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SHORT WALK ADVENTURES

ARMIN STRAUB AND WADIM ZUDILIN

To the memory of Jon Borwein, who convinced us that a short walk can be adventurous

ABSTRACT. We review recent development of short uniform random walks, with a
focus on its connection to (zeta) Mahler measures and modular parametrisation of
the density functions. Furthermore, we extend available “probabilistic” techniques
to cover a variation of random walks and reduce some three-variable Mahler mea-
sures, which are conjectured to evaluate in terms of L-values of modular forms, to
hypergeometric form.

0. INTRODUCTION

At some stages of our careers we were approached by Jon Borwein to collaborate
on a theme that sounded rather off topic to us, who had interests in number theory,
combinatorics and related special functions. Somewhat unexpectedly, the theme has
become a remarkable research project with several outcomes (including [9 [10] 1],
to list a few), a project which we continue to enjoy after the sudden loss of Jon. ..
This note serves as a summary to our recent discoveries that certain “probabilistic”
techniques apply usefully to tackling difficult problems on the border of analysis,
number theory and differential equations; in particular, in evaluating multi-variable
Mahler measures. Our principal novelties are given in Theorems [[H3} these include
hypergeometric reduction of the Mahler measures of the three-variable polynomials

L+2 + 29+ 254+ 29w3 and (14 21)% 4+ 29 + 23,

as well as the (hypergeometric) factorisation of a related differential operator for the

Apéry-like sequence
n 2 2
2k
g (Z) (k) , wheren=20,1,2,....

k=0

Echoing Jon’s “a short walk can be beautiful” [§], we add that “a short walk can
be adventurous.”
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1. UNIFORM RANDOM WALKS

An N-step uniform random walk is a planar walk that starts at the origin and
consists of N steps of length 1 each taken into a uniformly random direction. Let
Xn be the distance to the origin after these N steps. The s-th moments Wy (s) of
Xn can be computed [I1] via the formula

:// 270 4L TN [, . By

0,1

:// 1140 o 2™ d0, - dy_,
[071]N—1

and are related to the (probability) density function py(z) of Xy via

W) = [ " *pw(z) dz = / " oy () da.

That is, px(x) can then be obtained as the inverse Mellin transform of Wy (s — 1).
Finally, note that the even moments W5(2n) and W, (2n) (which are, clearly, positive
integers) can be identified with the odd moments of In(t)Ko(t)* and Io(t)Ko(t)?,
respectively, where Iy(t) and Ky(t) denote the modified Bessel functions of the first
and second kind. Namely, for n = 1,2, ... we have [6]

32n+3/2 00
Ws5(2n) = o /0 2 (8 Ko ()2 dt
and
42 oo
Wi2n) = o /0 2 (8 Ko ()] dit.
2. ZETA MAHLER MEASURES
For a non-zero Laurent polynomial P(zy,...,zy) € Clzy!,... 2%, its zeta

Mahler measure [3] is defined by

Z(P;s):/---/[ol]N |P(e2™0 . e2™0N)15dh, - .- dbly,

and its logarithmic Mahler measure is
dZ P :
s) / / log |P(e*™% ... ™ N)|df, - - - dby.
(0,1]

A straightforward comparison of the two definitions reveals that

Wn(s)=Z(x14+ - +an;8)=Z(1+x1+ -+ 2Nn_1;5)

m(P) =

and

N
W;V(O)zm(:c1+~-~+:cN)zm(1+x1+-~-+:mv_1)=/ pn(x)logzdr, (1)
0
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where the derivative is with respect to s. The latter Mahler measures are known as
linear Mahler measures. The evaluations

W) =0, WiH0) = L'(x_s:—1) = i Lx-3:2), Wi(0) = —14¢'(-2) = 72C—7(r§)

are known [24], while the following conjectural evaluations, due to Rodriguez-Villegas
[13] and verified to several hundred digits [5], remain open:

W5(0) = —L'(f5 —1) = 6(“271:5) L(f2:4),

Wi(0) £ —8L/(fri—1) = 3(“6) L(f25),
where

fs(r) = n(7)*n(157)° +n(37)*n(57)° and  fu(r) = n(7)*n(2r)*n(37)*n(67)*

are cusp eigenforms of weight 3 and 4, respectively. Here and in what follows,
Dedekind’s eta function

77(7—> _ q1/24 H(l i qm) _ Z (_1)nq(6n+1)2/24’ where q = 627m-
m=1 n=-—00

serves as a principal constructor of modular forms and functions. No similar formulae
are known for W}, (0) when N > 7, though the story continues at a different level —

see [14) [30] [31] for details.

