Max-Planck-Institut für Mathematik Bonn

On the spectrum of differential operators under Riemannian coverings
by

Panagiotis Polymerakis

Max-Planck-Institut für Mathematik
Preprint Series 2018 (14)

On the spectrum of differential operators under Riemannian coverings

Panagiotis Polymerakis

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Institut für Mathematik
Humboldt-Universität zu Berlin
Unter den Linden 6
10099 Berlin
Germany

On the spectrum of differential operators under Riemannian coverings

Panagiotis Polymerakis

Abstract

For a Riemannian covering $p: M_{2} \rightarrow M_{1}$, we compare the spectrum of an essentially self-adjoint differential operator D_{1} on a bundle $E_{1} \rightarrow M_{1}$ with the spectrum of its lift D_{2} on $p^{*} E_{1} \rightarrow M_{2}$. We prove that if the covering is infinite sheeted and amenable, then the spectrum of D_{1} is contained in the essential spectrum of any self-adjoint extension of D_{2}. We show that if the deck transformations group of the covering is infinite and D_{2} is essentially self-adjoint (or symmetric and bounded from below), then D_{2} (or the Friedrichs extension of D_{2}) does not have eigenvalues of finite multiplicity and in particular, its spectrum is essential. Moreover, we prove that if M_{1} is closed, then p is amenable if and only if it preserves the bottom of the spectrum of some/any Schrödinger operator, extending a result due to Brooks.

1 Introduction

A basic problem in Geometric Analysis is the investigation of relations between the geometry of a manifold and the spectrum of a differential operator on it. In this direction, it is natural to study the behavior of the spectrum under maps which respect the geometry of the manifolds. In this paper, we deal with this problem for Riemannian coverings.

Let $p: M_{2} \rightarrow M_{1}$ be a Riemannian covering of connected manifolds with (possibly empty) smooth boundary. A Schrödinger operator S_{1} on M_{1} is an operator of the form $S_{1}=\Delta+V$, where Δ is the (non-negative definite) Laplacian and $V: M_{1} \rightarrow \mathbb{R}$ is smooth and bounded from below. For such an operator S_{1} on M_{1}, its lift on M_{2} is the operator $S_{2}=\Delta+V \circ p$. The first results involving possibly infinite sheeted coverings and establishing connections between properties of the covering and the (Dirichlet) spectra of S_{1} and S_{2}, are related to the change of the bottom (that is, the minimum) of the spectrum and were proved by Brooks $[6,7]$. He showed that if the underlying manifold is complete, of finite topological type, without boundary and the covering is normal and amenable,

[^0]then the bottom of the spectrum of the Laplacian is preserved. Bérard and Castillon [4] extended this result by showing that if the covering is amenable and the underlying manifold is complete with finitely generated fundamental group and without boundary, then the bottom of the spectrum of any Schrödinger operator is preserved. Recently, it was proved in [2] that the bottom of the spectrum of a Schrödinger operator is preserved under amenable coverings, without any topological or geometric assumptions.

In this paper, we prove a global result about this problem in a more general context. Instead of comparing the bottoms of the spectra, we prove inclusion of spectra under some reasonable assumptions. Moreover, our context allows us to impose various boundary conditions on the operators (for instance, Dirichlet, Neumann, mixed and Robin), while the former results involve only Dirichlet conditions. Furthermore, our theorems are applicable to a broad class of differential operators, including Schrödinger operators with magnetic potential (that is, first order term), Dirac operators and Schrödinger (or Laplace-type) operators on vector bundles. It is worth to point out that the Hodge-Laplacian is a special case of the latter ones.

In order to simplify the statements of our results, we need to set up some notation. Consider a Riemannian or Hermitian vector bundle $E_{1} \rightarrow M_{1}$ endowed with a (not necessarily metric) connection ∇. Let D_{1} be a (not necessarily elliptic) differential operator of arbitrary order on E_{1}. We consider the pullback bundle $E_{2}:=p^{*} E_{1} \rightarrow M_{2}$ endowed with the corresponding metric and connection, and the lift D_{2} of D_{1}.

As the domain of D_{1} we consider the space of compactly supported smooth sections η, which (when M_{1} has non-empty boundary) satisfy a boundary condition of the form $a \nabla_{n} \eta+b \eta=0$, where n is the inward pointing normal to the boundary and a, b are functions on the boundary. The domain of D_{2} is the space of compactly supported smooth sections, which (when the boundary of M_{1} is non-empty) satisfy analogous boundary conditions to the sections in the domain of D_{1}. We consider the operators D_{i} restricted to the above domains as densely defined operators in $L^{2}\left(E_{i}\right), i=1,2$.

For sake of simplicity, we present here special versions of our main results involving self-adjoint operators. The results are stated for infinite sheeted coverings, since this is the interesting case of amenable coverings. However, we also prove the analogous results for finite sheeted coverings. Our first result provides inclusion of the spectrum $\sigma\left(\bar{D}_{1}\right)$ of the closure of D_{1}, as long as it is self-adjoint, in the essential spectrum $\sigma_{\text {ess }}\left(D_{2}^{\prime}\right)$ of any self-adjoint extension D_{2}^{\prime} of D_{2}.

Theorem 1.1. Assume that D_{1} is essentially self-adjoint and let D_{2}^{\prime} be a self-adjoint extension of D_{2}. If the covering is infinite sheeted and amenable, then $\sigma\left(\bar{D}_{1}\right) \subset \sigma_{\text {ess }}\left(D_{2}^{\prime}\right)$.

Recall that a Schrödinger operator on a complete manifold is essentially self-adjoint on the space of compactly supported smooth functions vanishing on the boundary (if it is non-empty). Therefore, in the context of Schrödinger operators, it follows that if the underlying manifold is complete and the covering is infinite sheeted and amenable, then the spectrum of S_{1} is contained in the essential spectrum of S_{2}.

An important case where the above theorem cannot be applied is that of Schrödinger operators on non-complete Riemannian manifolds. A Schrödinger operator on such a manifold does not have a unique self-adjoint extension, when restricted to the above domain, and we are interested in the spectrum of its Friedrichs extension. According to [2], if the covering is amenable, then the bottoms of the spectra of S_{1} and S_{2} coincide. The amenability is used only to establish $\lambda_{0}\left(S_{2}\right) \leq \lambda_{0}\left(S_{1}\right)$, since the inverse inequality holds for any covering, where λ_{0} stands for the bottom of the spectrum. This motivates us to establish the following theorem, which compares the bottom $\lambda_{0}\left(D_{1}^{(F)}\right)$ of the spectrum of the Friedrichs extension of D_{1} with the bottom $\lambda_{0}^{\text {ess }}\left(D_{2}^{(F)}\right)$ of the essential spectrum of the Friedrichs extension of D_{2}, when the operators are symmetric and bounded from below.

Theorem 1.2. Assume that D_{i} is symmetric and bounded from below, and denote by $D_{i}^{(F)}$ its Friedrichs extension, $i=1,2$. If the covering is infinite sheeted and amenable, then $\lambda_{0}^{\text {ess }}\left(D_{2}^{(F)}\right) \leq \lambda_{0}\left(D_{1}^{(F)}\right)$.

In particular, for Schrödinger operators, it follows that if the covering is infinite sheeted and amenable, then the bottom of the spectrum of S_{1} is equal to the bottom of the essential spectrum of S_{2}, without any topological or geometric assumptions.

The above results involve amenable coverings. However, the deck transformations group of a (possibly non-amenable) covering provides information about the group of isometries of the covering space. This motivates us to work in a more general context than Riemannian coverings and prove that under some symmetry assumptions, an essentially self-adjoint differential operator does not have eigenvalues of finite multiplicity and in particular, its spectrum is essential. Moreover, we show the analogous result for the Friedrichs extension of a symmetric and bounded from below differential operator. In the context of Riemannian coverings, we obtain the following immediate consequences.

Corollary 1.3. Assume that D_{2} is essentially self-adjoint. If the deck transformations group of the covering is infinite, then \bar{D}_{2} does not have eigenvalues of finite multiplicity and in particular, $\sigma\left(\bar{D}_{2}\right)=\sigma_{\text {ess }}\left(\bar{D}_{2}\right)$.

Corollary 1.4. Assume that D_{2} is symmetric and bounded from below, and denote by $D_{2}^{(F)}$ its Friedrichs extension. If the deck transformations group of the covering is infinite, then $D_{2}^{(F)}$ does not have eigenvalues of finite multiplicity and $\sigma\left(D_{2}^{(F)}\right)=\sigma_{\mathrm{ess}}\left(D_{2}^{(F)}\right)$.

For Schrödinger operators, it follows that if the deck transformations group of the covering is infinite, then the spectrum of S_{2} is essential, without any assumptions on the manifolds.

All the above results provide information about the spectra from properties of the covering (amenability or infinite deck transformations group). In the converse direction, Brooks [7] proved that if a normal Riemannian covering of a closed manifold (that is, compact without boundary) preserves the bottom of the spectrum of the Laplacian, then the covering is amenable. In this paper, we extend this result to Schrödinger operators
and to not necessarily normal coverings. In the following theorem, we denote by $h^{\text {ess }}(M)$ the supremum of the Cheeger's constants over complements of compact and smoothly bounded domains of M.

Theorem 1.5. Let $p: M_{2} \rightarrow M_{1}$ be a Riemannian covering with M_{1} closed. Then the following are equivalent:
(i) p is infinite sheeted and amenable,
(ii) $\sigma\left(S_{1}\right) \subset \sigma_{\text {ess }}\left(S_{2}\right)$ for some/any Schrödinger operator S_{1} on M_{1} and its lift S_{2},
(iii) $\lambda_{0}\left(S_{1}\right)=\lambda_{0}^{\text {ess }}\left(S_{2}\right)$ for some/any Schrödinger operator S_{1} on M_{1} and its lift S_{2},
(iv) $h^{\text {ess }}\left(M_{2}\right)=0$.

It is worth to point out that Brooks proved his theorem in a quite complicated way, relying heavily on geometric measure theory. Our proof of the above theorem is significantly simpler and avoids the use of geometric measure theory.

Furthermore, Brooks [6] proved that under some more general (but still quite restrictive) assumptions, if the bottom of the spectrum of the Laplacian is preserved, then the covering is amenable. In particular, these assumptions imply that the bottom of the spectrum of the Laplacian on M_{1} is not in the essential spectrum. Moreover, he provided examples demonstrating that without these conditions, the bottom of the spectrum of the Laplacian may be preserved even if the covering is non-amenable. This suggests that under some assumptions on the geometry and the spectrum of the Laplacian on M_{1}, the bottom of the spectrum is preserved under a weaker assumption than amenability of the covering. In this direction we prove the following result.

Corollary 1.6. Let $p: M_{2} \rightarrow M_{1}$ be a Riemannian covering with M_{1} complete. Let S_{1} be a Schrödinger operator on M_{1} with $\lambda_{0}\left(S_{1}\right) \in \sigma_{\text {ess }}\left(S_{1}\right)$, and S_{2} its lift on M_{2}. If there exists a compact $K \subset M_{1}$, such that the image of the fundamental group of any connected component of $M_{1} \backslash K$ in $\pi_{1}\left(M_{1}\right)$ is amenable, then $\lambda_{0}\left(S_{1}\right)=\lambda_{0}\left(S_{2}\right)$.

The paper is organized as follows: In Section 2, we give some preliminaries. In Sections 3 and 4, we present the construction which is used in order to prove Theorem 1.2 and a more general result (Theorem 4.1) than Theorem 1.1. The proofs are given in Section 4, where we also present the analogous results for finite sheeted coverings. In Section 5, we study manifolds with high symmetry and establish Corollaries 1.3 and 1.4. In Section 6, we present an alternative proof of Brooks' theorem [7], extending it to not necessarily normal Riemannian coverings. In Section 7, we introduce the notion of renormalized Schrödinger operators, which is used to prove Theorem 1.5. Moreover, in this section we establish Corollary 1.6 and we present a simple example demonstrating that the behavior of the bottom of the spectrum of the connection Laplacian under a covering depends on the corresponding metric connection. Therefore, a main point in our results is the independence from the vector bundles, the connections and the differential operators.

Acknowledgements. I would like to thank Werner Ballmann and Dorothee Schüth for some very enlightening discussions and helpful remarks. I am also grateful to the Max Planck Institute for Mathematics in Bonn for its support and hospitality.

2 Preliminaries

We first recall some basic facts from functional analysis. For more details, see [13]. Let $A: \mathcal{D}(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ be a closed (linear) operator on a separable Hilbert space \mathcal{H} over a field \mathbb{F}, where $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$. The spectrum of A is given by

$$
\sigma(A):=\{\lambda \in \mathbb{F}:(A-\lambda): \mathcal{D}(A) \rightarrow \mathcal{H} \text { not bijective }\} .
$$

The essential spectrum of A is defined as

$$
\sigma_{\mathrm{ess}}(A):=\{\lambda \in \mathbb{F}:(A-\lambda): \mathcal{D}(A) \rightarrow \mathcal{H} \text { not Fredholm }\} .
$$

Recall that an operator is called Fredholm if its kernel is finite dimensional and its range is closed and of finite codimension. The discrete spectrum of A is the complement of the essential spectrum in the spectrum of A, that is, $\sigma_{d}(A):=\sigma(A) \backslash \sigma_{\text {ess }}(A)$.

The approximate point spectrum of A, denoted by $\sigma_{\text {ap }}(A)$, is defined as the set of all $\lambda \in \mathbb{F}$, such that there exists $\left(v_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{D}(A)$ with $\left\|v_{k}\right\|=1$ and $(A-\lambda) v_{k} \rightarrow 0$ in \mathcal{H}. For $\lambda \in \mathbb{F}$, a Weyl sequence for A and λ is a sequence $\left(v_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{D}(A)$, such that $\left\|v_{k}\right\|=1$, $v_{k} \rightharpoonup 0$ and $(A-\lambda) v_{k} \rightarrow 0$ in \mathcal{H}, where " Δ " denotes the weak convergence in \mathcal{H}. The Weyl spectrum of A, denoted by $\sigma_{W}(A)$, is the set of all $\lambda \in \mathbb{F}$, such that there exists a Weyl sequence for A and λ.

The following proposition is the characterization of the spectrum of a self-adjoint operator as the set of approximate eigenvalues and the well-known Weyl's criterion for the essential spectrum.

Proposition 2.1. If A is self-adjoint, then $\sigma_{\mathrm{ap}}(A)=\sigma(A), \sigma_{W}(A)=\sigma_{\mathrm{ess}}(A)$ and $\sigma_{d}(A)$ consists of isolated eigenvalues of A of finite multiplicity.

Since we are interested in closures of operators, we need the following elementary lemma, characterizing the approximate point spectrum and the Weyl spectrum of the closure in terms of the initial operator.

Lemma 2.2. Assume that A is the closure of an operator $B: \mathcal{D}(B) \subset \mathcal{H} \rightarrow \mathcal{H}$ and consider $\lambda \in \mathbb{F}$. Then:
(i) $\lambda \in \sigma_{\mathrm{ap}}(A)$ if and only if there exists $\left(v_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{D}(B)$, such that $\left\|v_{k}\right\|=1$ and $(B-\lambda) v_{k} \rightarrow 0$ in \mathcal{H},
(ii) $\lambda \in \sigma_{W}(A)$ if and only if there exists $\left(v_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{D}(B)$, such that $\left\|v_{k}\right\|=1$, $v_{k} \rightharpoonup 0$ and $(B-\lambda) v_{k} \rightarrow 0$ in \mathcal{H}.

For an operator $B: \mathcal{D}(B) \subset \mathcal{H} \rightarrow \mathcal{H}$ and $v \in \mathcal{D}(B) \backslash\{0\}$, the Rayleigh quotient of v with respect to B is defined as

$$
\mathcal{R}_{B}(v):=\frac{\langle B v, v\rangle}{\|v\|^{2}} .
$$

If B is symmetric, then $\mathcal{R}_{B}(v) \in \mathbb{R}$, for any $v \in \mathcal{D}(B) \backslash\{0\}$, and B is bounded from below if the infimum of $\mathcal{R}_{B}(v)$, with $v \in \mathcal{D}(B) \backslash\{0\}$, is finite. In this case, this infimum is called the lower bound of B.

