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Abstract

Early modern humans (EMH) are often touted as behaviorally advanced to Neandertals,

with more sophisticated technologies, expanded resource exploitation, and more complex

clothing production. However, recent analyses have indicated that Neandertals were more

nuanced in their behavioral adaptations, with the production of the Châtelperronian techno-

complex, the processing and cooking of plant foods, and differences in behavioral adapta-

tions according to habitat. This study adds to this debate by addressing the behavioral

strategies of EMH (n = 30) within the context of non-dietary anterior tooth-use behaviors to

glean possible differences between them and their Neandertal (n = 45) counterparts. High-

resolution casts of permanent anterior teeth were used to collect microwear textures of fossil

and comparative bioarchaeological samples using a Sensofar white-light confocal profiler

with a 100x objective lens. Labial surfaces were scanned, totaling a work envelope of 204 x

276 μm for each individual. The microwear textures were examined for post-mortem dam-

age and uploaded to SSFA software packages for surface characterization. Statistical anal-

yses were performed to examine differences in central tendencies and distributions of

anisotropy and textural fill volume variables among the EMH sample itself by habitat, loca-

tion, and time interval, and between the EMH and Neandertal samples by habitat and loca-

tion. Descriptive statistics for the EMH sample were compared to seven bioarchaeological

samples (n = 156) that utilized different tooth-use behaviors to better elucidate specific activ-

ities that may have been performed by EMH. Results show no significant differences

between the means within the EMH sample by habitat, location, or time interval. Further-

more, there are no significant differences found here between EMH and Neandertals. Com-

parisons to the bioarchaeological samples suggest both fossil groups participated in

clamping and grasping activities. These results indicate that EMH and Neandertals were

similar in their non-dietary anterior tooth-use behaviors and provide additional evidence for

overlapping behavioral strategies employed by these two hominins.
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Introduction

The concept of “behavioral ingenuity” has long been linked to narratives explaining both the

evolutionary success of early modern humans and the eventual demise of the Neandertals [1–

9]. This concept is often measured using some suite of archaeological or paleobiological crite-

ria posited as markers of socioeconomic flexibility or complexity. For instance, Upper Paleo-

lithic stone-tool technology, with an emphasis on blades and projectiles, is associated with

early modern humans and seen as an upgrade from the Mousterian tradition [5, 10]. Dietary

comparisons between early modern humans and Neandertals, including those from molar

microwear [11], stable isotopes [12,13], paleoethnobotanical studies [14–17], faunal analyses

[3, 18, 19], and food processing [20] frequently indicate that the former had greater dietary

flexibility or accessed a broader subsistence base that included aquatic resources, fast and elu-

sive small game, a greater variety of plant foods, and improved food storage and processing

capabilities. Further studies suggest that early modern human clothing was more complex, fit-

ted, and specialized, resulting in superior thermal protection during the cold oscillations of

Marine Isotope Stage (MIS) 3 and beyond [21–23]. Although these analyses buttress common

notions of early modern human ingenuity, recent studies suggest that Neandertal adaptation

was more developed and nuanced than previously thought.

Several lines of evidence collectively identify Neandertal behaviors that are similar, or com-

parable, to the behaviors of penecontemporaneous early modern humans. The Châtelperro-

nian technocomplex, associated with Neandertals, points to their ability to produce curved

backed blades, bladelets, and bone tools [24–27], and projectile technology is also documented

in Neandertal contexts [28, 29]. Dental calculus studies, which emphasize plant rather than

animal foods, expand the range of dietary flexibility for Neandertals and suggest they were

consuming not only cooked, but potentially medicinal plants as well [30–33]. Moreover, the

overall evidence for plant exploitation visible in the archaeological record is similar between

early modern humans and Neandertals, indicating the latter hominin possessed the ability to

process those resources and had a complex division of labor for resource acquisition [29, 34–

36]. Neandertals were also found to be adaptable in their anterior tooth-use behaviors, with

habitat being a highly influential factor in the type of tooth-use behaviors employed [37]. Para-

masticatory behaviors were not limited to anterior teeth, as “para-facets” identified on postca-

nine teeth of Neandertals and early modern humans were attributed to cultural activities, and

not dietary behaviors [38]. Recent studies also confirm that Neandertals were capable of sym-

bolic behavior in the form of cave art [39], use of body ornaments, marine shells and pigments

[27, 40], and construction of elaborate structures deep within karstic systems [41].

Neandertals being capable of such complex behaviors blurs the dividing line between "us"

and "them.” Indeed, the mosaic morphology of archaic and anatomically modern humans

found in many of the earliest modern human fossils suggests complex population dynamics in

the Late Pleistocene [42–48]. The evidence from skeletal morphology has since been confirmed

by aDNA evidence, with both nDNA and mtDNA analyses indicating multiple and earlier

gene flow events, respectively, between early modern humans and Neandertals [49, 50].

This begs the following questions: what advantage did early modern humans have over

Neandertals? What behavioral differences between these two hominins allowed us to prolifer-

ate and them to disappear? This study seeks to add to the debate using dental microwear tex-

ture analysis as a means to compare early modern human tooth-use behaviors with those of

the Neandertals. Anterior tooth-use behaviors serve as a proxy for determining the degree to

which Neandertal and early modern human groups relied on their anterior teeth and jaws for

manipulative behaviors. Less intensive use of the teeth for such activities in EMH may suggest

a different repertoire of behavioral strategies.

Early modern human anterior tooth-use behaviors
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Tooth-use behaviors in the Paleolithic

Neandertals are often associated with a particular collection of anterior tooth wear patterns,

including labial rounding, labial scratches, and differential anterior-posterior occlusal wear, as

they were documented on numerous individual fossils across time and space [51–70]. As a result,

several hypotheses were put forth to explain the etiology of these wear patterns, including special-

ized chewing [52], coarse food and non-dietary behaviors [53], excessive mastication of abrasive

foods [71–73], and different combinations of dietary and non-dietary behaviors [58, 74, 75]. The

use of the anterior teeth for different types of non-dietary behaviors is now well-established, but

the most common behavioral reconstruction centered on the so-called “stuff-and-cut” action.