3. (GENERIC TWO-STEP RANDOM WALKS

Let X; and X3 be two (sufficiently nice, independent) random variables on [0, co)
with probability density p;(z) and po(z), respectively, and let 6; and 65 be uniformly
distributed on [0, 1]. Then X = €21 X +¢%™% X, describes a two-step random walk
in the plane with a first step of length X; and a second step of length X,. As in [10]
eq. (3-3)], an application of the cosine rule shows that the s-th moment of | X| is

W(s) = E(X]) // 0u(z. 1) (D)pa(y) da dy,
where Lo
gs(z,y) = — / (2% 4+ y? + 2zy cos 0)¥/2 6.
™ Jo
Observe that

dgs(z,y)
ds

so that, in particular,

1 s
= ;/ log \/22 + y2 + 2y cos 0 df = max{log|z|,log |y|},
5=0 0

Lemma 1. We have

W'(0) = E(log | X]) = / °°/0 " pu(@)paly) max{log 2, log y} dy da.
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Alternative equivalent expressions, that will be useful in what follows, include
Elog X)) = [ [ @) ogedyde+ [ [ pipalo) logydyds
0o Jo 0 Ja
~E(ogX0)+ [ [ @palo)logy — loga) dy s
0 Jaz

= E(log Xz) + /Ooo/ow p1(x)pa(y)(logz — logy) dy da. (2)

4. LINEAR MAHLER MEASURES

Let N, M be integers such that N > M > 0. By decomposing an N-step random
walk into two walks with N — M and M steps, and applying Lemma [ in the form
@), we find that

w0 = w0+ [ s [ putoge —togn) ) ar

This formula, together with known formulae for the densities [11], like p;(z) =
d(x — 1) (the Dirac delta function) and ps(x) = 2/(mv4 — 22) for 0 < z < 2, allows
one to produce new expressions for linear Mahler measures. Indeed, taking M =1
we get

W4(0) = / ' praa(z) logzdz 3)

(which can be also derived using Jensen’s formula), while M = 2 results in

(see also [20] eq. (2.1)]). Here, and in what follows, the hypergeometric notation

B (al, g, ...y Oy z) _ i (al()gz()?)fz"('b'nf;l:)n ;_T;

by, ..., b 2

is used, where

(a) ~TIla+n) Jala+1)---(a+n-1), forn>1,
Y L) 1L, for n =0,

denotes the Pochhammer symbol (the rising factorial). Note that we deduce ()
from

/ p2(y)(logx —logy) dy = — -3F2<2’§2’§2
0 ™ 27 2

which is valid if 0 < z < 2.
Equations (B)) and () and the formula
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obtained in [I1, Theorem 4.9], provide the formulae

7¢(3 1/t 1111 (16— 22)3
Wi (0) = 5722)—; i \/16—x2Re3F2(2’§2’Z2 W) d(log® z)
67 6
and
7¢(3) 1 7 111116 — 22)?
Wé(O): 5752)—;/ \/16—$2R63F2(27§27Z2 W) d(lngl')
0 67 6
9 2 11 1 (16— 22)3 11 1] g2
+_3/ /16 — 22 Re 3 I, 2752712 M 2 2752752 r dor.

These single integrals can be used to numerically confirm the conjectural evaluations
of W(0) and W(0).

A similar application of Lemma/[Il upon decomposing a 6-step walk into two walks
with 3 steps, yields the alternative reduction

w0 =2 [ o osi( [ patu) ) o (5)

where [11]
_ kL <%’ :
(3 + 2?) 1
We discuss this formula further in Section [
Finally, we mention that equation (3)) and a modular parametrisation of py(z)
(which we indicate in Section [6]) were independently cast in [23] to produce a double
L-value expression for W/(0).

