideal of K〈〈Q〉〉 generated by arrows, such that each r ∈ R is basic,
meaning it is a formal linear combination of paths of Q with the same head and tail, and let
I = 〈R〉 ≤ K〈〈Q〉〉. For example, the set of cyclic derivatives of a potential on Q is a set of basic
elements. Buan–Iyama–Reiten–Smith [12, Prop. 3.6] characterise when the homomorphism Φ above
induces an isomorphism Φ: K〈〈Q〉〉/I ∼→ EndC(T )op in terms of certain complexes in addT being
right 2-almost split, a definition we now recall.

Definition 5.9 ([12, Def. 4.4]). Let C be an additive category, and let T ∈ C be any object. Let

U1 U0 X
f1 f0

be a complex in addT such that f0 is not a split epimorphism, and consider the induced sequence

HomC(T,U1) HomC(T,U0) RadC(T,X) 0.

We say that f0 is right almost split in addT if this induced sequence is exact at RadC(T,X), that
f1 is a pseudo-kernel of f0 in addT if this induced sequence is exact at HomC(T,U0), and that the
sequence (f1, f0) is right 2-almost split if both of these conditions hold simultaneously.

We define left almost split maps, pseudo-cokernels and left 2-almost split sequences in addT
dually, using the contravariant functor HomC(−, T ), and call a complex

Y U1 U0 X
f2 f1 f0

weak 2-almost split in addT if (f1, f0) is a right 2-almost split sequence in addT and (f2, f1) is a
left 2-almost split sequence in addT .

To establish our isomorphisms, we will use [12, Prop. 3.3] (see also [12, Prop. 3.6], which is the
same result in more categorical language). The following statement specialises this proposition to
the case of frozen Jacobian algebras.

Proposition 5.10 (cf. [12, Prop. 3.3]). Let (Q,F,W ) be an ice quiver with potential, C an additive
category satisfying (C1) and (C2), and Φ: K〈〈Q〉〉 → EndC(T )op an algebra homomorphism. Write
Ti = Φ(ei)(T ). Then the following are equivalent:

(i) Φ induces an isomorphism J (Q,F,W ) ∼→ EndC(T )op,
(ii) for every i ∈ Q0, the complex

(5.1)
⊕
b∈Qm

1
hb=i

Ttb
⊕
a∈Q1
ta=i

Tha Ti
Φ∂r

a∂bW Φa
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is right 2-almost split in addT , and
(iii) for every i ∈ Q0, the complex

(5.2) Ti
⊕
b∈Q1
hb=i

Ttb
⊕
a∈Qm

1
ta=i

Tha
Φb Φ∂l

b∂aW

is left 2-almost split in addT .

Remark 5.11. If i is a mutable vertex, then the sequences (5.1) and (5.2) glue together into a
weak 2-almost split sequence in addT with both outer terms given by Ti; see [12, Lem. 4.1] for the
equality

∂ra∂bW = ∂lb∂aW.

Thus in the context of [12, §5], which deals with ordinary Jacobian algebras, it is both possible and
convenient to phrase assumptions and conclusions in terms of the existence of such weak 2-almost
split sequences, even though one then proves more than is strictly necessary to obtain the mutation
results. Since this symmetry breaks down at frozen vertices, we must make a choice, and we choose
to use right 2-almost split sequences in these cases. Indeed, it is this breaking of symmetry that
results in the main differences between our arguments and those of [12]; we have to pick out which
of the two dual arguments provided by loc. cit. applies at each step of our proof.

Under the notation and assumptions of Proposition 5.10, let k ∈ Qm
0 be a mutable vertex. Let

T ∗k ∈ C be an indecomposable object not in addT , and write µkT = T/Tk ⊕ T ∗k . We make the
following assumptions, labelled for consistency with the corresponding assumptions of [12, §5.2].
Our assumptions differ from these only by additional conditions at frozen vertices in (O) and (IV),
and conventions on composing maps.