This posited that Neandertals were using their anterior dentition as a third hand to clamp down

on meat or hide, and slicing it near their mouths with a stone tool [53–57, 76, 77].

This behavioral reconstruction of Neandertal tooth-use became conventional wisdom, even

though variation in non-dietary anterior tooth-use behaviors were documented bioarchaeolo-

gically and ethnographically [78–86]. Analyses of anterior tooth-use among recent humans

using dental microwear textures provide a comparative framework to document behaviors

that extend well beyond the stereotypical “stuff-and-cut” action, including tool production

and retouching, hide preparation, wood softening, and weaving tasks [87, 88]. Resulting

microwear textures from the anterior teeth of a large sample of Neandertals (also used here)

show significant variation in non-dietary anterior tooth-use behaviors, with habitat a promi-

nent factor in distinguishing activities [37]. Specifically, individuals in more open habitats

were participating in intense clamping and grasping behaviors, whereas those in more closed

environments were engaged in a spectrum of non-dietary and dietary-only behaviors [37].

This ecogeographic patterning of anterior tooth-use behaviors is echoed by a similar pattern

found in postcanine, dietary dental wear [89–91].

Early modern humans have largely been excluded from analyses of anterior tooth-use

behaviors, with a few, notable exceptions. For instance, comparisons of Neandertal and early

modern human anterior versus posterior occlusal macrowear gradients are well studied, and a

pattern of greater anterior relative to posterior macrowear is common to both groups [58, 69,

70, 92– 94]. Some recent bioarchaeological groups and specific early modern humans exhibit

greater anterior relative to posterior wear than many Neandertals [93]. However, Neandertal

anterior teeth (incisors and canines) are larger on average than those of early modern humans

[95], and more frequently exhibit mass-additive crown morphology (e.g., shoveling, tubercu-
lum dentale, distal accessory ridges, etc. [96–98]). Therefore, the anterior teeth of Neandertals

lose more volume per unit of occlusal wear than those of early modern humans, on average

[58, 69, 70, 94]. Exploring anterior versus posterior dental macrowear gradients scaled to

crown breadth in bivariate space highlights the distinctions between Neandertals and early

modern humans anterior crown wear as it relates to differential anterior crown size; however,

it is important to note that some samples demonstrate overlap at the 95% confidence interval

of slope and y-intercept [58, 69, 70, 94]. Likewise, an analysis of dentin exposure by tooth, stan-

dardized to first molar wear, shows not only extensive variation in rates of anterior tooth wear,

but also that some early modern and recent human groups exhibit far greater anterior dental

wear than Neandertals [93]. The former analyses suggest few behavior differences between

Neandertals and early modern humans, in that both groups engaged in anterior tooth-use typi-

cal of hunter-gatherers, but that tooth size dictates the functional “use-life” of an anterior

tooth [69]. In contrast, the latter study suggests that there is no support for differences in ante-

rior dental loading between Neandertals, early modern humans, and recent human groups

given the overlapping or more extensive wear of anterior relative to first molar wear in the

modern human groups [69].

Early modern human anterior tooth-use behaviors
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Individual wear features, such as labial instrumental striations indicative of stuff-and-cut

actions, are rarely examined among early modern humans. A recent study of the dental

remains from Dolnı́ Vĕstonice and Pavlov [94] showed that instrumental striations were ubiq-

uitous on the well-preserved dentitions of these individuals. However, the striations were most

frequently oriented vertically, and probably caused by downward scraping behaviors rather

than the oblique cutting motions associated with most Neandertal labial striations [94]. Occlu-

sal grooves [97] and lingual surface attrition of the maxillary anterior teeth were also found

among the Pavlovian dentitions [94]. Taken together, the wear patterns exhibited by these

early modern humans indicate extensive anterior tooth-use for clamping and grasping behav-

iors, probably related to hide preparation or similar activities [94, 99].

Although the data on early modern humans are limited, it seems that repetitive, manipula-

tive behaviors associated with particular anterior dental wear patterns were not simply a Nean-

dertal phenomenon [69]. Dental microwear texture analysis, with its standardized protocol

and high repeatability, on a large sample of early modern humans and Neandertals presented

here can further identify upon potential similarities or differences in manipulative behaviors

among these Late Pleistocene human groups.

Biomechanical versus comparative approach

Qualitative descriptions of Neandertal cranio-facial morphology and anterior tooth size and

wear led researchers to hypothesize that the Neandertal face was adapted to high magnitude

and/or repetitive loading of the anterior teeth [57, 100–102]. Referred to as the Anterior Dental

Loading Hypothesis (ADLH), this theoretical approach posits that behavioral strategies involv-

ing the use of teeth-as-tools provided a selective force in Neandertal cranio-facial and dental

evolution [100–107]. However, several specific morphological characteristics, including the

retromolar space and posterior position of the zygomatic arch relative to the maxillary molars,

sparked debate about the biomechanical efficiency and evolutionary significance of non-die-

tary anterior tooth-use in Neandertals [103, 104]. This led to several biomechanical modeling

studies that indicated Neandertals were neither capable of nor efficient at high magnitude

loading of the front teeth [93, 108–111], and Neandertal craniofacial evolution was the result

of climate-based adaptations and/or neutral evolutionary forces, such as genetic drift [109,

112–119]. The challenge in using a biomechanical approach is it provides the potential for

high-magnitude loading, but not direct evidence of it, leaving the question open as to what

Neandertals actually did with their anterior teeth.

