
GB code: A grain boundary generation code
R. Hadian1, B. Grabowski1, and J. Neugebauer1

1 Max-Planck-Institut fuer Eisenforschung, Duesseldorf, GermanyDOI: 10.21105/joss.00900

Software
• Review
• Repository
• Archive

Submitted: 26 July 2018
Published: 23 September 2018

License
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

Grain boundaries (GBs) are crystalline borders between single crystals in materials mi-
crostructure. They play an important role in mechanical, chemical or electronic response
of materials and are therefore essential to materials science and physics.
GBs are geometrical entities with a large parameter space that has been well formulated
within a coincident site lattice (CSL) mathematical framework (Sutton & Balluffi, 1996).
One important computational advantage of the CSL formalism is that it enables the con-
struction of GBs in a periodic setup for atomistic simulations. GB_code (Hadian, 2018)
uses the CSL construction to generate GB atomic structures (currently for cubic materials)
systematically. It provides input atomic structures for large-scale atomistic simulations
with interatomic potentials (as implemented e.g. in LAMMPS (Plimpton, 1995)) or ab ini-
tio, density-functional-theory (DFT) simulations (as implemented e.g. in VASP (Kresse &
Furthmüller, 1996)). These atomistic codes can further calculate different properties of
the GBs. In addition to providing the input structures, the csl_generator.py script
and the attached Jupyter notebooks have extra functionality to show how the CSL prop-
erties can be used to locate, classify and categorize different GBs and to extract detailed
information about them.
GB_code is designed to be a command line tool as it is documented in detail in the
README file of the repository, but the modules can also be accessed separately for
example via the attached Jupyter notebooks. The code consists of two main scripts,
csl_generator.py and gb_generator.py, that should be used in this order to pro-
duce the final GB structures. The attached Jupyter notebooks in the Test directory,
Usage_of_GB_code.ipynb and Dichromatic_pattern_CSL.ipynb, input the two scripts
as modules. The former addresses the general usage of the code with some extra tips
and functions to locate GBs of interest, the latter depicts how CSL properties such as the
overlapping patterns and displacement shift complete (DSC) vectors can be extracted and
visualized. In the notebooks, two examples of the usage of the GB_code in our previous
publications (Hadian, Grabowski, Race, & Neugebauer, 2016, Hadian, Grabowski, Finnis,
& Neugebauer (2018)) have been shown as well.
GB_code uses the analytical and mathematical formulations of the following works of
Sutton & Balluffi (1996), Bollmann (1982), Grimmer, Bollmann, & Warrington (1974).
Some functionality from the code by Wojdyr (2013) on CSL has been used in a modified
form in the GB_code.

Statement of need:

GB_code is an interactive toolbox to learn about grain boundaries and it is versatile
for running high-throughput calculations. The target audience is students/scientists of
materials science and physics at any level of familiarity with the topic. Extensive use
of the NumPy library in GB_code results in faster execution, especially when computing
large structures. The user will be guided through in a step-by-step manner on how to

Hadian et al., (2018). GB code: A grain boundary generation code. Journal of Open Source Software, 3(29), 900.
https://doi.org/10.21105/joss.00900

1

https://doi.org/10.21105/joss.00900
https://github.com/openjournals/joss-reviews/issues/900
https://github.com/oekosheri/GB_code
https://doi.org/10.5281/zenodo.1433530
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00900


find and create the GB of interest. The code has been designed to be simple to use and
instructive with a special attention to GB plane orientation, which is often lacking in
other grain boundary creation codes.

Acknowledgements

R. Hadian would like to thank professor Mike Finnis for fruitful discussions. Funding
from the European Union’s Horizon 2020 research and innovation programme (Grant
agreement No. 639211) is also gratefully acknowledged.

References

Bollmann, W. (1982). Crystal lattices, interfaces, matrices: An extension of crystallogra-
phy. W. Bollmann. Retrieved from https://books.google.de/books?id=oBt0QgAACAAJ
Grimmer, H., Bollmann, W., & Warrington, D. H. (1974). Coincidence-site lattices and
complete pattern-shift in cubic crystals. Acta Crystallographica Section A, 30(2), 197–207.
doi:10.1107/S056773947400043X
Hadian, R. (2018).GitHub repository. https://github.com/oekosheri/GB_code; GitHub.
Hadian, R., Grabowski, B., Finnis, M. W., & Neugebauer, J. (2018). Migra-
tion mechanisms of a faceted grain boundary. Physical Review Materials, 2(4).
doi:10.1103/PhysRevMaterials.2.043601
Hadian, R., Grabowski, B., Race, C. P., & Neugebauer, J. (2016). Atomistic migration
mechanisms of atomically flat, stepped, and kinked grain boundaries. Physical Review B,
94(16). doi:10.1103/PhysRevB.94.165413
Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-
energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169–11186.
doi:10.1103/PhysRevB.54.11169
Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal
of Computational Physics, 117(1), 1–19. doi:10.1006/jcph.1995.1039
Sutton, A., & Balluffi, R. (1996). Interfaces in crystalline materials. Clarendon Press.
Retrieved from https://books.google.de/books?id=DMafQgAACAAJ
Wojdyr, M. (2013). Gosam. GitHub repository. https://github.com/wojdyr/gosam/blob/
master/csl.py; GitHub.

Hadian et al., (2018). GB code: A grain boundary generation code. Journal of Open Source Software, 3(29), 900.
https://doi.org/10.21105/joss.00900

2

https://books.google.de/books?id=oBt0QgAACAAJ
https://doi.org/10.1107/S056773947400043X
https://github.com/oekosheri/GB_code
https://doi.org/10.1103/PhysRevMaterials.2.043601
https://doi.org/10.1103/PhysRevB.94.165413
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1006/jcph.1995.1039
https://books.google.de/books?id=DMafQgAACAAJ
https://github.com/wojdyr/gosam/blob/master/csl.py
https://github.com/wojdyr/gosam/blob/master/csl.py
https://doi.org/10.21105/joss.00900

	Summary
	Statement of need:

	Acknowledgements
	References

