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Multimode cold-damping optomechanics with delayed feedback
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We investigate the role of time delay in cold-damping optomechanics with multiple mechanical resonances.
For instantaneous electronic response, it was recently shown by C. Sommer and C. Genes [Phys. Rev. Lett. 123,
203605 (2019)] that a single feedback loop is sufficient to simultaneously remove thermal noise from many
mechanical modes. While the intrinsic delayed response of the electronics can induce single-mode and mutual
heating between adjacent modes, we propose to counteract such detrimental effects by introducing an additional
time delay to the feedback loop. For lossy cavities and broadband feedback, we derive analytical results for the
final occupancies of the mechanical modes within the formalism of quantum Langevin equations. For modes
that are frequency degenerate collective effects dominate, mimicking behavior similar to Dicke super- and
subradiance. These analytical results, corroborated with numerical simulations of both transient and steady state
dynamics, allow us to find suitable conditions and strategies for efficient single-mode or multimode feedback
optomechanics.
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I. INTRODUCTION

A widespread technique for the removal of thermal noise
from a given mechanical degree of freedom involves elec-
tronic feedback loops. The procedure is based on the contin-
uous monitoring of a system’s observable, followed by the
application of an adequate cooling action via the feedback
device. For example, in optomechanics [1–16], a cavity field
quadrature is detected and the result is applied either optically
(as a radiation pressure force) or electrically to the thermally
activated mechanical resonator. While generally one aims for
the isolation and cooling of a specific vibrational mode, it
has been recently shown that efficient simultaneous cooling
of a few independent modes is also possible in the case
of either using sideband cooling [17], via machine learning
[18], or cold damping [19]. Alternatively, cooling and strong
light-matter couplings can also be achieved in an approach
dubbed pulsed optomechanics [20–23] or in multielement
optomechanical setups involving a few optical and mechanical
modes [24–32].

We provide here a more in-depth analytical treatment of
simultaneous cold damping of many mechanical resonances
[33–35] and address a crucial aspect extremely relevant in
experiments, i.e., the inherent time delay τinh that character-
izes any electronic feedback loop. It is generally agreed that
the delayed action of the feedback loop can lead to unwanted
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heating eventually leading to an instability [36–39]. Extending
the analytical approach that we have previously introduced in
Ref. [19] to include a delay time τ , we show that analytical
solutions are still possible to some degree in the fast-feedback
lossy-cavity (FFLC) regime. In this regime, lossy cavities
allow for quick readout and broadband feedback allows for
quick cooling. Most importantly, we suggest that in order to
counteract unwanted heating effects, the feedback loop delay
time could be further delayed by introducing an additional
delay time τadd. By fitting the total delay τ = τinh + τadd to the
characteristics of the system, cooling efficiency close to the
level of the τ = 0 can in some cases be achieved (see Fig. 1).

Simultaneous cooling of N mechanical resonances can
provide either a wider bandwidth for sensing applications or
a stronger optomechanical coupling to a collective mode. We
show that a single feedback loop can very efficiently couple
to a bright collective mode which, in the near-degeneracy
case where all mechanical modes lie within a very narrow
frequency window, can be up to N times faster damped to a N
times lower occupancy than a single mode. This is reminiscent
of the superradiance effect as in an increase in the collective
radiative rate for a system of N quantum emitters coupled to
a single bosonic mode, as in the Dicke model in quantum
optics [40,41]. The corresponding effect of subradiance, i.e.,
strong suppression of radiative rate, is mimicked by the de-
coupling of the other N − 1 collective dark states from the
feedback loop. For efficient cooling of many resonances in
a wide frequency window, one then has to instead engineer
a linear dispersion relation such that all adjacent modes are
separated by more than the damping rate introduced by the
feedback loop. In terms of collective modes, the spread of
many mechanical resonances over a large frequency interval
ensures strong bright-dark couplings, which in turn lead to
sympathetic cooling of all dark modes.
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FIG. 1. Schematics. Cavity optomechanics setup consisting of
a vibrating mirror or membrane exhibiting many mechanical reso-
nances and a feedback loop. A cavity output quadrature is monitored
and fed into the electronic device, which provides the proper cooling
action onto the mirror or membrane. The action of the feedback loop
is time delayed with τ = τinh + τadd consisting of an inherent delay
plus an externally controlled additional time τadd.

The analytical treatment followed here is based on solving
a system of coupled quantum Langevin equations for N
mechanical modes coupled to a single cavity optical mode
and subjected to a feedback force. In Sec. II we introduce
the model that includes the feedback force with time delay
and detail the procedure that allows for the linearization
of the radiation pressure interaction in the high-amplitude
field limit. In Sec. III we derive the simplified equations
of motion for N coupled mechanical degrees of freedom
based on the FFLC approximation. The dynamics is gen-
erally non-Markovian as the task is to solve a system of
coupled integro-differential equations; however, for relatively
small time delay, we introduce the weak (wFFLC) and the
strong (sFFLC) Markovian approximations, which simplify
the task by turning the dynamics into a set of coupled lin-
ear differential equations. In Sec. IV we provide analytical
results for the steady state of the system by using a time
domain analysis, particularly useful under the Markovian
approximation but also in the Fourier domain with a gener-
ality extending into the non-Markovian regime as well. We
benchmark important results in Sec. V for a single resonance,
highlighting the role of time delay and showing that an
additional delay in the feedback signal with a conveniently
chosen τadd can improve cooling efficiency. In Sec. VI we
extend these results to the two-mode case, elucidating the
interplay between collective damping and the time delay
effects. The different levels of approximations are then tested
against exact numerical simulations based on solving time
dynamics of a set of stochastic differential equations. Finally,
in Sec. VII we present analytical and numerical results for
many resonances, in particular following a linear dispersion
relation and in the case of degenerate modes and illustrate
strategies for efficient cooling with adjustable feedback time
delay.

II. MODEL

We follow the evolution of an optomechanical system at
the level of operators subject to both unitary evolution as well
as to dissipation (included as optical and thermal quantum
fluctuation input noises, i.e., the standard quantum Langevin
approach in optomechanics [42]). The system is composed
of an optical cavity mode coupled via the radiation pressure
Hamiltonian to N mechanical resonances of a single vibrating
end mirror. The N independent modes of vibrations have
effective mass mj and frequency ω j . The quantum Langevin
equations of motion [42] for the N + 1 degrees of freedom
read

Q̇ j = ω jPj, (1a)

Ṗj = −ω jQ j − γ jPj + g( j)
OMA†A + ξ j, (1b)

Ȧ = −(κ + i�0)A + i
N∑

j=1

g( j)
OMAQj + ε +

√
2κain. (1c)

We have introduced dimensionless position and momen-
tum quadratures Qj and Pj for each of the N indepen-
dent membrane oscillation modes with standard commu-
tations [Qj, Pj′ ] = iδ j j′ . The term �0 = ωc − ω
 describes
the detuning of the cavity resonance frequency ωc from
the laser frequency ω
 and κ its decay rate. The input
laser power is given by ε = √

2Pκ/h̄ω
. The optomechan-
ical coupling is described by the radiation pressure Hamil-
tonian

∑
j h̄g( j)

OMA†AQj , where g( j)
OM is the single-photon-

single-phonon coupling rate for the jth mode. The single-
cavity mode at frequency ω and loss rate κ is described
by the bosonic operator A with [A, A†] = 1. The zero-
average noise terms are delta-correlated in the time domain
〈ain(t )ain†(t ′)〉 = δ(t − t ′). The parameter γ j describes the
damping of the jth resonator mode and together with the asso-
ciated zero-averaged Gaussian stochastic noise term ξ j fulfill
the fluctuation-dissipation relation resulting in thermalization
with the environment. The noise term can be fully described
by the two-time correlation function:

〈ξ j (t )ξ j′ (t
′)〉 = γ j

ω j

∫ �

−�

dω

2π
e−iω(t−t ′ )Sth(ω)δ j j′ , (2)

where � is the frequency cutoff of the reservoir and Sth(ω) =
ω[coth (h̄ω/2kBT ) + 1] is the thermal noise spectrum. A
standard white noise input with delta correlations both in
frequency and time is obtained for sufficiently high tem-
peratures kBT � h̄ω j from the correlation function result-
ing in the approximate form 〈ξ j (t )ξ j′ (t ′)〉 ≈ (2n̄ j + 1)γ jδ(t −
t ′)δ j j′ , where n̄ j = [exp(h̄ω j/kBT ) − 1]−1 ≈ kBT/h̄ω j de-
scribes the average occupancy of each vibrational mode.

A. Linearization

Let us rewrite all operators A = 〈A〉 + a, Qj = 〈Qj〉 + q j ,
and Pj = 〈Pj〉 + p j as a sum of their expectation value and
zero-averaged fluctuations. When the cavity field amplitude
is large with respect to the fluctuations, one can simplify
the equations of motion by neglecting terms such as 〈a†a〉
as being small compared to | 〈A〉 |2. Under this approxima-
tion, the classical averages satisfy the following equations of
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motion:

〈Q̇ j〉 = ω j〈Pj〉, (3a)

〈Ṗj〉 = −ω j〈Qj〉 − γ j〈Pj〉 + g( j)
OM|〈A〉|2, (3b)

〈Ȧ〉 = −(κ + i�0)〈A〉 + i
N∑

j=1

g( j)
OM〈A〉〈Qj〉 + ε. (3c)

In steady state (obtained by setting 〈Q̇ j〉 = 〈Ṗj〉 = 〈Ȧ〉 =
0) the cavity field amplitude can be shown to satisfy the
following nonlinear equation:

〈A〉 = ε{
κ + i

[
�0 −∑

j

(
g( j)

OM

)2|〈A〉|2/ω j
]} . (4)

The nonlinearity stems from the intensity-dependent cav-
ity detuning � = �0 −∑

j (g
( j)
OM)2|〈A〉|2/ω j owing to the

radiation-pressure-induced displacement from equilibrium.
The steady state value for the displacements is 〈Qj〉 =
(g( j)

OM/ω j )|〈A〉|2.
With the omission of the small nonlinear terms a†a and

aq j , we obtain the linearized equations of motion

q̇ j = ω j p j, (5a)

ṗ j = −ω jq j − γ j p j + ξ j + Gjx, (5b)

ẋ = −κx + �y +
√

2κxin, (5c)

ẏ = −κy − �x +
N∑

j=1

Gjq j +
√

2κyin, (5d)

where x = (1/
√

2)(a + a†) and y = (i/
√

2)(a† − a) are the
fluctuations of the quadratures of the cavity field and xin and
yin are similarly defined in terms of field noise operators.
The effective optomechanical coupling terms are given by
Gj = √

2g( j)
OM 〈A〉 and are enhanced by the large cavity field

amplitude. We set the condition that the effective cavity de-
tuning � = ωc − ω
 −∑

j g( j)
OM 〈Qj〉, containing a collective

mechanically induced frequency shift, is kept at zero value.

B. Time-delayed feedback

The application of the feedback requires the readout of
a cavity field quadrature followed by the appropriate action
onto the mechanical resonator. Generally, one can express the
applied force as

Fj = −g(τ )
j ∗ yest, (6)

where the convolution term is defined as (g(τ )
j ∗ y)(t ) =∫∞

−∞ ds g(τ )
j (t − s)y(s) and depends on the past of the detected

quadrature y that is driven by the weighted sum of the os-
cillator fluctuations q j . Here, we focus on a particular form
of negative derivative feedback also known as cold damping.
This form of feedback applies a correcting cooling viscous
force proportional to the resonator’s velocity and has been ex-
perimentally employed to cooling of mirrors [3], microtoroids
[10], and levitated nanoparticles [15]. The correcting force
can be applied either optically or electrically. In the case of
optically based feedback one has a choice to either apply a
second laser beam or simply modulate the cavity input field

[11,38]. The causal kernel for negative derivative feedback
can be modeled by the following function,

g(τ )
j (t ) = g( j)

cd ∂t [θ (t − τ )ωfbe−ωfb (t−τ )], (7)

and contains the feedback gain terms g( j)
cd and feedback band-

width ωfb. The Fourier transform of the feedback kernel is
given by

g(τ )
j (ω) = iωg( j)

cd e−iωτ

1 + i(ω/ωfb)
= g(0)

j (ω)e−iωτ , (8)

which resembles a standard derivative high-pass filter that
here additionally contains a delay-dependent phase term (sim-
ilar to the term expressed in [38]) in contrast to the pre-
vious case [19,42]. In addition, the parameter τ (neglected
previously in Ref. [19]) is the joined feedback delay origi-
nating from the measurement signal processing. Within the
convolution with θ (t − τ − s) this parameter guarantees that
only information up to t − τ can influence the dynamics of
the resonator modes. Notice that in the limit ωfb → ∞ the
feedback becomes g(τ )

j (t ) = g( j)
cd ∂tδ(t − τ ).

The quadrature component that is injected into the feed-
back mechanism yest is the estimated intracavity phase quadra-
ture given by

yest(t ) = y(t ) − yin(t ) +
√

η−1 − 1yv (t )√
2κ

, (9)

which results from a measurement of the output quadrature
yout = √

2κy(t ) − yin(t ). This follows from the description of
a detector with quantum efficiency η which is modeled by an
ideal detector preceded by a beam splitter with transmissivity√

η, which mixes the input field with an uncorrelated vacuum
field yv (t ).

Finally, to fully describe the dynamics of an optome-
chanical system with N mechanical resonances undergoing
cold damping with time delay one corrects Eqs. (5) with the
following equation:

ṗ j = −ω jq j − γ j p j + Gjx − g(τ )
j ∗ yest + ξ j . (10)

In the next two sections we will describe strategies that
can be employed to simplify the equations of motion and
deliver Markovian approximations accurately describing the
time dynamics of the system for small time delays. The
approximations also allow for the derivation of analytical
estimates of final occupancies for all modes undergoing cold
damping. An extension beyond the Markovian regime will
then be obtained by a Fourier analysis of the coupled system
of equations in steady state.

III. MULTIMODE COLD DAMPING:
SIMPLIFIED EQUATIONS

The aim of this section is to arrive at a set of 2N coupled
equations describing solely the dynamics of the N mechanical
resonator modes. To this end we proceed by formally integrat-
ing the equations of motion for the optical degree of freedom
and replacing them in the equations for the mechanical modes.
We first find a general formulation for the integro-differential
non-Markovian collective dynamics where feedback-induced
damping occurs as a time convolution involving momentum
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quadratures evaluated at times in the past. Under the FFLC
approximation, Markovian collective dissipative dynamics
emerges, allowing one to write a linear set of coupled differ-
ential equations analytically solvable in steady state.