The spectrum of a self-adjoint operator A is contained in \mathbb{R} and the bottom (that is, the minimum) of the spectrum and the bottom of the essential spectrum of A are denoted by $\lambda_{0}(A)$ and $\lambda_{0}^{\text {ess }}(A)$, respectively. The following characterization of the bottom of the spectrum is due to Rayleigh.
Proposition 2.3. If $A: \mathcal{D}(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ is self-adjoint, then

$$
\lambda_{0}(A)=\inf _{v \in \mathcal{D}(A) \backslash\{0\}} \mathcal{R}_{A}(v) .
$$

If, in addition, A is the closure of an operator $B: \mathcal{D}(B) \subset \mathcal{H} \rightarrow \mathcal{H}$, then the bottom of the spectrum of A is given by

$$
\lambda_{0}(A)=\inf _{v \in \mathcal{D}(B) \backslash\{0\}} \mathcal{R}_{B}(v)
$$

Throughout the paper, manifolds are connected, with possibly empty, smooth and not necessarily connected boundary, unless otherwise stated. Let $p: M_{2} \rightarrow M_{1}$ be a Riemannian covering of m-dimensional manifolds, $E_{1} \rightarrow M_{1}$ a Riemannian or Hermitian vector bundle of rank ℓ and $D_{1}: \Gamma\left(E_{1}\right) \rightarrow \Gamma\left(E_{1}\right)$ a differential operator of order d. Consider the pullback bundle $E_{2}:=p^{*} E_{1}$ on $M_{2}, y \in M_{2}$ and set $x:=p(y)$. Let U_{2} be an open neighborhood of y, such that the restriction $\left.p\right|_{U_{2}}$ is an isometry onto its image U_{1}. The lift $D_{2}: \Gamma\left(E_{2}\right) \rightarrow \Gamma\left(E_{2}\right)$ of D_{1} is the differential operator defined by

$$
D_{2} \eta(z):=\left(\left.p\right|_{U_{2}}\right)^{*}\left(D_{1}\left(\left(\left.p\right|_{U_{2}} ^{-1}\right)^{*} \eta\right)(p(z))\right)
$$

for any $\eta \in \Gamma\left(E_{2}\right)$ and $z \in U_{2}$. Without loss of generality, we may assume that U_{1} is contained in a coordinate neighborhood and there exists a trivialization $\left.E_{1}\right|_{U_{1}} \rightarrow U_{1} \times \mathbb{F}^{\ell}$. With respect to this coordinate system and trivialization, D_{1} is expressed as

$$
\begin{equation*}
D_{1}=\sum_{|\alpha| \leq d} A^{\alpha} \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} \tag{1}
\end{equation*}
$$

where A^{α} are smooth maps defined on U_{1}, with values $\ell \times \ell$ matrices with entries in \mathbb{F}. Then, with respect to the lifted coordinate system and the corresponding trivialization $\left.E_{2}\right|_{U_{2}} \rightarrow U_{2} \times \mathbb{F}^{\ell}, D_{2}$ has the local expression

$$
D_{2}=\sum_{|\alpha| \leq d}\left(A^{\alpha} \circ p\right) \frac{\partial^{|\alpha|}}{\partial y^{\alpha}}
$$

Lemma 2.4. Let M be a Riemannian manifold, $E \rightarrow M$ a Riemannian or Hermitian vector bundle endowed with a connection ∇ and $D: \Gamma(E) \rightarrow \Gamma(E)$ a differential operator. If M has empty boundary, set $\mathcal{D}(D):=\Gamma_{c}(E)$. If M has non-empty boundary, let a, b be real or complex valued functions (depending on whether E is Riemannian or Hermitian) defined on ∂M, let n be the inward pointing normal to ∂M and consider

$$
\mathcal{D}(D):=\left\{\eta \in \Gamma_{c}(E): a \nabla_{n} \eta+b \eta=0 \text { on } \partial M\right\}
$$

Then the operator $D: \mathcal{D}(D) \subset L^{2}(E) \rightarrow L^{2}(E)$ is closable.
Proof: Consider the formal adjoint $D^{\text {ad }}$ of D, defined by

$$
\langle D \eta, \theta\rangle=\left\langle\eta, D^{\mathrm{ad}} \theta\right\rangle
$$

for all $\eta \in \mathcal{D}(D)$ and $\theta \in \Gamma_{c c}(E)$, where $\Gamma_{c c}(E)$ is the space of smooth sections, compactly supported in the interior of M. It is clear that the operator $D^{\text {ad }}: \Gamma_{c c}(E) \subset L^{2}(E) \rightarrow L^{2}(E)$ is densely defined and its adjoint satisfies $D \subset\left(D^{\text {ad }}\right)^{*}$. Since the adjoint is closed, it follows that D is closable.

A Schrödinger operator on a possibly non-connected Riemannian manifold M is an operator of the form $S:=\Delta+V$, where Δ is the Laplacian and $V: M \rightarrow \mathbb{R}$ is smooth and bounded from below. If M is complete and without boundary, then S is essentially self-adjoint on $C_{c}^{\infty}(M)$, that is, the closure of $S: C_{c}^{\infty}(M) \subset L^{2}(M) \rightarrow L^{2}(M)$ is selfadjoint. If M is complete with non-empty boundary, then S is essentially self-adjoint on $\left\{f \in C_{c}^{\infty}(M): f=0\right.$ on $\left.\partial M\right\}$. If M is non-complete, then S restricted to the above domain, does not have a unique self-adjoint extension, and we are interested in the Friedrichs extension of S. By abuse of notation, the spectrum and the essential spectrum of the above described self-adjoint operator are denoted by $\sigma(S)$ and $\sigma_{\text {ess }}(S)$, respectively, and their bottoms by $\lambda_{0}(S)$ and $\lambda_{0}^{\text {ess }}(S)$, respectively. These sets and quantities for the Laplacian on M are denoted by $\sigma(M), \sigma_{\text {ess }}(M)$ and $\lambda_{0}(M), \lambda_{0}^{\text {ess }}(M)$, respectively.

Let $p: M_{2} \rightarrow M_{1}$ be a Riemannian covering of complete manifolds without boundary. For $x \in M_{1}$ and $y \in p^{-1}(x)$, the fundamental domain of p centered at y is defined by

$$
D_{y}:=\left\{z \in M_{2}: d(z, y) \leq d\left(z, y^{\prime}\right) \text { for all } y^{\prime} \in p^{-1}(x)\right\} .
$$

Some basic properties of these fundamental domains are presented in [2]. It is clear that D_{y} is closed and M_{2} is the union of D_{y}, with $y \in p^{-1}(x)$. Moreover, ∂D_{y} and the cut locus $\operatorname{Cut}(x)$ of x are of measure zero and $p: D_{y} \backslash \partial D_{y} \rightarrow M_{1} \backslash C_{0}$ is an isometry, where C_{0} is a subset of $\operatorname{Cut}(x)$. The following two lemmas are proved in [2]. The lemma after these is proved similarly to Lemma 2.6. In these lemmas and in the sequel, we denote open and closed balls by B and C, respectively.

Lemma 2.5. If $K \subset B(x, r)$, then $p^{-1}(K) \cap D_{y} \subset B(y, r)$. In particular, if K is compact, then $p^{-1}(K) \cap D_{y}$ is compact.

Lemma 2.6. For any $r>0$, there exists $N(r) \in \mathbb{N}$, such that any $z \in M_{2}$ is contained in at most $N(r)$ of the balls $C(y, r)$, with $y \in p^{-1}(x)$.

Lemma 2.7. Consider the universal coverings $p_{i}: \tilde{M} \rightarrow M_{i}, i=1,2$. For any $r, r_{0}>0$, there exists $\tilde{N}\left(r, r_{0}\right) \in \mathbb{N}$, such that

$$
\#\left\{w \in p_{2}^{-1}(z): B\left(w, r_{0}\right) \cap C(u, r) \neq \emptyset\right\} \leq \tilde{N}\left(r, r_{0}\right)
$$

for all $u \in p_{1}^{-1}(x)$ and $z \in M_{2}$.
Finally, we recall the notions of amenable right action and amenable covering. For more details on amenable left actions, which are completely analogous to right actions, see [4, Section 2]. A right action of a countable group Γ on a countable set X is called amenable if there exists a Γ-invariant mean on $L^{\infty}(X)$. The following characterization is due to Følner.

Proposition 2.8. The right action of a countable group Γ on a non-empty, countable set X is amenable if and only if for any finite $G \subset \Gamma$ and $\varepsilon>0$, there exists a non-empty, finite $F \subset X$, such that

$$
\#(F \backslash F g)<\varepsilon \#(F),
$$

for all $g \in G$. Such a set F is called a Følner set for G and ε.
A countable group Γ is called amenable if the right action of Γ on itself is amenable. In this case, the right action of Γ on any countable set X is amenable. Moreover, it is clear that any right action on a non-empty, finite set is amenable.

A Riemannian covering $p: M_{2} \rightarrow M_{1}$ is called amenable if the right action of $\pi_{1}\left(M_{1}\right)$ on $\pi_{1}\left(M_{2}\right) \backslash \pi_{1}\left(M_{1}\right)$ (that is, the set of right cosets of $\pi_{1}\left(M_{2}\right)$ in $\pi_{1}\left(M_{1}\right)$, when considered as deck transformations groups of the universal coverings) is amenable. Clearly, a normal covering is amenable if and only if its deck transformations group is amenable. Furthermore, finite sheeted coverings are amenable.

The following criteria for amenability of groups are immediate consequences of the definition and Proposition 2.8.

Corollary 2.9. Any finitely generated group of subexponential growth is amenable.
Corollary 2.10. A countable group Γ is amenable if and only if any finitely generated subgroup of Γ is amenable

Corollary 2.11. Any countable solvable group is amenable.
Proof: From Corollaries 2.9 and 2.10, it follows that any countable abelian group is amenable. From the definition, it is clear that an extension of an amenable group by an amenable group is also amenable.

3 Coverings of manifolds with boundary

The aim of this section is to show the following proposition, according to which, any Riemannian covering of manifolds with boundary can be "extended" to a Riemannian covering of manifolds without boundary.

Proposition 3.1. Let M be a Riemannian manifold with non-empty boundary. Then there exists a Riemannian manifold N of the same dimension, without boundary and an isometric embedding $i: M \rightarrow N$, such that, after identifying M with $i(M)$, any Riemannian covering $p: M^{\prime} \rightarrow M$ can be extended to a Riemannian covering $p: N^{\prime} \rightarrow N$.

In order to prove this proposition, we need to establish some auxiliary lemmas.
Lemma 3.2. Let M be a Riemannian manifold with non-empty boundary. Then there exists a Riemannian manifold N of the same dimension, without boundary, an isometric embedding $i: M \rightarrow N$ and a strong deformation retraction of N onto $i(M)$.

Proof: Consider the space $\partial M \times[0,+\infty)$ and the map $\Psi: \partial M \rightarrow \partial M \times[0,+\infty)$, defined by $\Psi(x):=(x, 0)$. Then $N:=M \cup_{\Psi}(\partial M \times[0,+\infty))$ is a smooth manifold and there exists a smooth embedding $i: M \rightarrow N$. Therefore, M can be identified with $i(M)$. Since M is connected, so is N, and there exists a strong deformation retraction of N onto M, obtained by considering $F_{t}(x, r):=(x,(1-t) r)$ in the glued ends $\partial M \times[0,+\infty)$.

It remains to extend the Riemannian metric of M to a Riemannian metric of N. Any $x \in \partial M$ has an open neighborhood U_{x} in N, such that there exists a smooth frame field $\left\{e_{1}, \ldots, e_{m}\right\}$ in U_{x}, where m is the dimension of the manifolds. Let $g_{j k}:=\left\langle e_{j}, e_{k}\right\rangle$, $1 \leq j, k \leq m$, be the components of the Riemannian metric of M. Since they are smooth up to the boundary of M, they can be extended smoothly to a neighborhood of x. After passing to a smaller neighborhood of x if needed, we may assume that $g_{j k}$'s are smooth in U_{x} and their matrix is symmetric and positive definite at any point of U_{x}. Hence, they express a Riemannian metric in U_{x}.

Clearly, ∂M can be covered with such neighborhoods U_{x}. Consider the interior of M as an open subset of N endowed with its Riemannian metric and $N \backslash M$ with an arbitrary Riemannian metric. Combining these Riemannian metrics via a partition of unity subordinate to this open cover of N, gives rise to a Riemannian metric of N, which is an extension of the Riemannian metric of M.

Lemma 3.3. Let M be a Riemannian manifold with non-empty boundary. Consider N as in the previous lemma and identify M with $i(M)$. Let $q: \tilde{N} \rightarrow N$ be the universal covering of N. Then the restriction $q: q^{-1}(M) \rightarrow M$ is the universal covering of M.

Proof: Since there exists a strong deformation retraction of N onto M, every loop in N can be homotoped to a loop in M. This implies that for any $x \in M$ and $y_{1}, y_{2} \in q^{-1}(x)$, there exists a path in $q^{-1}(M)$ from y_{1} to y_{2}. Since M is connected, it follows that so is $q^{-1}(M)$ and the restriction $q: q^{-1}(M) \rightarrow M$ is a covering of (connected) manifolds.

Let $r_{M}: N \rightarrow M$ be a retraction. Then the $\operatorname{map} r_{M} \circ q: \tilde{N} \rightarrow M$ is continuous and $r_{M} \circ q=q$ in $q^{-1}(M)$. From the Lifting Theorem, it has a continuous lift $\tilde{r}_{M}: \tilde{N} \rightarrow q^{-1}(M)$, with $\tilde{r}_{M}\left(y_{0}\right)=y_{0}$, for some $y_{0} \in q^{-1}(M)$. Since $\left.\tilde{r}_{M}\right|_{q^{-1}(M)}$ is a deck transformation of the covering $q: q^{-1}(M) \rightarrow M$, it follows that $\tilde{r}_{M}: \tilde{N} \rightarrow q^{-1}(M)$ is a retraction. Since \tilde{N} is simply connected, this yields that so is $q^{-1}(M)$.
Proof of Proposition 3.1: Consider N and $q: \tilde{N} \rightarrow N$ as in the above lemmas, identify M with $i(M)$ and set $\tilde{M}:=q^{-1}(M)$. Denote by Γ_{N} and Γ_{M} the deck transformations groups of $q: \tilde{N} \rightarrow N$ and $q: \tilde{M} \rightarrow M$, respectively. It is clear that for $g \in \Gamma_{N}$, we have $\left.g\right|_{\tilde{M}} \in \Gamma_{M}$, and any $\gamma \in \Gamma_{M}$ has a unique extension $\gamma^{\prime} \in \Gamma_{N}$. For any Riemannian covering $p: M^{\prime} \rightarrow M$, there exists a subgroup $\Gamma \subset \Gamma_{M}$, such that $M^{\prime}=\tilde{M} / \Gamma$. For $\Gamma^{\prime}:=\left\{\gamma^{\prime} \in \Gamma_{N}: \gamma \in \Gamma\right\}$ and $N^{\prime}:=\tilde{N} / \Gamma^{\prime}$, the inclusion $\tilde{M} \hookrightarrow \tilde{N}$ descends to an isometric embedding $M^{\prime} \rightarrow N^{\prime}$, which completes the proof.

4 Spectrum of operators under amenable coverings

Throughout this section, we work in the following context, which is briefly described in the Introduction.

