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Abstract

Simulating transcranial electric stimulation is actively researched as knowledge about the

distribution of the electrical field is decisive for understanding the variability in the elicited

stimulation effect. Several software pipelines comprehensively solve this task in an auto-

mated manner for standard use-cases. However, simulations for non-standard applications

such as uncommon electrode shapes or the creation of head models from non-optimized

T1-weighted imaging data and the inclusion of irregular structures are more difficult to

accomplish. We address these limitations and suggest a comprehensive workflow to simu-

late transcranial electric stimulation based on open-source tools. The workflow covers the

head model creation from MRI data, the electrode modeling, the modeling of anisotropic

conductivity behavior of the white matter, the numerical simulation and visualization. Skin,

skull, air cavities, cerebrospinal fluid, white matter, and gray matter are segmented semi-

automatically from T1-weighted MR images. Electrodes of arbitrary number and shape can

be modeled. The meshing of the head model is implemented in a way to preserve the fea-

ture edges of the electrodes and is free of topological restrictions of the considered struc-

tures of the head model. White matter anisotropy can be computed from diffusion-tensor

imaging data. Our solver application was verified analytically and by contrasting the tDCS

simulation results with that of other simulation pipelines (SimNIBS 3.0, ROAST 3.0). An

agreement in both cases underlines the validity of our workflow. Our suggested solutions

facilitate investigations of irregular structures in patients (e.g. lesions, implants) or new elec-

trode types. For a coupled use of the described workflow, we provide documentation and

disclose the full source code of the developed tools.

1. Introduction

The simulation of transcranial electric stimulation (tES) is increasingly employed when

designing tES intervention studies [1] and observed behavior or neurophysiological changes
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are related to the simulated, subject-specific electric field [2–4]. This development is motivated

by increasing evidence that the individual distribution of the electrical field within each subject

influences the stimulation effect [5–7]. In addition, several software pipelines [8–12], among

which SimNIBS [10] and ROAST [12] are currently most actively developed, make the simula-

tion of tES more accessible to researchers.

All these pipelines implement a common, general workflow covering standard use cases,

i.e. the tES simulation of healthy subjects based on their individual magnetic resonance imag-

ing (MRI) data using rectangular, circular or ring electrodes. The starting point of this work-

flow is the segmentation of the MRI data of the subjects into the electrically most important

tissue classes. The obtained segmentation image is then used to create the head volume mesh,

which is complemented by electrodes that need to be modeled and positioned. The simulation

problem is solved using this individual head model, and results are visualized. The implemen-

tation of the outlined workflow by current tES simulation pipelines does not entirely cover use

cases with suboptimal imaging data, the presence of pathological tissue in patients or alterna-

tive electrode shapes.

For instance, MRI data from large-scale imaging studies usually were not primarily

acquired for the purpose of computational head modeling. Performing simulation studies

based on such data can become difficult due to challenges in the segmentation of low-contrast

tissue such as the skull using standard segmentation approaches. Following the image segmen-

tation, a surface-based meshing approach is commonly used to create the head volume mesh.

The advantage of this approach is a maximum of control over the approximation of the bound-

aries of the sub-compartments of the head model, which, on the other hand, must not inter-

sect, restricting the topology of the included structures and complicating the inclusion of

irregular tissue such as lesioned tissue. ROAST circumvents this restriction by applying an

image-based meshing approach, which is free of any topological constraints [12], with the

drawback of less accurate feature edges, for example, of the electrodes. The shape of the elec-

trodes commonly can be selected from a set of standard shapes including rectangular, circular

or ring electrodes. Means for modeling non-standard shaped electrodes such triangular elec-

trodes are usually not provided. Finally, the visualization of the simulation results is typically

realized in MATLAB [8,11,12], GMSH [10] or a custom tool [9] and thus relatively limited.

In this work, we present approaches to address the above-mentioned non-standard use-

cases when simulating tES on an individual basis. Segmentation routines were selected based

on the robustness of the structure segmentation of T1-weighted MRI data using JIST [13] a

plugin of MIPAV [14] to benefit from a wide range of image manipulation and segmentation

algorithms. We introduce an extension to the image-based meshing approach presented in

[12] by combining it with a surface-based meshing approach for an accurate electrode repre-

sentation. The 3D modeling software Blender [15] allows the highly flexible modeling of elec-

trodes of arbitrary shapes. We suggest the use of ParaView [16,17] for a versatile visualization

of the simulation results. We describe the information flow among the involved tools, which

are arranged around OpenFOAM [18], a comprehensive, finite-volume-method-based frame-

work for the numerical simulations. The simulation was verified analytically and by contrast-

ing the numerical results with those of SimNIBS 3.0 [19] and ROAST 3.0. A general agreement

with both pipelines underlines the validity of our suggested solutions. The scripts and the cus-

tom source code along with the documentation are readily available (from https://github.com/
benjamin-kalloch/tes-simulation-workflow) allowing a coupled use of the entire tool set as well

as usage of single tools only.

PLOS ONE Simulating transcranial electric stimulation in healthy and lesioned brains

PLOS ONE | https://doi.org/10.1371/journal.pone.0228119 May 14, 2020 2 / 36

https://github.com/benjamin-kalloch/tes-simulation-workflow
https://github.com/benjamin-kalloch/tes-simulation-workflow
https://doi.org/10.1371/journal.pone.0228119


2. Methods

The process of simulating tES involves the head and the electrode modeling, solving the under-

lying electrostatic problem, and the visualization.

The head model creation comprises the segmentation of the head MR image and the sub-

sequent volume mesh generation. Here, image segmentation is performed using the Java

Image Science Toolkit (JIST) [13] a plugin of the Medical Image Processing, Analysis, and

Visualization (MIPAV) toolbox [14]. The volume mesh is generated using a combined

image- and surface-based meshing approach implemented as a custom application that uses

the Computational Geometry Algorithms Library (CGAL) API, version 4.13.1 [20]. A plugin

for the 3D modeling software Blender 2.79 [15] implements the modeling and positioning

of the electrodes. OpenFOAM 7.0 [18] provides the tools to define the conductivity values

of the mesh compartments. Additionally, information from diffusion-weighted imaging

(DWI) data can be incorporated to model the anisotropic conducting behavior of white

matter tissue, and are processed in MRTrix 3 [21]. A plugin developed for the visualization

software ParaView 5.6 [16,17] manages the calculation of the conductivity tensors derived

from the diffusion tensors. The finite volume calculations involved in solving the underly-

ing Maxwell’s equation are performed by a custom solver application implementing the

OpenFOAM API. Finally, the resulting electric field may be visualized in ParaView. Fig 1

illustrates the entire workflow.

Fig 1. Data- and workflow. Schematics depicting the data flow between the individual processing steps and the involved

tools as well as the expected input and output data of the individual stages.

https://doi.org/10.1371/journal.pone.0228119.g001
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2.1. Set-up of the volume conductor model

2.1.1. MRI head segmentation. Accurate segmentation of the MR image is crucial since

the segmented structures represent the individual compartments of the volume conductor

model. Segmentation errors—especially discontinuities of the segmented skull or cerebrospi-

nal fluid (CSF)—impair the simulation results [22]. In our approach, we segment the scalp, the

skull, the air-filled sinuses of the skull, the subarachnoid CSF, the CSF in the ventricles, the

gray matter (GM) and the white matter (WM) only from T1-weighted MRI data. The involved

segmentation process is described in our previous work [23]. In short, we rely on robust, atlas-

based segmentation techniques and image-processing capabilities implemented in JIST, a

plugin of MIPAV. The segmentation of the scalp and skull structure of the image is achieved

through the Simultaneous Truth And Performance Level Estimation algorithm [24]. The intra-

cranial compartments are segmented using the topology-preserving segmentation algorithm

Multi-object Geometric Deformable Model [25] and the gyrification of the segmented GM sur-

face is enhanced by the Cortical Reconstruction Using Implicit Surface Evolution method [26].