Direct analysis of anterior dental wear, such as dental microwear, macrowear, and different

types of dental wear features (e.g., enamel chipping and instrumental striations), provide one

means of directly assessing the behaviors that would (or would not) correspond to differential

loading or use of the anterior dentition. These methods employ novel quantitative measure-

ments, such as microscopic enamel textures [37, 87, 88], instrumental cutmark analyses [60,

63, 65–70, 120], and macrowear gradients [58, 69, 70, 92, 93] and Occlusal Fingerprint Analy-

sis [38, 90, 121–125] to document Neandertal and early modern human behaviors using a

comparative approach. These types of analyses often rely on a database of modern human sam-

ples with known or inferred dietary and tooth-use behaviors as a comparative benchmark for

the fossils analyzed. There are also challenges with direct approaches, including sample size,

sample composition, and assuming behavior in the ethnographic present is similar to that

found in the Pleistocene [69]; however, these types of analyses have offered a fresh perspective

on anterior tooth-use behaviors, including differences in Neandertal wear patterns driven

largely by habitat [37], similar behaviors between Neandertals and Late Pleistocene humans

[69, 70], and evidence for mixed-diet and cultural behaviors on posterior teeth [125]. As such,

Early modern human anterior tooth-use behaviors
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this study utilizes a comparative approach, and, in an effort to mitigate the challenges men-

tioned above, we employ a robust comparative framework with sizable samples and varied die-

tary and behavioral repertoires, and quantitative data to support our conclusions.

Materials and methods

Fossil and comparative samples

The fossil sample is comprised of early modern humans (n = 30) predominantly from Marine

Isotope Stage (MIS) 3–2; however, those from Qafzeh and Skhūl are dated to MIS 5. These

individuals are from 13 sites located across Europe and Israel (Table 1). The Neandertal sample

(n = 45) ranges in date from MIS 7–3 and spans across Western Eurasia (Table 2). The modern

human comparative sample (n = 156) consists of seven groups that range in time from 5000–

100 years BP (Table 3). These individuals lived in a wide variety of environments, exploited

various resources, and differed in non-dietary anterior tooth-use behaviors [37, 86, 87].

The early modern human sample is evaluated using three factors: habitat, location, and

time interval [37]. The two habitat categories are based on vegetation cover, and include

“open” and “mixed,” and are similar to those used in molar microwear texture analyses [11,

89]. “Open” habitats are those that typically have less than 15% arboreal pollen, if palynology is

available, and/or show a majority of open habitat-adapted fauna (e.g. Rangifer, Equus).
“Mixed” habitats are those that contain a variety of landscapes, including the forest-steppe

environments of Dolnı́ Vĕstonice and Pavlov and the woodland, grassland, marsh, desert, and

aquatic habitats of Ohalo II. Palynology, when available, falls between 20–60% and/or includes

fauna indicative of a variety of landscapes (e.g. Rangifer, Cervus, Equus, Sus, etc.). Table 2

includes Neandertals found in “covered” habitats, which indicates over 60% arboreal pollen

and forest-dwelling fauna. Temperature is not taken into consideration because while the

“open” group is associated with colder temperatures, the “mixed” group encompasses sites

that would have differed dramatically in temperature. The goal here is to discern adaptations

according to vegetation availability, and not temperature.

Location is divided into three categories, Western Europe, Central Europe, and Southwest

Asia. The time interval category is based on MIS intervals, which includes 5, 3, and 2. We

Table 1. Summary of the early modern human sample used in this study.

Country Site n Habitat Location MIS

Czech Republic Dolnı́ Věstonice 4 Mixed Central Europe 3

Pavlov I 4 Mixed Central Europe 3

France Brassempouy 2 Open Western Europe 3

Farincourt 1 Open Western Europe 2

Isturitz 1 Mixed Western Europe 2

Lachaud 2 Open Western Europe 2

Les Rois 5 Open Western Europe 3

Rond-du-Barry 1 Open Western Europe 2

Saint-Germain-la-Rivière 1 Open Western Europe 2

Italy Grotte des Enfants 1 Open Western Europe 3

Israel Ohalo II 1 Mixed Southwest Asia 2

Qafzeh 4 Mixed Southwest Asia 5

Skhūl 3 Mixed Southwest Asia 5

TOTAL 30

See S1 File for more detailed information about each specimen.

https://doi.org/10.1371/journal.pone.0224573.t001
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recognize the challenges in grouping samples chronologically by broad MIS designations, but

these designations correspond to group divisions of biological and archaeological relevance.

For instance, the MIS 5 group corresponds to modern humans from Skhūl and Qafzeh with

Middle Paleolithic material culture, the MIS 3 group largely corresponds to early Upper Paleo-

lithic modern humans, and the MIS 2 group largely corresponds to the post-Last Glacial Maxi-

mum humans with Late Upper Paleolithic/Epipaleolithic material culture.

The Neandertal comparative sample (n = 45) consists of individuals that span their geo-

graphic and temporal ranges and come from “open,” “mixed,” and “closed” habitats (Table 2;

[37]). As stated above, only those Neandertals from the “open” and “mixed” categories

(n = 25) are used in the habitat comparisons. The location designations are the same as those

described for the early modern human sample, with the entire Neandertal sample used in anal-

ysis (n = 45). The early modern humans and Neandertals are not compared by time, as the

Neandertal sample required a broader chronological grouping, “early” (MIS 7–5) and “late”

(MIS 4–3), due to limitations in dating techniques and their ranges [37].

Grouping fossil material is a challenge, as there are inconsistent data on excavation histo-

ries, stratigraphic context, environmental reconstructions, dating techniques. We have

attempted to standardize these datasets as much as possible, as shown in the S1 File (and SOM

in [37]); however, these limitations resulted in broad categories. We recognize that other

researchers may use different groupings [90, 126]. All data are available for continued analysis,

and can be found in the S1 File (and SOM in [37]).

Table 2. Summary of the Neandertal sample used in this study.