(O) The map Φ induces an isomorphism J (Q,F,W ) ∼→ EndC(T )op. By Proposition 5.10, this
condition may be phrased equivalently as follows: for every i ∈ Qm

0 , the complex

Ti
⊕
b∈Q1
hb=i

Ttb
⊕
a∈Q1
ta=i

Tha Ti
Φb Φ∂r

a∂bW Φa

is a weak 2-almost split sequence in addT , which we abbreviate to

Ti Ui1 Ui0 Ti,
fi2 fi1 fi0

and for each i ∈ F0, the complex⊕
b∈Qm

1
hb=i

Ttb
⊕
a∈Q1
ta=i

Tha Ti
Φ∂r

a∂bW Φa

is a right 2-almost split sequence in addT , which we abbreviate to

Ui1 Ui0 Ti.
fi1 fi0

(I) There exist complexes

Tk Uk1 T ∗k ,
fk2 hk T ∗k Uk0 Tk

gk fk0

in C such that fk1 = gkhk.
(II) The complex

T ∗k Uk0 Uk1 T ∗k
gk fk0fk2 hk

is a weak 2-almost split sequence in add(µkT ).
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(III) The sequences

HomC(T ∗k , T ∗k ) HomC(Uk1, T
∗
k ) HomC(Tk, T ∗k ),

HomC(T ∗k , T ∗k ) HomC(T ∗k , Uk0) HomC(T ∗k , Tk),

hk fk2

gk fk0

obtained from those of (I) by applying HomC(−, T ∗k ) and HomC(T ∗k ,−) respectively, are
exact.

(IV) For all i ∈ Q0, we have Tk /∈ (addUi1) ∩ (addUi0); equivalently there are no 2-cycles of Q
incident with k. For i ∈ Qm

0 the sequences

HomC(T ∗k , Ui1) HomC(T ∗k , Ui0) HomC(T ∗k , Ti),

HomC(Ui0, T ∗k ) HomC(Ui1, T ∗k ) HomC(Ti, T ∗k ),

fi1 fi0

fi1 fi2

obtained by applying HomC(T ∗k ,−) and HomC(−, T ∗k ) respectively to the weak 2-almost
split sequence from (O), are exact. For each i ∈ F0, we have an exact sequence

HomC(T ∗k , Ui1) HomC(T ∗k , Ui0) HomC(T ∗k , Ti),
fi1 fi0

obtained by applying HomC(T ∗k ,−) to the right 2-almost split sequence from (O).

Lemma 5.12. Let E be a stably 2-Calabi–Yau Frobenius category satisfying (C1) and (C2), let
(Q,F,W ) be an ice quiver with potential, and let T ∈ E be a cluster-tilting object. Let Φ: K〈〈Q〉〉 →
EndE(T )op be an algebra homomorphism inducing an isomorphism

Φ: J (Q,F,W ) ∼→ EndE(T )op.

If k ∈ Qm
0 is not incident with any loops or 2-cycles, and Φ(ek)(T ) is not projective, then there

exists T ∗k 6∈ addT such that Φ, T and T ∗k satisfy the assumptions (O)–(IV).

Proof. By the assumptions on Φ, we have that Tk is an indecomposable non-projective summand
of the cluster-tilting object T . Since E is stably 2-Calabi–Yau and Q has no loops or 2-cycles at
k, we may take T ∗k as in Theorem 5.7. For this choice of T ∗k , most of our desired statements are
proved in [12, Lem. 5.7]. Note in particular that the complexes in (I) are in fact the short exact
sequences from Theorem 5.7; we will use this below. It remains to check the statements of (O) and
(IV) dealing with frozen vertices.