We use a pseudo-CT template [27] to segment the air cavities in the skull. The quality of the

generated segmentation images is improved by morphological image operations. The individ-

ual segmentation images are combined to a single image that contains a distinct, unique

numeric label per segmented structure and is exported in the ANALYZE file format.

2.1.2. Electrode modeling and positioning. In our workflow a complete electrode model

is implemented, which defines the electrodes geometrically in shape and position as well as

their physical conductivity and the applied current, thereby realistically modeling the current

shunt [28]. The power source is represented by equipotential surfaces at the outer boundaries

of the electrode. An optional gel layer may be modeled.

A custom Blender plugin geometrically models rectangular electrodes and positions them

according to the international 10–20 system in a semi-automatic way. Necessary inputs are 1)

a geometrical representation of the outer boundary of the scalp segmentation in the Stereo-

lithography (STL) file format, 2) the extents of the electrode and 3) its location in 10–20 coor-

dinates. Furthermore, the user must provide four fiducial points, namely the nasion, inion and

the tragi of the ears, on the scalp surface by interactively aligning two reference lines and

selecting the corresponding points on these lines. The user interface is shown in Fig 2A.

To create the geometrical surface representation of the outer scalp boundary from the

binary scalp segmentation image the Marching Cubes-based (MC) [29] “Contour Filter” in

ParaView is used. In Blender, the plugin initially performs a Laplacian smoothing of the input

scalp surface to mitigate its relatively coarse structure due to the MC algorithm. Then, the loca-

tion of the 10–20 coordinates on the smoothed scalp surface is computed using the user-

defined fiducial points. The smooth scalp surface is clipped by the means of constructive solid

geometry (CSG) at the specified location with a cube of the specified extent. The position of

this cube may be manually varied if the location of the electrode falls outside the standard 10–

20 grid. An arbitrary shape of the electrode (see Fig 2B–2D) can be achieved by replacing that

cube with a volume of the desired shape. The clipped surface patch is extruded in 1 mm steps

to the desired electrode thickness. This avoids long, thin triangles at the sidewalls of the elec-

trode representation, which are unfavorable for the subsequent volume meshing. To model a

gel layer this process is executed twice, and the electrode representation is moved on top of the

gel layer. The geometry of the electrodes, the gel layer, and the smooth skin surface are

exported to STL files.

The CSG operation may result in small, unfavorably clipped triangles at the edges of the

electrode and the gel layer impeding the subsequent volume mesh generation. Therefore, their

geometry must be cleaned in Meshlab [30] by unifying duplicate vertices and applying the
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“Quadratic Edge Collapse Decimation” simplification filter. The smoothed skin surface, the

cleaned electrodes, and the gel layer are converted to the Object File Format (OFF).

2.1.3. Volume meshing. An unstructured tetrahedral mesh constitutes the computational

domain, i.e. the head model. We approach the task of generating this mesh by applying a com-

bination of an image-based meshing and a surface-based meshing algorithm, both relying on

Delaunay triangulation that is implemented in the Computational Geometry Algorithms
Library (CGAL), version 4.13.1 [20]. The surface-based meshing is applied to the electrodes

and the scalp structure and can be further utilized for any following internal structure that

does not impede a strictly nested arrangement of the mesh compartments. Structures that vio-

late a nested arrangement, such as the ventricles or lesioned tissue, can be meshed using the

image-based algorithm. Apart from the electrodes, the head mesh can be generated purely by

image-based meshing as well as it is possible to create it solely using the surface-based

approach.

We created a C++ tool based on the mesh_hybrid_mesh_domain example of the CGAL

library. The tool combines the CGAL domain classes Labeled_mesh_domain_3 and Polyhe-
dral_mesh_domain_with_features_3 into a single hybrid domain to simultaneously employ an

image-based meshing together with a feature-preserving, surface-based meshing. Both classes

represent so-called domain oracles that provide access to the domain to be discretized for the

mesh generation algorithm in CGAL. As such, they include methods to identify subdomains

including their boundaries, surface-patches and 0- and 1-dimensional features. In a polyhedral

domain, the boundaries of the subdomains are explicitly described by the input surface. In the

labeled mesh domain, boundaries between two labeled regions are determined by the bisection

method [31]. As input, the tool requires an ANALYZE file with the labeled image of the subject

Fig 2. Electrode modeling. (A) The user interface of our Blender plugin for electrode positioning and modeling purposes. Necessary

input parameters constitute the electrode dimensions, the position according to the 10–20 system, and a geometrical representation of

the outer boundary of the scalp segmentation in the STL file format. A stepwise workflow to define the fiducial points (nasion, inion,

tragi of the ears) for the computation of the 10–20 coordinate grid on the individual head is provided by the GUI. The rectangular cube

is generated according to the defined dimension and position of the electrode and will be used to create the electrode by the means of

constructive solid geometry (CSG). (B) Result obtained with our plugin: a standard rectangular patch electrode located at C3. A smooth

representation of the skin is generated, and the electrode is extruded based on the result of the CSG operation of the cube and this

smoothed skin surface. (C) A ring electrode shape created by a non-standard workflow. The cube was replaced by a cylinder with a hole.

(D) Triangular electrode obtained by a non-standard workflow. The cube was replaced by a triangular prism.

https://doi.org/10.1371/journal.pone.0228119.g002
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comprising only structures, for which the image-based meshing should be used, as well as the

surface descriptions of the electrodes, the scalp and any structure, for which the surface-based

meshing approach is favored, in the OFF file format. The feature edges of the electrodes are

only preserved if the scalp is provided as a surface too. Both types of input are used for their

respective domain classes. The input image constitutes the label image domain and each input

surface represents a separate polyhedral domain. All domains are combined into a single

hybrid domain. Any query (e.g. subdomain point containment) to the hybrid domain is first

forwarded to the polyhedral domains in the order in which they were entered into the hybrid

domain and lastly to the image domain. The last domain, i.e. the innermost domain, that posi-

tively responds to the query determines the subdomain of the resulting mesh. While techni-

cally not required, it is recommended to provided surfaces that are entirely nested into each

other to avoid ambiguities in the case of overlapping boundaries. The arrangement of the

structures in the label image can be completely arbitrary, however, depending on the target

resolution of the tetrahedral mesh, very small or thin structures of only a few voxels may not

be meshed. Furthermore, due to the chosen order of response of the individual domains in the

hybrid domain to domain queries, certain restrictions apply. For example, it is currently not

possible to perform surface-based meshing in an area of the domain that is already defined by

the label image, i.e. nested tissues cannot be meshed surface-based and image-based inter-

changeably. However, if required it would be easily possible to implement a prioritization

mechanism for certain subdomains.