22(9 — x2)2).

ps3(r) (3 + 22)3

5. MODULAR PARAMETRISATION OF pg(:l:’) AND RELATED FORMULAE

Note that formula (G can be written as

Wi0) = [ ogad(Pua)’) =togs— | Pl

featuring the cumulative density function

Py(r) = / pa(y) dy.

The related modular parametrisation of ps(x) is given by

)
xr=z(T) 3—77(27_)477(37_)2.( ,0) — (0,3),
so that
_2Ba@nta6r)? )@
Pl = = = e - 3 e
and
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is the anti-derivative of a weight 3 holomorphic Eisenstein series

(@) n@onen)* _ () — 8By, L (27).

n(27)*

where

n(37)° o0 (_3) L (_3) o2mim/3 _ p—2mim/3
E T) = —_= — N s _alm) = —_— g .

3,X73( ) ()3 mgzl m q X-3(m) m i3
Though the anti-derivative Ps(z),
3
i =223 1(m) 2 ()5e)

9 1 27rz/3 2n)4(1 — —27i/3 ,n\\ "
1 H N oA
— e 7rz/3 2n) (1 _ e27r2/3qn>
is not considered to be suﬂi(nently ‘natural”, it shows up as the elliptic dilogarithm
thanks to Bloch’s formula; see [I7, 19] for the details. Note that

1 it - - 77(7')9 = —3 2 _mn
Func(757) =g P Bt =i =120 30 (2
and, in addition, we have

1 dejdr 1 <n<7>2n<37>2)2 _ 1

omi o« 2\ n(2r)n(67)

where

= (-3
Eiy,(r)=1+6 > (E) o

m,n=1

6. MODULAR COMPUTATION FOR W/(0) AND W((0)

As (partly) shown in [II] the density ps(z) can be parameterised as follows (we
make a shift of 7 by half):

(a(r) = ~Re(

2i(1 + 67 + 1272) p(T))

™

where

_ n(27)'n(67)! o a(e) — ((20OnEI(AT)(A27)Y’
#0 = stz 0 0= (e )
The path for 7 along the imaginary axis from 0 to i/(2/3) (or from ico to i/(2v/3))

(
corresponds to x ranging from 0 to 2, while the path from i/(2v/3) to —1/4-+i/(4v/3)
along the arc centred at 0 corresponds to the real range (2,4) for z. (The arc admits
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the parametrisation 7 = ¢™/(21/3), 1/2 < 6 < 5/6.) Note that z(i/(2v/15)) = 1
and
267

p(7), for 7 on the imaginary axis,
pa((7)) = : 2
2i(1+6 12
_2i(1+67 + 1277) p(7), for T on the arc,
™
and , )y
2i(1 467+ 127 2¢/16 — 2?2 1111 (16—=z
. ( >p(7_): 5 .3F2(2§2Z2 ( 4))
™ T 6’ 6 108«

(this is a general form of [11l Theorem 4.9]). Formulas (), (B) and ({#]) reduce the
conjectural evaluations of W(0) and W{(0) to the following ones:

, 1/(24/15)
s -0 22 [T i togatig) et

272 T

and

(3 . 19 [LU/@V3)
575’2) +8L(fy; —1) = ?/0 yp(iy) log x(iy) dx(iy)

12 [1/2V3) 1

11
yp(iy)z(iy) - 3 (2’3 252

27 2

.2
2(iy) ) dz(iy).
4

Furthermore, note that the Atkin-Lehner involutions wqs: 7 — —1/(127) and
we: T+ (67 —5)/(127 — 6) act on the modular function z(7) as follows: z(we7) =
z(7) and z(wer) = —8/z(7), and we also have p(w;27) = —7?p(7). The point
i/(2v/3) is fixed by w;s. Thus, the change of variable 3 — 1/(12y) leads to