Country Site n Habitat Location Chronology

Croatia Krapina 10 Closed Central Early

Vindija 4 Mixed Central Late

Czech Republic Kůlna 1 Mixed Central Late

Ochoz 1 Mixed Central Late

France Arcy-sur-Cure, Grotte de l’Hyène 2 Open Western Late

Biache-Saint-Vaast 1 Closed Western Early

Combe Grenal 1 Open Western Late

La Chaise, Abri Suard 1 Open Western Early

La Chaise, Abri Bougeois-Delaunay 2 Open Western Early

La Ferrassie 2 Mixed Western Late

La Quina 1 Open Western Late

Le Moustier 1 Open Western Late

Le Petit-Puymoyen 1 Open Western Late

Les Pradelles (Marillac) 1 Open Western Late

Las Pélénos (Monsempron) 1 n/a Western Late

Moula Guercy 3 Closed Western Early

Saint-Césaire 1 Mixed Western Late

Great Britain Pontnewydd 1 Mixed Western Early

Hungary Subalyuk 1 Open Central Late

Spain Zafarraya 3 Closed Western Late

Iraq Shanidar 1 Mixed SW Asia Late

Israel Amud 2 Mixed SW Asia Late

Kebara 1 Mixed SW Asia Late

Tabūn 2 Closed SW Asia Early

TOTAL 45

See [37] for information on how each site was categorized.

https://doi.org/10.1371/journal.pone.0224573.t002

Early modern human anterior tooth-use behaviors

PLOS ONE | https://doi.org/10.1371/journal.pone.0224573 November 27, 2019 6 / 25

https://doi.org/10.1371/journal.pone.0224573.t002
https://doi.org/10.1371/journal.pone.0224573


The modern human comparative sample (n = 156) consists of seven groups including the

Andaman Islanders (n = 15), located in the Bay of Bengal, and Arikara (n = 18), Chumash

(n = 19), Nunavut Territory Sadlermiut (n = 27), Point Hope Tigara (n = 34), Prince Rupert

Harbour Coast Tsimshian (n = 25), and Puye Pueblo (n = 18) indigenous North American

populations. These groups lived in a wide range of geographic locations, inhabited different

environmental conditions, and accessed various plant and animal resources (Table 3). They

also participated in a variety of non-dietary anterior tooth-use behaviors [37, 87, 88]. Ethno-

graphic evidence indicated the Andaman Islanders used their anterior teeth for tool retouch-

ing and stuff-and-cut actions [78, 79, 127], whereas the Point Hope Tigara engaged in some

clamping and grasping behaviors for hide and sinew production [84, 128–130]. The Nunavut

Territory Sadlermiut participated in an intense regimen of clamping and grasping for hide

production [131–133] and the Prince Rupert Harbour Coast Tsimshian softened plant fibers

for weaving tasks [82]. These behaviors were inferred from datasets independent of microwear,

such as indigenous oral histories, archaeological remains, and other dental analyses, including

macrowear and chipping. There is no evidence that the Arikara, Chumash, or Puye Pueblo

participated in non-dietary anterior tooth-use behaviors.

Dental microwear texture analysis

High-resolution casts of the early modern human, comparative Neandertal, and recent mod-

ern human samples were used in this analysis. As statistical analyses indicate that microwear

textures do not differ significantly across anterior tooth types [37], all anterior tooth types

were included for the fossil samples in order to expand the sample size to its greatest capacity.

Only maxillary central incisors of the recent modern human samples were used here because

of increased preservation and availability.

The labial surface of the analyzed tooth was cleaned gently with acetone and cotton swabs

prior to molding. The molding and casting materials used were President Jet regular body

(Coltène-Whaledent) and Epotek 301 epoxy (Epoxy Technologies), respectively. Antemortem

microwear was scanned on the labial surface, nearest the incisal edge, using a Sensofar Plμ
white-light confocal profiler (Solarius Development Inc., Sunnyvale, CA). All specimens were

scanned using the same confocal profiler ("Connie") at the University of Arkansas to avoid

inter-microscope variation [134].

Four adjacent scans of the labial surface were taken using a 100x objective lens; this created

a total sampling area of 204x276 μm [135]. The scans were examined for surface defects, such

as taphonomic damage, using Solarmap Universal software (Solarius Development Inc., Sun-

nyvale, CA). If such defects existed, they were deleted before being characterized using

Table 3. Summary of the modern human comparative samples used in this study.

Group Location n Date (yrs BP) Environment Non-dietary tooth use?

Andamanese Andaman Islands 15 150 Tropical, monsoon Yes, tool retouching, production, "stuff and cut" practices

Arikara Mobridge, South Dakota 18 400–300 Grassland No

Chumash Northern Channel Islands, CA 19 5000–4000 Cool Mediterranean No

Sadlermiut Northwest Hudson Bay, Canada 27 950–100 Polar arctic Yes, intense clamping and grasping

Tigara Point Hope, AK 34 750–250 Arctic, arid Yes, some clamping and grasping, sinew thread production

Coast Tsimshian Prince Rupert Harbour, Canada 25 4000–700 Oceanic, temperate Yes, weaving tasks

Puye Pueblo Pajarito Plateau, NM 18 1100–330 Desert No

TOTAL 156

See [37] for more detailed information on each group.

https://doi.org/10.1371/journal.pone.0224573.t003
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Toothfrax and SFrax scale-sensitive fractal analysis software (Surfact, www.surfract.com).

Anisotropy (epLsar) and textural fill volume (Tfv) are the two texture variables considered

here; their mathematical descriptions are described in Scott et al. [135].

These two texture variables in particular have been useful for distinguishing dietary from

non-dietary behavioral regimes. Anisotropy (epLsar), or texture orientation, is elevated in

groups who use their anterior dentition for incising food items only, and lower in those partic-

ipating in non-dietary behaviors [37, 87, 88, 136]. The functional implication is that food (and/

or adherent abrasives) are being dragged apically on the labial surface, creating parallel tex-

tures, which results in higher anisotropy values. On the other hand, using the anterior teeth in

a variety of ways, including non-dietary behaviors, results in a lack of texture orientation on

the labial surface [37, 87, 88, 136]. Textural fill volume (Tfv) is an indicator of bite force, with

heavier or lighter bite force resulting in elevated or lowered textural fill volume values, respec-

tively [37, 87, 88, 136]. For example, intense clamping and grasping with the anterior dentition

would require a heavy bite force to maintain the material between the teeth. This would create

large, deep textures, which results in high textural fill volume values [37, 87, 88, 136].