The existence of the required right 2-almost split sequence in (O) follows from the statement
(i) =⇒ (ii) of Proposition 5.10. Since there are no 2-cycles of Q incident with k, the statement that
Tk /∈ (addUi1) ∩ (addUi0) holds when i is frozen exactly as when i is unfrozen. For the remaining
statement in (IV), consider the diagram

(5.3)

0 0 0

HomE(Tk, Ui1) HomE(Tk, Ui0) HomE(Tk, Ti) 0

HomE(Uk0, Ui1) HomE(Uk0, Ui0) HomE(Uk0, Ti)

HomE(T ∗k , Ui1) HomE(T ∗k , Ui0) HomE(T ∗k , Ti)

0 0 0
in which the lowest non-zero row is the sequence we wish to prove is exact. The columns are
obtained by applying HomE(−, X) to the short exact sequence

0 T ∗k Uk0 Tk 0gk fk0
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for various X ∈ addT ; since T is cluster-tilting, we have Ext1
E(Tk, X) = 0 in each case, and so these

columns are short exact sequences. The rows are obtained by applying HomE(Y,−) to the complex

Ui1 Ui0 Ti,
fi1 fi0

which we have already shown is right 2-almost split in addT , for various Y ∈ E . In the case of the
first two rows, we even take Y ∈ addT ; it then follows immediately from the definition of right
2-almost splitness that the second row is exact. Exactness of the first row follows similarly, using
that Tk 6∼= Ti to see that

HomE(Tk, Ti) = RadE(Tk, Ti),

so that we also have exactness at HomE(Tk, Ti). Exactness of the lowest row now follows by viewing
the diagram (5.3) as a short exact sequence of chain complexes, and passing to the long-exact
sequence in cohomology. �

Example 5.13. We pick out three families of Frobenius cluster categories for which some cluster-
tilting objects have endomorphism algebra isomorphic to J (Q,F,W ) for Q without loops and
2-cycles, so we can apply Lemma 5.12. For cases (i) and (iii), proofs that the categories are indeed
Frobenius cluster categories can be found in [35, Eg. 3.11–12]. In case (ii), this is part of [34,
Thm. 1]. The fact that the relevant quivers have no loops or 2-cycles is a direct consequence of the
explicit construction in each case.

(i) Buan–Iyama–Reiten–Scott [11] associate Frobenius cluster categories Cw to elements w of
Coxeter groups. Each reduced expression i for w in terms of simple reflections determines a
cluster-tilting object Ti ∈ Cw, and Buan–Iyama–Reiten–Smith have shown that EndCw

(Ti)op

is isomorphic to a frozen Jacobian algebra determined by i [12, Thm. 6.6].
(ii) In [34] the author constructs, for any acyclic quiver Q, a Frobenius cluster category GP(BQ),

of Gorenstein projective modules over an Iwanaga–Gorenstein algebra BQ, containing a
cluster-tilting object with endomorphism algebra isomorphic to a frozen Jacobian algebra
constructed explicitly from Q [34, Thm. 5.3].

(iii) Jensen–King–Su [26] describe a Frobenius cluster category CM(Bk,n), consisting of Cohen–
Macaulay modules over an algebra Bk,n, categorifying Scott’s cluster algebra structure on
the homogeneous coordinate ring of the Grassmannian Gnk of k-dimensional subspaces of Cn
[36]. A (k, n)-Postnikov diagram D determines both a cluster of Plücker coordinates in the
cluster algebra, and a cluster-tilting object TD ∈ CM(Bk,n). Baur–King–Marsh show that
EndBk,n

(TD)op is isomorphic to a frozen Jacobian algebra determined by D [4, Thm. 10.3].
This algebra may also be realised [4, §2] as the dimer algebra of a dimer model in the disk,
as in Example 2.12.

These categories also satisfy (C1) (this being part of the definition of a Frobenius cluster category)
and (C2), providing that one uses the complete version of Bk,n in (iii) (cf. [26, Rem. 3.3]). For
example, this makes the endomorphism algebra of any basic object of CM(Bk,n) a finitely generated
C[[t]]-module, so that (A1) and (A2) hold.