Let $p: M_{2} \rightarrow M_{1}$ be a Riemannian covering, $E_{1} \rightarrow M_{1}$ a Riemannian or Hermitian vector bundle endowed with a connection ∇ and $D_{1}: \Gamma\left(E_{1}\right) \rightarrow \Gamma\left(E_{1}\right)$ a differential operator on E_{1}. Let $E_{2} \rightarrow M_{2}$ be the pullback bundle, endowed with the corresponding metric and connection ∇, and $D_{2}: \Gamma\left(E_{2}\right) \rightarrow \Gamma\left(E_{2}\right)$ the lift of D_{1}. If M_{1} has empty boundary, we consider the space of compactly supported smooth sections of E_{i} as the domain of D_{i}, that is, $\mathcal{D}\left(D_{i}\right):=\Gamma_{c}\left(E_{i}\right), i=1,2$. If M_{1} has non-empty boundary, the domain of D_{i} is the space

$$
\mathcal{D}\left(D_{i}\right):=\left\{\eta \in \Gamma_{c}\left(E_{i}\right): a_{i} \nabla_{n_{i}} \eta+b_{i} \eta=0 \text { on } \partial M_{i}\right\}
$$

where n_{i} is the inward pointing normal to $\partial M_{i}, i=1,2, a_{1}, b_{1}$ are real or complex valued functions (depending on whether the bundles are Riemannian or Hermitian) on ∂M_{1}, and $a_{2}=a_{1} \circ p, b_{2}=b_{1} \circ p$. It is worth to point out that we do not impose any assumptions on a_{1} and b_{1}. When we refer to closability, symmetry or essential self-adjointness of D_{i}, we consider the operator $D_{i}: \mathcal{D}\left(D_{i}\right) \subset L^{2}\left(E_{i}\right) \rightarrow L^{2}\left(E_{i}\right), i=1,2$. From Lemma 2.4, the operator D_{i} is closable and we denote by \bar{D}_{i} its closure, $i=1,2$.

Our aim in this section is prove Theorem 1.2 and the following more general version of Theorem 1.1.

Theorem 4.1. Let D_{2}^{\prime} be a closed extension of D_{2}. If the covering is infinite sheeted and amenable, then $\sigma_{\text {ap }}\left(\bar{D}_{1}\right) \subset \sigma_{W}\left(D_{2}^{\prime}\right)$.

4.1 Partition of unity

In this subsection, we construct a special partition of unity, which is used in the sequel to obtain cut-off functions on M_{2}.

Consider the universal coverings $p_{i}: \tilde{M} \rightarrow M_{i}$ and denote by Γ_{i} the deck transformations group of $p_{i}, i=1,2$. If M_{1} has empty boundary, consider a Riemannian metric \mathfrak{h}, conformal to the original metric \mathfrak{g}, such that $\left(M_{1}, \mathfrak{h}\right)$ is complete. If M_{1} has non-empty boundary, consider a Riemannian manifold N_{1} containing M_{1}, as in Proposition 3.1, and a Riemannian metric \mathfrak{h}, conformal to the original metric \mathfrak{g}, such that $\left(N_{1}, \mathfrak{h}\right)$ is complete. From now on, geodesics are considered with respect to \mathfrak{h} and its lifts. We denote by $\operatorname{grad} f$ and $\operatorname{grad}_{\mathfrak{h}} f$ the gradient of a function f with respect to \mathfrak{g} and \mathfrak{h} (or their lifts), respectively. If M_{1} has empty boundary, distances are considered with respect to \mathfrak{h} or its lifts. In this case, we denote the open (respectively, closed) ball of radius r around a point z by $B(z, r)$ (respectively, $C(z, r)$). If M_{1} has non-empty boundary, the distance between two points is considered in $\left(N_{1}, \mathfrak{h}\right)$ or its corresponding covering space. In this case, $B(z, r)$ and $C(z, r)$ stand for the corresponding balls in M_{1}, M_{2} or \tilde{M}.

Consider $x \in M_{1}, u \in p_{1}^{-1}(x)$ and $r>0$ large enough, so that $B(u, r) \cap \partial \tilde{M} \neq \emptyset$, if M_{1} has non-empty boundary.

Lemma 4.2. There exists a non-negative $\psi_{u} \in C_{c}^{\infty}(\tilde{M})$, such that $\operatorname{supp} \psi_{u} \subset C(u, r+1)$ and $\psi_{u}=1$ in $C(u, r+1 / 2)$. Moreover, if M_{1} has non-empty boundary, ψ_{u} can be chosen such that $\operatorname{grad} \psi_{u}$ is tangential to $\partial \tilde{M}$.

Proof: It is clear that there exists a non-negative $\psi_{u}^{\prime} \in C_{c}^{\infty}(\tilde{M})$ with supp $\psi_{u}^{\prime} \subset C(u, r+1)$ and $\psi_{u}^{\prime}=1$ in $C(u, r+1 / 2)$. If M_{1} has empty boundary, this is the desired function. Otherwise, let $K:=\partial \tilde{M} \cap C(u, r+2)$ and denote by n the inward pointing normal to $\partial \tilde{M}$ with respect to the lift of \mathfrak{h}. Since K is compact, there exists $\varepsilon>0$, with $\varepsilon<1 / 8$, such that the map $\Phi: K \times[0,2 \varepsilon) \rightarrow \tilde{M}$, defined by $\Phi(x, t):=\exp _{x}(t n)$ is a diffeomorphism onto its image K_{ε}. Let $K_{1}:=\partial \tilde{M} \cap C(u, r+1 / 2+2 \varepsilon)$ and $K_{2}:=\partial \tilde{M} \cap C(u, r+1-2 \varepsilon)$. Clearly, there exists a non-negative $\tau \in C_{c}^{\infty}(\partial \tilde{M})$, with $\operatorname{supp} \tau \subset K_{2}$ and $\tau=1$ in K_{1}. Extend it to τ^{\prime} in K_{ε} by $\tau^{\prime}(\Phi(x, t)):=\tau(x)$, for all $(x, t) \in K \times[0,2 \varepsilon)$. Consider a smooth $f: \mathbb{R} \rightarrow \mathbb{R}$, with $0 \leq f \leq 1, f(x)=1$ for $x \leq \varepsilon$ and $f(x)=0$ for $x \geq 3 \varepsilon / 2$, and the function ν defined in K_{ε} by $\nu(\Phi(x, t))=f(t)$, for all $(x, t) \in K \times[0,2 \varepsilon)$. Extend ν by zero outside K_{ε} and set

$$
\psi_{u}:=\nu \tau^{\prime}+(1-\nu) \psi_{u}^{\prime} .
$$

Since $\operatorname{supp}\left(\nu \tau^{\prime}\right) \subset C(u, r+1), \operatorname{supp} \psi_{u}^{\prime} \subset C(u, r+1)$, it follows that supp $\psi_{u} \subset C(u, r+1)$. Since $\varepsilon<1 / 8$, the points where ν is not smooth are not in $C(u, r+1)$, which yields that $\psi_{u} \in C_{c}^{\infty}(M)$. Since $\psi_{u}^{\prime}=1$ in $C(u, r+1 / 2)$ and $\tau^{\prime}=1$ in $C(u, r+1 / 2) \cap K_{\varepsilon}$, it follows that $\psi_{u}=1$ in $C(u, r+1 / 2)$. In $\Phi(K \times[0, \varepsilon))$, which is a neighborhood of $\operatorname{supp} \psi_{u} \cap \partial \tilde{M}$, we have $\psi_{u}=\tau^{\prime}$. In particular, $\operatorname{grad}_{\mathfrak{h}} \psi_{u}$ is tangential to $\partial \tilde{M}$, and so is $\operatorname{grad} \psi_{u}$, since \mathfrak{g} and \mathfrak{h} are conformal.

Let ψ_{u} be a function as in the above lemma and for any $y \in p^{-1}(x)$, fix $u(y) \in p_{2}^{-1}(y)$ and $g(y) \in \Gamma_{1}$, such that $u(y)=g(y) u$. Consider the functions $\psi_{u(y)}:=\psi_{u} \circ g(y)^{-1}$ in M and ψ_{y} in M_{2} defined by

$$
\begin{equation*}
\psi_{y}(z):=\sum_{w \in p_{2}^{-1}(z)} \psi_{u(y)}(w) . \tag{2}
\end{equation*}
$$

It is clear that $\psi_{y} \in C_{c}^{\infty}\left(M_{2}\right), \operatorname{supp} \psi_{y} \subset C(y, r+1)$ and $\psi_{y} \geq 1$ in $C(y, r+1 / 2)$, for any $y \in p^{-1}(x)$. Moreover, if M_{1} has non-empty boundary, then $\operatorname{grad} \psi_{y}$ is tangential to ∂M_{2}, for all $y \in p^{-1}(x)$. From Lemma 2.6, there exists $N(r+2) \in \mathbb{N}$, such that for any $z \in M_{2}$, the ball $B(z, 1)$ intersects at most $N(r+2)$ of the supports of ψ_{y}, with $y \in p^{-1}(x)$. Therefore, $\sum_{y \in p^{-1}(x)} \psi_{y}$ is locally a finite sum and hence, well-defined and smooth.

If M_{1} is compact, we choose r large enough, so that $\sum_{y \in p^{-1}(x)} \psi_{y} \geq 1$ in M_{2}. In this case, set $\psi_{1}:=0$ in M_{2}. If M_{1} is non-compact, consider $f_{1} \in C_{c}^{\infty}\left(M_{1}\right)$ with $0 \leq f_{1} \leq 1$, $f_{1}=1$ in $C(x, r)$, supp $f_{1} \subset B(x, r+1 / 2)$, and let ψ_{1} be the lift of $1-f_{1}$ on M_{2}. Then $\psi_{1} \in C^{\infty}\left(M_{2}\right), \psi_{1} \geq 0$ in M_{2} and $\psi_{1}=0$ in $C(y, r)$, for all $y \in p^{-1}(x)$. Evidently, $\psi_{1}+\sum_{y \in p^{-1}(x)} \psi_{y} \geq 1$ in M_{2}.

Consider the smooth partition of unity consisting of the functions

$$
\begin{equation*}
\varphi_{1}:=\frac{\psi_{1}}{\psi_{1}+\sum_{y^{\prime} \in p^{-1}(x)} \psi_{y^{\prime}}} \text { and } \varphi_{y}:=\frac{\psi_{y}}{\psi_{1}+\sum_{y^{\prime} \in p^{-1}(x)} \psi_{y^{\prime}}} \tag{3}
\end{equation*}
$$

with $y \in p^{-1}(x)$.
Remark 4.3. It is clear that $\operatorname{supp} \varphi_{1}=\operatorname{supp} \psi_{1}, \operatorname{supp} \varphi_{y}=\operatorname{supp} \psi_{y}, \sum_{y^{\prime} \in p^{-1}(x)} \varphi_{y^{\prime}}=1 \mathrm{in}$ $C(y, r)$ and $\varphi_{y}>0$ in $C(y, r+1 / 2)$, for any $y \in p^{-1}(x)$. If M_{1} has non-empty boundary, then for any $y, y^{\prime} \in p^{-1}(x)$, we have that $\operatorname{grad} \psi_{y}$ is tangential to ∂M_{2} and $\psi_{1}=0$ in $B\left(y^{\prime}, r\right)$. This yields that $\operatorname{grad} \varphi_{y}$ is tangential to ∂M_{2} in $B\left(y^{\prime}, r\right)$, for all $y, y^{\prime} \in p^{-1}(x)$.

Let $\eta \in \mathcal{D}\left(D_{1}\right)$ and $\theta \in \Gamma\left(E_{2}\right)$ be the lift of η. Fix $x \in M_{1}, u \in p_{1}^{-1}(x)$ and $r>0$, such that supp $\eta \subset B(x, r)$. If M_{1} has non-empty boundary, we choose r large enough, so that $B(u, r) \cap \partial \tilde{M} \neq \emptyset$. Consider a partition of unity associated to x, u and r as in (3) and for a finite $P \subset p^{-1}(x)$, set $\chi:=\sum_{y \in P} \varphi_{y}$.

Remark 4.4. Since P is finite, it follows that $\chi \in C_{c}^{\infty}\left(M_{2}\right)$ and $\chi \theta \in \Gamma_{c}\left(E_{2}\right)$. Since $\operatorname{supp} \eta \subset B(x, r)$, we have that $\operatorname{supp} \theta$ is contained in the union of the balls $B(y, r)$, with $y \in p^{-1}(x)$. Therefore, if M_{1} has non-empty boundary, from Remark 4.3, $\chi \theta$ satisfies analogous boundary conditions to η, that is, $\chi \theta \in \mathcal{D}\left(D_{2}\right)$.

Proposition 4.5. There exists a constant C, independent from P, such that for any $z \in M_{2}$, we have $\left\|D_{2}(\chi \theta)(z)\right\| \leq C$.

Proof: Consider $\delta>0$, such that for any $x^{\prime} \in C(x, r+1)$, the ball $B\left(x^{\prime}, 2 \delta\right)$ is evenly covered and contained in a coordinate neighborhood, and $\left.E_{1}\right|_{B\left(x^{\prime}, 2 \delta\right)}$ is trivial. Let $x_{1}, \ldots, x_{k} \in C(x, r+1)$, such that the balls $B\left(x_{i}, \delta\right)$, with $1 \leq i \leq k$, cover $C(x, r+1)$. In any ball $B\left(x_{i}, 2 \delta\right), D_{1}$ has a local expression of the form (1), with A^{α} smooth. This yields that in $B\left(x_{i}, \delta\right), D_{1}$ is expressed in the form (1), with A^{α} smooth and bounded. For any such ball, we fix a coordinate system (which can be extended to the corresponding ball of radius 2δ) and a trivialization. Since $C(x, r+1)$ is covered by finitely many such balls, it follows that there exists $C_{1}>0$, such that in any of these balls, we have $\left\|A^{\alpha}\right\| \leq C_{1}$, for all multi-indices α of absolute value less or equal to the order d of D_{1}.

Since η is smooth and compactly supported in $B(x, r)$, there exists $C_{2}>0$, such that in any of these balls, denoting by $\left(\eta^{(1)}, \ldots, \eta^{(\ell)}\right)$ the local expression of η, we have that

$$
\left\|\frac{\partial^{|\alpha|}}{\partial x^{\alpha}}\left(\eta^{(1)}, \ldots, \eta^{(\ell)}\right)\right\| \leq C_{2}
$$

for all multi-indices α of absolute value less or equal to d, that is, we have uniform estimates up to order d for η (with respect to this system of trivializations). We lift these balls and the corresponding coordinate systems and trivializations to M_{2} and \tilde{M}. Similarly, if $\psi_{1} \neq 0$, we obtain uniform estimates up to order d for f_{1}, which yield uniform estimates up to order d for ψ_{1} (with respect to the lifted system on M_{2}).

Since ψ_{u} is smooth and compactly supported in $C(u, r+1)$, which intersects finitely many balls of the lifted system on \tilde{M}, there exist uniform estimates up to order d for ψ_{u}. Since $\psi_{u(y)}$ is a composition of ψ_{u} with an element of Γ_{1}, we obtain the same uniform estimates up to order d for $\psi_{u(y)}$, for all $u(y)$. Recall the definition of ψ_{y} in (2). Consider a ball $B\left(z^{\prime}, \delta\right)$ of the lifted system on M_{2}, which intersects supp ψ_{y}, and the corresponding coordinate system. It is clear that for any $w \in p_{2}^{-1}\left(z^{\prime}\right)$, the lifted system on \tilde{M} contains the ball $B(w, \delta)$ and the corresponding coordinate system. From Lemma 2.7, there exists $\tilde{N}(r+1, \delta) \in \mathbb{N}$, independent from y and z^{\prime}, such that at most $\tilde{N}(r+1, \delta)$ such balls intersect the support of $\psi_{u(y)}$. Since we have uniform estimates up to order d for $\psi_{u(y)}$, which are independent from $y \in p^{-1}(x)$, we obtain the same uniform estimates up to order d for ψ_{y}, for all $y \in p^{-1}(x)$. From Lemma 2.6, it follows that at most $N(r+1+\delta)$ of the supports of ψ_{y}, with $y \in p^{-1}(x)$, intersect the open ball $B(z, \delta)$, for any $z \in M_{2}$. This yields that there exist uniform estimates up to order d for $\psi_{1}+\sum_{y \in p^{-1}(x)} \psi_{y}$.