Statistical analyses

There were two main goals in this study. The first was to examine only the early modern

human dataset (n = 30) for significant variation in microwear textures (epLsar and Tfv) by hab-

itat, site location, and time. The second was to compare central tendencies and distributions of

epLsar and Tfv between the early modern human and Neandertal samples. All tests were com-

pleted using R statistical software; specific information for each goal can be found below [137].

First, the early modern human sample was examined for significant variation in anisotropy

(epLsar) and textural fill volume (Tfv) by habitat, location, and time. For each combination of

texture variables (i.e. epLsar and Tfv) and categorical predictor (i.e. habitat, location, and

time),—six combinations in total—a one-way ANOVA was performed to look for significant

differences in the means of epLsar and Tfv between the groups.

Second, the early modern human sample was compared with that of the Neandertals to

determine if differences exist between these two hominins. A one-way ANOVA was completed

first to compare the mean anisotropy and textural fill volume values between early modern

humans (n = 30) and Neandertals (n = 45) as a whole. Next, a two-way ANOVA was con-

ducted to look for differences between early modern humans (n = 30) and Neandertals (n = 45

for location, n = 25 for habitat) while controlling for location and habitat. As early modern

humans in this dataset are not found in closed habitats, the closed-habitat Neandertals were

removed from the habitat analysis, resulting in the lower sample size.

It is important to note that there were some data points in the Neandertal sample for both

anisotropy and textural fill volume that exhibited high statistical influence. To reduce the

impact of these data points on the parameter estimates, a robust regression using iteratively re-

weighted least squares (IRLS), was performed; however, results were largely the same when

compared to results obtained using traditional ANOVA analysis. In addition to looking for

differences in central tendencies, Kolmogorov-Smirnov tests were performed to test for differ-

ences in the distributions of epLsar and Tfv between the two hominin groups. All R code used

for statistical analyses can be found in the S2 File.

Results

Visual and numerical results are found in Figs 1 and 2 and Tables 4–12, respectively. The stark

uniformity of epLsar and Tfv values within the entire early modern human sample (Tables 4

and 5) is reflected in the lack of significant differences in central tendencies and distribution
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by habitat, location, or time (Table 6). Simply put, the early modern human sample had very

similar anisotropy and textural fill volume values regardless of the factors considered here (see

S1 File).

Fig 1. Three-dimensional point clouds of early modern human anterior dental microwear surfaces. Each image measures 102x138 μm;

total area analyzed was 204x276 μm.

https://doi.org/10.1371/journal.pone.0224573.g001
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Neandertals vs. early modern humans (A); for open-habitat Neandertals vs. open-habitat

early modern humans (B); for Western Europe, Central Europe, and Southwest Asia Neander-

tals vs. their EMH counterparts (C).

The second analysis examined epLsar and Tfv differences between the early modern human

and Neandertal samples without considering any other factors. Again, no significant results

were found between these two hominins in either central tendencies or distribution (Tables 7

Fig 2. Data plots with 95% confidence interval ellipses for Neandertals, early modern humans, and bioarchaeological comparative samples. X-

axis and Y-axis displays epLsar and Tfv values, respectively. Upper left: Neandertals (green) and early modern humans (blue) only, other plots show

each individual bioarchaeological comparative group in red (labeled at the top), with Neandertals (green) and early modern humans (blue).

https://doi.org/10.1371/journal.pone.0224573.g002

Table 4. Descriptive statistics for fossil and modern samples used in this study.

Sample n epLsar Tfv
Early modern humans 30

Mean 0.0032 9520.10

Median 0.0030 11071.43

Std. Deviation 0.0013 4620.41

Neandertals 45

Mean 0.0031 10117.77

Median 0.0027 11041.15

Std. Deviation 0.0014 4346.64

Andamanese 15

Mean 0.0031 1559.29

Median 0.0025 1127.43

SD 0.0015 1965.24

Arikara 18

Mean 0.0036 1897.76

Median 0.0032 634.31

SD 0.0016 2466.36

Chumash 19

Mean 0.0035 6532.50

Median 0.0035 3465.40

SD 0.0014 6429.48

Nunavut Sadlermiut 27

Mean 0.0020 12449.27

Median 0.0018 12905.65

SD 0.0010 3464.04

Tigara 34

Mean 0.0032 7296.02

Median 0.0029 6269.71

SD 0.0015 5391.20

Prince Rupert Tsimshian 25

Mean 0.0024 5766.64

Median 0.0019 3079.71

SD 0.0013 5196.40

Puye Pueblo 18

Mean 0.0040 5093.03

Median 0.0039 4284.68

SD 0.0012 4183.08

https://doi.org/10.1371/journal.pone.0224573.t004
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and 12A). When controlling for habitat and location, once again, there were no significant dif-

ferences found between the early modern humans and Neandertals (Tables 8–11 and 12B).

When visualized, the overall overlap in anisotropy and textural fill volume values between

both hominin groups is remarkable (Fig 2). This overlap continues to be prevalent regardless

of habitat type and location (Fig 2). The stark uniformity of dental microwear textures between

Table 5. Descriptive statistics of the early modern human (n = 30) and Neandertal (n = 45) comparative samples by habitat, site location, and time interval.