To create the boundary surfaces for the surface-based volume meshing, we suggest a three-

stage process. The initial boundary surface descriptions are generated from the segmentation

label image by employing the Contour filter in ParaView, which is based on the Marching-

cubes algorithm [29]. Second, to take full advantage of the accurate preservation of boundaries

of the surface-based meshing, the coarse output surfaces of the Contour filter must be

smoothed in Meshlab using the Taubin smoothing algorithm (λ = 0.5,μ = −0.53,#smoothing
steps = 50) [32]. The smoothed scalp surface as a result of the electrode placement procedure

does not require additional smoothing. Finally, the quality of the smoothed surface meshes

must be improved by clearing defects (e.g. self-intersecting triangles) using the MeshFix tool

(v.2.1) [33] and by employing a custom tool leveraging the isotropic remeshing functionality

of CGAL’s Polygon_mesh_processing class.

To minimize the deviations from the boundaries of the labeled structures during the image-

based meshing a small tolerance parameter (10−6ffi0.00044 mm at 1 mm voxel size) for the

bisection is used. Following the initial mesh generation, four optimizations can be optionally

enabled. Two global optimizers (Optimized Delaunay Triangulation smoother, Lloyd smoother)
minimize the total mesh energy. Two local optimizers improve the dihedral angles of the worst

cells in the mesh or eliminate triangles with a poor radius-edge ratio, so-called slivers, respec-

tively. For further information on these four optimizers, please refer to the CGAL documenta-

tion (https://doc.cgal.org/latest/Mesh_3/group__PkgMesh3Functions.html). We use the API

of GMSH v.4.3 [34] to export the resulting volume mesh to the GMSH file format version 2.

The generated mesh is subsequently converted to the OpenFOAM format and optimized

for the later computations using the OpenFOAM utilities gmshToFoam, transformPoints, and

renumberMesh (details in Fig 1).

2.1.4. Conductivity values. We use the OpenFOAM setFields tool to uniformly set a dis-

tinct isotropic tensor value for all elements of each sub-compartment of the mesh. This value is

computed as the product of the unitary matrix and the corresponding scalar conductivity
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value

sTissue ¼ sTissue �

1 0 0

0 1 0

0 0 1

2

6
4

3

7
5:

To incorporate anisotropic conductivity information of the white matter, we adopted the

volume-constraint method [35]. This approach assumes a shared principal direction between

a diffusion tensor and its corresponding conductivity tensor but different eigenvalues repre-

senting a fixed anisotropy ratio between the principal and auxiliary directions. The calculation

of the eigenvalues is based on the scalar conductivity value of the white matter σWM, an anisot-

ropy ratio of 1:10 and must satisfy the conditions 1) s2
WM ¼ smain � saux, 2) saux ¼

smain
10

to ensure

that no unreasonable conductivity values are estimated. The conductivity tensor is determined

by the both-sided multiplication of the matrix S of the eigenvectors of the diffusion tensor and

a diagonal matrix σT = S�diag(σmain,σaux,σaux)�ST.

The DWI data are preprocessed using MRtrix 3 [21]. First, the signal to noise ratio of the

DWI data is improved (dwidenoise [36,37]). Subsequently, artifacts due to eddy currents and

due to motion are corrected (dwipreproc [38,39]). For skull-stripping, a binary mask of the

intracranial tissue is generated (dwi2mask [40]). Tensor estimation is realized through dwi2-
tensor [41]. The resulting tensor image is used to compute the fractional anisotropy (FA) map

(tensor2metric [42,43]). Both the FA map as well as the tensor image are cleaned from possible

NaN values using fslmaths. The FA map is registered to the T1-weighted brain image of the

subject linearly using FSL FLIRT [44,45] and non-linearly with FSL FNIRT [39,46]. The calcu-

lated transformations are utilized to co-register the diffusion tensor image using the tool

vecreg, which preserves the relative orientation of the tensors upon transformation. The com-

putation of the conductivity tensors is implemented as a ParaView plugin. They are subse-

quently transferred to the OpenFOAM mesh of the respective head model in ParaView and

finally exported in the OpenFOAM field format using another custom plugin. The field values

are transferred to the already prepared field of isotropic conductivity tensors, overwriting the

values of the white matter compartment.

2.1.5. Boundary conditions. A Dirichlet boundary condition for the electrical potential of

+/- 5 V is assigned to the outer boundaries of the anode and cathode respectively regardless of

the desired current strength. During post-processing, the electrical field strength magnitude is

corrected according to the actual current density integrated at the contact surfaces of both

electrodes with the scalp. The outer boundaries of the electrodes are, thus, modeled as equipo-

tential surfaces. Since the surrounding air is not explicitly modeled and virtually acts as an

insulator, a zero gradient Neumann boundary condition is applied for the electrical potential

at the scalp surface.

2.2. Solving the electrostatic problem

The electrical field strength E and the field of the electrical current density J are computed

according to the quasi-static form of Maxwell’s equations, which provide a sufficient approxi-

mation for tDCS, tACS, and tRNS [47]. Their solution is derived by our solver application

using the OpenFOAM API.

2.2.1. Quasi-static form of Maxwell’s equations. The electrical potential field ϕ induced

by the electrodes subject to the conductivity σ of the volume conductor is described by

Laplace’s equationr(σ�r�ϕ) = 0. E is obtained by the component-wise partial derivation of ϕ,

E = −r�ϕ. A linear relationship between E and J by σ exists as J = σ�E.
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2.2.2. The solver application. Our solver application computes the electrical current den-

sity J and the electrical field strength E using the finite-volume method (FVM).

First, ϕ is computed using a Gauss discretization scheme with linear interpolation for the

Laplace operator at a residual of 10−6. The solution is iterated to correct for non-orthogonality

in the mesh until the residual of the whole solution falls below 10−5. Next, the gradient field E
of ϕ is determined using the least-squares gradient scheme. J is the product of E and the electri-

cal conductivity σ.

Finally, E and J are scaled by the ratio s ¼ Itarget
Imeasured

of the user-defined input current strength

Itarget and the actual current strength Imeasured as determined by the summation of the current

density across the surface area where the electrodes contact with the scalp surface.

2.3. Visualization

Post-processing is handled by ParaView, for which OpenFOAM provides a plugin to read the

results. All figures relating to simulation results have been created in ParaView.

3. Results

We demonstrate a three-step verification attempt of the proposed workflow. First, our solver

application was tested using an analytically verifiable, 3-layered sphere model [48]. Second, we

utilized two reference head models, which were generated in SimNIBS 3.0, to conduct tDCS

simulations in both, OpenFOAM and SimNIBS to compare the results using identical head

models. While other simulation pipelines are equally valid for comparing purposes, we chose

the SimNIBS pipeline because of the availability of test data sets. Finally, both head models

were reproduced from their original MR image, respectively, using our modeling workflow

and a tDCS simulation in OpenFOAM was performed. The simulation result obtained using

these custom head models were compared to the results obtained by SimNIBS 3.0 and ROAST

3.0 using the same imaging data.

In addition, we demonstrate the capability to model anisotropic conductivity, the modeling

of alternative electrode shapes, namely small circular electrodes that are used for Laplacian-

tDCS, as well as the inclusion of irregular structures, lesions of the white matter, into the head

model.