A. Non-Markovian collective damping

Let us start by formally integrating the dynamics of the
optical degrees of freedom. For all further calculations we use
the condition that the effective cavity detuning is set to � = 0.
For the optical degrees of freedom we obtain

x(t ) =
√

2κ

∫ t

−∞
ds e−κ (t−s)xin(s), (11a)

y(t ) =
∫ t

−∞
ds e−κ (t−s)

N∑
j=1

Gjq j (s)

+
√

2κ

∫ t

−∞
ds e−κ (t−s)yin(s). (11b)

We will aim at computing the estimated quadrature yest(s),
which introduces both terms proportional to qj as well as
noise terms stemming from the cavity input noise yin(s) and
from the vacuum filled port noise yv . This will then give rise
to the convoluted force acting on all mechanical momentum
quadratures. In a first step we estimate the contribution com-
ing from the intracavity field y as

g(τ )
j ∗ y =

∫ t−τ

−∞
ds

κe−κ (t−s−τ ) − ωfbe−ωfb (t−s−τ )

(κ − ωfb)

[
N∑

k=1

g( j)
cd ωfbGkqk (s) +

√
2κg( j)

cd ωfbyin(s)

]
. (12)

Notice that the feedback force above contains terms proportional to the mechanical displacement quadratures in addition to
an extra feedback-induced noise. It is however desired to express the effect of feedback as a damping force proportional to
a momentum quadrature. To this end we apply integration by parts, noticing that the convolution contains a derivative of the
function hτ (t − s) = [e−κ (t−s−τ ) − e−ωfb (t−s−τ )]/(ωfb − κ ). In addition, we make use of the relation q̇ j = ω j p j to obtain

g(τ )
j ∗ y =

N∑
k=1

g( j)
cd ωfbGkωk

∫ t−τ

−∞
ds hτ (t − s)pk (s) −

√
2κg( j)

cd ωfb

∫ t−τ

−∞
ds ∂shτ (t − s)yin(s). (13)

The feedback force explicitly shows a damping term exhibiting a nonlocal kernel: this indicates that the action depends on the
past behavior of the momentum quadratures on timescales defined by the cavity loss rate κ and on the feedback bandwidth ωfb.
We can list the set of coupled 2N equations for all resonator-mode quadratures:

q̇ j = ω j p j, (14a)

ṗ j = −ω jq j −
∫ ∞

−∞
ds
[
γ jδ(t − s) + g( j)

cd ωfbGjω jθ (t − s − τ )hτ (t − s)
]

p j (s)

−
∑
k �= j

g( j)
cd ωfbGkωk

∫ t−τ

−∞
ds hτ (t − s)pk (s) + ξ j + ξfb + ξvac + ξrp. (14b)

Here, we have broken up the sum stated in Eq. (A5) into a
self-term containing p j and a sum over the cross terms pk .

The Markovian damping rate γ for each mode is supple-
mented with a diagonal non-Markovian feedback damping
kernel as well as with off-diagonal dissipative couplings to
all other modes. The three sources of noise, in addition to
the thermal one ξ j , stem from the direct feedback action ξfb,
from the feedback-filtered vacuum action in the loss port ξvac,
and from the intracavity radiation pressure effect ξrp. They are
expressed as

ξfb = −g( j)
cd ωfb√

2κ

∫ ∞

−∞
ds φ

(τ )
1 (t − s)yin(s), (15a)

ξvac = −g( j)
cd ωfb√

2κ

√
η−1 − 1

∫ ∞

−∞
ds φ

(τ )
2 (t − s)yv (s), (15b)

ξrp =
√

2κGj

∫ ∞

−∞
ds φ3(t − s)xin(s). (15c)

The explicit forms of the convolution kernels φ
(τ )
1 (t ),

φ
(τ )
2 (t ), and φ3(t ) are given in Appendix A.

B. Markovian collective damping

The set of integro-differential equations obtained above is
not easily tractable; however, in regimes favorable to cold
damping, a transformation to a much simpler form can be
achieved. Let us assume a lossy cavity and relatively fast
feedback such that both rates fulfill κ, ωfb � ω j , for all j ∈
{1, . . . , n}. In such a case, integration by parts of the non-
Markovian kernel can be performed and one can show that,
in leading order, the convolution gives rise to a very simple
expression, ∫ t−τ

−∞
ds hτ (t − s)p j (s) ≈ p j (t − τ )

ωfbκ
. (16)

We denote this approximation as the strong fast-feedback
lossy-cavity (sFFLC) assumption. Under less stringent con-
ditions with κ, ωfb > ω j (which we will refer to as the weak
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wFFLC condition) a slightly more complicated expression
with a larger validity region can be derived and is detailed
in Appendices A and E.

Using Eq. (16) we derive the non-Markovian equations of
motion

q̇ j (t ) = ω j p j (t ), (17a)

ṗ j (t ) = −ω jq j (t ) − γ j p j (t ) −
∑

k

� jk pk (t − τ ) + ζ j (t ),

(17b)

which depend on past events at time t − τ [higher-order delay
terms up to pk (t − 2τ ) are derived in Appendix E and indicate
a dependence following pk (t − nτ ) for even higher orders].
Here, � jk = g( j)

cd Gkωk/κ is the feedback-induced damping
rate in the sFFLC approximation [the analog equations to
Eq. (17) in the case of the wFFLC are given in Appendix A].
Notice that all noise terms have been gathered into a single
term ζ j = ξ j + ξfb + ξvac + ξrp. For τ = 0 the above expres-
sion can be plugged back in to give rise to a set of 2N coupled
equations where all momentum quadratures are evaluated at
the same time t (as detailed in Ref. [19]).

For τ > 0, however, the equations are more complicated
to solve as momenta at time t are coupled to momenta in the
past at t − τ . The next important simplification that we use
implies that during the time τ the motion stays periodic with
period ω j . Then one can roughly approximate p j (t − τ ) ≈
[p j (t ) cos(ω jτ ) + q j (t ) sin(ω jτ )]. The approximation is valid
as long as damping of oscillations within the interval τ can be
neglected. In the sFFLC, the equations of motion become then
a simple set of coupled linear quantum Langevin equations,

q̇ j = ω j p j, (18a)

ṗ j = −[ω j + � j j sin(ω jτ )]q j − [γ j + � j j cos(ω jτ )]p j

−
∑
k �= j

� jk{sin(ωkτ )qk + cos(ωkτ )pk} + ζ j . (18b)

Again, for τ = 0 the result reduces to that previously
derived in Ref. [19]. Notice that the main effect of nonzero
time delay τ > 0 is to modify both the individual mode and
mutual damping rates by the cosine factors cos(ω jτ ). This
also means that for given time delays the system can exhibit
instabilities when the feedback-induced heating rate surpasses
the natural decay rate γ . The extra frequency renormaliza-
tion terms proportional to sin(ω jτ ) are negligible as long as
ω j � � jk , a regime to which we will restrict ourselves in the
following.

A particularly interesting regime is that of full frequency
degeneracy where ω j = ω. A simplified picture can be used
in this case in terms of collective bright Q1 = ∑

k α1kqk and
dark modes Q j = ∑

k α jkqk (see Fig. 2). Here, the coeffi-

cients from the bright mode α1 j = Gj/

√∑
k G2

k can help to
acquire the coefficients for the N − 1 dark modes via the

Gram-Schmidt procedure which satisfies the condition∑
j αl jαk j = δlk . The bright mode dynamics is described by

Q̇1 = ωP1, (19a)

Ṗ1 = −
[
ω +

∑
k

�kk sin(ωτ )

]
Q1

−
[
γ +

∑
k

�kk cos(ωτ )

]
P1 +

∑
k

α1kζk, (19b)

while the other N − 1 orthogonal dark modes satisfy the
following equations of motion:

Q̇ j = ωP j, (20a)

Ṗ j = −ωQ j − γP j −
[∑

k

α jk

α1k
�kk sin(ωτ )

]
Q1

−
[∑

k

α jk

α1k
�kk cos(ωτ )

]
P1 +

∑
k

α jkζk . (20b)

The dark state manifold dynamics can be further simplified
by injecting the solution for the bright mode resulting in

Q̇ j = ωP j, (21a)

Ṗ j = −ωQ j − γP j + � j, (21b)

where the expression for the compound noise term � j is
detailed in Appendix A. The above dynamics shows that in
the fully degenerate case the bright mode is damped at a high
rate: for equal coupling this rate is directly proportional to N .
The dark modes are instead mostly unaffected by the feedback
loop (except via the input noise) and decay at the natural
decay rates γ . This is reminiscent of the collective monitoring
of a collection of quantum emitters by their electromagnetic
environment (either free space or cavity), which leads to

Feedback

FIG. 2. Bright-dark mode dynamics. Both the cavity mode and
the feedback loop couple to the position quadrature of a collective
bright mode B. Cooling of the dark state manifold (containing N − 1
collective dark modes Dj) takes place in an indirect, sympathetic way
via the dark-bright couplings, strongly dependent on the dispersion
relation of the mechanical resonator.
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collective radiative effects known as super- and subradiance
[40,41]. The role of the collective bath is played here by the
common electronic feedback loop which provides simultane-
ous dissipative dynamics for all modes.

IV. MULTIMODE COLD DAMPING: STEADY STATE

To derive the final achievable occupancies for all modes
undergoing cold damping, one can compute the covariance
matrix of the system in steady state. We will follow two
different paths: (i) a time domain analysis suitable to the
Markovian case, where the covariance matrix of the system
can be computed from the Lyapunov equation, and (ii) a
Fourier domain analysis which only applies to the steady
state but presents the advantage of providing exact solu-
tions in the Fourier domain even for the non-Markovian
case.

A. Time domain analysis

The linearized quantum Langevin equations presented in
Eq. (18) can be rewritten in compact vector form,

v̇ = Mv + nin, (22)

with a vector of fluctuations v = (q1, p1, . . . , qN , pN )
 and
the corresponding input noise vector nin = (0, ζ1, . . . , 0, ζN ).
Here, the elements of the matrix M are defined by the coeffi-
cients for q j and p j in Eq. (18). Under the condition that the
system is stable, i.e., if all eigenvalues of M have negative real

parts, one can find the covariance matrix,

V = 〈v(t )v
(t )〉 (23a)

=
∫ t

−∞
ds
∫ t

−∞
ds′eM(t−s)〈nin(s)n


in(s′)〉eM
(t−s′ ). (23b)

This can be greatly simplified as all two-time correlations
of noise terms 〈nin(s)n


in(s′)〉 are delta-like in the strong fast-
feedback lossy-cavity regime with ωfb, κ � ω j . One can show
that

〈nin,2i(s)nin,2 j (s
′)〉 = 〈ζi(s)ζ j (s

′)〉
≈
[

(2n̄i + 1)γiδi j + GiGj

κ

]
δ(s − s′), (24)

and zero otherwise. These terms can be gathered into a
diffusion matrix with elements Din,2i,2 j = (2n̄i + 1)γiδi j +
GiGj/κ and zero otherwise. The final step involves solving
a Lyapunov equation for the covariance matrix,

MV + V M
 = −Din. (25)

Notice that the diffusion matrix shows no dependence on the
time delay.

One can proceed to solve the Lyapunov equation by
introducing the following notations for momentum cor-
relations, Xi j = 〈pi p j + p j pi〉, position correlations Zi j =
〈qiq j + q jqi〉, and cross terms Yi j = 〈qi p j + p jqi〉. From the
diagonal elements Zii and Xii one can then estimate the final
occupancy of each mode. With these notations, analytical re-
sults can be obtained by solving the following set of algebraic
equations (simplified below under the sFFLC approximation):

Yii = 0, (26a)

ω jYi j + ωiYji = 0, (26b)

(γi + �iici )Xii +
∑
j �=i

�i j s jYji +
∑
j �=i

�i jc jXi j − (2n̄i + 1)γi − G2
i

κ
= 0, (26c)

ωiXii − (ωi + �iisi )Zii −
∑
j �=i

�i j s jZi j −
∑
j �=i

�i jc jYi j = 0, (26d)

ω jXi j − (ωi + �iisi )Zi j − (γi + �iici )Yi j −
∑
k �=i

�ikskZ jk −
∑
k �=i

�ikckYjk = 0, (26e)

−
(
ω2

i − ω2
j

)
ωi

Yi j −
∑
k �= j

�ikskYk j −
∑
k �=i

� jkskYki −
∑

k

�ikckXjk −
∑

k

� jkckXik + 2GiGj

κ
= 0. (26f)

For the wFFLC analog equations can be obtained in the
case kBT � h̄ω j , which are presented in Appendix A, where
we can ignore the contribution from feedback, measurement,
and radiation pressure noise terms that do not show delta-
like correlations in this regime. The form above is more
complex than the τ = 0 case studied in Ref. [19] showing the
influence of the delay in the weight factors ci = cos(ωiτ ) and
si = sin(ωiτ ) multiplying with the rates �i j . Setting τ = 0,
quasiexact but cumbersome expressions for the final occu-
pancy of each mode can be obtained (as detailed in Appendix
A and presented in [19]). The nonzero delay case however
is more complicated and analytical expressions are harder

to obtain except in the single-mode and two-adjacent-modes
cases, which we detail in the next sections.

B. Fourier domain analysis

The time domain analysis provided above has a domain of
validity restricted by the Markovian assumptions implied in
the sFFLC and wFFLC approximations. However, in steady
state, one can turn the integro-differential set of coupled equa-
tions into a simple set of algebraic equations by transforming
to the Fourier domain. This allows for solutions inside the
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non-Markovian regime. Let us write the equations

i�q j (�) = ω j p j (�), (27a)

i�p j (�) = −ω jq j (�) − γ j p j (�) + Gjx(�)

−g(τ )
j (�)yest(�) + ξ j (�), (27b)

i�x(�) = −κx(�) +
√

2κxin(�), (27c)

i�y(�) = −κy(�) +
N∑

j=1

Gjq j (�) +
√

2κyin(�), (27d)

and proceed by eliminating the Fourier components of the
field quadratures. One then obtains a set of N equations, which
allows for the derivation of each mode’s response to the input
noise:

[
ω2

j,eff(�) − �2
]+ i�γ j,eff(�)

ω j
q j (�) +

∑
k �= j

(
g( j)

cd

g(k)
cd

)[
ω2

k,eff(�) − ω2
k

]+ i�[γk,eff(�) − γk]

ωk
qk (�) = ζ j (�), (28a)

N∑
k=1

(χ−1) jk (�)qk (�) = ζ j (�). (28b)

The matrix χ describes the susceptibility matrix
of the system. We have introduced a frequency-
dependent effective resonance frequency ω2

j,eff(�) =
ω2

j + �δω̃ j (�) cos(�τ ) + ��̃ j (�) sin(�τ ) and the
corresponding frequency-dependent effective decay
rate γ j,eff(�) = γ j + �̃ j (�) cos(�τ ) − δω̃ j (�) sin(�τ ).
Additionally, we obtain the terms

δω̃ j (�) = g( j)
cd Gjω jωfb�(ωfb + κ )

(κ2 + �2)
(
ω2

fb + �2
) , (29a)

�̃ j (�) = g( j)
cd Gjω jωfb(κωfb − �2)

(κ2 + �2)
(
ω2

fb + �2
) . (29b)

It is interesting to note that one can immediately obtain
the wFFLC steady state computed in the time domain, un-
der the approximation ω2

j,eff(�) ≈ ω2
j,eff(ω j ) and γ j,eff(�) ≈

γ j,eff(ω j ).
To obtain the steady state solution of the resonator mode

occupation from the Fourier transform we need to calculate

(neff ) j = 1

2π

∫ ∞

∞
d�

1

2

{
[χ(�)S(�)χ†(�)] j j

(
1 + �2

ω2
j

)}
,

(30)

where S(�) describes the position-fluctuation spectrum as
presented in the Appendix C, which for high tempera-
tures kBT � h̄ω j can be approximated by S jk (�) ≈ γ j (2n̄ j +
1)δ jk . In the following we will refer to the term Sqj (�) =
[χ(�)S(�)χ†(�)] j j as the position spectrum of the jth mode.