Under the notation and assumptions of Proposition 5.10, let k ∈ Qm
0 be a mutable vertex. Choose

T ∗k /∈ addT and write µkT = T/Tk ⊕ T ∗k . Assume (O)–(IV). By (IV), there are no 2-cycles in
Q incident with k, so we may take (Q′, F,W ′) = µ̃k(Q,F,W ); note that this is not the ordinary
mutation of (Q,F,W ) since we do not perform the final reduction step, in order to give us better
control over the arrows of Q′, but it defines the same frozen Jacobian algebra as the ordinary
mutation. We now define an algebra homomorphism Φ′ : K〈〈Q′〉〉 → EndC(µkT )op by choosing a
summand of µkT for each i ∈ Q′0 = Q0 and a map Φ′a : Tj → Ti for each arrow a : i→ j in Q′1, as
follows. For i 6= k, we associate Ti to i, exactly as for T , and complete the assignment of summands
to vertices by associating the new summand T ∗k to k. On arrows, we define Φ′ as follows.

(i) If a is an arrow common to Q and Q′, then we take Φ′a = Φa.
(ii) On arrows [ab] of Q′, define Φ′[ab] = Φb ◦ Φa.
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(iii) Recall that by assumption (I) we have maps

gk : T ∗k →
⊕
a∈Q1
ta=k

Tha, hk :
⊕
b∈Q1
hb=k

Ttb → T ∗k .

If a ∈ Q1 has ta = k, define Φ′a∗ to be the component of gk indexed by a, and if b ∈ Q1
has hb = k, define Φ′b∗ to be the component of −hk indexed by b.

We are now able to state the main result of this section.

Theorem 5.14. Let E be a stably 2-Calabi–Yau Frobenius category satisfying (C1)–(C2), let T ∈ E
be a cluster-tilting object, and assume we have an isomorphism Φ: J (Q,F,W ) ∼→ EndE(T )op for
some ice quiver with potential (Q,F,W ). If k ∈ Qm

0 is a mutable vertex of Q not incident with loops
or 2-cycles, and Φ(ek)(T ) is not projective, then there is an indecomposable object T ∗k in E, unique
up to isomorphism, such that T ∗k 6∼= Tk and µkT = T/Tk ⊕ T ∗k is cluster-tilting, and an isomorphism
J (µkQ,µkF, µkW ) ∼→ EndE(µkT )op, induced from the map Φ′ constructed above.

Proof. The existence and uniqueness of T ∗k follows from Theorem 5.7 and Lemma 5.12, so we need
only find the necessary isomorphism. Writing (Q′, F,W ′) = µ̃k(Q,F,W ), the results of Section 3
give us an isomorphism J (µkQ,µkF, µkW ) ∼→ J (Q′, F,W ′), so it is enough to show that the map
Φ′ constructed above induces an isomorphism J (Q′, F,W ′) ∼→ EndE(µkT )op.

To do this, we will apply the statement (ii) =⇒ (i) of Proposition 5.10, so it suffices to show, for
each i ∈ Q′0, that the sequence

(5.4)
⊕
d∈Q′m1
hd=i

Ttd
⊕
c∈Q′1
tc=i

Thc Ti
Φ′∂r

c∂dW
′

Φ′c

is right 2-almost split in add(µkT ). When i is mutable, this follows from [12, Thm. 5.6], so we need
only deal with the case i ∈ F0. Our argument follows closely the proof of [12, Lem. 5.10], using
freely computations of the derivatives ∂rc∂dW ′ from Lemma 5.8. We treat elements of direct sums
as column vectors, with maps acting as matrices from the left; this convention is transposed from
that of [12].

Let i ∈ F0. Since Q has no 2-cycles incident with k, either there is no arrow k → i in Q, or there
is no arrow i→ k in Q. In the first case, the sequence (5.4) has the form

(5.5)

( ⊕
b∈Q1
b : i→k

T ∗k

)
⊕( ⊕

d∈Qm
1

hd=i

Ttd

)

( ⊕
a,b∈Q1
ta=k
b : i→k

Tha

)
⊕( ⊕

c∈Q1
hc6=k
tc=i

Thc

) Ti,
x ( Φ′[ab] Φ′c )

where the direct sums are divided so that the upper portion consists of the contribution from arrows
in Q′1 \Q1, and x is given by the matrix

x =
(

Φ′a∗ Φ′∂r[ab]∂d[W ]
0 Φ′∂rc∂d[W ]

)
.