3.1. Analytical test case: 3-layer sphere model

We implemented the analytical solution to the tES problem with point electrodes in a 3-lay-

ered sphere according to [48,49] in Python and contrasted the result with the numerical simu-

lation results obtained by our solver application. Table 1 provides an overview of the model

parameters. Since the analytical case assumes a point electrode, which cannot be modeled in

OpenFOAM, we simulated a 2 mm smaller sphere in OpenFOAM and used the analytical val-

ues greater than the 85th percentile of the boundary of this sphere as the Dirichlet boundary

condition of the numerical simulation. The spherical domain consisted of 15.1 M. tetrahedra.

We found an overall agreement in the distribution of the electrical potential between the

analytical (Fig 3A) and numerical solution resulting in a normalized root-mean-square

Table 1. Parameters of the 3-layered spherical head model.

Layer 1 (Scalp) Layer 2 (Skull) Layer 3 (Brain)

Radii (mm) 92 (90 in the numerical simulation) 85 80

Conductivity (S/m) 0.465 0.01 0.33

https://doi.org/10.1371/journal.pone.0228119.t001
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deviation of only 2.1% across the entire domain. The norm of the numerically calculated elec-

trical potential tends to decline slightly stronger as compared to the analytically derived poten-

tial (Fig 3B).

3.2. Comparison to other tES simulation pipelines

Our workflow was evaluated using the Almi5 and Ernie test data sets from SimNIBS. Simula-

tion results were compared to that of SimNIBS and ROAST.

3.2.1. Comparison of the solver application to SimNIBS using the same head model.

We utilized SimNIBS 3.0 to create the head models of the two test data sets from their T1- and

T2-weighted imaging data. Each head model included the tissues skin, skull, CSF, GM, and

WM. Compartments representing air were treated as a perfect insulator and were thus not

part of the computational domain. For each head model, we tested three electrode setups, a bi-

hemispheric setup over the primary motor cortices of both hemispheres, referred to as the

dual setup, (10–20 positions: C3 and C4), an anodal setup (10–20 positions: C3, right supraor-

bital close to Fp2) and an occipital setup (10–20 positions: Cz, Oz) (Fig 4). Square-shaped elec-

trodes with 25 cm2 (occipital montage) and 16 mm2 (dual and anodal montage) dimensions

and 2 mm thickness were modeled as a complete electrode model with equipotential surfaces

at the outer boundaries. Isotropic conductivities were adopted from the SimNIBS GUI

(Table 2). The input current strength was 1 mA.

The conductivity values of the different head model compartments used for tDCS simula-

tions in OpenFOAM, SimNIBS and ROAST. The conductivity value for air only applies to our

head models and the head models generated by ROAST as the air compartment in SimNIBS is

considered but not part of the head volume mesh.

Fig 3. Analytical 3-layered sphere model. (A) Center slice of the analytical result field, illustrating the distribution of the electrical potential between the two opposing

point electrodes. (B) Comparison of the electrical potential calculated analytically according to [48] (blue graph) with the numerical solution derived by OpenFOAM

(red graph).

https://doi.org/10.1371/journal.pone.0228119.g003
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Visual comparison of the computed electrical field strength with the field obtained by Sim-

NIBS revealed a comparable field pattern including hotspots at the same locations across both

head models and all electrode montages (Fig 5). The magnitude of the electrical field within

the gray matter mesh compartment was on average higher in our results across both models

and all electrode montages (Table 3: 2 mm electrode thickness–SN mesh). See Tables 4 & 5

and Figs 6–9 for a more detailed overview of the relative difference in the magnitude of the

electrical field strength as well as the angle difference across all conditions. The deviation in

the local field direction was more pronounced in the area of the gray matter mesh compart-

ment underneath the electrodes in all cases with a 99th percentile peak value in angle difference

of 40.56˚ in the occipital electrode configuration of the Almi5 test case. We contrasted the

magnitude of the electrical field along a sampling line between the respective electrode pair of

each condition through the entire head model (Figs 10 & 11). This assessment confirmed that

our simulation slightly overestimates the magnitude of the electrical field in the intracranial

compartments. Interestingly, this trend reverses for skin and skull, where a small underestima-

tion can be observed. No major difference between head models and electrode conditions was

noticeable. The simulation time was approximately 4 minutes in all cases on an Intel1 Core i7

6700 workstation.

3.2.2. Full workflow verification with SimNIBS and ROAST. As a next step, we repro-

duced the Almi5 and Ernie head models from their original T1-weighted MR data (available

from SimNIBS) both using ROAST 3.0 and our head modeling workflow to allow a compari-

son between the two simulation pipelines and our approach.

To match all simulations parameters among the three approaches the electrode thickness

was increased to 3 millimeters as ROAST required a minimum thickness of in total 3 mm for

the electrodes and the gel layer, which could not be omitted. To exclude the gel layer from

Fig 4. Electrode configuration. Display of the anodal, dual and occipital electrode configuration of both head models, Almi5 and Ernie, used for comparison with

SimNIBS.

https://doi.org/10.1371/journal.pone.0228119.g004

Table 2. Scalar conductivity values.

Structure Skin Skull Cerebrospinal fluid Grey matter White matter Electrode material Air
Conductivity, S

m 0.465 0.01 1.654 0.275 0.126 29.4 10−15

https://doi.org/10.1371/journal.pone.0228119.t002
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further computations the same electrical conductivity as for the electrode material was speci-

fied for the gel.

Fig 12 displays the segmentation result achieved by our approach using only the

T1-weighted image in comparison to SimNIBS 3.0 employing the CAT12 segmentation rou-

tines and ROAST 3.0 both using the T1-weighted as well as the T2-weighted image of the

exemplary data set “Ernie”. The computed head models were caudally more truncated in our

approach. The Mesh quality (Table 6) was well suitable for OpenFOAM. The conductivity val-

ues and the three electrode montages remained unchanged. Computation times for each head

model on an Intel1 Core i7 6700 workstation were approximately 6 hours (segmentation), 3

hours (meshing), 100 seconds (simulation).

Fig 5. Electrical field pattern. Comparison of the distribution pattern of the electrical field strength in both head models and all electrode montages between the

OpenFOAM result and the SimNIBS result. Areas above the 90th percentile of the electrical field strength are defined as hotspots and marked in black.

https://doi.org/10.1371/journal.pone.0228119.g005
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The magnitude of the resulting electrical field strength computed by each of the simulation

approaches was contrasted by sampling along a straight sampling line between the centers of

the respective electrodes through the head models. Across all conditions, the mean and per-

centile-peak values of the electrical field strength in the gray matter mesh compartment were

slightly overestimated in our approach compared to the results from ROAST even more than

compared to the SimNIBS results (Table 3) while the field distribution (Fig 12E) remained

comparable (Figs 13 & 14).

Table 3. Comparison electrical field strength (SimNIBS [SN] vs. OpenFOAM [OF] vs. ROAST [RO]).