V. SINGLE-MODE COOLING

We provide here an analytical and numerical treatment of
the time dynamics and steady state final occupancies for a
single mode undergoing cold damping with a variable time
delay. In steady state, the solutions to the Lyapunov equa-
tions under the weak or strong FFLC approximation provide
simple, intuitive results for the final achievable occupancies.
We provide a numerical validity check for the steady state
solutions and extend the analytical calculations to regions
of more general validity by solving the coupled set of non-
Markovian equations in the Fourier domain.

A. Time domain analysis of steady state

For a single resonator mode, the solution to the Lyapunov
equation leads to the following expressions for the momentum
and position variances in steady state:

〈p2〉 = γ (n̄ + 1/2 + C/2)

γ + � cos(ωτ )
, (31a)

〈q2〉 = ω

ω + � sin(ωτ )
〈p2〉 . (31b)

We have made use of the optomechanical cooperativity
defined here as C = G2/(κγ ) [1]. This term brings an extra
heating contribution owing to the backaction of the continuous
monitoring of the field quadrature. As opposed to the cavity
self-cooling scheme [1], where one aims at large coopera-
tivities, here we aim to keep this term small. This is easily
achieved by making the cavity lossy, i.e., κ � G.

Notice that generally, as pointed out also previously for
the single-mode feedback cooling without time delay [42],
the equipartition theorem does not hold and therefore the
damped state is not in thermal equilibrium. However, we
define an approximate final occupancy quantity that assumes
the following analytical expression:

neff(τ ) = 1

2

γ (n̄ + 1/2 + C/2)

γ + � cos(ωτ )

[
1 + ω

ω + � sin(ωτ )

]
. (32)

In the limit of zero time delay, this reduces to the expected
result neff = γ (n̄ + 1/2 + C/2)/(γ + �) (as in Ref. [42]),
where the effective damping rate is γ + �. With nonzero time
delay the rate γ + � cos(ωτ ) is reduced and eventually can
become negative when the feedback acts completely out of
phase and an instability can occur. If the delay is small such
that ωτ � 1, the effect is minimal as the damping rate is
still almost optimal � cos(ωτ ) ≈ �. For values of ωτ close
to π/2 first inefficient cooling and then an instability will
occur, as presented in Figs. 3(b) and 3(c). In such a case, a
good choice is to further delay the feedback response setting
τopt = n × 2π/ω. This is exemplified in Figs. 3(d) and 3(e),
where a delay of τ = 4π/ω results in a low final occupancy
that is close to

neff = γ (n̄ + 1/2 + C/2)

γ + �
, (33)
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FIG. 3. Single-mode cooling with delay. (a) Effective occupancy (in logarithmic scale) as a function of time with delay τ = 0 for a weak
(wFFLC) and strong fast-feedback lossy-cavity (sFFLC) approximation as well as the full non-Markovian convolutional treatment. (b) The
dependence of neff as a function of time delay in units of ω−1 varied from 0 close to π/2 is presented by the solid lines and from numerical
trajectory simulations by the stars and dots. Here, the wFFLC approximates the correct behavior much better for delays close to instability
regions. Cases approaching π/2 lead to inefficient damping and eventually an instability as ωτ > π/2. (c) The position spectrum is presented
for four values in the range τ < π/2ω (solid lines) and compared to their wFFLC-approximations (black dashed lines). (d) Effective occupancy
(in logarithmic scale) as a function of time delay of τ = 4π/ω. (e) The position spectrum for τ = 0 and τ = 4π/ω shows that with increasing
delay the wFFLC approximation (dashed lines) deviates more strongly from the exact solution (solid lines), which is especially clear for
τ = 16π/ω shown in the inset. (f) Final occupancies obtained by the temporal evolution (pentagons for the exact and squares for the wFFLC
approximation) and via Fourier transform integration (stars for the exact and circles for the wFFLC approximation) for delays being multiples
of 2π . The inset shows an extended calculation for the Fourier transform case showing repeating structure. We used ω = 1, gcd = 0.6, G = 0.2,
κ = 4, ωfb = 4.5, n̄ = 1 × 105, and γ = 4 × 10−5.

for τ < �−1. For larger delay additional non-Lorentzian fea-
tures in the power spectrum of the position quadrature appear
(as described analytically in the next subsection); these fea-
tures brought in by the feedback delay are not captured by the
approximation and regions of insufficient cooling emerge, as
can be seen from Fig. 3(f). This can be explained by the results
in Fig. 3(e), where we can see that for increasing delay τ the
position spectrum deviates strongly from a Lorentzian form
by additional superposed oscillations that follow ∼exp(i�τ ),
where since we are in Fourier space τ determines the period
of the oscillations. Thereby, the larger τ is the smaller is the
period of the oscillations. If the period is close [see Fig. 3(e)
inset] or coincides with the resonance condition we witness a
high occupation even for τ being a multiple of 2π/ω.

B. Fourier analysis of damping rates

Applying a Fourier transform to the coupled set of integro-
differential equations allows one to provide an exact analysis
of the steady state even in the non-Markovian regime (see
Appendix C for details). In the frequency domain one can then
compute the variances of the position and momentum as

〈q2〉 =
∫ ∞

−∞

d�

2π
Sq(�), (34a)

〈p2〉 =
∫ ∞

−∞

d�

2π

�2

ω2
Sq(�). (34b)

Here, we refer to the term Sq(�) as the position spectrum
of the resonator. The integration goes over the whole power
spectrum of the noise which can be split into four contribu-
tions:

Sq(�) = ∣∣χ cd
eff(�)

∣∣2[Sth(�) + Srp(�) + Sfb(�) + Sfb,rp(�)],

stemming from the radiation pressure force Srp(�) =
G2κ/(κ2 + �2), the feedback backaction noise Sfb(�) =
|g(0)(�)|2/(4κη), as well as its interference Sfb,rp(�) and most
importantly and dominantly from the thermal fluctuations
Sth(�) ≈ γ (2n̄ + 1) (for n̄ � 1). The effective susceptibil-
ity appearing above describes the modified response of the
position quadrature to the external noise and takes a quasi-
Lorentzian form

χ cd
eff = ω{[

ω2
eff(�) − �2

]− i�γeff(�)
} . (35)

The poles are shifted from the original position ±ω to the
effective frequency ±ωeff

ω2
eff(�) = ω2 + �δω̃(�) cos(�τ ) + ��̃(�) sin(�τ ), (36)

while the frequency-dependent effective damping rate is also
modified from γ to

γeff(�) = γ + �̃(�) cos(�τ ) − δω̃(�) sin(�τ ). (37)
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Notice that in the absence of feedback the susceptibility is
simply that of a damped harmonic oscillator with damping
rate γ and resonance frequency ω. The feedback for zero
delay time adds a damping rate �̃(�) and a shifted resonance
frequency

√
ω2 + �δω̃(�). Both quantities are then strongly

dependent on the time delay as evidenced in Fig. 3.
As long as the effective mechanical susceptibility is close

to a Lorentzian the integration of the spectra above be-
comes trivial as the only considerable contribution comes
from the spectrally flat thermal power spectrum [see
Figs. 3(c) and 3(e)]. We will use the fact that the in-
tegral 1/(2π )

∫∞
−∞ d�|χ cd

eff|2 ≈ 1/[2γeff(ω)] for reasonably
small delay times where we can set �̃(�) ≈ �̃(ω) = � and
δω̃(�) ≈ δω̃(ω) = δω and we can approximate

neff(τ ) ≈ 1

2

(
n̄ + 1

2

)
γ

γeff(ω)

(
1 + ω2

ω2
eff(ω)

)
(38a)

= 1

2

γ (n̄ + 1/2)

γ + � cos(ωτ ) − δω sin(ωτ )

×
(

1 + ω

ω + δω cos(ωτ ) + � sin(ωτ )

)
, (38b)

matching the expression obtained in case of the wFFLC
approximation. In the case of the wFFLC we can witness a
regime of instability for {τ |γ + � cos(ωτ ) − δω sin(ωτ ) �
0} as is shown in Fig. 3(b), which will converge to the
frequency intervals n × π/2 � τ � n × 3π/2 for n ∈ N and
for ωfb, κ � ω j and thereby converge to the sFFLC.

VI. SIMULTANEOUS COOLING OF TWO
ADJACENT MODES

Let us assume two adjacent resonator modes undergoing
simultaneous cold damping: analytical expressions for the
final occupancies can still be obtained from the Lyapunov
equation. Under the sFFLC approximation one can express
the occupancies as

ni,eff(τ ) ≈ 1

2

(n̄i + 1/2)γi + G2
i

2κ

�iici

(
1 + ωi

(ωi + �iisi )

)

+
(

�i j

4�ii

)(
s jω j

ci
(
ω2

j − ω2
i

)�i j − c j

ci
Xi j

)

×
(

1 + ωi

(ωi + �iisi )

)
− �i j s j

4(ωi + �iisi )
Zi j

+ �i jc jωi

4(ωi + �iisi )
(
ω2

i − ω2
j

)�i j, (39)

with j �= i. The expressions for the off-diagonal covariance
terms Xi j and Zi j as well as the �i j terms are more cum-
bersome and are therefore relegated to Appendix B. From
Eq. (39) we see that next to the term expressing the single-
mode solution, additional terms describing mode-to-mode
coupling emerge, which describe mutual heating effects. For
independent modes (such that |ω1 − ω2| → ∞) the mutual
heating vanishes. Also notice that as the two modes are
subjected to the same damping channel, correlated damping
occurs leading to momentum-momentum correlations in the
off-diagonal elements. Numerical results involving time do-
main and Fourier transform solutions are displayed in Fig. 4.

Such effects are particularly evident in the degenerate case
with ω1 = ω2. For G1 = G2 and g(1)

cd = g(2)
cd we define the

collective bright Q1 = (q1 + q2)/
√

2 and dark mode Q2 =
(q1 − q2)/

√
2 and express them in the Fourier space:

Q1(�) = ω[
ω2

B,eff(�) − �2
]+ i�γB,eff(�)

(
ζ1(�) + ζ2(�)√

2

)
,

(40a)

Q2(�) = ω

(ω2 − �2) + i�γ

(
ζ1(�) − ζ2(�)√

2

)
. (40b)

The susceptibility of the bright mode is modified
by the frequency-dependent resonance ω2

B,eff = ω2 +
2[�δω̃(�) cos(�τ ) + ��̃(�) sin(�τ )] and damping rate
γB,eff = γ + 2[�̃(�) cos(�τ ) − δω̃(�) sin(�τ )]. This
results in a damping rate twice as large as compared to
the single-mode solution found in Eq. (38b) for the bright
mode. Instead, the dark mode is fully decoupled from the
feedback. We can also analytically list the final phonon
occupancies,

nB,eff(τ ) ≈ 1

2

γ (n̄ + 1/2)

γ + 2[� cos(ωτ ) − δω sin(ωτ )]

×
(

1 + ω

ω + 2[δω cos(ωτ ) + � sin(ωτ )]

)
, (41a)

nD,eff = n̄, (41b)

showing again the decoupling of the dark mode from the
feedback loop and that the achievable temperature for the
bright mode is half of that of an individual mode.

VII. MULTIMODE COOLING

The collective basis of one bright and N − 1 dark modes is
particularly useful for the case of many resonances. Starting
from the equations of motion in Fourier space Eq. (28) we can
derive an expression for the bright mode,

Q1(�) =
∑

j

ω j{[
ω2

j,eff(�) − �2
]+ i�γj,eff(�) +∑

k �= j

{[
ω2

k,eff (�)−ω2
k

]
+i�[γk,eff (�)−γk ]

}[(
ω2

j −�2
)
+i�γ j

]
[(ω2

k −�2 )+i�γk]

} Gjζ j (�)√∑
k G2

k

, (42)

which solely depends on the noise terms for input. From this result for the bright mode Q1 the expressions for the N − 1 dark
modes Qk can be easily obtained from the relations (details in Appendix C)

∑
j

αk j
{[

ω2
j,eff(�) − ω2

j

]+ i�[γj,eff(�) − γ j]
}

α1 j
[(

ω2
j − �2

)+ i�γ j
] Q1 + Qk =

∑
j

ω j[(
ω2

j − �2
)+ i�γ j

]αk jζ j (�). (43)
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FIG. 4. Simultaneous cooling of two adjacent modes with delay. (a), (b) Evolution of occupancy for both modes for τ = 0 and τ = 8π .
The solid lines give the exact solutions while the wFFLC and sFFLC approximations are represented by the dashed lines. (c) Final occupancy
represented by stars (exact) and dots (wFFLC) are obtained from a time domain simulation while the solid (exact) and dashed (wFFLC) lines
are derived via Fourier transform. Here, the time delay is in units of ω−1

2 . (d) Position spectra in Fourier space for τ = 0 and τ = 8π . The
mismatch in the Lorentz shape for τ = 8π explains the worsened agreement between the wFFLC and the exact treatment seen in (b). (e)
Position spectrum in Fourier space for τ = (0, 1, 2, 3) × (π/8). Here, solid lines follow the exact expression while dashed lines are given for
the wFFLC approximation. We have used ω = 0.5, 1, gcd = 0.6, G = 0.2, 0.1, κ = 4, ωfb = 4.5, n̄ = (2, 1) × 105, and γ = (4, 2) × 10−5 for
(a), (b), and (d), while we have used the parameters ω = (ω1, ω2) = (0.5, 1), gcd = 0.6, G = 0.3, 0.2, κ = 4, ωfb = 4.5, n̄ = (2, 1) × 105, and
γ = (4, 3) × 10−5 for (c), (e).