Recall the definition of φ_{y} in (3). Since the denominator is greater or equal to 1 and we have uniform estimates (independent from y) up to order d for the numerator and the denominator, we obtain the same uniform estimates up to order d for φ_{y}, for all $y \in p^{-1}(x)$. From Lemma 2.6, at most $N(r+1+\delta)$ of the supports of φ_{y}, with $y \in p^{-1}(x)$, intersect the ball $B(z, \delta)$, for any $z \in M_{2}$. Therefore, we obtain uniform estimates up to order d for χ, which are independent from P

Clearly, for $z \in \operatorname{supp}(\chi \theta)$, we have that $z \in B(y, r)$, for some $y \in p^{-1}(x)$, and in particular, z is contained in a ball of the system. With respect to the corresponding coordinate system and trivialization, denoting by $\left(\theta^{(1)}, \ldots, \theta^{(\ell)}\right)$ the local expression of θ, we have

$$
\begin{aligned}
\left\|D_{2}(\chi \theta)(z)\right\| & =\left\|\sum_{|\alpha| \leq d}\left(A^{\alpha} \circ p\right)(z) \frac{\partial^{|\alpha|}}{\partial y^{\alpha}}\left(\chi\left(\theta^{(1)}, \ldots, \theta^{(\ell)}\right)\right)(z)\right\| \\
& \leq \sum_{|\alpha| \leq d} C_{1}\left\|\frac{\partial^{|\alpha|}}{\partial y^{\alpha}}\left(\chi\left(\theta^{(1)}, \ldots, \theta^{(\ell)}\right)\right)(z)\right\| \\
& \leq C_{1} C_{2} C_{3} C(d, \ell)
\end{aligned}
$$

where C_{3} is the uniform bound up to order d for χ (which is independent from P) and $C(d, \ell)$ is a constant depending only on d and ℓ.

Corollary 4.6. There exists a constant C^{\prime}, independent from P, such that for any $z \in M_{2}$, we have $\left|\left\langle D_{2}(\chi \theta)(z),(\chi \theta)(z)\right\rangle\right| \leq C^{\prime}$.

Proof: Follows immediately from Proposition 4.5.

4.2 Amenable coverings

In this subsection we continue to work in the setting of the previous subsection, that is, we extend the covering $p: M_{2} \rightarrow M_{1}$ to a Riemannian covering $p: N_{2} \rightarrow N_{1}$ according to Proposition 3.1 (if needed) and consider conformal Riemannian metrics, such that the manifolds become complete. If M_{1} has empty boundary, for $x \in M_{1}$ and $y \in p^{-1}(x)$, we denote by D_{y} the fundamental domain of $p: M_{2} \rightarrow M_{1}$ centered at y, with respect to these conformal Riemannian metrics. If M_{1} has non-empty boundary, we denote by D_{y} the part of the fundamental domain of $p: N_{2} \rightarrow N_{1}$ that lies in M_{2}. Furthermore, volumes, integrals and L^{2}-norms are with respect to the original Riemannian metrics.

As in the previous subsection, consider the universal coverings $p_{i}: \tilde{M} \rightarrow M_{i}$, denote by Γ_{i} the deck transformations group of $p_{i}, i=1,2$, and fix $x \in M_{1}$ and $u \in p_{1}^{-1}(x)$. It is quite convenient to identify $\Gamma_{2} \backslash \Gamma_{1}$ with $p^{-1}(x)$, that is, $\Gamma_{2} \gamma$ is identified with $p_{2}(\gamma u)$, and study induced right action of Γ_{1} on $p^{-1}(x)$. Clearly, if $y=p_{2}(\gamma u)$, for some $\gamma \in \Gamma_{1}$, then $y \cdot g=p_{2}(\gamma g u)$, for any $g \in \Gamma_{1}$. It is worth to point out that p is amenable if and only if this right action of Γ_{1} on $p^{-1}(x)$ is amenable.

For $r>0$, consider the finite set

$$
G_{r}:=\left\{g \in \Gamma_{1}: d(u, g u)<r\right\}
$$

and the subgroup $\left\langle G_{r}\right\rangle$ of Γ_{1} generated by G_{r}. We are interested in the right action of $\left\langle G_{r}\right\rangle$ on $p^{-1}(x)$. The next remark is a simple description of the orbits of this action.

Remark 4.7. Let $y \in p^{-1}(x)$ and $g \in G_{r}$. Then there exists $\gamma \in \Gamma_{1}$, such that $y=p_{2}(\gamma u)$ and $y \cdot g=p_{2}(\gamma g u)$. Clearly, we have

$$
d(y, y \cdot g)=d\left(p_{2}(\gamma u), p_{2}(\gamma g u)\right) \leq d(\gamma u, \gamma g u)=d(u, g u)<r .
$$

Conversely, let $y_{1}, y_{2} \in p^{-1}(x)$ with $d\left(y_{1}, y_{2}\right)<r$. Then there exist $\gamma_{1}, \gamma_{2} \in \Gamma_{1}$, such that $y_{i}=p_{2}\left(\gamma_{i} u\right)$, for $i=1,2$, and there exists $\sigma \in \Gamma_{2}$, such that

$$
d\left(\sigma \gamma_{1} u, \gamma_{2} u\right)=d\left(p_{2}\left(\gamma_{1} u\right), p_{2}\left(\gamma_{2} u\right)\right)=d\left(y_{1}, y_{2}\right)<r
$$

This yields that $\gamma_{1}^{-1} \sigma^{-1} \gamma_{2}=: g \in G_{r}$. It follows that $\Gamma_{2} \gamma_{2}=\Gamma_{2} \gamma_{1} g$, that is, $y_{2}=y_{1} \cdot g$.
Hence, two points $z_{1}, z_{2} \in p^{-1}(x)$ are in the same orbit of the action of $\left\langle G_{r}\right\rangle$ on $p^{-1}(x)$ if and only if there exist $k \in \mathbb{N}$ and $y_{1}, \ldots, y_{k} \in p^{-1}(x)$, such that $y_{1}=z_{1}, y_{k}=z_{2}$ and $d\left(y_{i}, y_{i+1}\right)<r$, for $i=1, \ldots, k-1$.

Lemma 4.8. If $p: M_{2} \rightarrow M_{1}$ is infinite sheeted, then there exists $R>0$, such that one of the following holds:
(i) either for any $r \geq R$, the action of $\left\langle G_{r}\right\rangle$ on $p^{-1}(x)$ has only infinite orbits, (ii) or for any $r \geq R$, the action of $\left\langle G_{r}\right\rangle$ on $p^{-1}(x)$ has infinitely many finite orbits.

Proof: Assume to the contrary that the statement does not hold. Then there exists $r_{0}>0$, such that the action of $\left\langle G_{r_{0}}\right\rangle$ on $p^{-1}(x)$ has only finitely many finite orbits $\mathcal{O}_{1}, \ldots, \mathcal{O}_{k}$, for some $k \in \mathbb{N}$. Since p is infinite sheeted, there exists also an infinite orbit \mathcal{O}. Since the action of Γ_{1} on $p^{-1}(x)$ is transitive, for $y_{i} \in \mathcal{O}_{i}$, there exists $g_{i} \in \Gamma_{1}$, such that $y_{i} \cdot g_{i} \in \mathcal{O}$, for $i=1, \ldots, k$. Then there exists $R>0$, such that $G_{r_{0}} \cup\left\{g_{1}, \ldots, g_{k}\right\} \subset G_{R}$ and the action of $\left\langle G_{R}\right\rangle$ on $p^{-1}(x)$ has only infinite orbits. It is clear that so does the action of $\left\langle G_{r}\right\rangle$ on $p^{-1}(x)$, for any $r \geq R$, which is a contradiction.

Let $r>0$ large enough, so that $B(u, r) \cap \partial \tilde{M} \neq \emptyset$, if M_{1} has non-empty boundary. If p is infinite sheeted, we choose $r \geq R$, where R is the constant from Lemma 4.8. Consider a partition of unity consisting of the functions φ_{1} and φ_{y}, with $y \in p^{-1}(x)$, associated to x, u and r as in (3). For a finite $P \subset p^{-1}(x)$, let $\chi:=\sum_{y \in P} \varphi_{y}$ and consider the sets

$$
\begin{align*}
Q_{+} & :=\left\{y \in p^{-1}(x): \chi=1 \text { in } B(y, r)\right\} \\
Q_{-} & :=\left\{y \in p^{-1}(x): 0<\chi(z)<1 \text { for some } z \in B(y, r)\right\} \tag{4}\\
Q & :=Q_{+} \cup Q_{-}=\left\{y \in p^{-1}(x): \chi(z) \neq 0 \text { for some } z \in B(y, r)\right\} .
\end{align*}
$$

Clearly, $\chi=0$ in $B(y, r)$, for any $y \in p^{-1}(x) \backslash Q$. Since χ is compactly supported, it follows that Q is finite. The proof of the following lemma is essentially presented in [2], but since we are in a different situation here, we repeat it.

Lemma 4.9. If p is amenable, then for any $\varepsilon>0$, there exists a non-empty, finite $P \subset p^{-1}(x)$, such that

$$
\frac{\#\left(Q_{-}\right)}{\#\left(Q_{+}\right)}<\varepsilon .
$$

Proof: From Proposition 2.8, since p is amenable, for any $\delta>0$, there exists a non-empty, finite $P \subset p^{-1}(x)$, such that

$$
\#(P \backslash P g)<\delta \#(P)
$$

for all $g \in G_{2 r+2}$. From Remark 4.3, we have that $\operatorname{supp} \varphi_{y_{0}} \subset C\left(y_{0}, r+1\right), \varphi_{y_{0}}>0$ in $B\left(y_{0}, r+1 / 2\right)$ and $\sum_{y \in p^{-1}(x)} \varphi_{y}=1$ in $B\left(y_{0}, r\right)$, for any $y_{0} \in p^{-1}(x)$. Clearly, P is contained in Q, which implies that $\#(P) \leq \#(Q)$.

For $y \in Q_{-}$, there exists $z \in B(y, r)$, such that $0<\chi(z)<1$. Therefore, there exist $y_{1} \in P$ and $y_{2} \in p^{-1}(x) \backslash P$, such that $\varphi_{y_{i}}(z)>0$, which yields that $d\left(y_{i}, z\right)<r+1$, for $i=1,2$. It follows that $d\left(y_{1}, y_{2}\right)<2 r+2$ and from Remark 4.7, there exists $g \in G_{2 r+2}$, such that $y_{1}=y_{2} \cdot g$. In particular, $y_{1} \in P \backslash P g$. Since $d\left(y, y_{1}\right)<2 r+1$, from Lemma 2.6 , for a fixed y_{1}, there exist at most $N(2 r+1)$ such y. Since $y_{1} \in P \backslash P g$, for some $g \in G_{2 r+2}$, there exist at most $\delta \#(P) \#\left(G_{2 r+2}\right)$ such y_{1}. Hence, it follows that

$$
\#\left(Q_{-}\right) \leq \delta \#(P) \#\left(G_{2 r+2}\right) N(2 r+1) \leq \delta \#(Q) \#\left(G_{2 r+2}\right) N(2 r+1)
$$

Since Q is the disjoint union of Q_{+}and Q_{-}, for $\delta \#\left(G_{2 r+2}\right) N(2 r+1)<1$, we have

$$
\frac{\#\left(Q_{-}\right)}{\#\left(Q_{+}\right)} \leq \frac{\delta \#\left(G_{2 r+2}\right) N(2 r+1)}{1-\delta \#\left(G_{2 r+2}\right) N(2 r+1)}
$$

This completes the proof, since $\delta>0$ is arbitrarily small.
Proposition 4.10. If $p: M_{2} \rightarrow M_{1}$ is infinite sheeted and amenable, then for any $\varepsilon>0$ and $K \subset M_{2}$ compact, there exists a non-empty, finite $P \subset p^{-1}(x)$, such that $\operatorname{supp} \chi$ does not intersect K and

$$
\frac{\#\left(Q_{-}\right)}{\#\left(Q_{+}\right)}<\varepsilon
$$

Proof: First assume that the second statement of Lemma 4.8 holds. Then the action of $\left\langle G_{2 r+2}\right\rangle$ on $p^{-1}(x)$ has infinitely many finite orbits \mathcal{O}_{n}, with $n \in \mathbb{N}$. Clearly, for $P:=\mathcal{O}_{n}$, we have that Q_{-}is empty. Indeed, if there exists $y_{0} \in Q_{-}$, then there exist $z \in B\left(y_{0}, r\right)$, $y_{1} \in P$ and $y_{2} \in p^{-1}(x) \backslash P$, such that $\varphi_{y_{i}}(z)>0, i=1,2$. It follows that $d\left(z, y_{i}\right)<r+1$, $i=1,2$, which yields that $d\left(y_{1}, y_{2}\right)<2 r+2$. From Remark 4.7, there exists $g \in G_{2 r+2}$, such that $y_{2}=y_{1} \cdot g$, which is a contradiction, since P is an orbit of the action of $\left\langle G_{2 r+2}\right\rangle$ on $p^{-1}(x)$.

For a compact $K \subset M_{2}$, the set $P_{K}:=p^{-1}(x) \cap B(K, r+2)$ is finite and in particular, intersects only finitely many orbits \mathcal{O}_{n}. Let P be an orbit that does not intersect P_{K}. Since $\operatorname{supp} \varphi_{y} \subset C(y, r+1)$, for any $y \in p^{-1}(x)$, it is clear that for such P, the support of χ does not intersect K.

If the first statement of Lemma 4.8 holds, then the action of $\left\langle G_{r}\right\rangle$ on $p^{-1}(x)$ has only infinite orbits. For a compact $K \subset M_{2}$, consider the finite set $P_{K}:=p^{-1}(x) \cap B(K, r+2)$. From Lemma 4.9, for any $\varepsilon>0$, there exists a non-empty, finite $P \subset p^{-1}(x)$, such that

$$
\frac{\#\left(Q_{-}\right)}{\#\left(Q_{+}\right)}<\delta:=\frac{\varepsilon}{1+(1+\varepsilon) N(2 r+1) \#\left(P_{K}\right)}
$$

where $N(2 r+1)$ is the constant from Lemma 2.6.
Since the action of $\left\langle G_{r}\right\rangle$ on $p^{-1}(x)$ has only infinite orbits, it follows that Q_{-}is nonempty. Indeed, since P is non-empty and this action has only infinite orbits, there exists an infinite orbit \mathcal{O} and $z_{1} \in P \cap \mathcal{O}$. Since P is finite, there exists $z_{2} \in \mathcal{O} \backslash P$, and from Remark 4.7, there exist $k \in \mathbb{N}$ and $y_{1}, \ldots, y_{k} \in p^{-1}(x)$, with $y_{1}=z_{1}, y_{k}=z_{2}$ and $d\left(y_{i}, y_{i+1}\right)<r$, for $i=1, \ldots, k-1$. Since $y_{1} \in P$ and $y_{k} \notin P$, there exists $1 \leq j<k$, such that $y_{j} \in P$ and $y_{j+1} \notin P$. Since $d\left(y_{j}, y_{j+1}\right)<r$, it follows that $0<\chi\left(y_{j+1}\right)<1$ and in particular, $y_{j} \in Q_{-}$.

Evidently, Q_{+}is contained in P. Since Q_{-}is non-empty, it is clear that

$$
\frac{1}{\delta} \leq \#\left(Q_{+}\right) \leq \#(P)
$$

which yields that $\#(P)>\#\left(P_{K}\right)$, from the choice of δ. In particular, the finite set $P^{\prime}:=P \backslash P_{K}$ is non-empty. Consider the function χ^{\prime} and the sets $Q_{+}^{\prime}, Q_{-}^{\prime}$ and Q^{\prime}
corresponding to P^{\prime} as in (4). Clearly, the support of χ^{\prime} does not intersect K, since $\operatorname{supp} \varphi_{y} \subset C(y, r+1)$, for any $y \in p^{-1}(x)$.