First we check that this is a complex, by computing∑
a∈Q1
ta=k

Φ′[ab]Φ′a∗ = Φbfk0gk = 0,

∑
a,b∈Q1
ta=k
b : i→k

Φ′[ab]Φ′∂r[ab]∂d[W ] +
∑
c∈Q1
hc6=k
tc=i

Φ′cΦ′∂rc∂d[W ] = Φ∂dW = 0
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for each b : i→ k in Q1 and d ∈ Qm
1 with hd = i. Let ` be the number of arrows i→ k in Q. Then

we have Ui0 = T `k ⊕ U ′′i0 with Tk /∈ addU ′′i0, and the maps fi0 and fi1 from the right 2-almost split
sequence of (O) decompose as

fi0 =
(
f ′i0 f ′′i0

)
: T `k ⊕ U ′′i0 → Ti, fi1 =

(
f ′i1
f ′′i1

)
: Ui1 → T `k ⊕ Ui0.

We may then rewrite (5.5) as

T ∗`k
⊕
Ui1

U `k0
⊕
U ′′i0

Ti,

(
g`

k t

0 f ′′i1

)
( f ′i0f

`
k0 f

′′
i0 )

where f `k0t = f ′i1.
Next we show that ( f ′i0f

`
k0 f

′′
i0 ) is right almost split in addµkT . Let p ∈ RadC(T/Tk, Ti). Since

fi0 = ( f ′i0 f
′′
i0 ) is right almost split in addT , there exists ( p1

p2 ) : T/Tk → T `k ⊕ U ′′i0 such that
p = f ′i0p1 + f ′′i0p2. Moreover, since fk0 is right almost split in addT , there exists q : T/Tk → U `k0
such that p1 = f `k0q, and so

p = f ′i0f
`
k0q + f ′′i0p2

factors through ( f ′i0f
`
k0 f

′′
i0 ) as required. On the other hand, if p ∈ RadC(T ∗k , Ti), then since gk is

left almost split in add(µkT ) there exists q : Uk0 → Ti such that p = qgk. Since there are no arrows
k → i in Q, there are no summands of Uk0 isomorphic to Ti, and so q ∈ RadC(Uk0, Ti). Since
Uk0 ∈ add(T/Tk), we see as above that q, and therefore p, factors through ( f ′i0f

`
k0 f

′′
i0 ).

Now we show that
(
g`

k t

0 f ′′i1

)
is a pseudo-kernel of ( f ′i0f

`
k0 f

′′
i0 ) in addµkT . By (III) and (IV) we

have exact sequences

(5.6) HomC(µkT, T ∗k ) HomC(µkT,Uk0) HomC(µkT, Tk)gk fk0

and

(5.7) HomC(µkT,Ui1) HomC(µkT, T `k ⊕ U ′′i0) HomC(µkT, Ti).

(
f ′i1
f ′′i1

)
( f ′i0 f

′′
i0 )

Now if ( p1
p2 ) : µkT → U `k0 ⊕ U ′′i0 satisfies

0 =
(
f ′i0f

`
k0 f ′′i0

)(p1
p2

)
=
(
f ′i0 f ′′i0

)(f `k0 0
0 1

)(
p1
p2

)
,

then by exactness of (5.7) there exists q : µkT → Ui1 such that(
fi1′

f ′′i1

)
q =

(
f `k0 0
0 1

)(
p1
p2

)
.

It follows that f `k0p1 = f ′i1q and p2 = f ′′i1q. In particular,

f `k0(p1 − tq) = f ′i1q − fi1q = 0,

so by exactness of (5.6) there exists r : µkT → T ∗`k such that p1 − tq = g`kr. It follows that(
p1
p2

)
=
(
g`k t
0 f ′′i1

)(
r
q

)
,

completing the proof that (5.4) is right 2-almost split when there are no arrows k → i in Q.