A simple solution can be found in the case of N identical
resonator modes with ω j = ω and γ j = γ . Here, the term for
the bright mode given in Eq. (42) becomes

Q1 = ω{[
ω2

B,eff(�) − �2
]+ i�γB,eff(�)

} ∑
j

G jζ j (�)√∑
j G2

j

, (44)

where the effective frequency of the bright mode follows
ω2

B,eff(�) = ω2 +∑
j �δω̃ j (�) cos(�τ ) + ��̃ j (�) sin(�τ )

with an effective decay rate of γB,eff(�) = γ +∑
j �̃ j (�) cos(�τ ) − δω̃ j (�) sin(�τ ). This can be even

further simplified in the case of identical coupling to the
cavity mode Gj = G and identical coupling to the feedback
force g( j)

cd = gcd. Here, we obtain for the bright and dark
modes the solutions

Q1 = ω{[
ω2

B,eff(�) − �2
]+ i�γB,eff(�)

} ∑
j

ζ j (�)√
N

, (45a)

Qk = ω

[(ω2 − �2) + i�γ ]

∑
j

αk jζ j (�), (45b)

where ω2
B,eff(�) = ω2 + N[�δω̃(�) cos(�τ ) + ��̃(�)

sin(�τ )] and γB,eff(�) = γ + N[�̃(�) cos(�τ ) − δω̃(�)
sin(�τ )]. For zero time delay the bright mode damping rate
γB,eff(�) = γ + N�̃(�) is N times larger than in the case of
an individual resonator mode, which can be seen from the
position spectra in Fig. 5(b).

The expressions in Eq. (45) show N uncoupled resonator
modes. Here, each mode can be treated independently and
following the procedure introduced in Sec. V B and here
exemplified for a delay of τ = 0 we obtain for the occupation
number of the bright and dark modes

1

2

(〈
Q2

1

〉+ 〈
P2

1

〉) ≈ 1

2

γ

γ + N�

(
n̄ + 1

2

)(
1 + ω

ω + Nδω

)
,

(46a)

1

2

(〈
Q2

k

〉+ 〈
P2

k

〉) =
(

n̄ + 1

2

)
, (46b)

showing that only the bright mode experiences cooling, but
this mode can reach a much lower occupation number in
comparison to the single-mode case, which is growing with
the number N of identical modes that are addressed [see
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FIG. 5. Multimode cooling for frequency-degenerate modes.
(a) The final occupation of the bright mode (stars) as a function
of mode number is presented and compared to the final occupation
of a single mode (dashed line) at τ = 0. We consider the case of
equal coupling to the cavity mode and equal coupling to the feedback
force. (b) The corresponding position spectra are presented and show
an increasing width and decreasing magnitude of the spectra with
increasing mode number (color bar). We have used the parameters
ω = 1, gcd = 0.6, κ = 4, ωfb = 4.5, n̄1 = 1 × 105, G = 0.2, and
γ = 4 × 10−5.

Fig. 5(a)]. Here, we have ignored the contributions from
feedback and radiation pressure noise, which show an effect
when the thermal noise term is small and increase with mode
number. This will be addressed in Sec. IX where we identify
the residual occupancy stemming from radiation pressure
readout noise as well as from feedback noise. In the case in
which couplings and frequencies vary, the bright mode, which
is addressed by the feedback mechanism and cooled directly,
couples with the dark modes and cools them indirectly, result-
ing in a sympathetic cooling process of the collective modes.
More details of the derivation are given in Appendix C.

VIII. ADJUSTABLE TIME DELAY

As in the single-mode case, a strategy can be devised to
improve the efficiency of cold damping with time delay by
counterintuitively further delaying the action of the feedback
loop. To this end we fix the condition cos ω jτ ≈ 1 by pro-
viding an additional time τadd such that τ = τinh + τadd. The
condition springs from the analytical results with Markovian
dynamics under the wFFLC or sFFLC approximations (and
with a regime of validity implying that τ < [max(� j )]−1 is
fulfilled for all modes). This demands that ω jτ ≈ 2πn j with
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FIG. 6. Multimode cooling with delay. (a) The sum of the fi-
nal occupations of two modes for different delays and frequency
differences between the two oscillator modes. The color bars give
the final occupation in logarithmic scale. Here, regions of instability
where either one or both modes are unstable are represented by white
empty regions. (b) The results for two and four modes following a
linear dispersion with δω being the frequency difference between two
neighboring modes are compared indicating an increase of the area of
instability for increasing mode number. We have used the parameters
ω1 = 1 with ωk+1 = ω1 + kδω, gcd = 0.6, κ = 4, ωfb = 4.5, n̄1 =
1 × 105 with n̄k = n̄1/ωk , where in (a) we chose G = 0.3, 0.2 and
γ = (4, 6) × 10−5, while in (b) we have used Gk = 0.2 + (k − 1) ×
0.1 and γk = [4 + 2(k − 1)] × 10−5. The time delays are in units of
ω−1

1 .

n j ∈ N. In the case in which all frequencies are multiples
of a common frequency ω this can be obtained by bringing
the total delay to fulfill τ = 2π/ω. In the general case this
is quite a difficult matter and for an increasing number of
modes can result in additional delay times τadd exceeding the
time regime where the wFFLC and sFFLC approximations are
valid, which even can be seen for a single mode presented
in Fig. 3(f) for very large delay times. From color maps as
presented in Fig. 6 showing the total energy of the system
it is possible to find regions with efficient cooling and avoid
instabilities. From Fig. 6(b) showing the total energy for two
or four modes we also see that that the region where one
or many modes are unstable increases for increasing mode
number. This results from the fact that many more constraints
differing between each mode have to be fulfilled simultane-
ously. Nevertheless, the condition min τ with ω jτ ≈ 2πn j can
be a good guide to find approximate solutions. Additionally
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one can employ various nonlinear optimization schemes to
obtain a minimum with suitable parameters.

IX. GROUND STATE COOLING: RESIDUAL OCCUPANCY

In the previous sections we have mainly focused on cases
where the thermal noise Sth dominates over the feedback and
radiation pressure noise terms. This is true when the initial
occupancy is large and the resulting feedback cooling rate
is not strong enough to lead to close to the ground state
final occupancy. Let us assume instead that γ n̄ � � and the
thermal noise can be almost completely attenuated via the
cold-damping cooling scheme. In such a case the final residual
occupancy is given by the extra heating terms stemming
from the cold-damping backaction as well as from radiation
pressure readout noise.

A. Single-mode ground state cooling

For a single mode, the full expression of the noise term in
Fourier space is given by

S(�) = Sth(�) + Sfb(�) + Srp(�) + Sfb-rp(�),

where the terms in Eq. (47) represent the thermal
noise Sth(�) ≈ γ (2n̄ + 1), feedback noise Sfb(�) =
�2ω2

fbg2
cd/[4κη(ω2

fb + �2)], radiation pressure noise
Srp(�) = κG2/(κ2 + �2), and the interference term
between the feedback and radiation pressure noise given
by Sfb-rp(�) = −�[γeff(�) − γ ]/ω. From the noise spectrum
we can obtain the effective population by convoluting it with
the proper effective susceptibility

neff =
∫ ∞

−∞

d�

4π

∣∣χ cd
eff

∣∣2S(�)

(
1 + �2

ω2

)
− 1

2

= γ

γeff(ω)

(
n̄ + 1

2

)(
1 + ω2

ω2
eff(ω)

)
+ nres, (47)

where nres describes the residual occupancy resulting from
the feedback and radiation pressure noise terms that form
a fundamental lower bound for ground state cooling. The
residual noise amounts to

nres = G2

4ω2
effγeff

[
κ − (κ2 − ω2)(κ + γeff )

(
ω2

eff + κ2 − κγeff
)

(
ω2

eff + κ2
)2 − γ 2

effκ
2

]

+ ω2
fbg2

cd

16κηω2
effγeff

[
ω2 +

(
ω2

eff + ω2
fb

)(
ω4

eff − ω2ω2
fb

)+ ωfb
(
ω2

fb − ω2
)
ω2

effγeff(
ω2

eff + ω2
fb

)2 − γ 2
effω

2
fb

]
− 1

2
. (48)

The resulting behavior is plotted in Fig. 7(a) as a function
of delay τ . Notice that the expression above is valid for
any τ as the effective resonance frequency and damping
rate are both including the time delay dependence. However,
simple analytical results can be identified in the regime where
κ, ωfb � ω, which we have named the sFFLC approximation.
In such a case we can approximate

nres ≈ 1

κγeff

(
1 + ω2

ω2
eff

)[
G2 + g2

cdω
2
eff

4η

]
− 1

2
+ ωfbg2

cd

16κη

= 1

2κ�

(
gcdω

2
√

η
− G

)2

+
(

g2
cdω

2

4η
− G2

)
(κ + ωfb)

4κ2ωfb

+1 − √
η

2
√

η
+ ωfbg2

cd

16κη
, (49)

where we have used the approximate expression for the cool-
ing rate � = ωgcdG/κ and the delay τ = 0. For unit efficiency
η = 1 the minimal residual occupancy is approximately given
by ωfbg2

cd/(16κ ) under the condition ωgcd = 2G.

B. Collective bright mode

Investigating the behavior of the bright mode in the case
of the N fully degenerate resonator modes, we obtain the full
noise term in Fourier space given by

SB,eff(�) = Sth(�) + N[Sfb(�) + Srp(�) + Sfb-rp(�)]

with full derivation presented in Appendix C. While the ther-
mal noise is independent of the number of modes, the residual
noise terms are N times larger. We show in Fig. 7(b) the
contribution of the residual noise terms on the final occupation
as a function of the number of modes for τ = 0 by numerically
integrating

nB,res =
∫ ∞

−∞

d�

4π

∣∣χ cd
B,eff

∣∣2[SB,eff(�) − Sth(�)]

(
1+ �2

ω2

)
− 1

2
.

(50)

The modified susceptibility function is characterized by the
increased damping rate N�, which shows the previously
derived conclusion that the thermal occupancy of the bright
mode decreases with N−1. However, with increasing N , the
Lorentzian profile of the mechanical effective susceptibility
is slightly shifted and its damping goes away from the simple
N� scaling, which means that the residual occupancy acquires
a slight N dependence that originates mostly from the feed-
back noise term. The full result is presented in Appendix C.
In the sFFLC approximation we obtain the expression

nB,res ≈ 1

2κ�

(
gcdω

2
√

η
− G

)2

+ 1 − √
η

2
√

η

+ N

[(
g2

cdω
2

4η
− G2

)
(κ + ωfb)

4κ2ωfb
+ ωfbg2

cd

16κη

]
, (51)
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FIG. 7. Residual occupancy. (a) The final residual occupancy
as a function of delay τ in units of ω−1 is presented. Here, we
have used the parameters ω1 = 1, gcd = 0.6, G = 0.2, κ = 4, and
ωfb = 4.5. (b) The final residual occupancy for the bright mode as
a function of the mode number for the parameters used in Fig. 5
with τ = 0 is given by the black stars. The condition ωgcd = 2G for
η = 1 minimizing the heating due to the residual noise is fulfilled for
gcd = 0.4, G = 0.2, which is represented by the gray stars.

which shows a linear dependence for the number of modes.
This dependence is shown in Fig. 7(b) as a linear one with
a slope strongly dependent on the ratio of G/gcd. The pre-
viously derived condition for optimal residual occupancy in
the single-mode case holds here, as well as the slope and
magnitude being minimal for ωgcd = 2G

√
η.

X. CONCLUSIONS

We have analytically and numerically shown that efficient
simultaneous cold damping of many mechanical resonances
is achievable as long as frequency degeneracy is avoided. Fur-
thermore, detrimental effects stemming from the feedback’s
intrinsically delayed response can be mitigated by introducing
an additional variable delay τadd that can be adjusted to
optimize the cooling efficiency. For example, for a sequence
of frequencies that are multiples of a common frequency ω,

efficient cooling is obtained again for a total delay of τ =
τinh + τadd = 2π/ω. Another approach to solve this problem
could be the implementation of a machine learning scheme
either to find preferable settings for the delay or by using a
machine learning procedure to provide for the full feedback
mechanism [18]. In the latter case the feedback would adjust
the phase to accommodate the delayed signal and minimize
the final temperature.

A main aspect of our treatment is the transformation to a
collective basis. In particular for a number of quasidegenerate
modes, a bright-dark mode analysis shows that the damping
can be N times faster while the occupancy is N times lower
for a suitable identified collective bright mode [as illustrated
in Fig. 5(a)]. This is a remarkable result in itself as it shows
that collective optomechanics can be employed to provide
more efficient cooling of an engineered collective mode. For
applications aiming instead at better sensing capabilities for
wider frequency intervals, the alternative, as also indicated
in Ref. [19], is to engineer mechanical resonators with a
dispersion relation close to linear such that mutual heating is
inhibited.

In terms of methods used, the time domain treatment has
been very successful in the case of zero delay [19], allowing
for fully analytical results for all mode occupancies. The
complication of nonzero time delay can be dealt with more
efficiently in the Fourier space where final occupancies for an
arbitrary number of modes and a large variety of cases can
be obtained exactly. Moreover, the effort is computationally
less costly for numerical simulations compared to a brute
force approach that involves solving the full set of stochastic
differential equations.

While our calculations have assumed a particular choice of
electronic feedback relevant to experiments in optomechanics
with mirrors, microtoroids, and levitated nanoparticles, the
formalism we have used is of much more general validity. In
particular, the Fourier domain analysis is general and it simply
requires the specific form of feedback in the final estimation of
the modified mechanical susceptibility. While there is a wide
variety of implementation based on feedback, optimization
via machine learning techniques [18] might provide an answer
to which one could provide an optimal cooling efficiency in
optomechanics.
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APPENDIX A: MULTIMODE COLD DAMPING: MARKOVIAN VERSUS NON-MARKOVIAN REGIMES

The equations of motion in the quantum mechanical treatment for cold damping with many resonator modes are given by

q̇ j = ω j p j, (A1a)
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ṗ j = −ω jq j − γ j p j + Gjx + ξ j −
∫ ∞

−∞
ds g(τ )

j (t − s)yest(s), (A1b)

ẋ = −κx +
√

2κxin, (A1c)

ẏ = −κy +
N∑

j=1

Gjq j +
√

2κyin. (A1d)

Here, we have kept the effective cavity detuning at � = 0. Further on, we eliminate the cavity field quadratures by formally
integrating their equations of motion to obtain

x(t ) =
√

2κ

∫ t

−∞
ds e−κ (t−s)xin(s), (A2a)

y(t ) =
∫ t

−∞
ds e−κ (t−s)

N∑
j=1

Gjq j (s) +
√

2κ

∫ t

−∞
ds e−κ (t−s)yin(s). (A2b)

With the intracavity phase quadrature expressed as yest = y − (yin +
√

η−1 − 1yv )/
√

2κ we can reduce the set of equations
in Eq. (A1) by two.