From Lemma 2.6, it follows that for any $y_{0} \in p^{-1}(x)$, the support of $\varphi_{y_{0}}$ intersects at most $N(2 r+1)$ open balls $B(y, r)$, with $y \in p^{-1}(x)$. Hence, we have that

$$
\begin{aligned}
& \#\left(Q_{-}^{\prime}\right) \leq \#\left(Q_{-}\right)+N(2 r+1) \#\left(P_{K}\right) \\
& \#\left(Q_{+}^{\prime}\right) \geq \#\left(Q_{+}\right)-N(2 r+1) \#\left(P_{K}\right)
\end{aligned}
$$

Therefore, we obtain

$$
\frac{\#\left(Q_{-}^{\prime}\right)}{\#\left(Q_{+}^{\prime}\right)} \leq \frac{\#\left(Q_{-}\right)+N(2 r+1) \#\left(P_{K}\right)}{\#\left(Q_{+}\right)-N(2 r+1) \#\left(P_{K}\right)}<\varepsilon
$$

from the choice of δ.
Remark 4.11. After endowing M_{1} or N_{1} with \mathfrak{h} (depending on whether M_{1} has empty boundary or not) and the covering space with its lift, we have that $p: D_{y} \rightarrow M_{1}$ is an isometry up to sets of measure zero, for any $y \in p^{-1}(x)$. Thus, for $f \in C_{c}\left(M_{1}\right)$, we have

$$
\begin{equation*}
\int_{D_{y}}(f \circ p) d \operatorname{Vol}_{\mathfrak{h}_{2}}=\int_{M_{1}} f d \operatorname{Vol}_{\mathfrak{h}_{1}} \tag{5}
\end{equation*}
$$

where $\operatorname{Vol}_{\mathfrak{h}_{i}}\left(\right.$ respectively, $\operatorname{Vol}_{\mathfrak{g}_{i}}$) is the measure on M_{i} induced by \mathfrak{h} (respectively, \mathfrak{g}) or its lift, $i=1,2$. Since \mathfrak{g} and \mathfrak{h} are conformal, there exists a positive $\varphi_{v} \in C^{\infty}\left(M_{1}\right)$, such that

$$
\frac{d \operatorname{Vol}_{\mathfrak{h}_{1}}}{d \operatorname{Vol}_{\mathfrak{g}_{1}}}=\varphi_{v} \text { and } \frac{d \operatorname{Vol}_{\mathfrak{h}_{2}}}{d \operatorname{Vol}_{\mathfrak{g}_{2}}}=\varphi_{v} \circ p
$$

For simplicity of notation, we omit $d \mathrm{Vol}_{\mathfrak{g}_{i}}$ in the integrals and the index of $\mathrm{Vol}_{\mathfrak{g}_{i}}$. From (5), we have $\int_{D_{y}} f \circ p=\int_{M_{1}} f$, for any $f \in C_{c}\left(M_{1}\right)$ and $y \in p^{-1}(x)$. Similarly, for a compact $K \subset M_{1}$, we have $\operatorname{Vol}(K)=\operatorname{Vol}\left(p^{-1}(K) \cap D_{y}\right)$, for any $y \in p^{-1}(x)$.

Proposition 4.12. Let $p: M_{2} \rightarrow M_{1}$ be an infinite sheeted, amenable Riemannian covering. Consider $\eta \in \mathcal{D}\left(D_{1}\right)$ with $\|\eta\|_{L^{2}\left(E_{1}\right)}=1$ and $\lambda \in \mathbb{F}$. Then for any $\varepsilon>0$ and $K \subset M_{2}$ compact, there exists $\zeta \in \mathcal{D}\left(D_{2}\right)$ with $\|\zeta\|_{L^{2}\left(E_{2}\right)}=1$, such that $\operatorname{supp} \zeta \subset p^{-1}(\operatorname{supp} \eta)$, $\operatorname{supp} \zeta \cap K=\emptyset$ and $\left\|\left(D_{2}-\lambda\right) \zeta\right\|_{L^{2}\left(E_{2}\right)} \leq\left\|\left(D_{1}-\lambda\right) \eta\right\|_{L^{2}\left(E_{1}\right)}+\varepsilon$.
Proof: Let $p_{1}: \tilde{M} \rightarrow M_{1}$ be the universal covering of M_{1} and fix $x \in M_{1}, u \in p_{1}^{-1}(x)$ and $r \geq R$ (from Lemma 4.8), such that supp $\eta \subset B(x, r)$ and $B(u, r) \cap \partial \tilde{M} \neq \emptyset$, if M_{1} has non-empty boundary. Consider a partition of unity consisting of the functions φ_{1} and φ_{y}, with $y \in p^{-1}(x)$, associated to x, u and r as in (3), and let θ be the lift of η. From Remark 4.4, for any finite set $P^{\prime} \subset p^{-1}(x)$ and $\chi^{\prime}:=\sum_{y \in P^{\prime}} \varphi_{y}$, we have that $\chi^{\prime} \theta \in \mathcal{D}\left(D_{2}\right)$. From Proposition 4.5, there exists $C>0$, independent from P^{\prime}, such that $\left\|D_{2}\left(\chi^{\prime} \theta\right)(z)\right\| \leq C$, for any $z \in M_{2}$. Hence, we obtain that

$$
\max _{z \in M_{2}}\left\|\left(D_{2}-\lambda\right)\left(\chi^{\prime} \theta\right)(z)\right\| \leq C+|\lambda| \max _{w \in M_{1}}\|\eta(w)\|=: C_{0}
$$

From Proposition 4.10, there exists a non-empty, finite $P \subset p^{-1}(x)$, such that the support of $\chi:=\sum_{y \in P} \varphi_{y}$ does not intersect K and

$$
\frac{\#\left(Q_{-}\right)}{\#\left(Q_{+}\right)}<\min \left\{\frac{\varepsilon}{C_{0}^{2} \operatorname{Vol}(\operatorname{supp} \eta)}, \varepsilon\right\}
$$

where Q_{+}, Q_{-}and Q are the sets corresponding to P as in (4).
Since $\chi \theta$ is in the domain of D_{2}, so is the normalized section $\zeta:=\left(1 /\|\chi \theta\|_{L^{2}\left(E_{2}\right)}\right) \chi \theta$. Evidently, $\|\zeta\|_{L^{2}\left(E_{2}\right)}=1$ and $\operatorname{supp} \zeta \subset p^{-1}(\operatorname{supp} \eta)$. From Lemma 2.5, we have that $\operatorname{supp} \zeta \cap D_{y} \subset B(y, r)$, for any $y \in p^{-1}(x)$, which yields that $\operatorname{supp} \zeta$ is contained in the union of the fundamental domains D_{y}, with $y \in Q$. Clearly, we have

$$
\|\chi \theta\|_{L^{2}\left(E_{2}\right)}^{2} \geq \sum_{y \in Q_{+}} \int_{D_{y}}\|\chi \theta\|^{2}=\sum_{y \in Q_{+}} \int_{D_{y}}\|\theta\|^{2}=\#\left(Q_{+}\right),
$$

from the definition of Q_{+}and Remark 4.11. Therefore, we obtain that

$$
\begin{aligned}
\int_{M_{2}}\left\|\left(D_{2}-\lambda\right) \zeta\right\|^{2} & \leq \frac{1}{\#\left(Q_{+}\right)} \sum_{y \in Q_{+}} \int_{D_{y}}\left\|\left(D_{2}-\lambda\right)(\chi \theta)\right\|^{2} \\
& +\frac{1}{\#\left(Q_{+}\right)} \sum_{y \in Q_{-}} \int_{D_{y}}\left\|\left(D_{2}-\lambda\right)(\chi \theta)\right\|^{2} .
\end{aligned}
$$

For $y \in Q_{+}$, we have $\chi=1$ in $B(y, r)$, which is a neighborhood of $\operatorname{supp} \theta \cap D_{y}$. This implies that

$$
\frac{1}{\#\left(Q_{+}\right)} \sum_{y \in Q_{+}} \int_{D_{y}}\left\|\left(D_{2}-\lambda\right)(\chi \theta)\right\|^{2}=\frac{1}{\#\left(Q_{+}\right)} \sum_{y \in Q_{+}} \int_{D_{y}}\left\|\left(D_{2}-\lambda\right) \theta\right\|^{2}=\int_{M_{1}}\left\|\left(D_{1}-\lambda\right) \eta\right\|^{2}
$$

Since $\left\|\left(D_{2}-\lambda\right)(\chi \theta)(z)\right\| \leq C_{0}$, for any $z \in M_{2}$, it follows that

$$
\begin{aligned}
\frac{1}{\#\left(Q_{+}\right)} \sum_{y \in Q_{-}} \int_{D_{y}}\left\|\left(D_{2}-\lambda\right)(\chi \theta)\right\|^{2} & \leq \frac{C_{0}^{2}}{\#\left(Q_{+}\right)} \sum_{y \in Q_{-}} \operatorname{Vol}\left(\operatorname{supp} \theta \cap D_{y}\right) \\
& =\frac{\#\left(Q_{-}\right)}{\#\left(Q_{+}\right)} C_{0}^{2} \operatorname{Vol}(\operatorname{supp} \eta) \leq \varepsilon
\end{aligned}
$$

Hence, $\left\|\left(D_{2}-\lambda\right) \zeta\right\|_{L^{2}\left(E_{2}\right)}^{2} \leq\left\|\left(D_{1}-\lambda\right) \eta\right\|_{L^{2}\left(E_{1}\right)}^{2}+\varepsilon$.
Proposition 4.13. Let $p: M_{2} \rightarrow M_{1}$ be an infinite sheeted, amenable Riemannian covering, and assume that the operators D_{i} are symmetric, $i=1,2$. Then for any section $\eta \in \mathcal{D}\left(D_{1}\right) \backslash\{0\}, \varepsilon>0$ and $K \subset M_{2}$ compact, there exists $\zeta \in \mathcal{D}\left(D_{2}\right) \backslash\{0\}$, such that $\operatorname{supp} \zeta \subset p^{-1}(\operatorname{supp} \eta), \operatorname{supp} \zeta \cap K=\emptyset$ and $\mathcal{R}_{D_{2}}(\zeta) \leq \mathcal{R}_{D_{1}}(\eta)+\varepsilon$.

Proof: The proof is similar to the proof of Proposition 4.12, using Corollary 4.6 instead of Proposition 4.5.
Proof of Theorem 4.1: Let $\lambda \in \sigma_{\text {ap }}\left(\bar{D}_{1}\right)$. From Lemma 2.2, there exists $\left(\eta_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{D}\left(D_{1}\right)$, such that $\left\|\eta_{k}\right\|_{L^{2}\left(E_{1}\right)}=1$ and $\left(D_{1}-\lambda\right) \eta_{k} \rightarrow 0$ in $L^{2}\left(E_{1}\right)$. Consider an exhausting sequence $\left(K_{k}\right)_{k \in \mathbb{N}}$ of M_{2}. From Proposition 4.12, for any $k \in \mathbb{N}$, there exists $\zeta_{k} \in \mathcal{D}\left(D_{2}\right)$, such that $\left\|\zeta_{k}\right\|_{L^{2}\left(E_{2}\right)}=1,\left\|\left(D_{2}-\lambda\right) \zeta_{k}\right\|_{L^{2}\left(E_{2}\right)} \leq\left\|\left(D_{1}-\lambda\right) \eta_{k}\right\|_{L^{2}\left(E_{1}\right)}+1 / k$ and $\operatorname{supp} \zeta_{k} \cap K_{k}=\emptyset$. Therefore, $\left(D_{2}-\lambda\right) \zeta_{k} \rightarrow 0$ in $L^{2}\left(E_{2}\right)$ and for any compact $K \subset M_{2}$, there exists $k_{0} \in \mathbb{N}$, such that $\operatorname{supp} \zeta_{k} \cap K=\emptyset$, for all $k \geq k_{0}$. It follows that $\left(\zeta_{k}\right)_{k \in \mathbb{N}}$ is a Weyl sequence for D_{2}^{\prime} and λ, and in particular, $\lambda \in \sigma_{W}\left(D_{2}^{\prime}\right)$.
Proof of Theorem 1.1: Follows immediately from Theorem 4.1 and Proposition 2.1.
Assume now that the operator $D_{i}: \mathcal{D}\left(D_{i}\right) \subset L^{2}\left(E_{i}\right) \rightarrow L^{2}\left(E_{i}\right)$ is symmetric and bounded from below, and let $D_{i}^{(F)}$ be its Friedrichs extension, $i=1,2$. For more details on the Friedrichs extension of a symmetric, bounded from below and densely defined linear operator on a Hilbert space, see [18]. It is well-known that the Friedrichs extension of an operator preserves its lower bound. In particular, for $i=1,2$, we have

$$
\begin{equation*}
\lambda_{0}\left(D_{i}^{(F)}\right)=\inf _{\eta \in \mathcal{D}\left(D_{i}\right) \backslash\{0\}} \mathcal{R}_{D_{i}}(\eta) \tag{6}
\end{equation*}
$$

Recall the following proposition for the essential spectrum of a self-adjoint operator.
Proposition 4.14 ([11, Proposition 2.1]). Let $A: \mathcal{D}(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ be a self-adjoint operator on a separable Hilbert space \mathcal{H}, and consider $\lambda \in \mathbb{R}$. Then the interval $(-\infty, \lambda]$ intersects the essential spectrum of A if and only if for any $\varepsilon>0$, there exists an infinite dimensional subspace $G_{\varepsilon} \subset \mathcal{D}(A)$, such that $\mathcal{R}_{A}(v)<\lambda+\varepsilon$, for all $v \in G_{\varepsilon} \backslash\{0\}$.
Proof of Theorem 1.2: From (6), it follows that there exists $\left(\eta_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{D}\left(D_{1}\right) \backslash\{0\}$, such that $\mathcal{R}_{D_{1}}\left(\eta_{k}\right) \leq \lambda_{0}\left(D_{1}^{(F)}\right)+1 / k$, for any $k \in \mathbb{N}$. From Proposition 4.13, there exists $\left(\zeta_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{D}\left(D_{2}\right) \backslash\{0\}$, such that $\mathcal{R}_{D_{2}}\left(\zeta_{k}\right) \leq \lambda_{0}\left(D_{1}^{(F)}\right)+2 / k$ and supp $\zeta_{k} \cap \operatorname{supp} \zeta_{k^{\prime}}=\emptyset$, for all $k, k^{\prime} \in \mathbb{N}$, with $k \neq k^{\prime}$. Evidently, for any $\varepsilon>0$, there exists $k_{0} \in \mathbb{N}$, such that $\mathcal{R}_{D_{2}}\left(\zeta_{k}\right)<\lambda_{0}\left(D_{1}^{(F)}\right)+\varepsilon$, for all $k \geq k_{0}$. Consider the subspace G_{ε} of $\mathcal{D}\left(D_{2}\right)$ spanned by $\left\{\zeta_{k}: k \geq k_{0}\right\}$. Since the sections ζ_{k}, with $k \in \mathbb{N}$, have disjoint supports, the space G_{ε} is infinite dimensional. Clearly, any $\theta \in G_{\varepsilon}$ is of the form $\theta:=\sum_{i=k_{0}}^{k_{0}+\mu} m_{i} \zeta_{i}$, for some $\mu \in \mathbb{N}$ and $m_{k_{0}}, \ldots, m_{k_{0}+\mu} \in \mathbb{F}$. Therefore, we have

$$
\mathcal{R}_{D_{2}}(\theta)=\frac{\sum_{i=k_{0}}^{k_{0}+\mu}\left|m_{i}\right|^{2}\left\langle D_{2} \zeta_{i}, \zeta_{i}\right\rangle_{L^{2}\left(E_{2}\right)}}{\sum_{i=k_{0}}^{k_{0}+\mu}\left|m_{i}\right|^{2}\left\|\zeta_{i}\right\|_{L^{2}\left(E_{2}\right)}^{2}} \leq \max _{k_{0} \leq i \leq k_{0}+\mu} \mathcal{R}_{D_{2}}\left(\zeta_{i}\right)<\lambda_{0}\left(D_{1}^{(F)}\right)+\varepsilon .
$$

From Proposition 4.14, it follows that $\lambda_{0}^{\text {ess }}\left(D_{2}^{(F)}\right) \leq \lambda_{0}\left(D_{1}^{(F)}\right)$.
Remark 4.15. In the proof of Theorem 1.2, the only properties of the Friedrichs extension used are self-adjointness and the preservation of the lower bound of D_{1}. Therefore, this proof establishes the analogous result for any self-adjoint extensions of the operators, as long as the extension of D_{1} preserves its lower bound.