22 MATTHEW PRESSLAND

Now assume instead that there are no arrows i→ k in Q. In this case, the sequence (5.4) has
the form

(5.8)

( ⊕
a,b∈Q1
hb=k
a : k→i

Ttb

)
⊕( ⊕

d∈Qm
1

hd=i
td6=k

Ttd

)
( ⊕
a∈Q1
a : k→i

T ∗k

)
⊕( ⊕

c∈Q1
tc=i

Thc

) Ti,
y ( Φ′a∗ Φ′c )

where

y =
(

Φ′b∗ 0
Φ′∂r[ab]∂c[W ] Φ′∂rd∂c[W ]

)
.

We see using (I) that this is a complex, since∑
a∈Q1
a : k→i

Φ′a∗Φ′b∗ +
∑
c∈Q1
tc=i

Φ′cΦ′∂r[ab]∂c[W ] = (−gkhk + Φ∂ra∂bW )|Ti

Ttb

= (−fk1 + fk1)|Ti

Ttb
= 0,∑

c∈Q1
tc=i

Φ′cΦ′∂rd∂c[W ] = Φ∂dW = 0

for each pair a, b ∈ Q1 with hb = k and a : k → i, and each d ∈ Qm
1 with hd = i and td 6= k. (The

notation after the first equality sign on the first line refers to taking the component Ttb → Ti = Tha
indexed by the pair (a, b).) Let ` be the number of arrows k → i in Q. Then Ui1 = T `k ⊕U ′′i1, where
Tk /∈ addU ′′i1, and fi1 decomposes as

fi1 =
(
f ′i1 f ′′i1

)
: T `k ⊕ U ′′i1 → Ui0.

We may then rewrite (5.8) as

U `k1
⊕
U ′′i1

T ∗`k
⊕
Ui0

Ti,

(
−h`

k 0
s fi1′′

)
(u fi0 )

where sf `k2 = f ′i1 and fi0s = uh`k.
Before showing that this sequence is right 2-almost split in addµkT , we establish that the map

u : T `k → Ti, whose components are given by Φ′a∗ for the ` arrows a : k → i, induces a bijection

(5.9) u : HomC(T ∗k , T ∗`k )/RadC(T ∗k , T ∗`k ) ∼→ RadC(T ∗k , Ti)/Rad2
add(µkT )(T ∗k , Ti).

By (C2), we have HomC(T ∗k , T ∗k )/RadC(T ∗k , T ∗k ) ∼= K, spanned by the class of the identity, so it is
sufficient to show that RadC(T ∗k , Ti)/Rad2

add(µkT )(T ∗k , Ti) has as basis the ` maps Φ′a∗ for a : k → i.
These maps are some of the components of gk, which is left almost split in add(µkT ) by (II),
meaning that its components span RadC(T ∗k , Uk0)/Rad2

add(µkT )(T ∗k , Uk0). Since there is no 2-cycle
of Q incident with k, we have fk0fk2 ∈ RadC(Uk0, Uk1), from which it follows that gk is also left
minimal, i.e. that its components are linearly independent in RadC(T ∗k , Uk0)/Rad2

add(µkT )(T ∗k , Uk0),
hence a basis. Restricting to the summands of Uk0 isomorphic to Ti then gives the desired result.

We may now show that ( u fi0 ) is right almost split in add(µkT ). Since fi0 is right almost split
in addT by (O), for any p ∈ RadC(T/Tk, Ti) there exists p′ : T/Tk → Ui0 such that

p = fi0p
′ =

(
u fi0

)(0
p′

)
.

On the other hand, if p ∈ RadC(T ∗k , Ti), then by (5.9) there exists p1 ∈ HomC(T ∗k , T ∗`k ) such that
p− up1 ∈ Rad2

add(µkT )(T ∗k , Ti). Since gk is left almost split in add(µkT ), there exists q : Uk0 → Ti
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such that p − up1 = qgk. Now, using again that fi0 is right almost split in addT , there exists
r : Uk0 → Ui0 such that q = fi0r, so that

p = up1 + fi0rgk =
(
u fi0

)( p1
rgk

)
factors through ( u fi0 ) as required.