1. Non-Markovian dynamics

Terms proportional to the displacements q j as well as noise terms stemming from the cavity input noise yin(s) and noise from
the vacuum filled port yv are introduced by yest(s). We can first work out the terms coming from y by calculating

(
g(τ )

j ∗ y
) = g( j)

cd ωfb

∫ ∞

−∞
ds e−ωfb (t−s−τ )δ(t − s − τ )y(s) − g( j)

cd ω2
fb

∫ ∞

−∞
ds θ (t − s − τ )e−ωfb (t−s−τ )y(s)

=
∫ t−τ

−∞
ds

κe−κ (t−s−τ ) − ωfbe−ωfb (t−s−τ )

(κ − ωfb)

[
N∑

k=1

g( j)
cd ωfbGkqk (s) +

√
2κg( j)

cd ωfbyin(s)

]
. (A3)

We apply integration by parts to obtain a dependence with respect to pj , where we notice that the convolution above contains a
derivative of the following function:

hτ (t − s) = e−κ (t−s−τ ) − e−ωfb (t−s−τ )

ωfb − κ
. (A4)

With the relation q̇ j = ω j p j we obtain

(
g(τ )

j ∗ y
) =

N∑
k=1

g( j)
cd ωfbGkωk

∫ t−τ

−∞
ds hτ (t − s)pk (s) −

√
2κg( j)

cd ωfb

∫ t−τ

−∞
ds ∂shτ (t − s)yin(s). (A5)

Following these steps, we can now write in simplified notation the reduced set of equations of motion for the 2N resonator modes
quadratures:

q̇ j = ω j p j, (A6a)

ṗ j = −ω jq j −
∫ ∞

−∞
ds
[
γ jδ(t − s) + g( j)

cd ωfbGjω jθ (t − s − τ )hτ (t − s)
]

p j (s) −
∑
k �= j

g( j)
cd ωfbGkωk

∫ t−τ

−∞
ds hτ (t − s)pk (s)

+ξ j + ξfb + ξvac + ξrp. (A6b)

The three sources of noise are owed to the direct feedback action, the feedback-filtered vacuum action in the loss port, and
the intracavity radiation pressure effect:

ξfb = −g( j)
cd ωfb√

2κ

∫ ∞

−∞
ds φ

(τ )
1 (t − s)yin(s), (A7a)

ξvac = −g( j)
cd ωfb√

2κ

√
η−1 − 1

∫ ∞

−∞
ds φ

(τ )
2 (t − s)yv (s), (A7b)

ξrp =
√

2κGj

∫ ∞

−∞
ds φ3(t − s)xin(s), (A7c)
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with the following definitions for the convolution kernels:

φ
(τ )
1 (t ) = θ (t − τ )

[
ωfb(ωfb + κ )e−ωfb (t−τ ) − 2κ2e−κ (t−τ )

]/
(ωfb − κ ) − δ(t − τ ), (A8a)

φ
(τ )
2 (t ) = θ (t − τ )ωfbe−ωfb (t−τ ) − δ(t − τ ), (A8b)

φ3(t ) = θ (t )e−κt . (A8c)

2. The fast-feedback lossy-cavity approximations: Markovian dynamics

In the limit of a lossy cavity and relatively fast feedback with κ, ωfb � ω j for all j ∈ {1, . . . , n} where we can approximate
pj (s) ≈ Aj cos(ω js + φ j ) and q j (s) ≈ Aj sin(ω js + φ j ), we obtain an estimate to first order given by∫ t−τ

−∞
ds hτ (t − s)p j (s) ≈ Aj

∫ t

−∞
ds hτ (t − s) cos(ω js + φ j )

=
(

κ

κ2 + ω2
j

− ωfb

ω2
fb + ω2

j

)
p j (t − τ )

ωfb − κ
+
(

ω j

κ2 + ω2
j

− ω j

ω2
fb + ω2

j

)
q j (t − τ )

ωfb − κ

=
⎡
⎣

(
1 − ω2

k
κωfb

)
κωfb

(
1 + ω2

k
κ2

)(
1 + ω2

k

ω2
fb

)
⎤
⎦[p j (t ) cos(ω jτ ) + q j (t ) sin(ω jτ )]

+
⎡
⎣ ω j (ωfb + κ )

κ2ω2
fb

(
1 + ω2

k
κ2

)(
1 + ω2

k

ω2
fb

)
⎤
⎦[q j (t ) cos(ω jτ ) − p j (t ) sin(ω jτ )], (A9)

and we end up with a set of coupled linear differential equations for the mechanical-mode quadratures:

q̇ j = ω j p j, (A10a)

ṗ j = −[ω j + δω j j cos(ω jτ ) + � j j sin(ω jτ )]q j − [γ j + � j j cos(ω jτ ) − δω j j sin(ω jτ )]p j

−
∑
k �= j

[� jk sin(ωkτ ) + δω jk cos(ωkτ )]qk −
∑
k �= j

[� jk cos(ωkτ ) − δω jk sin(ωkτ )]pk + ξ j + ξfb + ξvac + ξrp. (A10b)

We refer to this as the weak fast-feedback lossy-cavity (wFFLC) approximation. Here, the rate terms are defined as

� jk = g( j)
cd Gkωkωfb

(
κωfb − ω2

k

)
(
κ2 + ω2

k

)(
ω2

fb + ω2
k

) (A11)

and the frequency shift terms are defined as

δω jk = g( j)
cd Gkωfbω

2
k (ωfb + κ )(

κ2 + ω2
k

)(
ω2

fb + ω2
k

) . (A12)

In the case in which κ, ωfb � ω j the rate terms converge to � jk = g( j)
cd Gkωk/κ and δω jk = 0 and we obtain the set of coupled

differential equations for the mechanical-mode quadratures:

q̇ j = ω j p j, (A13a)

ṗ j = −ω jq j − [γ j + � j j cos(ω jτ )]p j −
∑
k �= j

� jk sin(ωkτ )qk −
∑
k �= j

� jk cos(ωkτ )pk + ξ j + ξfb + ξvac + ξrp. (A13b)

We refer to this approximation for the dynamics formed by this conditions as the strong fast-feedback lossy-cavity (sFFLC)
approximation.

In the case in which we have N equal resonator modes with the same frequency ω and decay rate γ it is favorable to write

the equations of motions in the collective basis where Q1 = ∑
k α1kqk = (

√∑
l G2

l )−1 ∑
k Gkqk describes the bright mode while

the N − 1 dark modes are given by Q j = ∑
k α jkqk with

∑
k αikα jk = δi j and can be obtained via a Gram-Schmidt procedure.

Starting from the wFFLC the equation of motion for the bright mode results in

Q̇1 = ωP1, (A14a)

Ṗ1 = −
[
ω +

∑
k

δωkk cos(ωτ ) + �kk sin(ωτ )

]
Q1 −

[
γ +

∑
k

�kk cos(ωτ ) − δωkk sin(ωτ )

]
P1 +

∑
k

α1kζk, (A14b)
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where all noise terms have been gathered into a single term ζ j = ξ j + ξfb + ξvac + ξrp. The N − 1 dark modes are given by

Q̇ j = ωP j, (A15a)

Ṗ j = −ωQ j − γP j −
{∑

k

α jk

α1k
[δωkk cos(ωτ ) + �kk sin(ωτ )]

}
Q1 −

{∑
k

α jk

α1k
[�kk cos(ωτ ) − δωkk sin(ωτ )]

}
P1 +

∑
k

α jkζk .

(A15b)

By solving Eq. (A14) in the case in which the system approaches steady state we obtain

Q1(t ) =
∫ t

−∞
ds

ω√
ωBω − (

�B
2

)2
e− �B

2 (t−s) sin[
√

ωBω − (�B/2)2(t − s)]
∑

j

α1 jζ j (s) =
∫ t

−∞
ds �q(t − s)

∑
j

α1 jζ j (s), (A16a)

P1(t ) =
∫ t

−∞
ds

1√
ωBω − ( �B

2 )2

{√
ωBω − (�B/2)2e− �B

2 (t−s) cos[
√

ωBω − (�B/2)2(t − s)]

−�B

2
e− �B

2 (t−s) sin[
√

ωBω − (�B/2)2(t − s)]

}∑
j

α1 jζ j (s)

=
∫ t

−∞
ds �p(t − s)

∑
j

α1 jζ j (s), (A16b)

where ωB = ω +∑
k δωkk cos(ωτ ) + �kk sin(ωτ ) and �B = γ +∑

k �kk cos(ωτ ) − δωkk sin(ωτ ). This allows us to reduce the
expressions for the dark states to

Q̇ j = ωP j, (A17a)

Ṗ j = −ωQ j − γP j + � j, (A17b)

where the modified noise terms are given by

�l =
{∑

k

αlk

α1k
[δωkk cos(ωτ ) + �kk sin(ωτ )]

}∫ t

−∞
ds �q(t − s)

∑
j

α1 jζ j (s)

−
{∑

k

αlk

α1k
[�kk cos(ωτ ) − δωkk sin(ωτ )]

}∫ t

−∞
ds �p(t − s)

∑
j

α1 jζ j (s) +
∑

j

αl jζ j (t ). (A18)

3. Solving the Lyapunov equation

The set of differential equations presented in Eq. (A8a) can be cast into the form

v̇ = Mv + nin, (A19)

where we define v = (q1, p1, . . . , qN , pN )
 and nin = (0, ζ1, . . . , 0, ζN ). The general formal solution of this set of equations is
given by

v(t ) = eM(t−t0 )v(t0) +
∫ t

t0

ds eM(t−s)nin(s), (A20)

which allows us to obtain the correlation matrix of the resonator system,

V = 〈v(t )v
(t )〉 =
∫ t

t0

ds
∫ t

t0

ds′eM(t−s)〈nin(s)n

in(s′)〉eM
(t−s′ ). (A21)

Here, we have ignored the transient solution that will decay strongly at large timescales t . Regarding the noise correlation
term 〈nin(s)n


in(s′)〉 we can obtain 〈nin,i(s)nin, j (s′)〉 �= 0 only for components where i and j are both even numbers. For these
components we obtain the expressions

〈nin,2i(s)nin,2 j (s
′)〉 = 〈ζi(s)ζ j (s

′)〉

= 〈ξi(s)ξ j (s
′)〉 + g(i)

cdg( j)
cd ω2

fb

2κ

[〈(
φ

(τ )
1 ∗ yin

)
(s)
(
φ

(τ )
1 ∗ yin

)
(s′)

〉+ (η−1 − 1)
〈(
φ

(τ )
2 ∗ yv

)
(s)
(
φ

(τ )
2 ∗ yv

)
(s′)

〉]
+ 2κGiGj

〈(
φ3 ∗ xin)(s)

(
φ3 ∗ xin)(s′)

〉− g(i)
cdωfbGj

〈(
φ

(τ )
1 ∗ yin)(s)(φ3 ∗ xin)(s′)

〉
− g( j)

cd ωfbGi
〈
(φ3 ∗ xin )(s)

(
φ

(τ )
1 ∗ yin

)
(s′)

〉
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= (2n̄i + 1)γiδi jδ(s − s′) + g(i)
cdg( j)

cd ω2
fb

4κη

[
δ(s − s′) − ωfb

2
e−ωfb|s−s′ |

]
+ GiGj

κ

κ

2
e−κ|s−s′ |

+ ig(i)
cdGjωfbθ ((s − τ ) − s′)

(
ωfbe−ωfb[(s−τ )−s′] − κe−κ[(s−τ )−s′]

2(ωfb − κ )

)

− ig( j)
cd Giωfbθ ((s′ − τ ) − s)

(
ωfbe−ωfb[(s′−τ )−s] − κe−κ[(s′−τ )−s]

2(ωfb − κ )

)
, (A22a)

for i, j ∈ {1, . . . , N}. Here, the delay τ only emerges in the cross terms of the xin, yin correlations. For ωfb, κ � ω j, � j describing
the regime of the sFFLC, we can approximate δ(t ) ≈ (ωfb/2)e−ωfb|t | as well as δ(t ) ≈ (κ/2)e−κ|t | resulting in

〈ζi(s)ζ j (s
′)〉 ≈

[
(2n̄i + 1)γiδi j + GiGj

κ

]
δ(s − s′), (A23)

which exhibits no dependence on delay τ . For δ-correlated noise we can simplify the correlation matrix to

V =
∫ t

t0

ds eM(t−s)DineM
(t−s), (A24)

where Din,2i,2 j = (2n̄i + 1)γiδi j + GiGj/κ for even index numbers and is zero otherwise. The Lyapunov equation for the N-
oscillator system that determines the steady solution of the correlation matrix can be derived using integration by parts for

MV + V M
 =
∫ t

t0

ds MeM(t−s)DineM
(t−s) + V M
 = −eM(t−s)DineM
(t−s)
∣∣∣t
t0

− V M
 + V M
 = −Din. (A25)

Evaluating the individual components from the Lyapunov equation we obtain the set of equations in the sFFLC:

Yii = 0, (A26a)

ω jYi j + ωiYji = 0, (A26b)

(γi + �iici )Xii +
∑
j �=i

�i j s jYji +
∑
j �=i

�i jc jXi j − (2n̄i + 1)γi − G2
i

κ
= 0, (A26c)

ωiXii − (ωi + �iisi )Zii −
∑
j �=i

�i j s jZi j −
∑
j �=i

�i jc jYi j = 0, (A26d)

ωiXi j − (ω j + � j j s j )Zi j − (γ j + � j jc j )Yi j −
∑
k �= j

� jkskZik −
∑
k �= j

� jkckYik = 0, (A26e)

ω jXi j − (ωi + �iisi )Zi j − (γi + �iici )Yi j −
∑
k �=i

�ikskZ jk −
∑
k �=i

�ikckYjk = 0, (A26f)

−
(
ω2

i − ω2
j

)
ωi

Yi j − � jiciXii − �i jc jXj j −
∑
k �= j

�ikskYk j −
∑
k �=i

� jkskYki −
∑
k �= j

�ikckXjk −
∑
k �=i

� jkckXik + 2GiGj

κ
= 0, (A26g)

with Xi j = 〈pi p j + p j pi〉, Yi j = 〈qi p j + p jqi〉, and Zi j = 〈qiq j + q jqi〉. Additionally we define ci = cos(ω jτ ) and si = sin(ω jτ )
for simplification. In the case in which γ j � (g( j)

cd Gjω j )/κ , where � j j ≈ (g( j)
cd Gjω j )/κ and �i j = (g(i)

cd/g( j)
cd )� j j , we can simplify

the expression in Eq. (26f) to acquire the relation

−
(
ω2

i − ω2
j

)
ωi

Yi j −
(

g( j)
cd

g(i)
cd

)
(2n̄i + 1)γi −

(
g(i)

cd

g( j)
cd

)
(2n̄ j + 1)γ j −

(
g( j)

cd Gi − g(i)
cdGj

)2

κg(i)
cdgcd, j

= 0, (A27)

where we have defined

�i j :=
[(

g( j)
cd

g(i)
cd

)
(2n̄i + 1)γi +

(
g(i)

cd

g( j)
cd

)
(2n̄ j + 1)γ j + (g( j)

cd Gi − g(i)
cdGj )2

κg(i)
cdg( j)

cd

]
. (A28)