For sake of completeness, we also present the analogous results for finite sheeted coverings. It is clear that they cannot be improved in order to obtain as strong statements as in the case of infinite sheeted amenable coverings.

Proposition 4.16. Let D_{2}^{\prime} be a closed extension of D_{2}. If p is a finite sheeted Riemannian covering, then $\sigma_{\text {ap }}\left(\bar{D}_{1}\right) \subset \sigma_{\text {ap }}\left(D_{2}^{\prime}\right)$ and $\sigma_{W}\left(\bar{D}_{1}\right) \subset \sigma_{W}\left(D_{2}^{\prime}\right)$.

Proof: If η is in the domain of D_{1}, then its lift is in the domain of D_{2}. For $\lambda \in \sigma_{W}\left(\bar{D}_{1}\right)$, from Lemma 2.2, there exists a Weyl sequence $\left(\eta_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{D}\left(D_{1}\right)$ for \bar{D}_{1} and λ. Then, the sequence consisting of the normalized (in $L^{2}\left(E_{2}\right)$) lifts of $\eta_{k}, k \in \mathbb{N}$, is a Weyl sequence for D_{2}^{\prime} and λ. Hence, $\sigma_{W}\left(\bar{D}_{1}\right) \subset \sigma_{W}\left(D_{2}^{\prime}\right)$. Similarly, it follows that $\sigma_{\text {ap }}\left(\bar{D}_{1}\right) \subset \sigma_{\text {ap }}\left(D_{2}^{\prime}\right)$.

Proposition 4.17. Assume that D_{i} is symmetric and bounded from below, and denote by $D_{i}^{(F)}$ its Friedrichs extension, $i=1,2$. If p is a finite sheeted Riemannian covering, then $\lambda_{0}\left(D_{2}^{(F)}\right) \leq \lambda_{0}\left(D_{1}^{(F)}\right)$.

Proof: If η is in the domain of D_{1}, then its lift θ is in the domain of D_{2}. If $\eta \neq 0$, it is easy to see that $\mathcal{R}_{D_{1}}(\eta)=\mathcal{R}_{D_{2}}(\theta)$, and the statement follows from (6).

In the rest of this section, we give applications of our results in the case of Schrödinger operators. The following proposition characterizes the bottom of the spectrum of a Schrödinger operator as the maximum of its positive spectrum.

Proposition 4.18. Let S be a Schrödinger operator on a Riemannian manifold M. Then the bottom of the spectrum of S is the maximum of all $\lambda \in \mathbb{R}$, such that there exists $\varphi \in C^{\infty}(M \backslash \partial M)$ with $S \varphi=\lambda \varphi$, which is positive in $M \backslash \partial M$.

Proof: If M has empty boundary, then the statement may be found in [10, Theorem 7], [12, Theorem 1] and [17, Theorem 2.1]. If M has non-empty boundary, it is clear that $\lambda_{0}(S)=\lambda_{0}(S, M \backslash \partial M)$, where $\lambda_{0}(S, M \backslash \partial M)$ stands for the bottom of the spectrum of S on the interior of M. Hence, in this case, the claim follows from the corresponding statement for manifolds without boundary.

In particular, there exists $\varphi \in C^{\infty}(M \backslash \partial M)$ with $S \varphi=\lambda_{0}(S) \varphi$, which is positive in the interior of M. It is worth to point out that the smooth eigenfunctions of the preceding proposition do not have to be square-integrable. The following corollary is a consequence of Proposition 4.18 (an alternative proof can be found in [2]).

Corollary 4.19. Let $p: M_{2} \rightarrow M_{1}$ be a Riemannian covering. Let S_{1} be a Schrödinger operator on M_{1} and S_{2} its lift on M_{2}. Then $\lambda_{0}\left(S_{1}\right) \leq \lambda_{0}\left(S_{2}\right)$.

Proof: Follows immediately from Proposition 4.18, since the lift of an eigenfunction of S_{1} is an eigenfunction of S_{2}.

Corollary 4.20. Let $p: M_{2} \rightarrow M_{1}$ be an infinite sheeted, amenable Riemannian covering. Let S_{1} be a Schrödinger operator on M_{1} and S_{2} its lift on M_{2}. Then $\lambda_{0}\left(S_{1}\right)=\lambda_{0}^{\text {ess }}\left(S_{2}\right)$. If, in addition, M_{1} is complete, then $\sigma\left(S_{1}\right) \subset \sigma_{\text {ess }}\left(S_{2}\right)$.

Proof: Follows from Theorems 1.1, 1.2 and Corollary 4.19.
The following results describe the behavior of the spectrum of Schrödinger operators under finite sheeted coverings.

Corollary 4.21. Let $p: M_{2} \rightarrow M_{1}$ be a finite sheeted Riemannian covering. Let S_{1} be a Schrödinger operator on M_{1} and S_{2} its lift on M_{2}. Then $\lambda_{0}\left(S_{1}\right)=\lambda_{0}\left(S_{2}\right)$. If, in addition, M_{1} is complete, then $\sigma\left(S_{1}\right) \subset \sigma\left(S_{2}\right)$ and $\sigma_{\text {ess }}\left(S_{1}\right) \subset \sigma_{\text {ess }}\left(S_{2}\right)$.

Proof: Follows from Propositions 2.1, 4.16, 4.17 and Corollary 4.19.
The following characterization of the bottom of the essential spectrum of a Schrödinger operator follows from the Decomposition Principle ([3, Proposition 1]) and Propositions 2.3 and 4.14. Recall that this quantity is infinite when the spectrum is discrete.

Proposition 4.22 ([5, Proposition 3.2]). Let S be a Schrödinger operator on a complete manifold M and let $\left(K_{k}\right)_{k \in \mathbb{N}}$ be an exhausting sequence of M. Then

$$
\lambda_{0}^{\mathrm{ess}}(S)=\lim _{k} \lambda_{0}\left(S, M \backslash K_{k}\right),
$$

where $\lambda_{0}\left(S, M \backslash K_{k}\right)$ is the bottom of the spectrum of S on $M \backslash K_{k}$.
Corollary 4.23. Let $p: M_{2} \rightarrow M_{1}$ be a finite sheeted Riemannian covering of complete manifolds. Consider a Schrödinger operator S_{1} on M_{1} and its lift S_{2} on M_{2}. Then $\lambda_{0}^{\text {ess }}\left(S_{1}\right)=\lambda_{0}^{\text {ess }}\left(S_{2}\right)$ and in particular, $\sigma_{\text {ess }}\left(S_{1}\right) \neq \emptyset$ if and only if $\sigma_{\text {ess }}\left(S_{2}\right) \neq \emptyset$.

Proof: Follows from Corollary 4.21 and Proposition 4.22.

5 Infinite deck transformations group

Let M be a Riemannian manifold, $E \rightarrow M$ a Riemannian or Hermitian vector bundle, endowed with a connection ∇ and $D: \Gamma(E) \rightarrow \Gamma(E)$ a differential operator on E. If M has empty boundary, set $\mathcal{D}(D):=\Gamma_{c}(E)$. If M has non-empty boundary, consider

$$
\mathcal{D}(D):=\left\{\eta \in \Gamma_{c}(E): a \nabla_{n} \eta+b \eta=0 \text { on } \partial M\right\}
$$

where n is the inward pointing normal to ∂M and a, b are real or complex valued functions (depending on whether E is Riemannian or Hermitian) defined on ∂M. It is worth to point out that we do not impose any assumptions on a and b. From Lemma 2.4, the operator D is closable and denote by \bar{D} its closure.

Theorem 5.1. Let Γ be a group of automorphisms of E preserving the metric of E, such that the induced action on M is isometric and $D\left(g_{*} \eta\right)=g_{*} D \eta$, for any $g \in \Gamma$ and $\eta \in \Gamma(E)$. If M has non-empty boundary, assume that ∇, a and b are Γ-invariant along the boundary. If for any compact $K \subset M$, there exists $g \in \Gamma$, such that $g K \cap K=\emptyset$, then $\sigma_{\text {ap }}(\bar{D})=\sigma_{W}(\bar{D})$ and \bar{D} does not have eigenvalues of finite multiplicity.

Proof: Let $\lambda \in \sigma_{\text {ap }}(\bar{D})$. From Lemma 2.2, there exists $\left(\eta_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{D}(D)$, such that $\left\|\eta_{k}\right\|_{L^{2}(E)}=1$ and $(D-\lambda) \eta_{k} \rightarrow 0$ in $L^{2}(E)$. Since η_{k} is compactly supported, there exists an exhausting sequence $\left(K_{k}\right)_{k \in \mathbb{N}}$ of M, such that $\operatorname{supp} \eta_{k} \subset K_{k}$, for all $k \in \mathbb{N}$. For any $k \in \mathbb{N}$, consider $g_{k} \in \Gamma$, such that $g_{k} K_{k} \cap K_{k}=\emptyset$, and set $\zeta_{k}:=\left(g_{k}\right)_{\star} \eta_{k}$. Then $\zeta_{k} \in \Gamma_{c}(E)$ and if M has non-empty boundary, then ζ_{k} satisfies the same boundary conditions with η_{k}, since via isometries the boundary is mapped to itself and so does the inward pointing normal. It follows that $\zeta_{k} \in \mathcal{D}(D),\left\|\zeta_{k}\right\|_{L^{2}(E)}=1$ and $(D-\lambda) \zeta_{k} \rightarrow 0$ in $L^{2}(E)$. Clearly, $\operatorname{supp} \zeta_{k}=g_{k}\left(\operatorname{supp} \eta_{k}\right)$, which yields that for any compact $K \subset M$, there exists $k_{0} \in \mathbb{N}$, such that $\operatorname{supp} \zeta_{k} \cap K=\emptyset$, for all $k \geq k_{0}$. This implies that $\zeta_{k} \rightharpoonup 0$ in $L^{2}(E)$, that is, $\left(\zeta_{k}\right)_{k \in \mathbb{N}}$ is a Weyl sequence for \bar{D} and λ. Hence, $\lambda \in \sigma_{W}(\bar{D})$.

Assume that there exists an eigenvalue λ of \bar{D} of finite multiplicity, and consider $\theta \in \mathcal{D}(\bar{D})$ with $\|\theta\|_{L^{2}(E)}=1$ and $\bar{D} \theta=\lambda \theta$. Then there exists $\left(\eta_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{D}(D)$, such that $\eta_{k} \rightarrow \theta$ and $D \eta_{k} \rightarrow \bar{D} \theta$. Clearly, for $g \in \Gamma$, we have $g_{*} \eta_{k} \in \mathcal{D}(D), g_{*} \eta_{k} \rightarrow g_{*} \theta$ and $D\left(g_{*} \eta_{k}\right) \rightarrow g_{*}(\bar{D} \theta)$, which yields that $g_{*} \theta \in \mathcal{D}(\bar{D})$ and $\bar{D}\left(g_{*} \theta\right)=\lambda\left(g_{*} \theta\right)$.

Let $\left(K_{k}\right)_{k \in \mathbb{N}}$ be an exhausting sequence of M and consider $\left(g_{k}\right)_{k \in \mathbb{N}} \subset \Gamma$, such that $g_{k} K_{k} \cap K_{k}=\emptyset$, for any $k \in \mathbb{N}$. It is clear that the sections $\theta_{k}:=\left(g_{k}\right)_{*} \theta$ satisfy $\bar{D} \theta_{k}=\lambda \theta_{k}$ and $\left\|\theta_{k}\right\|_{L^{2}(E)}=1$, for all $k \in \mathbb{N}$. Since the eigenspace corresponding to λ is finite dimensional, after passing to a subsequence, we may assume that $\theta_{k} \rightarrow \theta_{0}$ in $L^{2}(E)$, for some θ_{0}, with $\left\|\theta_{0}\right\|_{L^{2}(E)}=1$. Consider a non-zero $\zeta \in \Gamma_{c}(E)$ and set $\zeta_{k}:=\left(g_{k}^{-1}\right)_{*} \zeta$. Then

$$
\left\langle\theta_{k}, \zeta\right\rangle_{L^{2}(E)}^{2}=\left\langle\theta, \zeta_{k}\right\rangle_{L^{2}(E)}^{2} \leq\|\zeta\|_{L^{2}(E)}^{2} \int_{\operatorname{supp} \zeta_{k}}\|\theta\|^{2}
$$

Let $\varepsilon>0$ and consider a compact $K \subset M$, such that $\int_{M \backslash K}\|\theta\|^{2}<\varepsilon^{2} /\|\zeta\|_{L^{2}(E)}^{2}$. Since $\operatorname{supp} \zeta$ and K are eventually subsets of K_{k}, there exists $k_{0} \in \mathbb{N}$, such that $\operatorname{supp} \zeta_{k} \cap K=\emptyset$, for all $k \geq k_{0}$. Therefore, for $k \geq k_{0}$, we have $\operatorname{supp} \zeta_{k} \subset M \backslash K$, and in particular, $\left|\left\langle\theta_{k}, \zeta\right\rangle_{L^{2}(E)}\right|<\varepsilon$. This yields that $\theta_{k} \rightharpoonup 0$ in $L^{2}(E)$, which is a contradiction, since $\theta_{k} \rightarrow \theta_{0}$ in $L^{2}(E)$ and $\left\|\theta_{0}\right\|_{L^{2}(E)}=1$.

Theorem 5.2. Assume that D is symmetric and bounded from below, and denote by $D^{(F)}$ its Friedrichs extension. Under the assumptions of Theorem 5.1, the spectrum of $D^{(F)}$ is essential and $D^{(F)}$ does not have eigenvalues of finite multiplicity.

Proof: Let $\eta \in \mathcal{D}\left(D^{(F)}\right)$ and $g \in \Gamma$. From the invariance of $\mathcal{D}(D)$ and D under the action of Γ, it follows that $g_{*} \eta \in \mathcal{D}\left(D^{(F)}\right)$ and $D^{(F)}\left(g_{*} \eta\right)=g_{*}\left(D^{(F)} \eta\right)$. As in the proof of Theorem 5.1, it follows that $D^{(F)}$ does not have eigenvalues of finite multiplicity. From Proposition 2.1, we obtain that $\sigma\left(D^{(F)}\right)=\sigma_{\text {ess }}\left(D^{(F)}\right)$.

The above theorems can be applied to Riemannian coverings with infinite deck transformations group. In the context of the previous section, we obtain the following consequences.

Corollary 5.3. If the deck transformations group of the covering is infinite, then \bar{D}_{2} does not have eigenvalues of finite multiplicity and $\sigma_{\mathrm{ap}}\left(\bar{D}_{2}\right)=\sigma_{W}\left(\bar{D}_{2}\right)$.

Proof: Follows immediately from Theorem 5.1, for Γ being the deck transformations group of the covering.
Proof of Corollary 1.3: Follows from Corollary 5.3 and Proposition 2.1.
Proof of Corollary 1.4: Follows from Theorem 5.2, for Γ being the deck transformations group of the covering.

Corollary 5.4. Let M be a complete Riemannian manifold and assume that there exists a non-zero $\lambda_{0}(M)$-harmonic function in $L^{2}(M)$. If Γ is a discrete group acting freely and properly discontinuously on M via isometries, then Γ is finite.

Proof: Follows from Corollary 1.3, since for any complete (and connected) Riemannian manifold M, the space of square-integrable, $\lambda_{0}(M)$-harmonic functions is either trivial or one dimensional.

Besides Riemannian coverings, the above theorems can be applied to manifolds with high symmetry. For instance, it follows that the spectrum of the Laplacian on a noncompact homogeneous space is essential. Moreover, we obtain the analogous statement, if there exists a non-compact Lie group acting on the manifold properly discontinuously via isometries.