Head Model Type Anodal Dual Occipital

90th pctl. 95th pctl. 99th pctl. 90th pctl. 95th pctl. 99th pctl. 90th pctl. 95th pctl. 99th pctl.
Ernie 2 mm electrode thickness SN mesh OF sim .098 .116 .159 .1 .118 .16 .082 .096 .129

Mean: .054 [SD: .033] Mean: .056 [SD: .032] Mean: 0.052 [SD: .023]

SN Sim .079 .09 .115 .078 .089 .111 .069 .078 .098

Mean: .046 [SD: .024] Mean: .046 [SD: .022] Mean: .045 [SD: .017]

3 mm electrode thickness ROASTmesh RO sim .071 .081 .101 .071 .081 .101 .063 .071 .087

Mean: .042 [SD: .028] Mean: .042 [SD: .05] Mean: .04 [SD: .016]

SN mesh SN Sim .077 .088 .113 .077 .088 .110 .067 .077 .097
Mean: .045 [SD: .023] Mean: .046 [SD: .022] Mean: .044 [SD: .017]

Custom mesh OF sim .12 .133 .161 .117 .134 .165 .109 .122 .146
Mean: .070 [SD: .034] Mean: .070 [SD: .033] Mean: .071 [SD: .027]

Almi5 2 mm electrode thickness SN mesh OF sim .112 .131 .168 .115 .134 .17 .095 .11 .136

Mean: .061 [SD: .036] Mean: .063 [SD: .035] Mean: .059 [SD: .026]

SN sim .099 .112 .137 .097 .11 .134 .086 .097 .118

Mean: .056 [SD: .029] Mean: .056 [SD: .028] Mean: .055 [SD: .022]

3 mm electrode thickness RO
mesh

RO sim .083 .095 .12 .085 .098 .122 .074 .083 .103

Mean: .048 [SD: .028] Mean: .049 [SD: .026] Mean: .046 [SD: .024]

SN mesh SN Sim .096 .109 .134 .095 .108 .131 .084 .094 .116
Mean: .054 [SD: .029] Mean: .055 [SD: .027] Mean: .053 [SD: .021]

Custom mesh OF sim .133 .15 .182 .146 .166 .201 .130 .146 .180
Mean: .084 [SD: .035] Mean: .089 [SD: .039] Mean: .080 [SD: .036]

Comparison of the 90th, 95th, 99th percentile as well as the average magnitude of the electrical field strength in V/m within the gray matter mesh compartment of the

head models generated by SimNIBS, ROAST and our head modeling pipeline. SimNIBS and our approach were contrasted using the identical head models generated by

SimNIBS (2 mm electrode thickness–SN mesh–OF sim vs. SN sim). The head models were re-created by all three approaches sperately using an electrode thickness of 3

mm and simulation results were compared. Abbreviations: SN = SimNIBS, RO = ROAST, RO/SN/Custom mesh = head model created by ROAST/SimNIBS/our

approach, RO/SN/OF sim = tDCS simulation conducted in ROAST/SimNIBS/OpenFOAM.

https://doi.org/10.1371/journal.pone.0228119.t003

Table 4. The absolute value of the relative difference of the electrical field strength (SimNIBS vs OpenFOAM).

Anodal Dual Occipital

90th pctl. 95th pctl. 99th pctl. 90th pctl. 95th pctl. 99th pctl. 90th pctl. 95th pctl. 99th pctl.
Ernie 29.85% 35.8% 55.4% 32.81% 38.28% 55.8% 30.32% 35.8% 51.47%

Mean: 16.23% [SD: 12.95%] Mean: 18.44% [SD: 14.87%] Mean: 16.31% [SD: 12.32%]

Almi5 26.91% 34.89% 66.21% 28.2% 34.49% 63.29% 20.63% 25.34% 35.22%

Mean: 13.71% [SD: 14.37%] Mean: 14.9% [SD: 15.31%] Mean: 10.39% [SD: 7.52%]

Comparison (in percent,
jESN j� jEOF j
jESN j

� 100) of the mean and peak percentile absolute value of the relative difference of the simulation results computed by SimNIBS and

OpenFOAM within the gray matter compartment of the identical reference meshes. Abbreviations: EOF = Electrical field strength computed by our OpenFOAM solver,

ESN = Electrical field strength computed by the SimNIBS solver.

https://doi.org/10.1371/journal.pone.0228119.t004
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The mean as well as the 90th, 95th and 99th percentile of the magnitude of the electrical field

strength in the gray matter computed by SimNIBS in the test cases using an electrode thickness

of 3 mm were consistently lower than the results in the test cases with 2 mm electrode thick-

ness (Table 3). This observation suggests an inverse relationship between the electrode thick-

ness and the change in the magnitude of the electrical field strength in the gray matter

compartment.

3.3. Extended capabilities

In this section, we demonstrate extended processing capabilities that can be combined with

our standard workflow. We included the anisotropic conductivity of the white matter in the

custom Almi5 test case. Furthermore, we conducted a simulation using an alternative elec-

trode model in the form of small circle-like electrodes in a multi-electrode setup. Finally, we

demonstrate the inclusion of lesioned tissue in a head model.

3.3.1. Modeling anisotropic conductivity. To model the anisotropic conductivity of

white matter, the conductivity tensors from the diffusion-weighted imaging data of the Almi5

data set were computed. In this process, we assumed a fixed ratio of 1:10 between the main

and the auxiliary eigenvectors of the tensor and a conductivity of 0:126 S
m for the white matter.

We assigned the same isotropic conductivity values to the individual mesh compartments as

before except the white matter compartment, to which we assigned the computed conductivity

tensors. Refer to Fig 15 for a depiction of the conductivity profile of the data set. We simulated

the anodal electrode setup with two 5 cm x 5 cm patch-like electrodes placed over C3 and

supraorbital, close to Fp2. The input current strength was set to 1 mA. Additionally, to demon-

strate the image-based meshing capabilities of our meshing tool we generated the head model

only using image-based meshing (except for the electrodes and the scalp to ensure the feature-

preservation of the electrodes). The characteristics of the resulting mesh were as follows: 5.2

million tetrahedra, 239 non-orthogonal faces, maximum non-orthogonality of 81˚, maximum

skewness of 2.4.

We sampled the magnitude of the electrical field strength along a straight sampling line

between both electrodes through the head model and compared the magnitude of the aniso-

tropic test case to a version of the test case using only isotropic conductivity values. The differ-

ence in the magnitude was most noticeable in the intracranial compartments, where the

changes in the magnitude (both in the negative and positive direction) along the sampling line

were generally higher in the anisotropic case as compared to the isotropic case (Fig 16A). Fur-

thermore, the area underneath the electrodes experienced higher differences both in the local

field angle and field magnitude of the electrical field (Fig 16B & 16C). The mean angle differ-

ence between the isotropic and anisotropic case within the gray matter mesh compartment

Table 5. Angle difference of the electrical field strength (SimNIBS vs. OpenFOAM).

Anodal Dual Occipital

90th pctl. 95th pctl. 99th pctl. 90th pctl. 95th pctl. 99th pctl. 90th pctl. 95th pctl. 99th pctl.
Ernie 21.55˚ 26.25˚ 36.34˚ 22.37˚ 27.36˚ 37.9˚ 22.81˚ 27.73˚ 37.76˚

Mean: 11.05˚ [SD: 7.75˚] Mean: 11.44˚ [SD: 8.06˚] Mean: 11.72˚ [SD: 8.1˚]

Almi5 20.63˚ 25.35˚ 35.22˚ 21.4˚ 26.4˚ 36.83˚ 22.15˚ 27.45˚ 40.56˚

Mean: 10.39˚ [SD: 7.52˚] Mean: 10.81˚ [SD: 7.81˚] Mean: 11.31˚ [SD: 8.65˚]

Comparison of the simulation results (in degrees,
arccos hEOF ;ESNi

jEOF j�jESN j

� �

p
� 180) computed by SimNIBS and OpenFOAM within the gray matter compartment of the reference

meshes. Abbreviations: EOF = Electrical field strength computed by our OpenFOAM solver, ESN = Electrical field strength computed by the SimNIBS solver.

https://doi.org/10.1371/journal.pone.0228119.t005
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was 9.4˚ (99th percentile: 33.1˚) and the mean value of the relative difference of the absolute

field magnitude was 12.25% (99th percentile: 29.16%).