For τ = 0 we can get, with respect to the approximations introduced above, exact solutions for the final energies of each
mode as has been reported in [19] and is presented below:

1

2

(〈
p2

i

〉+ 〈
q2

i

〉) =
(

n̄i + 1

2

)
γi

�ii
+ G2

i

2�iiκ

+
∑
j �=i

⎡
⎣ �i j

2�ii

⎧⎨
⎩
(
ω2

i � j j + ω2
j�ii

)
�i j(

ω2
i − ω2

j

)2 +
∑
k �=i, j

1(
ω2

i − ω2
j

)
(

ω2
i � jk�ik(

ω2
i − ω2

k

) − ω2
j�ik� jk(

ω2
j − ω2

k

)
)⎫⎬
⎭+ �i j�i j

4
(
ω2

i − ω2
j

)
⎤
⎦
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≈ n̄i
γi

�ii
+ G2

i

2�iiκ
+
∑
j �=i

⎡
⎣�i j

�ii

⎧⎨
⎩
(
ω2

i � j j + ω2
j�ii

)[(
g( j)

cd

)2
n̄iγi + (

g(i)
cd

)2
n̄ jγ j

]
(
g(i)

cdg( j)
cd

)(
ω2

i − ω2
j

)2

+
∑
k �=i, j

1(
ω2

i − ω2
j

)
(

ω2
i � jk

[(
g(k)

cd

)2
n̄iγi + (

g(i)
cd

)2
n̄kγk

]
(g(i)

cdg(k)
cd )

(
ω2

i − ω2
k

) − ω2
j�ik

[(
g(k)

cd

)2
n̄ jγ j + (

g( j)
cd

)2
n̄kγk

]
(
g( j)

cd g(k)
cd

)(
ω2

j − ω2
k

)
)⎫⎬
⎭

+ �i j
[(

g( j)
cd

)2
n̄iγi + (

g(i)
cd

)2
n̄ jγ j

]
2(g(i)

cdg( j)
cd )
(
ω2

i − ω2
j

)
]
. (A29a)

For τ > 0 it is possible to obtain analytic solutions of Eqs. (A30) for a single and two oscillator modes.
The equations derived from the Lyapunov equation in the case of the wFFLC, where we have to work in the regime kBT �

h̄ω j where the thermal noise dominates since here the non-delta-like noise correlation terms can be ignored, are stated below:

Yii = 0, (A30a)

ω jYi j + ωiYji = 0, (A30b)

[γi + ��ii(τ )]Xii +
∑
j �=i

�ωi j (τ )Yji +
∑
j �=i

��i j (τ )Xi j − (2n̄i + 1)γi = 0, (A30c)

ωiXii − [ωi + �ωii(τ )]Zii −
∑
j �=i

�ωi j (τ )Zi j −
∑
j �=i

��i j (τ )Yi j = 0, (A30d)

ωiXi j − [ω j + �ω j j (τ )]Zi j − [γ j + �� j j (τ )]Yi j −
∑
k �= j

�ω jk (τ )Zik −
∑
k �= j

�� jk (τ )Yik = 0, (A30e)

ω jXi j − [ωi + �ωii(τ )]Zi j − [γi + ��ii(τ )]Yi j −
∑
k �=i

�ωik (τ )Zjk −
∑
k �=i

��ik (τ )Yjk = 0, (A30f)

−
(
ω2

i − ω2
j

)
ωi

Yi j −
∑
k �= j

�ωik (τ )Yk j −
∑
k �=i

�ω jk (τ )Yki −
∑

k

��ik (τ )Xjk −
∑

k

�� jk (τ )Xik = 0, (A30g)

with ��i j (τ ) = �i jc j − δωi j s j and �ωi j (τ ) = �i j s j + δωi jc j .

APPENDIX B: COOLING OF TWO ADJACENT MODES

In the sFFLC and under the approximation γ � � j j carried out in the drift matrix, we can find analytic solutions for two
modes. First we express the diagonal elements as

Xii = (2n̄i + 1)γi + G2
i

κ

�iici
+
(

�i j

�ii

)
s jω j

ci(ω2
j − ω2

i )
�i j −

(
�i j

�ii

)
c j

ci
Xi j, (B1a)

Zii = ωi

(ωi + �iisi )
Xii − �i j s j

(ωi + �iisi )
Zi j + �i jc jωi

(ωi + �iisi )(ω2
i − ω2

j )
�i j . (B1b)

This results in

ni,eff(τ ) = 1

4
(Xii + Zii )

=
[

(n̄i + 1/2)γi + G2
i

2κ

2�iici
+
(

�i j

4�ii

)
s jω j

ci
(
ω2

j − ω2
i

)�i j −
(

�i j

4�ii

)
c j

ci
Xi j

](
1 + ωi

(ωi + �iisi )

)

− �i j s j

4(ωi + �iisi )
Zi j + �i jc jωi

4(ωi + �iisi )
(
ω2

i − ω2
j

)�i j, (B2)
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for the final occupation of each mode. The off-diagonal elements X12 and Z12 are given by

X12 =
(

�21
�11

)
ω1t1

[
(2n̄1 + 1)γ1 + G2

1
κ

]
−
(

�12
�22

)
ω2t2

[
(2n̄2 + 1)γ2 + G2

2
κ

]
[
ω2

1 − ω2
2 + ω1�11s1 − ω2�22s2 + ω1�22t1c2 − ω2�11t2c1

]

− �12(
ω2

1 − ω2
2

)
[
�22t1s2ω1ω2 + �11t2s1ω1ω2 + �22c2ω

2
1 + �11c1ω

2
2

]
[
ω2

1 − ω2
2 + ω1�11s1 − ω2�22s2 + ω1�22t1c2 − ω2�11t2c1

] , (B3a)

Z12 =
K22

(
�21
�11

)
ω1t1

[
(2n̄1 + 1)γ1 + G2

1
κ

]
− K11

(
�12
�22

)
ω2t2

[
(2n̄2 + 1)γ2 + G2

2
κ

]
(ω1ω2 + ω1�22s2 + ω2�11s1)

[
ω2

1 − ω2
2 + ω1�11s1 − ω2�22s2 + ω1�22t1c2 − ω2�11t2c1

]

− �12(
ω2

1 − ω2
2

)
[
K22(�22t1s2ω1ω2 + �22c2ω

2
1 ) + K11(�11t2s1ω1ω2 + �11c1ω

2
2 )
]

(ω1ω2 + ω1�22s2 + ω2�11s1)
[
ω2

1 − ω2
2 + ω1�11s1 − ω2�22s2 + ω1�22t1c2 − ω2�11t2c1

] , (B3b)

where K22 = [(ω2 + �22s2)ω2 + ω2�11t2c1], K11 = [(ω1 + �11s1)ω1 + ω1�22t1c2], and t j = tan(ω jτ ).

APPENDIX C: ANALYSIS OF COOLING RATES IN THE FOURIER DOMAIN

Starting with the equations of motion from Eqs. (A1) a Fourier transformation defined as O(�) = (1/
√

2π )
∫∞
−∞ dte−i�t O(t )

will result in the set of coupled linear equations

i�qj (�) = ω j p j (�), (C1a)

i�p j (�) = −ω jq j (�) − γ j p j (�) + Gjx(�) − g(τ )
j (�)yest(�) + ξ j (�), (C1b)

i�x(�) = −κx(�) +
√

2κxin(�), (C1c)

i�y(�) = −κy(�) +
N∑

j=1

Gjq j (�) +
√

2κyin(�). (C1d)

Using yest(�) = y(�) − [yin(�) + √
(1/η) − 1yv (�)]/

√
2κ and Eq. (C1a), Eq. (C1c), and Eq. (C1d), we can rewrite

Eq. (C1b) to be

i

[(
�2 − ω2

j

)− iγ j� − g(0)
j (�)e−i�τω jG j

(i� + κ )

]
1

�
p j (�) −

∑
k �= j

ig(0)
j (�)Gkωke−i�τ

�(i� + κ )
pk (�) = ζ j (�), (C2)

where the driving noise term is given by

ζ j (�) = ξ j (�) + g(0)
j (�)(i� − κ )e−i�τ

√
2κ (i� + κ )

yin(�) +
√

η−1 − 1g(0)
j (�)e−i�τ

√
2κ

yv (�) +
√

2κGj

(i� + κ )
xin(�). (C3)

For high temperatures (kBT � h̄ω j) this can be approximated by ζ j (�) ≈ ξ j (�).
Using Eq. (C1a) we can rewrite Eq. (C2) with respect to the position, which is expressed by[(

ω2
j − �2

)+ iγ j� + g(0)
j (�)e−i�τω jG j

(i� + κ )

]
1

ω j
q j (�) +

∑
k �= j

g(0)
j (�)Gkωke−i�τ

ωk (i� + κ )
qk (�) = ζ j (�), (C4a)

N∑
k=1

(χ−1) jk (�)qk (�) = ζ j (�), (C4b)

where χ(�) describes the effective susceptibility matrix and we obtain q(�) = χ(�)ζ(�). For the momentum we can use the
relation p(�) = i�ω̂−1q(�) where ω̂i j = ωiδi j . We can calculate the oscillator position variance from the Fourier transform by

〈q(t )q
(t )〉 = 1

2π

∫ ∞

−∞

∫ ∞

−∞
d�d�′ei(�+�′ )t 〈q(�)q
(�′)〉,

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
d�d�′ei(�+�′ )tχ(�)〈ζ(�)ζ
(�′)〉χ
(�′). (C5)
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Here, we obtain for

〈ζ j (�)ζk (�′)〉 =
[

g(0)
j (�)g(0)

k (�′)(i� − κ )(i�′ − κ )e−i(�+�′ )τ

4κ (κ + i�)(κ + i�′)
+ (η−1 − 1)g(0)

j (�)g(0)
k (�′)e−i(�+�′ )τ

4κ
+ κGjGk

(κ + i�)(κ + i�′)

− ig(0)
j (�)(i� − κ )Gke−i�τ

2(κ + i�)(κ + i�′)
+ ig(0)

k (�′)(i�′ − κ )Gje−i�′τ

2(κ + i�)(κ + i�′)
+ γ j�

ω j
coth

(
h̄�

2kBT

)
δ jk

]
δ(� + �′), (C6)

following a delta distribution in Fourier space, which is typical for colored noise and which allows us to perform one integration,
resulting in

〈q(t )q
(t )〉 = 1

2π

∫ ∞

−∞
d�χ(�)S(�)χ†(�), (C7)

where χ−1(−�) = (χ−1)∗(�) and the full noise spectrum is given by

S jk (�) = γ j�

ω j
coth

(
h̄�

2kBT

)
δ jk + g(0)

j (�)g(0)
k (�)∗

4κη
+ κGjGk

(�2 + κ2)
+ ig(0)

j (�)Gke−i�τ

2(κ + i�)
− ig(0)

k (�)∗Gjei�τ

2(κ − i�)

≈ γ j (2n̄ j + 1)δ jk + g(0)
j (�)g(0)

k (�)∗

4κη
+ κGjGk

(�2 + κ2)
+ ig(0)

j (�)Gke−i�τ

2(κ + i�)
− ig(0)

k (�)∗Gjei�τ

2(κ − i�)
, (C8)

where the approximation is valid for reasonably high temperatures meaning kBT � h̄ω j . Here, we have kept the feed-
back response function g(0)

j (�) general. In the case where g(0)
j (�) = i�ωfbg( j)

cd /(ωfb + i�) the noise spectrum follows the
expression

Sjk (�) ≈ γ j (2n̄ j + 1)δ jk + �2ω2
fbg( j)

cd g(k)
cd

4κη(ω2
fb + �2)

+ κGjGk

(�2 + κ2)
− �

2

{(
�̃ jk (�)

ωk
+ �̃k j (�)

ω j

)
cos(�τ )

−
(

δω̃ jk (�)

ωk
+ δω̃k j (�)

ω j

)
sin(�τ ) − i

[(
δω̃ jk (�)

ωk
− δω̃k j (�)

ω j

)
cos(�τ ) +

(
�̃ jk (�)

ωk
− �̃k j (�)

ω j

)
sin(�τ )

]}
,

(C9)

with

δω̃ jk (�) = g( j)
cd Gkωkωfb�(ωfb + κ )(
κ2 + �2

)(
ω2

fb + �2
) , (C10a)

�̃ jk (�) = g( j)
cd Gkωkωfb(κωfb − �2)

(κ2 + �2)
(
ω2

fb + �2
) . (C10b)

For the oscillator momentum variance we obtain

〈p(t )p
(t )〉 = 1

2π

∫ ∞

−∞
d��2ω̂−1χ(�)S(�)χ†(�)ω̂−1, (C11)

which allows us to express the oscillator-energy matrix by

1

2
[〈q(t )q
(t )〉 + 〈p(t )p
(t )〉] = 1

2π

∫ ∞

−∞
d�

1

2
[χ(�)S(�)χ†(�) + �2ω̂−1χ(�)S(�)χ†(�)ω̂−1]. (C12)

The energies presented as occupations of the individual modes are located on the diagonal of the matrix and are given by

(neff ) j = 1

2π

∫ ∞

∞
d�

1

2

{
[χ(�)S(�)χ†(�)] j j

(
1 + �2

ω2
j

)}
. (C13)

For high temperatures where we can approximate Sjk (�) ≈ γ j (2n̄ j + 1)δ jk , meaning that the thermal noise is much larger than
the feedback and radiation pressure noise, we can simplify the expression above to

(neff ) j = 1

2π

∫ ∞

∞
d�

1

2

[
N∑

k=1

|χ jk (�)|2γk (2n̄k + 1)

(
1 + �2

ω2
j

)]

=
N∑

k=1

1

2π

∫ ∞

∞
d�

1

2

[
|adj[χ−1(�)] jk|2γk (2n̄k + 1)

| det[χ−1(�)]|2
(

1 + �2

ω2
j

)]
, (C14)
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where we have used that the susceptibility matrix can be derived by χ jk = det(χ−1)−1[adj(χ−1)] jk from its inverse, which is
expressed in Eqs. (C14).