6 Coverings of closed manifolds

The Cheeger's constant of a Riemannian manifold M is defined by

$$
h(M):=\inf _{K} \frac{\operatorname{Area}(\partial K)}{\operatorname{Vol}(K)},
$$

where the infimum is taken over all compact and smoothly bounded domains K of M which do not intersect ∂M. It is related to $\lambda_{0}(M)$ via Cheeger's inequality (cf. [9]):

$$
\lambda_{0}(M) \geq \frac{1}{4} h(M)^{2}
$$

Brooks [7] actually proved that a normal Riemannian covering of a closed manifold is amenable if and only if the Cheeger's constant of the covering space is zero. The following result is an extension of that of Brooks, to not necessarily normal coverings.

Theorem 6.1. Let $p: M_{2} \rightarrow M_{1}$ be a Riemannian covering with M_{1} closed. If $h\left(M_{2}\right)=0$, then p is amenable.

In order to prove this theorem, we need the following proposition. In the sequel, for a subset W of M, we denote by $B(W, r)$ the tubular neighborhood

$$
B(W, r):=\{z \in M: d(z, W)<r\} .
$$

Proposition 6.2 ([8, Lemma 7.2]). Let M be a non-compact, complete Riemannian manifold, without boundary and with Ricci curvature bounded from below. Then there exists a constant c depending only on the dimension of M, such that for any compact and smoothly bounded domain K of M, with $\operatorname{Area}(\partial K) / \operatorname{Vol}(K)=: H$, and any $0<r \leq 1 / 2 c \min \{1,1 / H\}$, there exists a bounded, open $U \subset M$, such that

$$
\frac{\operatorname{Vol}(B(\partial U, r))}{\operatorname{Vol}(U)} \leq C(r) H
$$

where $C(r)$ is a constant depending on r, the dimension of M and the lower bound of the Ricci curvature.

Corollary 6.3. Let M be a non-compact, complete Riemannian manifold, without boundary and with Ricci curvature bounded from below. If $h(M)=0$, then for any $\varepsilon, r>0$, there exists a bounded, open $U \subset M$, such that

$$
\frac{\operatorname{Vol}(B(\partial U, r))}{\operatorname{Vol}(U \backslash B(\partial U, r))}<\varepsilon
$$

Proof: Let $r>0$ and $0<r_{0} \leq 1 / 2 c$, where c is the constant from Proposition 6.2. Denote by \mathfrak{g} the original Riemannian metric and consider the metric $\mathfrak{h}:=C \mathfrak{g}$, where $C:=r_{0} / r$. For any compact and smoothly bounded domain K of M, we have

$$
\frac{\operatorname{Area}_{\mathfrak{h}}(\partial K)}{\operatorname{Vol}_{\mathfrak{h}}(K)}=C^{-1 / 2} \frac{\operatorname{Area}_{\mathfrak{g}}(\partial K)}{\operatorname{Vol}_{\mathfrak{g}}(K)}
$$

Since the Cheeger's constant of M with respect to \mathfrak{g} is zero, it follows that so is the Cheeger's constant of M with respect to \mathfrak{h}. From Proposition 6.2, for any $\delta>0$, there exists a bounded, open $U \subset M$, such that

$$
\frac{\operatorname{Vol}_{\mathfrak{h}}\left(B_{\mathfrak{h}}\left(\partial U, r_{0}\right)\right)}{\operatorname{Vol}_{\mathfrak{h}}(U)}<\delta
$$

It follows that

$$
\frac{\operatorname{Vol}_{\mathfrak{g}}\left(B_{\mathfrak{g}}(\partial U, r)\right)}{\operatorname{Vol}_{\mathfrak{g}}(U)}=\frac{\operatorname{Vol}_{\mathfrak{h}}\left(B_{\mathfrak{g}}(\partial U, r)\right)}{\operatorname{Vol}_{\mathfrak{h}}(U)}=\frac{\operatorname{Vol}_{\mathfrak{h}}\left(B_{\mathfrak{h}}\left(\partial U, r_{0}\right)\right)}{\operatorname{Vol}_{\mathfrak{h}}(U)}<\delta
$$

This completes the proof, since $\operatorname{Vol}_{\mathfrak{g}}(U) \leq \operatorname{Vol}_{\mathfrak{g}}\left(U \backslash B_{\mathfrak{g}}(\partial U, r)\right)+\operatorname{Vol}_{\mathfrak{g}}\left(B_{\mathfrak{g}}(\partial U, r)\right)$.
Proof of Theorem 6.1: Evidently, if M_{2} is closed, then p is finite sheeted and in particular, amenable. Therefore, it remains to prove the statement for M_{2} non-compact. Consider the universal covering $p_{1}: \tilde{M} \rightarrow M_{1}$, fix $x \in M_{1}, u \in p_{1}^{-1}(x)$ and identify $\pi_{1}\left(M_{2}\right) \backslash \pi_{1}\left(M_{1}\right)$ with $p^{-1}(x)$, as in the beginning of Subsection 4.2. Denote by D_{y} the fundamental domain of p centered at y, with $y \in p^{-1}(x)$. It is clear that for $y \in p^{-1}(x)$ and $z, w \in D_{y}$, we have

$$
d(z, w) \leq d(y, z)+d(y, w)=d(x, p(z))+d(x, p(w)) \leq 2 \operatorname{diam}\left(M_{1}\right)
$$

which yields that $\operatorname{diam}\left(D_{y}\right) \leq 2 \operatorname{diam}\left(M_{1}\right)$, for all $y \in p^{-1}(x)$. Let $r>2 \operatorname{diam}\left(M_{1}\right)$ and

$$
G_{r}:=\left\{g \in \pi_{1}\left(M_{1}\right): d(u, g u)<r\right\} .
$$

From Corollary 6.3 , for any $\varepsilon>0$, there exists a bounded, open $U \subset M_{2}$, such that

$$
\begin{equation*}
\frac{\operatorname{Vol}(B(\partial U, 2 r))}{\operatorname{Vol}(U \backslash B(\partial U, 2 r))}<\varepsilon \tag{7}
\end{equation*}
$$

Consider the finite sets

$$
\begin{aligned}
F & :=\left\{y \in p^{-1}(x): y \in U \backslash B(\partial U, r)\right\} \\
F^{\prime} & :=\left\{y \in p^{-1}(x): y \in B(\partial U, r)\right\}
\end{aligned}
$$

Recall that $r>2 \operatorname{diam}\left(M_{1}\right) \geq \operatorname{diam}\left(D_{y}\right)$, for all $y \in p^{-1}(x)$, and M_{2} is covered by the fundamental domains D_{y}, with $y \in p^{-1}(x)$. Evidently, $U \backslash B(\partial U, 2 r)$ is contained in the union of D_{y}, with $y \in F$. Furthermore, $B(\partial U, 2 r)$ contains the union of D_{y}, with $y \in F^{\prime}$. From (7), since the intersection of different fundamental domains is of measure zero, and $\operatorname{Vol}\left(D_{y}\right)=\operatorname{Vol}\left(M_{1}\right)$, for any $y \in p^{-1}(x)$, it follows that

$$
\frac{\#\left(F^{\prime}\right)}{\#(F)}<\varepsilon
$$

Let $g \in G_{r}$ and $y \in F \backslash F g$. Then $y \in U, d(y, \partial U) \geq r$ and $y \cdot g^{-1} \notin F$. From Remark 4.7, it follows that $d\left(y, y \cdot g^{-1}\right)<r$. Therefore, $y \cdot g^{-1} \in U$ and $d\left(y \cdot g^{-1}, \partial U\right)<r$, which yields that $y \cdot g^{-1} \in F^{\prime}$. Hence, $F \backslash F g \subset F^{\prime} g$ and in particular, we obtain that

$$
\#(F \backslash F g) \leq \#\left(F^{\prime}\right)<\varepsilon \#(F)
$$

For any finite $G \subset \pi_{1}\left(M_{1}\right)$, there exists $r>2 \operatorname{diam}\left(M_{1}\right)$, such that $G \subset G_{r}$. The above arguments imply that for any finite $G \subset \pi_{1}\left(M_{1}\right)$ and $\varepsilon>0$, there exists a Følner set for G and ε. From Proposition 2.8, it follows that p is amenable.

7 Applications and examples

Throughout most of this section we restrict ourselves to Schrödinger operators and present some consequences of our main results in this context. We begin with some auxiliary considerations.

We first introduce the notion of renormalized Schrödinger operators. This notion was introduced by Brooks in [6] for the Laplacian on complete manifolds without boundary. Let S be a Schrödinger operator on a possibly non-connected Riemannian manifold M without boundary, and let $\varphi \in C^{\infty}(M)$ be a positive λ-eigenfunction of S. It is worth to point out that we do not require φ to be square-integrable or M to be complete. Consider
the space $L_{\varphi}^{2}(M):=\left\{[v]: v \varphi \in L^{2}(M)\right\}$, where two functions are equivalent if they are almost everywhere equal, with the inner product $\left\langle v_{1}, v_{2}\right\rangle_{L_{\varphi}^{2}(M)}:=\int_{M} v_{1} v_{2} \varphi^{2}$. Clearly, the map $\mu_{\varphi}: L_{\varphi}^{2}(M) \rightarrow L^{2}(M)$, given by $\mu_{\varphi} v:=v \varphi$ is an isometric isomorphism, which yields that $L_{\varphi}^{2}(M)$ is a separable Hilbert space.

The renormalized Schrödinger operator $S_{\varphi}: \mathcal{D}\left(S_{\varphi}\right) \subset L_{\varphi}^{2}(M) \rightarrow L_{\varphi}^{2}(M)$ is defined by $S_{\varphi} v:=\mu_{\varphi}^{-1}\left(S^{(F)}-\lambda\right)\left(\mu_{\varphi} v\right)$, for all $v \in \mathcal{D}\left(S_{\varphi}\right)$, where $\mathcal{D}\left(S_{\varphi}\right):=\mu_{\varphi}^{-1}\left(\mathcal{D}\left(S^{(F)}\right)\right)$ and $S^{(F)}$ is the Friedrichs extension of S. Clearly, the following diagram is commutative

In particular, S_{φ} is self-adjoint and $\sigma\left(S_{\varphi}\right)=\sigma(S)-\lambda$. From Proposition 2.3, it follows that

$$
\lambda_{0}\left(S_{\varphi}\right) \leq \inf _{f \in C_{c}^{\infty}(M) \backslash\{0\}} \mathcal{R}_{S_{\varphi}}(f)=\inf _{f \in C_{c}^{\infty}(M) \backslash\{0\}} \frac{\left\langle S_{\varphi} f, f\right\rangle_{L_{\varphi}^{2}(M)}}{\|f\|_{L_{\varphi}^{2}(M)}^{2}},
$$

Let $\left(f_{k}\right)_{k \in \mathbb{N}} \subset C_{c}^{\infty}(M) \backslash\{0\}$, with $\mathcal{R}_{S}\left(f_{k}\right) \rightarrow \lambda_{0}(S)$. Then, for $h_{k}:=\mu_{\varphi}^{-1}\left(f_{k}\right) \in C_{c}^{\infty}(M)$, we have $\mathcal{R}_{S_{\varphi}}\left(h_{k}\right) \rightarrow \lambda_{0}\left(S_{\varphi}\right)$. Hence, the bottom of the spectrum of S_{φ} can be approximated with Rayleigh quotients of compactly supported smooth functions in M. With a simple computation of the Rayleigh quotient of such a function (as in [6, Section 2], using the Divergence Theorem, instead of the *-operator), we obtain the following expression for $\lambda_{0}(S)-\lambda$.

Proposition 7.1. Let S be a Schrödinger operator on M and let $\varphi \in C^{\infty}(M)$ be a positive λ-eigenfunction of S. Then

$$
\lambda_{0}(S)-\lambda=\inf _{f \in C_{c}^{\infty}(M) \backslash\{0\}} \frac{\int_{M}\|\operatorname{grad} f\|^{2} \varphi^{2}}{\int_{M} f^{2} \varphi^{2}}
$$

The modified Cheeger's constant of M is defined by

$$
h_{\varphi}(M):=\inf _{K} \frac{\int_{\partial K} \varphi^{2}}{\int_{K} \varphi^{2}},
$$

where the infimum is taken over all compact and smoothly bounded domains K of M. From the preceding proposition, it is easy to establish an analogue of Cheeger's inequality.

Corollary 7.2. Let S be a Schrödinger operator on M and let $\varphi \in C^{\infty}(M)$ be a positive λ-eigenfunction of S. Then

$$
\lambda_{0}(S)-\lambda \geq \frac{1}{4} h_{\varphi}(M)^{2}
$$

Proof: By virtue of Proposition 7.1, the proof is the same as that of [6, Lemma 3].
Moreover, consider the quantity

$$
h_{\varphi}^{\mathrm{ess}}(M):=\sup _{K} h_{\varphi}(M \backslash K),
$$

where the supremum is taken over all compact and smoothly bounded domains K of M. For $\varphi=1$, this quantity is denoted by $h^{\text {ess }}(M)$.

Corollary 7.3. Let S be a Schrödinger operator on a complete manifold M and consider a positive λ-eigenfunction $\varphi \in C^{\infty}(M)$ of S. Then

$$
\lambda_{0}^{\mathrm{ess}}(S)-\lambda \geq \frac{1}{4} h_{\varphi}^{\mathrm{ess}}(M)^{2}
$$

Proof: Let $\left(K_{k}\right)_{k \in \mathbb{N}}$ be an exhausting sequence of M, consisting of smoothly bounded domains. It is easy to see that

$$
h_{\varphi}^{\mathrm{ess}}(M)=\lim _{k} h_{\varphi}\left(M \backslash K_{k}\right) .
$$

From Corollary 7.2, we have that

$$
\lambda_{0}\left(S, M \backslash K_{k}\right)-\lambda \geq \frac{1}{4} h_{\varphi}\left(M \backslash K_{k}\right),
$$

for any $k \in \mathbb{N}$. After taking the limit with respect to k, the statement follows from Proposition 4.22.

Remark 7.4. The above arguments can be easily modified in order to obtain analogous results for manifolds with boundary. In that case, it suffices to consider a λ-eigenfunction of S which is positive and smooth only in the interior of M. Then, in Proposition 7.1, the infimum is taken over smooth functions with compact support in the interior of M.

Proof of Theorem 1.5: From Corollary 4.20, the first statement implies the second. From Corollary 4.19, the third statement follows from the second.

Assume that $\lambda_{0}\left(S_{1}\right)=\lambda_{0}^{\text {ess }}\left(S_{2}\right)$, for some Schrödinger operator S_{1} on M_{1}. From Proposition 4.18, there exists a positive $\lambda_{0}\left(S_{1}\right)$-eigenfunction $\varphi \in C^{\infty}\left(M_{1}\right)$ of S_{1}, and its lift $\hat{\varphi} \in C^{\infty}\left(M_{2}\right)$ is a positive $\lambda_{0}\left(S_{1}\right)$-eigenfunction of S_{2}. From Corollary 7.3, it follows that $h_{\hat{\varphi}}^{\text {ess }}\left(M_{2}\right)=0$. Since φ is positive and M_{1} is closed, this yields that $h^{\text {ess }}\left(M_{2}\right)=0$.

Assume that $h^{\text {ess }}\left(M_{2}\right)=0$. Then $h\left(M_{2}\right)=0$ and Theorem 6.1 yields that p is amenable. Assume that p is finite sheeted. Then M_{2} is closed. Consider a smoothly bounded domain U of M_{2}, such that $M_{2} \backslash U$ is connected. Evidently, $M_{2} \backslash U$ is a compact manifold with boundary. From the definition of the Cheeger's constant, it is clear that $h\left(M_{2} \backslash \bar{U}\right)=h\left(M_{2} \backslash U\right)$. From [9], it follows that $h^{\text {ess }}\left(M_{2}\right) \geq h\left(M_{2} \backslash U\right)>0$, which is a contradiction. Hence, p is infinite sheeted.