1/(2V3) oo
/ yp(iy) log x(iy) de(iy) = — / ypliy) log o(iy) da(iy).
0 1/(2V3)

2 Jo

7. MAHLER MEASURES RELATED TO A VARIATION OF RANDOM WALK

In [23] the Mahler measures m(1+ x; 4+ z5) and m(1+ x; + x5 + 3) are computed
using the modular parametrisations of

S Ws2n)2" =3 CT((1 4+ +m)(1+ 27" +a31))"2"
n=0 n=0

and

Z Wy(2n)2" = Z CT((1+ a1 422 +a3)(1+ a7 + 25" +23")) 2",

n=0 n=0
where CT(L) denotes the constant term of a Laurent polynomial L € Z[z7, 275, .. ].
Note that the Picard—Fuchs linear differential equations for the two generating func-
tions give rise to the ones for the densities ps(z) and p4(x) together with their ex-
plicit hypergeometric and modular expressions (see [I1} eq. (3.2) and Remark 4.10]),
though it remains unclear whether the latter information can be used to compute

W (0) in (@) for N = 3,4. This is itself an interesting question to not only assist in
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computing of W, (0) for N > 4 but also in relation with another famous conjecture
of Boyd:

15
m(1 + 21 + @9 + 23 + To13) = —2L (fo; —1) = — L(fo; 3) = 0.4839979734 .. ., (6)

4t

where f5(7) = n(7)n(37)n(57)n(157).
In analogy with the case of linear Mahler measures, we define

W(S) _ /// |1 + e27ri91 + 627ri62 + e27ri93 + e2m’(62+93)|5 del d92 deg
[0,1]3
= Z(l + 21+ 29 + 23 —|—SL’22L’3;8)

as the s-th moment of a random 5-step walk for which the direction of the final step
is completely determined by the two previous steps. Then the even moments

W(2n) = CT((1 + @1 + 2 + x5 + zoa3)(1 + 27! + a5t + 250 + (2223) ™))"
B i n\? 2k >
N k k
k=0
satisfy a rather lengthy recurrence equation, which is equivalent to a Picard—Fuchs

differential equation of order 4. The latter splits into the tensor product of two
differential equations of order 2 and, with some effort, we obtain the following result.

Theorem 1. We have

;W(%) ((4 ¥ t)Zl ¥ 4t))"

1 1
(4+t)(1+4t)2 (503
4(1 + 4t + 12) 1

t2
1+4t+t2)

and, more generally,

b i t " i n\* 2K\ [0\ "
(b+8)(L+0t) ==\ (b+t)(1+0bt) ) = \k k 4
11 1 11 2
— . F 22 ) ——  p(22|
A(% ) e ()
1 Lol #(b+t 11 t2
SE— N (PR _tb+t) AN (AR L
1+ bt + 2 1 1+ bt +¢t2 1 1+ bt + 2
Proof. Once a factorisation of this type is written down, it is a computational routine
to prove it. In other words, a principal issue is discovering such a formula rather

than proving it. Our original discovery of Theorem [l involved a lot of experimental
mathematics; however, we later realised that it is deducible from known formulae

_|_

—t(b
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2
()xk <k+m) Jtm
=0
=<, (2k\° k1, k+1
=Z(k) ran ()
2 (z2)* —k, k+1 z
1—2k+121 1 11—z
=0
1 (%) ( T2 )’“ P}g(l—l—z)’
1—zk:0 k 1—=z2 1—=2

where P, denotes the k-th Legendre polynomial, and the latter generating function
is a particular instance of the Bailey—Brafman formula [15, [34]. O

as follows:

We remark that, using the general Bailey—Brafman formula and its generalisation
from [29], the proof above extends to the factorisation of the two-variable generating

functions
>y (p) 2

as well as of

Sew () () e S ()

n=0 n=0

and even of
>3 (1) wet
n=0

for an Apéry-like sequence ug, uy, us, . . . .