A. Habitat: Early modern humans Neandertals

epLsar Tfv epLsar Tfv
Closed n/a n = 19

Mean - - 0.0036 8380.87

Median - - 0.0038 9504.07

SD - - 0.0013 4020.37

Mixed n = 17 n = 14

Mean 0.0031 9705.57 0.0031 10893.91

Median 0.0026 10602.81 0.0028 12603.01

SD 0.0004 1129.52 0.0015 5180.67

Open n = 13 n = 11

Mean 0.0035 9069.41 0.0022 12204.74

Median 0.0035 11514.50 0.0021 12423.39

SD 0.0012 5011.23 0.0009 2776.93

B. Site Location: Early modern humans Neandertals

Western Europe n = 14 n = 22

Mean 0.0034 9308.15 0.0028 11424.84

Median 0.0033 11572.99 0.0025 11748.97

SD 0.0011 4896.80 0.0014 3027.58

Central Europe n = 8 n = 17

Mean 0.0032 9278.37 0.0033 8671.28

Median 0.0024 8738.40 0.0031 9661.46

SD 0.0017 4227.20 0.0014 4435.20

Southwest Asia n = 8 n = 6

Mean 0.0029 10132.76 0.0034 9423.57

Median 0.0027 11275.56 0.0035 12660.30

SD 0.0011 5045.39 0.0014 7043.15

C. Time Interval: Early modern humans Neandertals

MIS 2 n = 7 Early n = 20

Mean 0.0032 9026.20 0.0031 9099.21

Median 0.0025 11514.50 0.0027 10234.04

SD 0.0015 4891.06 0.0011 4255.69

MIS 3 n = 16 Late n = 25

Mean 0.0033 9732.07 0.0030 10932.61

Median 0.0033 11104.38 0.0028 12094.76

SD 0.0013 4584.93 0.0016 4329.39

MIS 5 n = 7

Mean 0.0030 9529.51

Median 0.0029 10628.36

SD 0.0012 5128.55

The time interval categories are different due to dating constraints within the Neandertal sample.

https://doi.org/10.1371/journal.pone.0224573.t005
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this sample of Neandertals and early modern humans allows us to make inferences about their

similar anterior tooth-use strategies and provides us with informed ideas concerning their

overlapping manipulative behaviors.

Lastly, the early modern human sample shares texture values most similar to those of the

Point Hope Tigara (Table 4, Fig 2). The anisotropy mean values are identical, and within the

range of non-dietary anterior tooth-use behaviors. The textural fill volume values are similar,

with the fossil sample showing an elevated value to that of the Tigara, but a lower mean value

than that of the Nunavut Territory Sadlermiut. These comparisons offer the opportunity to

possibly distinguish specific behaviors employed by the early modern human sample.

Discussion and conclusion

Early modern human sample

As a whole, the early modern human sample reflects texture values indicative of non-dietary

anterior tooth-use behaviors that required a heavy loading regime (Table 4). Specifically, the

anisotropy mean and median values indicate a lack of texture orientation, suggesting non-die-

tary behaviors. The textural fill volume mean and median values signify large, deep textures

created by heavy loading regimes. Both mean texture values of the early modern human

Table 6. Results of the one-way ANOVAs for epLsar (A) and Tfv (B) within the early modern human sample only

(n = 30).

A. epLsar Estimate Standard error p value

(Intercept) 0.0030682 0.0003160 1.84 e-10

Open (habitat) 0.0003880 0.0004801 0.426

(Intercept) 0.0031986 0.0004681 2.43 e-07

Southwest Asia (location) -0.0002711 0.0006619 0.685

Western Europe (location) 0.0002357 0.0005867 0.691

(Intercept) 3.246 e-03 5.042 e-04 6.74 e-07

MIS 3 (time) 9.491 e-05 6.045e-04 0.876

MIS 5 (time) -2.562 e-04 7.130e-04 0.722

B. Tfv Estimate Standard error p value

(Intercept) 9864.8 1136.1 1.97 e-09

Open (habitat) -795.3 1725.9 0.648

(Intercept) 9278.37 1687.37 8 e-06

Southwest Asia (location) 854.39 2386.30 0.723

Western Europe (location) 29.77 2115.23 0.989

(Intercept) 9026.2 1806.3 3.07 e-05

MIS 3 (time) 705.9 2165.7 0.747

MIS 5 (time) 503.3 2554.5 0.845

https://doi.org/10.1371/journal.pone.0224573.t006

Table 7. Results of the one-way ANOVAs for epLsar (top) and Tfv (bottom) between Neandertals (n = 45) and

early modern humans (n = 30).

epLsar Estimate Standard error p value

(Intercept) 0.0032363 0.0002448 <2 e-16

Neandertals (type) -0.0001830 0.0003161 0.564

Tfv
(Intercept) 9520.1 813.8 <2 e-16

Neandertals (type) 597.7 1050.6 0.571

https://doi.org/10.1371/journal.pone.0224573.t007
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sample are nearly identical to those of the Neandertals and closely align to those of the Point

Hope Tigara modern human comparative sample (Table 4, Fig 2). These similarities indicate

that overall, the early modern humans in this sample participated in tooth-use behaviors simi-

lar to those of the Neandertals, and those specific behaviors may be most akin to those

employed by the Point Hope Tigara.

Examining the early modern human sample as a whole tells only part of the story, and it

can be analyzed in finer detail by examining it by habitat type, location, and time interval to

try to discern possible differences by these factors (Table 5). When this is done, interestingly,

the story remains largely the same. The early modern humans show homogenous mean values

in both texture variables regardless of habitat type, location, or time interval; this accounts for

the lack of significant statistical differences (Table 6). Once again, these mean values are most

similar to the Neandertal and Point Hope Tigara samples (Tables 4 and 5).

Table 8. Results of the two-way ANOVA (A), robust regression (B), and 95% confidence intervals (C) for mean epLsar given habitat (open and mixed) and hominin

type (Neandertal and early modern human).

A. Estimate Standard error p value

(Intercept) 3.068 e-03 3.120 e-04 2.27 e-13

Open (habitat) 3.88 e-04 4.739 e-04 0.4168

Neandertals (type) -3.92 e-06 4.642 e-04 0.9933

Open-Neandertals -1.26 e-03 7.023 e-04 0.0784

B. Regression co-efficient estimate Standard error p value

(Intercept) 0.0029 0.0003 0.0000

Open (habitat) 0.0005 0.0005 0.2857

Neandertals (type) -0.0001 0.0004 0.8563

Open-Neandertals -0.0011 0.0007 0.0984

C. Fit Lower Upper

Neandertals (open) 0.0022 0.0014 0.0030

Neandertals (mixed) 0.0031 0.0024 0.0038

EMH (open) 0.0035 0.0027 0.0042

EMH (mixed) 0.0031 0.0024 0.0037

https://doi.org/10.1371/journal.pone.0224573.t008

Table 9. Results of the two-way ANOVA (A), robust regression (B), and 95% confidence intervals (C) for mean Tfv given habitat (open and mixed) and hominin

type (Neandertal and early modern human).