3.3.2. Simulating multi-electrode tDCS. In this test case, we changed the electrode setup

to a 4 x 1 multi-electrode tDCS setup with five circular electrodes with a diameter of 5 mm.

The anode was positioned approximately at C3. The four cathodes were positioned in 10 cm

distance from the anode in a square arrangement around the cathode. A Dirichlet boundary

condition of -5 V at the four cathodes and +5 V at the central anode was defined. We set the

input current strength to 1 mA. Again, the image-based meshing algorithm was used for the

head model generation (surface-based only for the scalp and the electrodes). The same isotro-

pic conductivity values as before were assigned.

The computation of the electrical field finished after 148 seconds. The resulting electrical

field pattern is much more focal (Fig 17) with only a negligible fraction of the inbound current

reaching the contralateral hemisphere as compared to the field induced by two large conven-

tionally shaped electrodes as simulated before. This is an expected observation for multi-elec-

trode tDCS montages [50]. The average electric field strength across the cortex was reduced to

0.02 V/m. The 99th percentile peak electric field strength was lowered to 0.161 V/m. A larger

portion of the cortex that received non-negligible field strength is covered by a field strength

above the 99th percentile.

3.3.3. Inclusion of lesioned tissue. In this test case, we created a head model from the

T1-weighted magnetization prepared rapid gradient echo (MRAGE) and T2-weighted fluid-

attenuated inversion recovery (FLAIR) imaging data of a single subject from the local, large-

scale, cross-sectional study of the Leipzig Research Centre for Civilization Diseases (LIFE)

[51]. Imaging parameters used for the MPRAGE image were: flip angle 9˚, repetition time

2300 ms, inversion time 900 ms, echo time 2.98 ms, 1 mm isotropic resolution, acquisition

time 5.1 min. The parameters of the FLAIR image were: repetition time 5000 ms, inversion

time 1800 ms, echo time 395 ms, 1 mm isotropic resolution, acquisition time 7.02 min. The

images were acquired on a MAGNETOM Verio scanner (Siemens, Erlangen, Germany) with a

32-channel head receive coil and a body transmit coil. The head model was generated by our

robust standard segmentation workflow using the T1-weighted imaging data. Additionally, we

included white-matter lesions into the head model that were segmented before using the

T2-FLAIR data. Details of the white matter lesion segmentation procedure, which relied on an

adapted version of the lesion-TOADS algorithm [52], can be found in [53]. We employed

image-based meshing for the lesioned tissue, the ventricles, and the air cavities of the skull and

applied the surface-based meshing to all other structures (scalp, skull, CSF, GM, WM,

electrodes).

To illustrate the robustness of our segmentation and meshing approach, we compared the

generated compartments of the head mesh between our approach, SimNIBS 3.0 and ROAST

3.0 (Fig 18). Our approach strongly smooths the scalp structure but maintains typical charac-

teristics of the shape of the scalp (Fig 18A). The skull boundary exhibits the least irregularities

using our approach, which, however, tends to overestimate the thickness of the skull occip-

itally, along the superior sagittal sinus (Fig 19B), and caudally. All three approaches yield a

comparable gray matter compartment (Fig 18E). SimNIBS creates the visually most complete

white matter compartment (Fig 18F). Note that we included the white matter lesions as a sepa-

rate compartment only in our head model (highlighted in orange) (Fig 18E, Fig 19A).

Fig 6. Relative difference in the electrical field strength magnitude—Almi5. Heatmap of the relative difference in the magnitude of

the electrical field strength between OpenFOAM and SimNIBS in all three electrode configurations. A red color indicates a higher

electrical field strength in the OpenFOAM result whereas blue indicates a higher value in the SimNIBS result. Histograms depict

differences in percent of all tetrahedra within the gray matter mesh compartment.

https://doi.org/10.1371/journal.pone.0228119.g006
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We conducted a tDCS simulation using the generated white matter lesion head model with

the following parameters: a bi-hemispheric setup of quadratic 5 cm by 5 cm electrodes with 2

mm thickness as before, a 2 mA input current strength, the default conductivity values from

Table 2 for the standard tissues and 0.05 S/m conductivity for the lesioned tissue, a value at the

lower end of the conductivity range of white matter (mean: 0.2 S/m +/- 0.17 S/m) according to

a recent literature review [54]. A low white matter conductivity was chosen to model a calcifi-

cation of the tissue. We then simulated the test case again assigning the conductivity of healthy

white matter to the lesioned tissue. Comparing both computed electrical fields reveals a local

perturbation in the area of the lesions (Fig 20). A low average relative percentage difference

between both solutions in the gray (-0.93%, SD: 4.81%) and white matter mesh compartments

(-0.97%, SD: 8.92%) indicates that there is no major global difference between the simulations

with and without lesions. However, the comparably high standard deviation suggests larger

local differences.

4. Discussion

We presented a set of approaches for an individualized simulation of transcranial electric stim-

ulation. The entire workflow from segmentation, meshing, electrode modeling, simulation,

and visualization is built around OpenFOAM, a finite-volume based framework for numerical

simulations. A coupled use as well as the use of single features are equally possible. Essential

features are: 1) Individual head models are created solely from T1-weighted MRI data. Despite

the limited T1-contrast we robustly segment scalp, skull, subarachnoid CSF, the ventricles,

GM, WM, and the air cavities in the skull, as demonstrated using an exemplarily head image

from a local, large-scale imaging study [51]. 2) Combining image-based meshing with the sur-

face-based meshing preserves the feature edges of the electrodes while avoiding any restric-

tions concerning the topology of tissue structures of the head model. 3) Arbitrary electrode

shapes can be modeled, and their positioning is standardized according to the international

10–20 system. 4) Anisotropic tissue conductivity can be incorporated into the simulation. We

demonstrated an overall agreement with an analytical three-layer sphere model and the simu-

lation results obtained by the simulation pipelines SimNIBS, especially when the simulations

are based on the same head model, and ROAST allowing comparability of the simulation

results across simulation studies.

The combination of an image-based and a surface-based meshing algorithm realizes the

head model generation. The image-based meshing holds two advantages. First, there is no

restriction concerning the topology of the sub-compartments of the mesh. As the boundaries

are determined directly from a labeled image, there is no requirement of overlap-free bound-

aries of sub-compartments [55]. Therefore, the inclusion of structures that do not obey a

strictly nested arrangement, for example, tumorous or lesioned tissue or holes in the skull, is

facilitated [12]. Second, image-based meshing is less sensitive to the quality of the input data

which avoids extensive postprocessing of the segmentation images. However, boundaries may

be less accurately approximated which we mitigated by setting a strict tolerance of the involved

bisection algorithm. Surface-based meshing approximates boundaries most accurately and can

preserve feature edges, which is, therefore, beneficial for representing any structure that does

not require the flexibility of the image-based meshing, especially for the electrodes. As a

Fig 7. Angle difference in the electrical field strength—Almi5. Heatmap of the angle difference of the electrical field strength

between OpenFOAM and SimNIBS of all electrode configurations. Histograms depict angle differences in degrees of all

tetrahedra within the gray matter mesh compartment.

https://doi.org/10.1371/journal.pone.0228119.g007
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consequence of the combination of both approaches, a tetrahedral volume mesh of high qual-

ity with maximum flexibility concerning the topology and maximum geometrical accuracy is

obtained.