Furthermore, we expect that Theorem [I] can lead to a hypergeometric expression
for the density function p(z) (piecewise analytic, with finite support on the interval
0 < z < 5), which is the inverse Mellin transform of W (s — 1), hence to the Mahler
measure evaluation

N 00 5
m(1 4+ a1 + 29 + 23 + x2w3) = W(0) = / p(z)logxdr = / p(z) log x dz.
0 0

On the other hand, the reduction technique of Sections [3land Ml suggests a different

approach to computing w’ (0), resulting in the following hypergeometric evaluation
of the Mahler measure.

Theorem 2. We have
2

1— :c_) log x dx.

1 ! 11
m(l 4+ xy + @9 + 23 + Tox3) = —— | oF1[ 22
0 1 16

2
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Proof. Define a related density p(x) by

4
/ w*ple) de = W(s) = / / |14 >0 4 20 4 2ri 02405 40, s
0 0.1

,  T(1+s)?
(1 +s/2)%

By an application of the Mellin transform calculus, we find that, for 0 < z < 4,

1 11 2
Dl - . 27 2 _ =
o) = - o (57 1-55).

2m
. 1 1
W' (0) :/ p(z)loga da = —/ p(x)logxdx,
1 0

= Wa(s)

Then it follows from Lemma [ that

where we use the evaluation
4
/ px)logrdr =m(1 + xo + x5 + 2o23) = m(l +22) + m(l +23) =0. O
0
The above proof extends to the general formula

b 4
m(1 + bxy + 29 + 23 + Tox3) = logb/ plz)dx + / p(z)logz dx
0 b

1 [t 11
— 27 2
_27T 02F1<1

for 0 < b < 4. A related computation
*arccos(b/z) log(z/(2v/D))
V16 — 22

valid for 0 < b < 4 was given by J. Wan [27]; he also pointed out that m(1 + bzy +
To + 3 + x223) = log b for b > 4 follows from Jensen’s formula.

dx

8
m(1+ba71 +1’2+£L'3—|—1’21L'3) :logb‘i—p
b

The left-hand side of another Mahler measure conjecture [13]
72

T4

2

m((1 4 21)% 4 25 + 23) = —L'(fo; —1) = — L(f2;3) = 0.7025655062 . . . ,
where fo(1) = n(27)n(47)n(67)n(127) is a cusp form of level 24, can be treated by a
similar reduction, using that the densities for (1+x1)? and x4+ x5 are py(t'/2)/(2t1/?)
on [0,4] and py(t) on [0, 2], respectively. The final result is the elegant formula

26 2 (! d
m((1+21)> + a9+ 23) = — + = [ arcsin(l —z) arcsinz —x, (7)
O x
where G is Catalan’s constant, and, with some further work, we can express the
right-hand side hypergeometrically.
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Theorem 3. We have

80(2)2 1113 3
m((1+$1)2+$2+$3) = 7754) 5F4<4’ 15454514

Proof. Notice that, for 0 < z < 1,

11
arcsin(l — x) = g —arccos(l —x) = g — V2o F (2’§2

and that, for n > —1/2,

1 (e 43
/ 2" V2 arcsinz dz = VT <\/7_T - —(Z 5
0 2 71

2n+1 I(
Therefore,
1 1 (1)
de 5 1
in(1 — ot b 2 =+
/0 arcsin(1 — x) arcsin . 2/0 arcsmx wfzn'(% (2n+1) o
GRrG+Y
o (3 2 4
Z 1(),2n+1)T(2+2) 27
From this and () we deduce
2G° log2 22 11119
1 _ 22,2 2
(L+21)? + 29 +73) = — 5 —3 2< 3757 |
8vV2I(3 1113 3|9 2T (4 3335 5|1
\3//; (14)5 4<4’14754754’54 _) \/;/2(4):), 5F4<4’34’74774774 —)-
m3/20(;) oo |4 BAmPI(Y) oo |4
It remains to use
1 11 111
G+Z7T10g2:\/§3F2<2’§2’§2 5)
20 2
(see [I, Entry 30]) and I'($)I'(2) = 7v/2. O

8. CONCLUSION

A goal of this final section is to highlight relevance for and links with other research
and open problems.