Finally, we show that
(
−h`

k 0
s fi1′′

)
is a pseudo-kernel of ( u fi0 ) in add(µkT ). Assume that

( p1
p2 ) : T ′ → T ∗`k ⊕ Ui0 satisfies (

u fi0
)(p1

p2

)
= 0.

To see that p1 factors through h`k, we first show that p1 ∈ RadC(T ′, T ∗`k ), for which it suffices to
consider the case T ′ = T ∗k . We then have

p2 ∈ HomC(T ∗k , Ui0) = Radadd(µkT )(T ∗k , Ui0),
and fi0 ∈ RadaddT (Ui0, Ti) = Radadd(µkT )(Ui0, Ti) by (O) and the assumption that there are no
arrows i→ k in Q, so that Ui0 ∈ add(µkT ). It follows that

up1 = −fi0p2 ∈ Rad2
add(µkT )(T ∗k , Ti),

so by (5.9) we have p1 ∈ RadC(T ∗k , T ∗`k ) as required. Now since hk is right almost split in add(µkT )
by (II), there exists q : T ′ → U `k1 such that p1 = h`kq.

By (III) and (IV) we have an exact sequence

HomC(µkT, T `k ⊕ U ′′i0) HomC(µkT,Ui0) HomC(µkT, Ti).
( f ′i1 f

′′
i1 ) fi0

Since fi0(p2 + sq) = fi0p2 + uh`kq = 0, it follows that there exists ( q1
q2 ) : T ′ → T `k ⊕ Ui0 such that

p2 + sq =
(
fi1′ f ′′i1

)(q1
q2

)
.

We therefore have
p2 = −sq + f ′i1q1 + f ′′i1q2 = s(f `k2q1 − q) + f ′′i1q2.

It follows that (
p1
p2

)
=
(
−h`k 0
s f ′′i1

)(
f `k2q1 − q

q2

)
,

so (5.4) is right 2-almost split when there are no arrows i→ k in Q, completing the proof. �

We summarise our results in the following theorem, establishing compatibility of different notions
of mutation in Frobenius cluster categories.

Theorem 5.15. Let E be a stably 2-Calabi–Yau Frobenius category satisfying (C1)–(C2), and
assume there is a cluster-tilting object T ∈ E such that EndE(T )op ∼= J (Q,F,W ), for a reduced
ice quiver with potential (Q,F,W ). Assume that Q has no loops, and that the Gabriel quiver of
EndE(T̂ )op has no 2-cycles for any cluster-tilting object T̂ mutation equivalent to T . Then

(i) if T ′ is obtained from T by Iyama–Yoshino mutation, which is well-defined since Q has
no loops or 2-cycles, then EndE(T ′)op ∼= J (µkQ,µkF, µkW ), where k is the vertex of Q
corresponding to the mutated summand, and

(ii) the Gabriel quiver of EndE(T ′)op is µkQ = µFZ
k Q, the extended Fomin–Zelevinsky mutation

of Q at k.
Since (µkQ,µkF, µkW ) is reduced and µkQ has no loops, these results may be extended inductively
to the entire mutation class of T .

Proof. Statement (i) is just Theorem 5.14. Since µk(Q,F,W ) is reduced by definition, it follows
that µkQ is the Gabriel quiver of J (µkQ,µkF, µkW ) ∼= EndE(T ′)op. Since it has no 2-cycles, it
coincides with µFZ

k Q by Proposition 4.6. �

To apply this theorem, we need ways of checking that loops and 2-cycles do not appear in the
relevant quivers. In the case of Hom-finite Frobenius cluster categories, this condition is automatic.
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Proposition 5.16. Let E be a Hom-finite Frobenius cluster category, and T ∈ E a cluster-tilting
object. Then the Gabriel quiver Q of EndE(T )op has no loops or 2-cycles.