Comparing the results of our solver application and the solver employed in SimNIBS using

an identical head model indicated an overall agreement in the global distribution and changes

of the electrical field strength. However, peak differences of up to 66.2% and peak deviations in

the local electrical field direction of up to 40.6˚ were revealed in sparse locations close to the

electrodes while on average the differences with the gray matter mesh compartments remained

relatively small (approximately 15% difference in the field magnitude and 11˚ in local field

direction). Since the volume mesh, the boundary conditions, and the conductivity values for

the individual mesh compartments were identical, we conclude that differences arose due to

the fundamentally different numerical approaches used for solving Maxwell’s equation (Sim-

NIBS: finite-element method, OpenFOAM: finite-volume method). Most importantly, the dis-

cretization of the involved differential operators (i.e. the gradient operator and the Laplacian

operator) responsible for the calculation of the electrical potential as well as its partial differen-

tial derivative, i.e. the electrical field strength, differ between the two methods. The finite-vol-

ume method operates on cell volumes and relies for the discretization of the Laplacian

operator on the relationship between the volume integral of a control volume and its surface

integral, which is characterized by the Gauss theorem. This process involves the interpolation

of cell values onto the cell faces, which is highly affected by the mesh quality especially the

mesh orthogonality. Non-orthogonality between two mesh cells violates the assumption that

the face area vector at the face between two cells and the vector connecting the two cell centers

coalign [56]. A higher overall mesh non-orthogonality requires a correction term impacting

the computed result. The Galerkin discretization method used by SimNIBS 3.0 is not relying

on field values from the cell volumes and their faces and is, therefore, less sensitive to mesh

non-orthogonality.

Indeed, we observed the finite-volume method implemented in OpenFOAM to be more

sensitive to the quality of the volume mesh than the finite-element method in SimNIBS. Only

by applying a gradient limited interpolation scheme for the Laplacian term of the underlying

equation of the electrical potential, correcting for mesh non-orthogonality, the solution con-

verged slowly when solving the tES problem in the head models created by SimNIBS. This

choice of the discretization scheme resulted in a decreased convergence and thereby an

increased solution time of approximately 4 minutes as compared to 100 seconds when using

no gradient limiters in our head models. Most notably our volume mesh contained in the

worst-case approximately 25 non-orthogonal cells whereas the SimNIBS volume meshes

exhibited more than 1000 non-orthogonal cells in the best case and had problematic cells with

negative cell volume, high skew, wrong orientation and a high aspect ratio as detected by the

checkMesh utility of OpenFOAM. These differences in mesh quality can partly be attributed

to the underlying image segmentation result. Using our head segmentation result as input to

the SimNIBS mesh creation process, the fraction of non-orthogonal cells in the entire mesh

was reduced approximately twofold to only 0.0014% in the Almi5 head model, which is still

23-times higher than achieved by our meshing approach, but the mesh does not exhibit any

other problematic cells anymore. The still higher mesh quality of our approach in terms of

Fig 8. Relative difference in electrical field strength magnitude—Ernie. Heatmap of the relative difference in the magnitude of

the electrical field strength between OpenFOAM and SimNIBS in all three electrode configurations. A red color indicates a

higher electrical field strength in the OpenFOAM result whereas blue indicates a higher value in the SimNIBS result. Histograms

depict differences in percent of all tetrahedra within the gray matter mesh compartment.

https://doi.org/10.1371/journal.pone.0228119.g008
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Fig 9. Angle difference in electrical field strength—Ernie. Heatmap of the angle difference of the electrical field strength

between OpenFOAM and SimNIBS of all electrode configurations. Histograms depict angle differences in degrees of all

tetrahedra within the gray matter mesh compartment.

https://doi.org/10.1371/journal.pone.0228119.g009
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Fig 10. Electrical field magnitude—Almi5. Comparison of the magnitude of the electrical field strength along a sampling line between

both electrodes between OpenFOAM (green) and SimNIBS (blue). A dashed line depicts the mesh regions with distinct conductivity

values.

https://doi.org/10.1371/journal.pone.0228119.g010
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Fig 11. Electrical field magnitude—Ernie. Comparison of the magnitude of the electrical field strength along a sampling line between both

electrodes between OpenFOAM (green) and SimNIBS (blue). A dashed line depicts the mesh regions with distinct conductivity values.

https://doi.org/10.1371/journal.pone.0228119.g011
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mesh orthogonality is the result of an extensive mesh optimization phase in our meshing

approach, which increases the time for the volume meshing to up to 3 hours as compared to 5

minutes without optimization.

Deviations in the electrical field strength when simulating with our version of the Almi5

and Ernie head models instead of the ready-to-use head models might originate from differ-

ences in the caudal extent of the head model and a different segmentation of the white matter

and especially of the skull (Fig 9). Based on in-vivo measurements, Huang et al. [57] evidence a

significantly better prediction of the current flow using extended head models that include the

anatomy of the lower head. However, Indahlastari et al. [58] demonstrate a difference in the

median current density in various cortical and subcortical structures within a 10% range for a

truncation similar to ours (truncation below the foramen magnum of the skull) using repeated

simulations and a single head model with decreasing caudal extent. More recent work [59]

supports this finding reporting a 11% difference between an upper-head model and a whole-

body model. In general, Indahlastari et al. found that the error introduced by a reduced head

model extent depends on the location of the electrodes and the stimulation target respectively.

Simulations of electrode montages close to the caudal cutoff of the head model with a reduced

extent are more prone to deviations in the magnitude of the electrical field strength because of

the lacking caudal current pathways. Similarly, the current density magnitude in inferior and

deeper subcortical structures is more affected by a reduced head model extent. The foramen

magnum was identified as another decisive factor for comparisons across head models. To

yield a more comparable spread of the electrical field strength, the opening of the skull should

be consistently closed or consistently opened in all head models under comparison. In our

head models and the SimNIBS head models the magnum foramen was closed but not in the

ROAST head models, possibly explaining the observed higher difference between our

approach and ROAST. While our approach for skull segmentation tends to overestimate the

skull caudally and occipitally, along the superior sagittal sinus, it slightly underestimates the

thickness dorsally where the electrodes are attached. The thinner skull in that region may yield

an overall higher electrical field magnitude [55]. However, the general agreement in the change

Fig 12. Head segmentation. Comparison of our segmentation result (D) of the T1-weighted MR image of the Ernie

test data set (A) with the SimNIBS segmentation result (B) and the ROAST segmentation result (C) computed from the

T1- and T2-weighted imaging data. Labels are defined as follows: blue = skin, yellow = skull, purple = CSF, dark

green = gray matter, light green = white matter, red = internal air. The resulting electrical field of the anodal electrode

configuration using a head model generated from our image segmentation is displayed in Panel (E).

https://doi.org/10.1371/journal.pone.0228119.g012

Table 6. Mesh characteristics.