1. Single mode

For a single mode we obtain

q(�) = ω[
ω2 − �2 + iγ� + g(0) (�)e−i�τ Gω

(i�+κ )

]ζ (�) = χ cd
eff(�)ζ (�), (C15)

and p(�) = i�q(�)/ω. The effective susceptibility takes a quasi-Lorentzian form

χ cd
eff = ω{[

ω2
eff(�) − �2

]− i�γeff(�)
} , (C16)

where we have the effective resonance and damping rates are frequency and time delay dependent,

ω2
eff(�) = ω2 + �δω̃(�) cos(�τ ) + ��̃(�) sin(�τ ), (C17a)

γeff(�) = γ + �̃(�) cos(�τ ) − δω̃(�) sin(�τ ). (C17b)

From the susceptibility we obtain the position fluctuation spectrum via

Sq(�) = ∣∣χ cd
eff(�)

∣∣2[Sth(�) + Srp(�) + Sfb(�) + Sfb-rp(�)], (C18)

with the radiation pressure noise term Srp(�) = G2κ/(κ2 + �2), the feedback noise Sfb(�) = |g(0)(�)|2/(4κη), the interference
between the feedback and the radiation pressure noise term Sfb-rp(�) = ig(0)(�)Ge−i�τ /[2(κ + i�)] − ig(0)(�)∗Gei�τ /[2(κ −
i�)], and the thermal noise Sth(�) ≈ γ (2n̄ + 1) for high temperature, which dominates the noise spectrum. From integration of
the fluctuation spectrum we obtain the position and momentum variances at steady state:

〈q2〉 =
∫ ∞

−∞

dω

2π
Sq(�), (C19a)

〈p2〉 =
∫ ∞

−∞

d�

2π

�2

ω2
Sq(�). (C19b)

For example we obtain the expression

〈p2〉 = γ

(
n̄ + 1

2

)∫ ∞

−∞
d�

�2/π

[ωeff(�)2 − �2]2 + �2γeff(�)2
≈ γ

(
n̄ + 1

2

)∫ ∞

0
d�

2/π

4[� − ωeff(�)]2 + γeff(�)2
, (C20)

where we have used [ωeff(�)2 − �2] ≈ 2�[� − ωeff(�)] given for the near-resonance approximation. Approximating ωeff(�) =
ωeff(ω) and γeff(�) = γeff(ω) we can perform the integration and we obtain

1

2
(〈q2〉 + 〈p2〉) = 1

2

(
n̄ + 1

2

)
γ

γeff(ω)

(
1 + ω2

ωeff(ω)2

)

= 1

2

γ (n̄ + 1/2)

γ + �̃(ω) cos(ωτ ) − δω̃(ω) sin(ωτ )

(
1 + ω

ω + δω̃(ω) cos(ωτ ) + �̃(ω) sin(ωτ )

)
, (C21)

forming the same result that we have got for the wFFLC-Markovian approximation.
First we want to investigate the behavior for a delay-induced phase shift ωτ = 2πm. A first glimpse of the delay dependence

can be obtained by looking at |χ cd
eff(�)|2. In the case in which τ = 0 we get the expression

∣∣χ cd
eff(�)

∣∣2 = ω2

{[ω2 + �δ�̃(�) − �2]2 + �2[γ + �̃(�)]2} , (C22)

while for multiples of 2π with respect to the phase given by τ = 2πm/ω we obtain

∣∣χ cd
eff(�)

∣∣2 = ω2

{[ω2 + �δ�̃(�) cos(αn) + ��̃(�) sin(αn) − �2]2 + �2[γ + �̃(�) cos(αn) − δω̃(�) sin(αn)]2} , (C23)

where αm = 2πm(�/ω). In the approximation where we set ωeff(ω) and γeff(ω) the phase is given by αm ≈ 2πm, this collapses
back to the expression given in Eq. (C22). This shows that the approximation employed to calculate the final occupancy in
Eq. (C21) is only valid for relatively small delay times τ .
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2. Two modes

For two modes we revisit the general equations Eq. (C14) for N modes, which by using the nomenclature from the previous
section can be cast into the form[

ω2
j,eff(�) − �2

]+ i�γ j,eff(�)

ω j
q j (�) +

∑
k �= j

(
g( j)

cd

g(k)
cd

)[
ω2

k,eff(�) − ω2
k

]+ i�[γk,eff(�) − γk]

ωk
qk (�) = ζ j (�), (C24a)

N∑
k=1

(χ−1) jk (�)qk (�) = ζ j (�), (C24b)

where we follow the corresponding definitions for ω2
j,eff(�) and γ j,eff(�) from the previous section. Since the susceptibility is

given by χ = det(χ−1)−1adj(χ−1) we obtain for two modes

χ(�) = 1

det(χ−1)

⎛
⎜⎝

[ω2
2,eff (�)−�2]+i�γ2,eff (�)

ω2
−
(

g(1)
cd

g(2)
cd

)
[ω2

2,eff (�)−ω2
2]+i�[γ2,eff (�)−γ2]

ω2

−
(

g(2)
cd

g(1)
cd

)
[ω2

1,eff (�)−ω2
1]+i�[γ1,eff (�)−γ1]

ω1

[ω2
1,eff (�)−�2]+i�γ1,eff (�)

ω1

⎞
⎟⎠, (C25)

where

det(χ−1) = 1

ω1ω2

({[
ω2

1,eff(�) − �2
]+ i�γ1,eff(�)

}{[
ω2

2,eff(�) − �2
]+ i�γ2,eff(�)

}
−{[ω2

1,eff(�) − ω2
1

]+ i�[γ1,eff(�) − γ1]
}{[

ω2
2,eff(�) − ω2

2

]+ i�[γ2,eff(�) − γ2]
})

. (C26)

To investigate Eq. (C4), which gives the result for the final occupation of each mode for high thermal noise, we evaluate the
terms

[χ(�)S(�)χ†(�)]11 = ω2
1

ω2
1ω

2
2| det[χ−1(�)]|2

(
γ1(2n̄1 + 1)

{[
ω2

2,eff(�) − �2]2 + �2γ2,eff(�)2}

+ γ2(2n̄2 + 1)

(
g(1)

cd

g(2)
cd

)2{[
ω2

2,eff(�) − ω2
2

]2 + �2[γ2,eff(�) − γ2]2
})

, (C27a)

[χ(�)S(�)χ†(�)]22 = ω2
2

ω2
1ω

2
2| det[χ−1(�)]|2

(
γ2(2n̄2 + 1)

{[
ω2

1,eff(�) − �2
]2 + �2γ1,eff(�)2

}

+γ1(2n̄1 + 1)

(
g(2)

cd

g(1)
cd

)2{[
ω2

1,eff(�) − ω2
1

]
2 + �2[γ1,eff(�) − γ1]2

})
, (C27b)

with

| det(χ−1(�)|2 = 1

ω2
1ω

2
2

[{
[ω2

1,eff(�) − �2]2 + �2γ1,eff(�)2
}{[

ω2
2,eff(�) − �2

]2 + �2γ2,eff(�)2
}

+ {[
ω2

1,eff(�) − ω2
1

]2 + �2[γ1,eff(�) − γ1]2
}{[

ω2
2,eff(�) − ω2

2

]2 + �2[γ2,eff(�) − γ2]2
}

+ 2
({[

ω2
1,eff(�) − �2

][
ω2

1,eff(�) − ω2
1

]+ �2γ1,eff(�)[γ1,eff(�) − γ1]
}

× {[
ω2

2,eff(�) − �2
][

ω2
2,eff(�) − ω2

2

]+ �2γ2,eff(�)[γ2,eff(�) − γ2]
}

− �2{γ1,eff(�)
(
�2 − ω2

1

)+ γ1
[
ω2

1,eff(�) − �2]}{γ2,eff(�)
(
�2 − ω2

2

)+ γ2
[
ω2

2,eff(�) − �2]})]. (C28)

These results can be reshaped into a more convenient form given by

[χ(�)S(�)χ†(�)]11 = ω2
1γ1(2n̄1 + 1){[

ω2
1,eff(�) − �2

]2 + �2γ1,eff(�)2
}
[1 − f (�)]

+
(

g(1)
cd

g(2)
cd

)2 {[
ω2

2,eff(�) − ω2
2

]2 + �2[γ2,eff(�) − γ2]2
}

{[
ω2

1,eff(�) − �2
]2 + �2γ1,eff(�)2

} ω2
1γ2(2n̄2 + 1){[

ω2
2,eff(�) − �2

]2 + �2γ2,eff(�)2
}
[1 − f (�)]

,

(C29a)
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[χ(�)S(�)χ†(�)]22 = ω2
2γ2(2n̄2 + 1){[

ω2
2,eff(�) − �2

]2 + �2γ2,eff(�)2
}
[1 − f (�)]

+
(

g(2)
cd

g(1)
cd

)2 {[
ω2

1,eff(�) − ω2
1

]2 + �2[γ1,eff(�) − γ1]2
}

{[
ω2

2,eff(�) − �2
]2 + �2γ2,eff(�)2

} ω2
2γ1(2n̄1 + 1){[

ω2
1,eff(�) − �2

]2 + �2γ1,eff(�)2
}
[1 − f (�)]

,

(C29b)

where the function f (�) is expressed by

f (�) =
{[

ω2
1,eff(�) − ω2

1

]2 + �2[γ1,eff(�) − γ1]2
}{[

ω2
2,eff(�) − ω2

2

]2 + �2[γ2,eff(�) − γ2]2
}

{[
ω2

1,eff(�) − �2
]2 + �2γ1,eff(�)2

}{[
ω2

2,eff(�) − �2
]2 + �2γ2,eff(�)2

}
−2Re

({[
ω2

1,eff(�) − ω2
1

]+ i�[γ1,eff(�) − γ1]
}{[

ω2
2,eff(�) − ω2

2

]+ i�[γ2,eff(�) − γ2]
}

{[
ω2

1,eff(�) − �2
]+ i�γ1,eff(�)

}{[
ω2

2,eff(�) − �2
]+ i�γ2,eff(�)

}
)

. (C30)

Without loss of generality, in the case in which ω1 � ω2 we see from Eq. (C29) that all terms harboring products of the resonance
terms [ω2

1,eff(�) − �2] + i�γ1,eff(�) and [ω2
2,eff(�) − �2] + i�γ2,eff(�) in the denominator become very small in comparison

to terms with single resonance terms in the denominator and can be neglected, and since also f (�) → 0 we obtain the limit of
independent solutions for each mode matching with the single-mode solutions.

A simple solution can be obtained in the case in which we have two identical oscillators with identical coupling. Here we can
uncouple the mode for the center-of-mass oscillation from the mode describing the relative motion. Here, we obtain

Q(�) = ω[
ω2

B,eff(�) − �2
]+ i�γB,eff(�)

(
ζ1(�) + ζ2(�)√

2

)
, (C31a)

δq(�) = ω

(ω2 − �2) + i�γ

(
ζ1(�) − ζ2(�)√

2

)
, (C31b)

where we have ω2
B,eff = ω2 + 2�δω̃(�) cos(�τ ) + 2��̃(�) sin(�τ ) and γB,eff = γ + 2�̃(�) cos(�τ ) − 2δω̃(�) sin(�τ ).

In the case in which kBT � h̄ω, where we can ignore the feedback and radiation pressure noise terms, we obtain
〈[ζ1(�) ± ζ2(�)][ζ1(�) ± ζ2(�)]〉/2 = 〈ζ1(�)ζ1(�)〉/2 + 〈ζ2(�)ζ2(�)〉/2 in both cases, resulting in the position spectra

SQ(�) = ω2γ (2n̄ + 1)[
ω2

B,eff(�) − �2
]2 + �2γ 2

B,eff(�)
, (C32a)

Sδq(�) = ω2γ (2n̄ + 1)

(ω2 − �2)2 + �2γ 2
. (C32b)

For the mode carrying the relative motion we can obtain the occupation by integration of

1

2
(〈δq2〉 + 〈δp2〉) = 1

2

∫ ∞

−∞

dω

2π
Sδq(�)

(
1 + �2

ω2

)
=
(

n̄ + 1

2

)
, (C33)

showing the occupation of an oscillator mode that is completely unaffected by the feedback. For the center-of-mass mode we
have to use the approximation introduced above, which results in

1

2
(〈Q2〉 + 〈P2〉) = 1

2

∫ ∞

−∞

dω

2π
SQ(�)

(
1 + �2

ω2

)

≈ 1

2

γ (n̄ + 1/2)

γ + 2[�̃(ω) cos(ωτ ) − δω̃(ω) sin(ωτ )]

(
1 + ω

ω + 2[δω̃(ω) cos(ωτ ) + �̃(ω) sin(ωτ )]

)
. (C34)

3. Many modes

For N-resonator modes it is far more difficult to obtain simple analytic solutions for arbitrary delay times τ . Nevertheless for
the collective basis in the Fourier domain we can obtain analytic expressions for the position spectrum of each collective mode
that upon integration can deliver steady state final occupations of the collective modes, and following retransformation we can
obtain the final occupation of each individual mode. By starting from the Fourier domain we obtain the equations[

ω2
j,eff(�) − �2

]+ i�γj,eff(�)

ω j
q j (�) +

∑
k �= j

(
g( j)

cd

g(k)
cd

)[
ω2

k,eff(�) − ω2
k

]+ i�[γk,eff(�) − γk]

ωk
qk (�) = ζ j (�), (C35a)
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(
ω2

j − �2
)+ i�γ j

ω j
q j (�) +

∑
k

(
g( j)

cd

g(k)
cd

)[
ω2

k,eff(�) − ω2
k

]+ i�[γk,eff(�) − γk]

ωk
qk (�) = ζ j (�), (C35b)

(
ω2

j − �2
)+ i�γ j

ω j
q j (�) + g( j)

cd �
{
δω̄(�)c + �̄(�)s + i[�̄(�)s − δω̄(�)s]

}∑
k

Gkqk (�) = ζ j (�), (C35c)

(
ω2

j − �2
)+ i�γ j

ω j
q j (�) + g( j)

cd �
{
δω̄(�)c + �̄(�)s + i[�̄(�)s − δω̄(�)s]

}√∑
l

G2
l Q1(�) = ζ j (�), (C35d)

where Q1(�) = (
√∑

l G2
l )−1 ∑

k Gkqk (�) is the position quadrature of the bright mode that is directly addressed by the feedback

mechanism and we have defined the terms δω̄ = ωfb�(κ + ωfb)/[(κ2 + �2)(ω2
fb + �2)], �̄(�) = ωfb(κωfb − �2)/[(κ2 +

�2)(ω2
fb + �2)] and c = cos(�τ ), s = sin(�τ ). The N − 1 additional collective dark modes of the resonator can be obtained

from a Gram-Schmidt procedure. In general we obtain Qj (�) = ∑
k α jkqk (�), which follows the rule

∑
j α

∗
k jαk′ j = δkk′ . By

forming a weighted sum with the weights Gjω j/{
√∑

l G2
l [(ω2

j − �2) + i�γ j]} over Eq. (C35d) we obtain

Q1(�) +
∑

j

[
ω2

j,eff(�) − ω2
j

]+ i�[γj,eff(�) − γ j][(
ω2

j − �2
)+ i�γ j

] Q1(�) =
∑

j

ω j[(
ω2

j − �2
)+ i�γ j

] Gjζ j (�)√∑
l G2

l

, (C36)

resulting in

Q1(�) =
∑

j

ω j{[
ω2

j,eff(�) − �2
]+ i�γj,eff(�) +∑

k �= j
{[ω2

k,eff (�)−ω2
k ]+i�[γk,eff (�)−γk ]}[(ω2

j −�2 )+i�γ j ]

[(ω2
k −�2 )+i�γk ]

} Gjζ j (�)√∑
k G2

k

. (C37)

By summing over the weights αk jω j/[(ω2
j − �2) + i�γ j] we obtain the relation

Qk (�) +
∑

j

αk j
{[

ω2
j,eff(�) − ω2

j

]+ i�[γj,eff(�) − γ j]
}

α1 j
[(

ω2
j − �2

)+ i�γ j
] Q1(�) =

∑
j

ω j[(
ω2

j − �2
)+ i�γ j

]αk jζ j (�), (C38)

which allows us to obtain the solutions for the dark modes Qk by injecting the solution for the bright mode from Eq. (C37). In
the case in which we have N degenerate modes of frequency ω and natural decay rate γ the solution for the bright mode can be
simplified to

Q1 = ω{[
ω2

B,eff(�) − �2
]+ i�γB,eff(�)

} ∑
j

G jζ j (�)√∑
j G2

j

, (C39)

with ω2
B,eff(�) = ω2 +∑

j �δω̃ j (�) cos(�τ ) + ��̃ j (�) sin(�τ ) and with an effective decay rate of γB,eff(�) = γ +∑
j �̃ j (�) cos(�τ ) − δω̃ j (�) sin(�τ ).