Proof. Let A = EndE(T )op. Since E is a Frobenius cluster category, gl.dimA ≤ 3, and since E is
Hom-finite, A is a finite-dimensional algebra. Thus by [24, 31], Q has no loops.

By [21, Prop. 3.11] (which uses again that A is a finite-dimensional algebra of finite global
dimension), to show that Q has no 2-cycles it is enough to show that Ext2

A(S, S) = 0 for any simple
A-module S.

So let i ∈ Q0, and let Si be the corresponding simple module. By Lemma 5.12, we have access
to the sequences from assumption (O). Consider the sequence ending at Ti, and apply HomE(T,−);
independent of whether i is mutable or frozen, this gives us an exact sequence

(5.10) HomE(T,Ui1) HomE(T,Ui0) RadE(T, Ti) 0,

with the leftmost two terms being projective A-modules since Ui1, Ui0 ∈ addT .
Since E is Hom-finite, it satisfies (C2), and so Si = HomE(T, Ti)/RadE(T, Ti). Combining this

fact with the exact sequence (5.10) provides the beginning

P2 P1 P0 Si 0

of a projective resolution of Si with P2 = HomE(T,Ui1). Now, recalling the definition of Ui1 from
assumption (O), and using that Q has no loops, we see that Ti is not a summand of Ui1, and hence
HomA(P2, Si) = 0. It follows that Ext2

A(Si, Si) = 0, as required. �

Consider again the Frobenius cluster categories from Example 5.13(i)–(ii). Since these categories
are Hom-finite, we can combine Theorem 5.15 and Proposition 5.16 to see that the endomorphism
algebra of any cluster-tilting object within the mutation class of those referred to in Example 5.13 has
endomorphism algebra isomorphic to a frozen Jacobian algebra, and that mutation of cluster-tilting
objects commutes with extended Fomin–Zelevinsky mutation of quivers within these classes.

The argument above does not apply to the Grassmannian cluster categories CM(Bk,n) of
Example 5.13(iii), since these are Hom-infinite. However, we can replace Proposition 5.16 with the
following argument, and then apply Theorem 5.15 as before.

Proposition 5.17. Let CM(Bk,n) be the Grassmannian cluster category [26] for the Grassmannian
Gnk with n ≥ 3, as in Example 5.13(iii), and choose a cluster-tilting object T ∈ E. Then the Gabriel
quiver of EndE(T )op has no loops or 2-cycles.

Proof. To simplify the notation, we abbreviate Bk,n to B. By [26, Thm. 4.5], there is an exact
functor π : CM(B) → SubQk, which is a quotient by the ideal generated by an indecomposable
projective B-module Pn. Here SubQk denotes the exact category of submodules of an injective
module Qk for the preprojective algebra of type An−1, see [20, §3], and is a Hom-finite Frobenius
cluster category [35, Eg. 3.11] (in fact, it is even one of the categories Cw considered in [11]; cf. [19,
Lem. 17.2]).

As such, πT is a cluster-tilting object in SubQk, and EndSubQk
(πT )op is obtained from

EndB(T )op as the quotient by an idempotent (that given by projection onto the summand Pn).
Thus the Gabriel quiver of EndSubQk

(πT )op has no loops or 2-cycles by Proposition 5.16. It follows
that any loops or 2-cycles in the Gabriel quiver of EndB(T )op must be incident with the vertex
corresponding to Pn.

However, because of the cyclic symmetry of the algebra B, the same argument applies when
replacing Pn by one of the n−1 other indecomposable projective B-modules, giving another quotient
functor π′ : CM(B) → SubQk (typically with π′T 6∼= πT ). Since n ≥ 3, we may apply the above
argument to two more of these quotient functors, and thus also rule out any loops or 2-cycles in the
quiver of EndB(T )op incident with the vertex corresponding to Pn. �

We note for completeness that in the one remaining case of G2
1, the projective line, the algebra

B = B1,2 is the complete path algebra of a 2-cycle, and the Grassmannian cluster category is
projB, which has the unique cluster-tilting object B, with no mutable summands.
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