For sake of completeness, we also prove the following corollary, describing the analogous properties for finite sheeted coverings.

Corollary 7.5. Let $p: M_{2} \rightarrow M_{1}$ be a Riemannian covering with M_{1} closed. Let S_{1} be a Schrödinger operator on M_{1} and S_{2} its lift on M_{2}. Then the following are equivalent:
(i) p is finite sheeted,
(ii) $\sigma\left(S_{1}\right) \subset \sigma\left(S_{2}\right)$ and $\sigma_{\text {ess }}\left(S_{2}\right)=\emptyset$,
(iii) $\lambda_{0}\left(S_{1}\right)=\lambda_{0}\left(S_{2}\right) \notin \sigma_{\text {ess }}\left(S_{2}\right)$,
(iv) $h\left(M_{2}\right)=0$ and $h^{\text {ess }}\left(M_{2}\right) \neq 0$.

Proof: If the covering is finite sheeted, the inclusion of spectra follows from Corollary 4.21. In this case, M_{2} is closed, which yields that the spectrum of S_{2} is discrete. From Corollary 4.19, the second statement implies the third.

Assume that the third statement holds. Since $\lambda_{0}\left(S_{1}\right)=\lambda_{0}\left(S_{2}\right)$, as in the proof of Theorem 1.5, from Corollary 7.2, it follows that $h\left(M_{2}\right)=0$. From Theorem 1.5, it is clear that $h^{\text {ess }}\left(M_{2}\right) \neq 0$.

Assume that the fourth statement holds. Since $h\left(M_{2}\right)=0$, from Theorem 6.1, p is amenable. Since $h^{\text {ess }}\left(M_{2}\right) \neq 0$, from Theorem 1.5, it follows that p is finite sheeted.

The following characterization for points of the essential spectrum of a Schrödinger operator is an immediate consequence of the Decomposition Principle.

Proposition 7.6. Let S be a Schrödinger operator on a complete Riemannian manifold M and let $\lambda \in \mathbb{R}$. Then $\lambda \in \sigma_{\text {ess }}(S)$ if and only if there exists $\left(f_{k}\right)_{k \in \mathbb{N}} \subset C_{c}^{\infty}(M)$, with $f_{k}=0$ on $\partial M,\left\|f_{k}\right\|_{L^{2}(M)}=1,(S-\lambda) f_{k} \rightarrow 0$ in $L^{2}(M)$ and for every compact $K \subset M$, there exists $k_{0} \in \mathbb{N}$, such that $\operatorname{supp} f_{k} \cap K=\emptyset$, for all $k \geq k_{0}$.

Our second application is motivated by Corollary 3.8 of the arXiv version of [1].
Theorem 7.7. Let $p: M_{2} \rightarrow M_{1}$ be a Riemannian covering with M_{2} simply connected and complete. Let S_{1} be a Schrödinger operator on M_{1} and S_{2} its lift on M_{2}. If there exists a compact $K \subset M_{1}$, such that the image of the fundamental group of any connected component of $M_{1} \backslash K$ in $\pi_{1}\left(M_{1}\right)$ is amenable, then $\sigma_{\text {ess }}\left(S_{1}\right) \subset \sigma_{\text {ess }}\left(S_{2}\right)$.

Proof: Let $\lambda \in \sigma_{\text {ess }}\left(S_{1}\right)$. From Proposition 7.6, there exists $\left(f_{k}\right)_{k \in \mathbb{N}} \subset C_{c}^{\infty}(M)$, such that $f_{k}=0$ on $\partial M_{1},\left\|f_{k}\right\|_{L^{2}\left(M_{1}\right)}=1,(S-\lambda) f_{k} \rightarrow 0$ in $L^{2}\left(M_{1}\right)$ and for every compact $K_{0} \subset M_{1}$, there exists $k_{0} \in \mathbb{N}$, such that $\operatorname{supp} f_{k} \cap K_{0}=\emptyset$, for all $k \geq k_{0}$. Without loss of generality, we may assume that the supports of f_{k} are connected, since we may restrict each f_{k} to a connected component of its support and obtain a sequence with the same properties.

Consider a compact $K \subset M_{1}$, such that the image of the fundamental group of any connected component of $M_{1} \backslash K$ in $\pi_{1}\left(M_{1}\right)$ is amenable. Clearly, after passing to a subsequence, we may assume that the functions f_{k} are supported in $M_{1} \backslash K$. Since for any $k \in \mathbb{N}$, the support of f_{k} is connected, it follows that $\operatorname{supp} f_{k} \subset U_{k}$, where U_{k} is a connected component of $M_{1} \backslash K$. From the Lifting Theorem, it follows that the inclusion $U_{k} \hookrightarrow M_{1}$ can be lifted to the covering space $M_{k}^{\prime}:=M_{2} / \Gamma_{k}$, where Γ_{k} is the image of $\pi_{1}\left(U_{k}\right)$ in $\pi_{1}\left(M_{1}\right)$. In particular, any f_{k} can be lifted to some $f_{k}^{\prime} \in C_{c}^{\infty}\left(M_{k}^{\prime}\right)$.

Since the covering $q_{k}: M_{2} \rightarrow M_{k}^{\prime}$ is normal with deck transformations group Γ_{k}, it follows that it is amenable. If q_{k} is finite sheeted, let \tilde{f}_{k} be the normalized (in $L^{2}\left(M_{2}\right)$) lift of f_{k}^{\prime} on M_{2}. If q_{k} is infinite sheeted, from Proposition 4.12, there exists $\tilde{f}_{k} \in C_{c}^{\infty}\left(M_{2}\right)$, such that $\left\|\tilde{f}_{k}\right\|_{L^{2}\left(M_{2}\right)}=1, \operatorname{supp} \tilde{f}_{k} \subset q_{k}^{-1}\left(\operatorname{supp} f_{k}^{\prime}\right)$ and

$$
\left\|\left(S_{2}-\lambda\right) \tilde{f}_{k}\right\|_{L^{2}\left(M_{2}\right)} \leq\left\|\left(S_{k}^{\prime}-\lambda\right) f_{k}^{\prime}\right\|_{L^{2}\left(M_{k}^{\prime}\right)}+\frac{1}{k}=\left\|\left(S_{1}-\lambda\right) f_{k}\right\|_{L^{2}\left(M_{1}\right)}+\frac{1}{k}
$$

where S_{k}^{\prime} is the lift of S_{1} on M_{k}^{\prime}. In particular, $\left(S_{2}-\lambda\right) \tilde{f}_{k} \rightarrow 0$ in $L^{2}\left(M_{2}\right)$ and $\operatorname{supp} \tilde{f}_{k}$ is contained in $p^{-1}\left(\operatorname{supp} f_{k}\right)$. From Proposition 7.6, it follows that $\lambda \in \sigma_{\text {ess }}\left(S_{2}\right)$.

Remark 7.8. In the proof of Theorem 7.7, the only properties of Schrödinger operators used are essential self-adjointness and Proposition 7.6, which follows from the Decomposition Principle. Therefore, this proof establishes the analogous result for essentially self-adjoint differential operators, for which the Decomposition Principle holds (cf. [3]). For instance, if M_{1} has empty boundary, then the statement of Theorem 7.7 holds for any elliptic differential operator D_{1}, such that D_{1} and D_{2} are essentially self-adjoint on the spaces of compactly supported smooth sections.

Proof of Corollary 1.6: Follows immediately from Theorem 7.7 and Corollary 4.19.
Let $p: M_{2} \rightarrow M_{1}$ be a Riemannian covering of complete manifolds. As stated in the Introduction, there are examples where p is non-amenable and $\lambda_{0}\left(M_{1}\right)=\lambda_{0}\left(M_{2}\right)$. From Theorem 1.1, Propositions 4.16 and 2.1, if p is amenable, then $\sigma\left(M_{1}\right) \subset \sigma\left(M_{2}\right)$. It is natural to examine if this inclusion implies amenability of the covering. From Theorem 7.7, it is easy to construct an example of a non-amenable, normal Riemannian covering $p: M_{2} \rightarrow M_{1}$ with M_{1} complete, with bounded geometry and of finite topological type (that is, M_{1} admits a finite triangulation, where the simplices are defined on the standard simplex with possibly some lower dimensional faces removed), such that $\sigma\left(M_{1}\right)=\sigma\left(M_{2}\right)$.

Example 7.9. Let M_{1} be a 2-dimensional torus with a cusp, endowed with a Riemannian metric, such that M_{1} is complete and outside a compact set the metric is the standard metric of the flat cylinder. It is clear that M_{1} is of finite topological type and has bounded geometry. From [15, Theorem 1], it follows that $\sigma_{\text {ess }}\left(M_{1}\right)=[0,+\infty)$. Clearly, there exists a compact subset K of M_{1}, such that $\pi_{1}\left(M_{1} \backslash K\right)=\mathbb{Z}$. From Theorem 7.7, it follows that for the simply connected covering space M_{2} of M_{1}, we have $\sigma_{\text {ess }}\left(M_{2}\right)=[0,+\infty)$. However, $\pi_{1}\left(M_{1}\right)$ is the free group in two generators, which is non-amenable (cf. [4, Section 2]).

The next simple observation, provides a sufficient geometric condition for amenability of coverings.

Proposition 7.10. Let M_{1} be a complete Riemannian manifold, without boundary and with non-negative Ricci curvature. Then any covering $p: M_{2} \rightarrow M_{1}$ is amenable.

Proof: Let \tilde{M} be the simply connected covering space of M_{1}. From the Bishop-Gromov Comparison Theorem, it follows that \tilde{M} has polynomial growth and hence, every finitely generated subgroup of $\pi_{1}\left(M_{1}\right)$ has polynomial growth (cf. [16]). From Corollary 2.9, it follows that every finitely generated subgroup of $\pi_{1}\left(M_{1}\right)$ is amenable and Corollary 2.10 yields that so is $\pi_{1}\left(M_{1}\right)$. Therefore, any covering $p: M_{2} \rightarrow M_{1}$ is amenable.

Next, we present an example of an infinite sheeted amenable covering with trivial deck transformations group. In particular, this implies that the results of Section 5 cannot be applied to arbitrary infinite sheeted amenable coverings.

Example 7.11. Let Γ_{1} be the countable group of invertible, upper triangular 2×2 matrices with entries in \mathbb{Q} and let M_{1} be a Riemannian manifold with $\pi_{1}\left(M_{1}\right)=\Gamma_{1}$ (cf. [2, Section 5]). Let Γ_{2} be the subgroup of Γ_{1} consisting of diagonal matrices. Denote by \tilde{M} the simply connected covering space of M_{1} and consider $M_{2}:=\tilde{M} / \Gamma_{2}$. It is easy to see that the covering $p: M_{2} \rightarrow M_{1}$ is infinite sheeted and does not have non-trivial deck transformations. However, Γ_{1} is solvable and in particular, amenable (from Corollary 2.11), which yields that p is an amenable covering.

Recall that in our main results there are no assumptions on the vector bundles, the connections and the differential operators. We end this section with an example which demonstrates that these play a crucial role in the behavior of the spectrum even under finite sheeted coverings. Namely, this example shows that whether or not the bottom of the spectrum of the connection Laplacian is preserved under a Riemannian covering depends on the corresponding metric connection.

If M is a closed Riemannian manifold and $E \rightarrow M$ is a Riemannian vector bundle endowed with a metric connection ∇, then the (corresponding) connection Laplacian is given by $\Delta=\nabla^{*} \nabla$. It is well-known that $\Delta: \Gamma(E) \subset L^{2}(E) \rightarrow L^{2}(E)$ is essentially self-adjoint and its spectrum is discrete (cf. [14]).

Example 7.12. Consider $S^{1}:=\mathbb{R} / \mathbb{Z}$ and the trivial bundle $E_{1}:=S^{1} \times \mathbb{R}^{2}$ with the standard metric. We can identify smooth sections of E_{1} with smooth maps $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ with $f(x)=f(x+1)$, for all $x \in \mathbb{R}$. For $\phi \in \mathbb{R}$, consider the metric connection ∇^{ϕ}, defined by

$$
\nabla_{\frac{d}{d x}}^{\phi} f(x):=\left(\begin{array}{cc}
\cos (x \phi) & -\sin (x \phi) \\
\sin (x \phi) & \cos (x \phi)
\end{array}\right) \frac{d}{d x}\left(\begin{array}{cc}
\cos (x \phi) & \sin (x \phi) \\
-\sin (x \phi) & \cos (x \phi)
\end{array}\right)\binom{f_{1}(x)}{f_{2}(x)},
$$

for any smooth section $f=\left(f_{1}, f_{2}\right)$ of E_{1}. Since the spectrum of the connection Laplacian Δ^{ϕ} is discrete for any $\phi \in \mathbb{R}$, it is clear that $\lambda_{0}\left(\Delta^{\phi}, E_{1}\right)=0$ if and only if there exists a parallel section of E_{1} with respect to ∇^{ϕ}, or equivalently, $\phi=2 k \pi$, for some $k \in \mathbb{Z}$.

For $q \in \mathbb{N} \backslash\{1\}$, consider a q-sheeted Riemannian covering of S_{1} and the pullback bundle E_{2} of E_{1} endowed with the standard metric and the pullback connection ∇^{ϕ}. It is clear that $\lambda_{0}\left(\Delta^{2 \pi}, E_{2}\right)=\lambda_{0}\left(\Delta^{2 \pi}, E_{1}\right)=0$. However, the above arguments imply that $\lambda_{0}\left(\Delta^{2 \pi / q}, E_{2}\right)=0<\lambda_{0}\left(\Delta^{2 \pi / q}, E_{1}\right)$.

References

[1] Werner Ballmann, Henrik Matthiesen, and Sugata Mondal, Small eigenvalues of surfaces of finite type, Compos. Math. 153 (2017), no. 8, 1747-1768.
[2] Werner Ballmann, Henrik Matthiesen, and Panagiotis Polymerakis, On the bottom of spectra under coverings, Math. Z., posted on 2017, DOI 10.1007/s00209-017-1925-9.
[3] Christian Bär, The Dirac operator on hyperbolic manifolds of finite volume, J. Differential Geom. 54 (2000), no. 3, 439-488.
[4] Pierre Bérard and Philippe Castillon, Spectral positivity and Riemannian coverings, Bull. Lond. Math. Soc. 45 (2013), no. 5, 1041-1048.
[5] G. Pacelli Bessa, J. Fabio Montenegro, and Paolo Piccione, Riemannian submersions with discrete spectrum, J. Geom. Anal. 22 (2012), no. 2, 603-620.
[6] Robert Brooks, The bottom of the spectrum of a Riemannian covering, J. Reine Angew. Math. 357 (1985), 101-114.
[7] , The fundamental group and the spectrum of the Laplacian, Comment. Math. Helv. 56 (1981), no. 4, 581-598.
[8] Peter Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 213-230.
[9] Jeff Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, N. J., 1970, pp. 195-199.
[10] S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333-354.
[11] Harold Donnelly, On the essential spectrum of a complete Riemannian manifold, Topology 20 (1981), no. 1, 1-14.
[12] Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199-211.
[13] P. D. Hislop and I. M. Sigal, Introduction to spectral theory, Applied Mathematical Sciences, vol. 113, Springer-Verlag, New York, 1996. With applications to Schrödinger operators.
[14] H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989.
[15] Zhiqin Lu and Detang Zhou, On the essential spectrum of complete non-compact manifolds, J. Funct. Anal. 260 (2011), no. 11, 3283-3298.
[16] J. Milnor, A note on curvature and fundamental group, J. Differential Geom. 2 (1968), 1-7.
[17] Dennis Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987), no. 3, 327-351.
[18] Michael E. Taylor, Partial differential equations I. Basic theory, 2nd ed., Applied Mathematical Sciences, vol. 115, Springer, New York, 2011.

Institut für Mathematik, Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin
E-mail address: polymerp@hu-berlin.de

[^0]: Date: March 15, 2018
 2010 Mathematics Subject Classification. 58J50, 35P15, 53C99.
 Key words and phrases. Spectrum of differential operator, amenable covering.