Almi5 (dual, 3mm electrode thickness) Ernie (dual, 3mm electrode thickness)

SimNIBS version Our version SimNIBS version Our version

SimNIBS segmentation Our segmentation

#cells (in million) 4.1 2.99 4.08 4.8 4.67

#non-orthogonal faces (percentage of all cells) 1099 (0.027%) 410 (0.014%) 25 (0.0006%) 2297 (0.048%) 12 (0.0002%)

Max. non-orthogonality 93.42˚ 80.46˚ 79.83˚ 89.72˚ 73.29˚

Max. cell skewness 6.59 1.74 3.4 3.04 1.83

Number of cells and mesh quality metrics of our version of the Almi5 and Ernie head models with 3 mm thick electrodes as well as the version generated by SimNIBS.

For the subsequent finite-volume-method calculation decisive characteristics are the number of mesh elements (#cells), the number of non-orthogonal faces, i.e. faces

whose non-orthogonality is greater than 70˚, the maximum non-orthogonality and the maximum skewness of the mesh elements.

https://doi.org/10.1371/journal.pone.0228119.t006
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Fig 13. Simulation results of OpenFOAM with custom mesh vs SimNIBS vs ROAST—Ernie. Comparison of the magnitude of

the electrical field strength computed by SimNIBS, ROAST and our modeling and simulation workflow (SimNIBS result: blue,

ROAST result: dark purple, Our result: light purple).

https://doi.org/10.1371/journal.pone.0228119.g013
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of the magnitude of the electrical field strength indicates that our modeling workflow does not

introduce unexpected alterations to the head model.

The Blender plugin provides powerful means for the positioning and the modeling of the

electrodes. After manually defining four fiducial points (nasion, inion, tragi of the ears), elec-

trodes are placed automatically according to the 10–20 system. Any position outside the 10–20

system can be manually defined by moving the electrode across the scalp surface. A standard

rectangular electrode is automatically modeled at the specified position. Other electrode types

such as ring electrodes or triangular electrodes as applied in [60] and [61] are respectively pos-

sible, but require an adaptation of the automated workflow.

Our solver application was verified using an analytical three-layered sphere model and by

comparison of the simulation results with the established simulation pipelines SimNIBS and

ROAST. However, a verification of the obtained simulation results with in-vivo recordings of

the electrical field remains an open task. Promising approaches are electrical current density

measurements obtained by the means of magnetic resonance electrical impedance tomography

[62] or in-vivo recordings of the electrical potential by intracranial electrodes. TDCS simula-

tions have been validated using intracranial recordings of epilepsy patients before [57,63].

Fig 14. Simulation results of OpenFOAM with the custom mesh vs SimNIBS vs ROAST- Almi5. Comparison of the

magnitude of the electrical field strength computed by SimNIBS, ROAST and our modeling and simulation workflow (SimNIBS

result: blue, ROAST result: dark purple, Our result: light purple).

https://doi.org/10.1371/journal.pone.0228119.g014

Fig 15. Conductivity tensors. (A) Conductivity profile of the augmented Almi5 test case in grayscale with the conductivity tensors

overlaid. Conductivity tensors are visualized in red using spherical tensor glyphs. Their size depicts the magnitude of the conductivity. The

shape reflects the degree of anisotropy, from isotropic (ball shape) to highly anisotropic (ellipsoidal, rod-like). (B) Zoomed cutout of the

conductivity profile. The anisotropic white matter compartment is visualized by small ellipsoidal conductivity tensors as opposed to the

ball-like shape of the tensors in all other isotropic tissues. (C) Conductivity profile without overlaid conductivity tensors. Darker

compartments exhibit higher conductivity.

https://doi.org/10.1371/journal.pone.0228119.g015
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Since our workflow mainly focuses on addressing individual problems that we faced during

the simulation of tDCS, it only provides a loose framework for the coupling of the suggested

tools. While we documented the information flow between the individual steps of the work-

flow, we did not couple the involved tools in an overarching script yet as our main focus was

the easy interchangeability of the involved tools and the extendibility of the workflow. As a

result, familiarization with the individual tools and knowledge about the information flow

between the tools (Fig 1) is necessary to apply the workflow as a whole and potentially results

in a higher initial effort for the setup and application as compared to fully automatized pipe-

lines [10,12]. We, therefore, consider our proposed workflow in the current state more suitable

for methods-oriented researchers interested in adapting and refining the presented

approaches. Developing our workflow further towards a highly automated pipeline is an ongo-

ing process and will entail replacing certain components. For example, the semi-automated

segmentation pipeline implemented in JIST currently requires the interaction of the user with

the graphical user interface of MIPAV. We are working on the development of Nighres [64], a

Python library for the processing of neuroimaging data. Several algorithms formerly imple-

mented as JIST plugins have already been transferred to Nighres, which will allow us to even-

tually replace the MIPAV/JIST based pipeline.

Fig 16. Anisotropic test case–comparison to isotropic test case. (A) Comparison of the magnitude of the electrical field

strength along the sampling line (yellow) between the custom version of the Alim5 head model with isotropic and anisotropic

white matter conductivity. (B) Relative difference (in percent) in the local electrical field magnitude in the gray matter mesh

compartment. (C) Local angle difference (in degrees) of the electrical field strength in the gray matter mesh compartment.

https://doi.org/10.1371/journal.pone.0228119.g016

Fig 17. Multi-electrode test case. Exemplary extension of the standard workflow by multi-electrode tDCS. Five round electrodes with a diameter of 5 mm

were positioned approximately at C3 and resulted in a much more focal field distribution than achieved with conventional square-shaped, patch

electrodes.

https://doi.org/10.1371/journal.pone.0228119.g017
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Fig 18. Mesh compartments of the head model generated using imaging data of the LIFE study [51]. The

T1-weighted imaging data (A) of a subject from the local, large-scale cross-sectional imaging study, LIFE, were used to

create the head model using our approach, SimNIBS 3.0 and ROAST 3.0. Our skull segmentation approach induced

the least irregularities on the outer skull boundary (C). The skin compartment (B) is highly smoothed while

maintaining the basic shape. The cerebrospinal fluid (D) and gray matter (E) mesh compartments are comparable

across all three approaches. We included white matter lesions (F, orange), which were segmented from an additional

T2-FLAIR image, into the white matter compartment of our head model.

https://doi.org/10.1371/journal.pone.0228119.g018

Fig 19. Visualization of the white matter lesions and skull thickness. The white matter lesions of a subject exhibiting a high lesion load are highlighted in orange (A).

Our atlas-based approach for skull segmentation tends to overestimate the thickness of the skull occipitally, along the superior sagittal sinus (B).

https://doi.org/10.1371/journal.pone.0228119.g019
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First simulation studies suggest that damaged brain tissue due to a stroke influences the

field distribution [65]. Considering pathological tissue in the head model is, therefore, a vital

extension to apply tES simulations to stroke patients. Our workflow is prepared for this appli-

cation as demonstrated by the inclusion of white matter lesions into the head model. However,

a fully automated and reliable segmentation of these irregular structures, especially stroke

lesions, is still an open task for future research. Recent machine-learning-based algorithms

constitute promising approaches for general brain lesion segmentation [66], or more special-

ized white matter lesion and stroke lesion segmentation [67] as well as tumor segmentation

[68].

The advantageous properties of our suggested approaches for head and electrode modeling,

as well as segmentation, facilitate simulation studies investigating alternative electrode shapes

or irregular structures of the head model such as lesions and tumors in patients, impla nts,

holes in the skull or vascular tissue.
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