In case in which the coupling coefficients to the cavity mode Gk = G and the coupling coefficients to the feedback force g(k)
cd

are the same for each mode, we obtain

Q1 = ω{[
ω2

B,eff(�) − �2
]+ i�γB,eff(�)

} ∑
j

ζ j (�)√
N

, (C40a)

Qk = ω

[(ω2 − �2) + i�γ ]

∑
j

αk jζ j (�), (C40b)

with ω2
B,eff(�) = ω2 + N�δω̃(�) cos(�τ ) + N��̃(�) sin(�τ ) and γB,eff = γ + N�̃(�) cos(�τ ) − Nδω̃(�) sin(�τ ). For the

collective bright mode this results in

1

2

(〈
Q2

1

〉+ 〈
P2

1

〉) =
∫ ∞

−∞

dω

4π

(
1 + �2

ω2

)
ω2{[

ω2
B,eff(�) − �2

]2 + �2γB,eff(�)2
} 1

N

∑
j

∑
k

S jk (�)

=
∫ ∞

−∞

dω

4π

(
1 + �2

ω2

)
ω2{[

ω2
B,eff(�) − �2

]2 + �2γB,eff(�)2
}
(

γ (2n̄ + 1) + N

{
�2ω2

fbg2
cd

4κη
(
ω2

fb + �2
)

+ κG2

(�2 + κ2)
− �

ω
[γB,eff(�) − γ ]

})
. (C41)
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To obtain analytical results for the occupation of the bright mode considering all noise terms we can use the approximation

ω2{[
ω2

B,eff(�) − �2
]2 + �2γB,eff(�)2

} ≈ ω2{[
ω2

B,eff(ω) − �2
]2 + �2γB,eff(ω)2

} (C42)

for the susceptibility function, which gives us the expression

1

2

(〈
Q2

1

〉+ 〈
P2

1

〉) ≈
∫ ∞

−∞

dω

4π

(
1 + �2

ω2

)
ω2{[

ω2
B,eff(ω) − �2

]2 + �2γB,eff(ω)2
}
(

γ (2n̄ + 1) + N

{
�2ω2

fbg2
cd

4κη
(
ω2

fb + �2
)

+ κG2

(�2 + κ2)
− �

ω
[γB,eff(�) − γ ]

})

= 1

2

γ

γB,eff

(
n̄ + 1

2

)(
1 + ω2

ωB,eff

)
+ NG2

4ω2
B,effγB,eff

[
κ − (κ2 − ω2)(κ + γB,eff )

(
ω2

B,eff + κ2 − κγB,eff
)

(
ω2

B,eff + κ2
)2 − γ 2

B,effκ
2

]

+ Nω2
fbg2

cd

16κηω2
B,effγB,eff

[
ω2 +

(
ω2

B,eff + ω2
fb

)(
ω4

B,eff − ω2ω2
fb

)+ (
ω2

fb − ω2
)
ωfbω

2
B,effγB,eff(

ω2
B,eff + ω2

fb

)2 − γ 2
B,effω

2
fb

]
. (C43)

In the high-temperature limit and for a sufficiently low number of modes N we can ignore the feedback and radiation pressure
noise terms, which results in

1

2

(〈
Q2

1

〉+ 〈
P2

1

〉) ≈ 1

2

γ (n̄ + 1/2)

γ + N[�̃(ω) cos(ωτ ) − δω̃(ω) sin(ωτ )]

(
1 + ω

ω + N[δω̃(ω) cos(ωτ ) + �̃(ω) sin(ωτ )]

)
, (C44)

which for τ = 0 is given by

1

2

(〈
Q2

1

〉+ 〈
P2

1

〉) ≈ 1

2

γ

γ + N�

(
n̄ + 1

2

)(
1 + ω

ω + Nδω

)
. (C45)

Here, the (N − 1) collective modes representing the relative motion all have an unmodified occupation number that is
independent of τ and given by

1

2

(〈
Q2

j

〉+ 〈
P2

j

〉) =
(

n̄ + 1

2

)
, (C46)

where the index fulfills the condition j �= 1. This shows that only the bright mode is accessible to cooling with an effective
decay rate being N times larger than the decay rate for a single mode. This opens up an avenue for single-mode cooling where
an N times lower temperature can be reached for the collective bright mode in comparison to addressing one of the individual
identical modes.

In the case in which kBT ∼ ω where the feedback damping can approach the quantum limit we have to consider the
contribution from feedback and radiation pressure noise. Neglecting the thermal noise we obtain the residual occupation solely
created by the feedback and radiation pressure terms, which for τ = 0 can be approximated by

nB,res =
∫ ∞

0

dω

2π

(
1 + �2

ω2

)
ω2{[

ω2
B,eff(�) − �2

]2 + �2γB,eff(�)2
}N

(
�2ω2

fbg( j)
cd g(k)

cd

4κη
(
ω2

fb + �2
) + κGjGk

(�2 + κ2)

)
− 1

2

≈ NG2

4ω2
B,effγB,eff

[
κ − (κ2 − ω2)(κ + γB,eff )

(
ω2

B,eff + κ2 − κγB,eff
)

(
ω2

B,eff + κ2
)2 − γ 2

B,effκ
2

]

+ Nω2
fbg2

cd

16κηω2
B,effγB,eff

[
ω2 +

(
ω2

B,eff + ω2
fb

)(
ω4

B,eff − ω2ω2
fb

)+ (
ω2

fb − ω2
)
ωfbω

2
B,effγB,eff(

ω2
B,eff + ω2

fb

)2 − γ 2
B,effω

2
fb

]
− 1

2
, (C47)

where an additional dependence on N comes from the terms ωB,eff(ω)2 = ω2 + Nωδω̃(ω) and γB,eff(ω) = γ + N�̃(ω).

APPENDIX D: NUMERICAL INTEGRATION OF LANGEVIN EQUATIONS

We perform numerical Monte Carlo simulations for the equations of motion to test the results at steady state derived by solving
the Lyapunov equation or from working with the Fourier transform. Here, the initial conditions are obtained from a Boltzmann
distribution representing the initial thermal state. From the differential forms of the stochastic differential equations of motion
the numerical integration can be obtained. Here, we work in the high-temperature regime described by kBT � h̄ω j that allows
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us to treat the observables as classical variables where the commutation relations can be ignored. The set of differential forms is
given by

dq j = ω j p jdt, (D1a)

d p j = −ω jq jdt − γ j p jdt − (g j ∗ y)dt +√
(2n̄ j + 1)γ jdW (t ), (D1b)

dy = −κydt +
N∑

j=1

Gjq jdt, (D1c)

where dqj (t ) ≈ q j (t + dt ) − q j (t ), d p j (t ) ≈ p j (t + dt ) − p j (t ), and dy(t ) ≈ y(t + dt ) − y(t ). Here, dW (t ) describes an
infinitesimal Wiener increment that follows the condition dW 2 = dt and guarantees that the fluctuation dissipation theorem
is fulfilled [43]. Numerical stability for the integration is obtained by employing the Runge-Kutta fourth-order method (RK4).

APPENDIX E: APPROXIMATION ORDERS

Using the full equations of motion

q̇ j = ω j p j, (E1a)

ṗ j = −ω jq j − γ j p j −
∑

k

g( j)
cd ωfbGkωk

∫ t−τ

−∞
ds hτ (t − s)pk (s) + ζ j, (E1b)

where ζ j = ξ j + ξfb + ξvac + ξrp, we can obtain successive orders of approximation from integration by substitution and injecting
the equations of motion into the term

∫ t−τ

−∞ ds hτ (t − s)p j (s), which for example for a single injection results in∫ t−τ

−∞
ds hτ (t − s)p j (s) = 1

κωfb
p j (t − τ ) − 1

(ωfb − κ )

∫ t−τ

−∞
ds h(1)

τ (t − s) ṗ j (s) (E2)

= 1

κωfb
p j (t − τ ) + ω j (ωfb + κ )

κ2ω2
fb

q j (t − τ ) − ω2
j

(ωfb − κ )

∫ t−τ

−∞
ds h(2)

τ (t − s)p j (s)

+
∑

k

g( j)
cd ωfbGkωk

(ωfb − κ )

∫ t−τ

−∞
ds h(1)

τ (t − s)
∫ s−τ

−∞
ds′hτ (s − s′)pk (s′)− 1

(ωfb−κ )

∫ t−τ

−∞
ds h(1)

τ (t−s)ζ j (s),

(E3)

where h(l )
τ (t ) = (e−κ (t−τ )/κ l − e−ωfb (t−τ )/ωl

fb) and where we have omitted any term proportional to γ . By repeating this

procedure for the term − ω2
j

(ωfb−κ )

∫ t−τ

−∞ ds h(2)
τ (t − s)p j (s) infinitely many times we obtain for the first-order approximation∫ t−τ

−∞
ds hτ (t − s)p j (s) = κωfb − ω2

j(
κ2 + ω2

j

)(
ω2

fb + ω2
j

) p j (t − τ ) + ω j (ωfb + κ )(
κ2 + ω2

j

)(
ω2

fb + ω2
j

)q j (t − τ )

+
∑

k

g( j)
cd ωfbGkωk

(ωfb − κ )

∫ t−τ

−∞
ds

[
κe−κ (t−τ−s)(
κ2 + ω2

j

) − ωfbe−ωfb (t−τ−s)(
ω2

fb + ω2
j

)
] ∫ s−τ

−∞
ds′hτ (s − s′)pk (s′)

− 1

(ωfb − κ )

∫ t−τ

−∞
ds

[
κe−κ (t−τ−s)(
κ2 + ω2

j

) − ωfbe−ωfb (t−τ−s)(
ω2

fb + ω2
j

)
]
ζ j (s) (E4a)

≈ �̂ j p j (t − τ ) + δω̂ jq j (t − τ )

− 1

(ωfb − κ )

∫ t−τ

−∞
ds

[
κe−κ (t−τ−s)(
κ2 + ω2

j

) − ωfbe−ωfb (t−τ−s)(
ω2

fb + ω2
j

)
]
ζ j (s), (E4b)

where we have defined �̂ j = (κωfb − ω2
j )/[(κ2 + ω2

j )(ω2
fb + ω2

j )] and δω̂ j = ω j (ωfb + κ )/[(κ2 + ω2
j )(ω2

fb + ω2
j )]. Implement-

ing this into the equations of motion results in

q̇ j (t ) = ω j p j (t ), (E5a)

ṗ j (t ) = −ω jq j (t ) − γ j p j (t ) −
∑

k

[� jk pk (t − τ ) + δω jkqk (t − τ )] + ζ j (t )

+
∑

k

g( j)ωfbGkωk

(ωfb − κ )

∫ t−τ

−∞
ds

[
κe−κ (t−τ−s)(
κ2 + ω2

j

) − ωfbe−ωfb (t−τ−s)(
ω2

fb + ω2
j

)
]
ζk (s). (E5b)
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Following this strategy for the second-order approximation we obtain∫ t−τ

−∞
ds hτ (t − s)p j (s) ≈ �̂ j p j (t − τ ) + δω̂ jq j (t − τ ) − 1

(ωfb − κ )

∫ t−τ

−∞
ds

[
κe−κ (t−τ−s)(
κ2 + ω2

j

) − ωfbe−ωfb (t−τ−s)(
ω2

fb + ω2
j

)
]
ζ j (s)

+
∑

k

g( j)ωfbGkωk

(ωfb − κ )

[
�̂k

(
κ2(

κ2 + ω2
j

)(
κ2 + ω2

k

) − ω2
fb(

ω2
fb + ω2

j

)(
ω2

fb + ω2
k

)
)

− δω̂kωk

(
κ(

κ2 + ω2
j

)(
κ2 + ω2

k

) − ωfb(
ω2

fb + ω2
j

)(
ω2

fb + ω2
k

)
)]

pk (t − 2τ )

+
∑

k

g( j)ωfbGkωk

(ωfb − κ )

[
δω̂k

(
κ2(

κ2 + ω2
j

)(
κ2 + ω2

k

) − ω2
fb(

ω2
fb + ω2

j

)(
ω2

fb + ω2
k

)
)

+ �̂kωk

(
κ(

κ2 + ω2
j

)(
κ2 + ω2

k

) − ωfb(
ω2

fb + ω2
j

)(
ω2

fb + ω2
k

)
)]

qk (t − 2τ )

+
∑

k

δω̂k
g( j)ωfbGkωk

(ωfb − κ )

∫ t−τ

−∞
ds ωk

[
κe−κ (t−τ−s)(

κ2 + ω2
j

)(
κ2 + ω2

k

) − ωfbe−ωfb (t−τ−s)(
ω2

fb + ω2
j

)(
ω2

fb + ω2
k

)
]
ζk (s − τ )

−
∑

k

�̂k
g( j)ωfbGkωk

(ωfb − κ )

∫ t−τ

−∞
ds

[
κ2e−κ (t−τ−s)(

κ2 + ω2
j

)(
κ2 + ω2

k

) − ω2
fbe−ωfb (t−τ−s)(

ω2
fb + ω2

j

)(
ω2

fb + ω2
k

)
]
ζk (s − τ )

−
∑

k

g( j)ωfbGkωk

(ωfb − κ )2

∫ t−τ

−∞
ds

[
κe−κ (t−τ−s)(
κ2 + ω2

j

) − ωfbe−ωfb (t−τ−s)(
ω2

fb + ω2
j

)
]

×
∫ s−τ

−∞
ds′
[

κe−κ (s−τ−s′ )(
κ2 + ω2

k

) − ωfbe−ωfb (s−τ−s′ )(
ω2

fb + ω2
k

)
]
ζk (s′). (E6a)

This derivation suggests that proceeding with this approach will result in a system of differential equations that at each time
step t depends additionally on a series of former time steps located at t − nτ for all n ∈ N.
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