The (hypergeometric) factorisation in Theorem [I] and similar results outlined af-
ter its proof are part of a general phenomenon of arithmetic differential equations
of order 4. These are the first instances “beyond modularity” in the sense that
arithmetic differential equations of order 2 and 3 are always supplied by modular
parametrisation. In order 4, we have to distinguish two particular novel situations
(though our knowledge about either is imperfect and incomplete): (the Zariski clo-
sure of) the monodromy group is the orthogonal group Oy ~ O 5 of dimension 6
or the symplectic group Sps of dimension 10. The example given in Theorem [
corresponds to the first (orthogonal) situation: on the level of Lie groups, Oy9 can
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be realised as the tensor product of two copies of SLy (or GLy). There is a lim-
ited amount of further examples of this type [21] 29 B3] though we expect that all
underlying Picard—Fuchs differential equations with such monodromy can be repre-
sented as tensor products of two arithmetic differential equations of order 2. There
is a natural hypergeometric production of such orthogonal cases using Orr-type for-
mulae (see [I8, 28]) but there are plenty of other cases coming from classical work
of W.N. Bailey and its recent generalisations [29] B34]. Many such cases, mostly
forecast by Sun [25], are still awaiting their explicit factorisation. Though these
situations do not cover symplectic monodromy instances, they can still be viewed
as an intermediate step between classical modularity and Sps: the antisymmetric
square of the latter happens to be O >~ O35 (see [4]).

More in the direction of three-variable Mahler measure, the conjectural evaluation
in (6) and Theorem Bl brings us to the expectation

1 [ 11
R 27 2
o J, 2F1( 1

2

’ ) log x da = 2L/ (fo; —1). (8)

1— 2
16

This one highly resembles the evaluation
1

1 /1 1 1] 42 1 1 1
— 272 | — _ . 27272
2/0 2F1< 1 16)‘” 2 3F2< L3

established in [22]. The related modular parametrisation

n(r)n(an)?\’
n(27)? )

N[

1 e
5) -0 O

r=ux(r) = 16(
corresponds to

i ().

x? n(27)10 x? x?
Fl—]|=———— d F(l——)==-2itF|—
(16) ammans ( 16) " (16)’
where F' denotes the corresponding o F; hypergeometric series. Note that = ranges
from 0 to 4 when 7 runs from ioco to 0 along the imaginary axis; however, the point
To = 10.8774376613482 ..., at which x(m) = 1, is not a quadratic irrationality.
Furthermore, H. Cohen [16] observes another step in the ladder (@), (&):

6 [! 11
ﬁ/o 2F1<2’12

though not linked to a particular Mahler measure.

2

%) log? z dz - 2L (fo; —2) =

3-153
876
= 1.2165632526 . . .,

L(f2:4) (10)
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The expression in Theorem [3 is somewhat different from the one in Theorem [2]
and resembles the hypergeometric evaluation of the L-value

A 128 -+
—L'(fy; 1) = ?L(fz; 3)
r(3)? <1 1,1, 1 ) AT(3)? <1 1,1, 1 )
— 47 F ) Ty ty 9 1 + N4/ F ) Ty +y 9 1
6v2m2 P\ 1 5 3 VoA T
I'($)? (1 11,1 )
+ 4 F L2 ] ’
ov2ms2 P\ %, 5,3

where fo(7) = 1(47)2n(87)% is a cusp form of level 32, obtained in [32, Theorem 3].
Finally, we remark that the integral

3 dx

Wé(O):/:log:)sdPg(:):):log3—/0 Py(a) =

in the notation of Section [ with P;(z) related to eta quotients, is visually linked
to the following result in [7] (also discussed in greater generality in [2] 26])

11 77(7—)9 dq 00 3\ n
— 1 — — = l R B mn:L/ B _1 .
/o 9< n(3T)3) ¢ ol Zl< o )mq (x-3;—1)

m,n=

However, apart from the fact that the two quantities coincide we could not find a
direct link between the two integrals.

Acknowledgements. We thank H. Cohen for supplying us with the numerical
observation ([I0) whose origin remains completely mysterious to us. We also thank
the referee for their valuable feedback.
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