A. Estimate Standard error p value

(Intercept) 9864.8 1095.5 4.05 e-12

Open (habitat) -795.3 1664.2 0.635

Neandertals (type) 1029.2 1630.1 0.531

Open-Neandertals 2106.2 2466.0 0.397

B. Regression co-efficient estimate Standard error p value

(Intercept) 10117.8652 1072.2711 0.0000

Open (habitat) -1005.4248 1628.8967 0.5371

Neandertals (type) 1557.9881 1595.5904 0.3288

Open-Neandertals 1534.3107 2413.7850 0.5250

C. Fit Lower Upper

Neandertals (open) 12204.739 9470.695 14938.784

Neandertals (mixed) 10893.914 8470.442 13317.385

EMH (open) 9069.408 6554.452 11584.363

EMH (mixed) 9864.755 7665.490 12064.019

https://doi.org/10.1371/journal.pone.0224573.t009
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Table 10. Results of the two-way ANOVA (A), robust regression (B), and 95% confidence intervals (C) for mean epLsar given location (Central Europe, Western

Europe, and Southwest Asia) and hominin type (Neandertal and early modern human).

A. Estimate Standard error p value

(Intercept) 3.199 e-03 4.785 e-04 4.92 e-09

Southwest Asia (location) -2.711 e-04 6.766 e-04 0.690

Western Europe (location) 2.357 e-04 5.998 e-04 0.696

Neandertals (type) 8.961 e-05 5.802 e-04 0.878

Southwest Asia-Neandertals 4.162 e-04 9.331 e-04 0.657

Western Europe-Neandertals -7.558 e-04 7.421 e-04 0.312

B. Regression co-efficient estimate Standard error p value

(Intercept) 0.0029 0.0005 5.578087 e-09

Southwest Asia (location) 0.0001 0.0007 0.928016

Western Europe (location) 0.0005 0.0006 0.3946039

Neandertals (type) 0.0003 0.0006 0.6029024

Southwest Asia-Neandertals 0.0003 0.0010 0.7867205

Western Europe-Neandertals -0.0011 0.0008 0.1584323

C. Fit Lower Upper

Neandertals (Central Europe) 0.0033 0.0026 0.0039

Neandertals (Western Europe) 0.0028 0.0022 0.0033

Neandertals (Southwest Asia) 0.0034 0.0023 0.0045

EMH (Central Europe) 0.0032 0.0022 0.0042

EMH (Western Europe) 0.0034 0.0027 0.0042

EMH (Southwest Asia) 0.0029 0.0020 0.0039

https://doi.org/10.1371/journal.pone.0224573.t010

Table 11. Results of the two-way ANOVA (A), robust regression (B), and 95% confidence intervals (C) for mean Tfv given location (Central Europe, Western

Europe, and Southwest Asia) and hominin type (Neandertal and early modern human).

A. Estimate Standard error p value

(Intercept) 9278.37 1575.55 1.28 e-07

Southwest Asia (location) 854.39 2228.16 0.703

Western Europe (location) 29.77 1975.05 0.988

Neandertals (type) -607.10 1910.63 0.752

Southwest Asia-Neandertals -102.10 3072.89 0.974

Western Europe-Neandertals 2723.79 2443.70 0.269

B. Regression co-efficient estimate Standard error p value

(Intercept) 9278.3732 1626.9853 1.178545 e-08

Southwest Asia (location) 1372.1555 2300.9046 0.5509382

Western Europe (location) 71.0118 2039.5339 0.9722251

Neandertals (type) -467.0514 1973.0094 0.8128738

Southwest Asia-Neandertals 404.2428 3173.2142 0.8986300

Western Europe-Neandertals 2643.8750 2532.5473 0.2965045

C. Fit Lower Upper

Neandertals (Central Europe) 8671.276 6515.108 10827.445

Neandertals (Western Europe) 11424.836 9529.458 13320.215

Neandertals (Southwest Asia) 9423.565 5794.192 13052.938

EMH (Central Europe) 9278.373 6135.244 12421.503

EMH (Western Europe) 9308.145 6932.163 11684.127

EMH (Southwest Asia) 10132.765 6989.635 13275.894

https://doi.org/10.1371/journal.pone.0224573.t011
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The Tigara lived at Point Hope, Alaska from 750–250 BP, in an arid, Arctic environment

that was coastal and largely without trees [138]. They relied on a diet consisting primarily of

sea mammals, including whales, but supplemented with caribou, fish, birds, and edible plants

[84, 130]. They are recorded ethnographically as using their anterior teeth as a third hand for

processing and softening animal hides and making sinew thread [84, 128]. These tooth-use

behaviors are reflected in their moderately low anisotropy and moderately high textural fill

volume values [88].

The habitat conditions between the early modern humans and Point Hope Tigara would

not have been tremendously different, as they both inhabited environments that were either

treeless or partially forested. Although sea mammal hunting is not well documented for early

modern humans, there is evidence that Upper Paleolithic humans exploited aquatic resources,

such as fish, mollusks, and birds, as did the Tigara [12, 139, 140]. The Tigara required clothing

for protective purposes, with animal hides and sinew serving as the raw material, and the same

need for thermal protection among European Upper Paleolithic humans is probable. Indeed,

there is evidence for the use of clothing for protective purposes from parallels between the

mammalian taxa found in European Upper Paleolithic archaeological sites and those taxa

reported in the ethnographic record as sources of fur, hide, sinew, and other raw materials that

are used in the manufacture of clothing [23]. Likewise, there is ample archaeological and bio-

mechanical support for the use of protective footwear [141, 142] as well as depictions of cloth-

ing and footwear, evidence of textile production, and reflections of clothing in spatial

distribution of artifacts in burial contexts [141–144].

Taken together, these data suggest the early modern humans sampled here were participat-

ing in non-dietary anterior tooth-use behaviors overall and those behaviors did not differ sig-

nificantly by habitat type, location, or time interval. These texture values are most similar to

that of the Point Hope Tigara, a bioarchaeological sample that used their anterior dentition for

clamping and grasping hides for clothing and sinew thread production. Thus, it is proposed

that the early modern human and Tigara samples were participating in analogous forms of

tooth-use behaviors, such as grasping and clamping hides for the production of clothing or

other protective coverings.

Early modern humans versus Neandertals

While it is possible that differences in anterior tooth-use behaviors existed between Neander-

tals and early modern humans, the data presented here provide no statistically significant

Table 12. Results of the Kolmogorov-Smirnov tests.

A. D statistic P value

Neandertals vs. EMH for epLsar 0.13333 0.9062

Neandertals vs. EMH for Tfv 0.15556 0.7764

B.

Open Ntl vs. Open EMH for epLsar 0.51049 0.0896

Open Ntl vs. Open EMH for Tfv 0.38462 0.3414

C.

Western Europe Ntl vs. W. Europe EMH for epLsar 0.3961 0.1364

Western Europe Ntl vs. W. Europe EMH for Tfv 0.29221 0.4582

Central Europe Ntl vs. C. Europe EMH for epLsar 0.27206 0.8155

Central Europe Ntl vs. C. Europe EMH for Tfv 0.23529 0.924

Southwest Asia Ntl vs. SW Asia EMH for epLsar 0.33333 0.8407

Southwest Asia Ntl vs. SW Asia EMH for Tfv 0.29167 0.9324

https://doi.org/10.1371/journal.pone.0224573.t012
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evidence for it (Tables 4, 5 and 7–12). Indeed, the mean anisotropy and textural fill volume val-

ues of both fossil samples reveal nearly identical results, and indicate that, as a whole, the

Neandertals and early modern humans analyzed here were not engaging in vastly different

tooth-use behaviors. Their anisotropy mean values are low, and within the range of non-die-

tary anterior tooth-use behaviors, while the textural fill volume values are fairly high, indicat-

ing a heavy bite force was required to complete these tasks. When compared to the modern

human groups of known or inferred behaviors, both fossil samples align most closely with that

of the Point Hope Tigara and, to a lesser extent, the Nunavut Sadlermiut (Table 4, Fig 2).

The coastal Tigara, as described above, participated in clamping and grasping tooth-use

behaviors associated with hide processing and softening. However, the Nunavut Sadlermiut

from northwest Hudson Bay were an interior Arctic group that relied on caribou, seal, birds,

and fish [145–149]. They were inferred from archaeological remains, antemortem tooth loss,

and tooth wear to have participated in extensive dental clamping and grasping behaviors for

hide preparation for the production of clothing and other protective coverings [132, 145, 146].

This inferred non-dietary anterior tooth-use behavior is also supported by the microwear tex-

tures, with their extremely low anisotropy values, indicative of extensive tooth-use activities,

and their very high textural fill volume values, indicating these activities required a heavy bite

force.

The Point Hope Tigara sample provides the most comparable anisotropy and textural fill

volume pattern to those of the two fossil samples; however, both fossil samples have higher tex-

tural fill volume values than that of the Tigara, but they are lower than that of the Sadlermiut

(Table 4). Thus, a parsimonious approach is to use both bioarchaeological samples to better

interpret the fossil data presented here.

Overall, the data indicate the early modern humans and Neandertals were participating in

similar non-dietary anterior tooth-use activities. Using the comparative bioarchaeological

datasets, those activities may be clamping and grasping behaviors for hide preparation and

clothing production. These activities would have required a heavy bite force that was more

than that used by the Tigara, but less than that of the Sadlermiut. As the Tigara and Sadlermiut

differed in the frequency or intensity of clamping and grasping behaviors, perhaps it can be

said the fossil groups were intermediate in how regularly or intensely they performed these

tasks.

In what seems to be the noticeable theme of these data, there were also no significant differ-

ences in anisotropy and textural fill volume between these two hominins by habitat type nor

location (Fig 2; Tables 5 and 8–12). Indeed, there is extensive overlap in values between the

hominin subsamples, with variation among some of the mean values largely driven by a few

outliers. For example, while the mixed-vegetation groups are nearly identical in their mean

anisotropy and textural fill volume values, those for the open-vegetation are more disparate

(Table 5). The possibility exists that there were some tooth-use differences between open-vege-

tation Neandertals and open-vegetation early modern humans (Tables 5, 8A and 12B), with

the Neandertals participating in intense clamping and grasping behaviors and the early mod-

ern humans only using their anterior teeth for incising food items. However, substantial over-

lap is seen in their individual values, with the early modern human subsample showing more

variation in values, and both subsamples having a few outliers driving the means (Fig 2).

Behavioral ingenuity between Neandertals and early modern humans can be supported or

refuted depending on the dataset at hand; however, the microwear textures provide some

important insight into the debate. Generally speaking, early modern humans and Neandertals

sampled here participated in similar non-dietary anterior tooth-use behaviors that required a

heavy bite force. Using a variety of bioarchaeological comparative samples, both the early

modern humans and Neandertals closely align in texture values to those of the Tigara and

Early modern human anterior tooth-use behaviors
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Sadlermiut, two Arctic samples that participated in clamping and grasping behaviors associ-

ated with hide preparation and processing. Continued research into this debate will inevitably

lead to more robust sample sizes and strengthened interpretations; however, the datasets here

support the notion that regarding non-dietary anterior teeth use Neandertals and early mod-

ern humans were not as behaviorally distinct as once considered.
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fossil humans. Evol Anthropol. 2017; 26(6): 313–324. https://doi.org/10.1002/evan.21554 PMID:

29265662

69. Willman JC. The Non-Masticatory Use of the Anterior Teeth Among Late Pleistocene Humans. Ph.D.

Dissertation, Washington University in Saint Louis. 2016.

70. Willman JC. The dental remains: non-masticatory wear. In: Trinkaus E, Walker MJ, editors. The Peo-

ple of Palomas: Neandertals from the Sima de las Palomas, Cabezo Gordo, Southeastern Spain. Col-

lege Station: Texas A&M University Press; 2017. pp. 155–174.
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