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We show that in a generic, ergodic quantum many-body system the interactions induce a non-
trivial topology for an arbitrarily small non-hermitean component of the Hamiltonian. This is due
to an exponential-in-system-size proliferation of exceptional points which have the hermitian limit
as an accumulation (hyper-)surface. The nearest-neighbour level repulsion characterizing hermitian
ergodic many-body sytems is thus shown to be a projection of a richer phenomenology where actually
all the exponentially many pairs of eigenvalues interact. The proliferation and accumulation of
exceptional points also implies an exponential difficulty in isolating a local ergodic quantum many-
body system from a bath, as a robust topological signature remains in the form of exceptional points
arbitrarily close to the hermitian limit.

I. INTRODUCTION

The discovery of topological phases has provided a
major paradigm-shift in the understanding of quantum
states1. In the case where the system is described
by a hermitean Hamiltonian, the interplay of topology
with interactions in many-body systems is now a ma-
jor avenue of research2,3. Currently, a lot of atten-
tion is being devoted to the classification of topologi-
cal phases also for non-hermitean Hamiltonians4–13 in
one14–25 and higher26–35 spatial dimensions, with the
most direct physical application being to dissipative
systems36, where controlled experimental platforms are
already available37–48. This task is still in progress for
single-particle bands, so that the role of interactions
in quantum many-body non-hermitean systems remains
largely unexplored in relation to topology.

In all the above explorations, the non-trivial topology,
the interactions, and the non-hermitean nature are in-
gredients which can be separately added to the picture.
Here we introduce a generic scenario where the above
three elements are instead deeply interconnected. We
show that in an ergodic quantum many-body system the
interactions induce a non-trivial topology for an arbitrar-
ily small non-hermitean component of the Hamiltonian.
This is due to an exponential-in-system-size proliferation
of exceptional points which have the hermitian limit as
an accumulation (hyper-)surface. Exceptional points are
known to carry non-trivial topological features49 and in-
deed play a crucial role in the understanding of topolog-
ical phases in non-hermitean bands. The connection be-
tween level repulsion in the Hamiltionan spectrum of an
ergodic system and the distribution of exceptional point
has been so far argued based on toy models50 and demon-
strated at fine-tuned points of models without local de-
grees of freedom which become classical in the thermo-
dynamic limit51,52. Here we demonstrate such scenario
in fully generic local many-body systems with no semi-
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classical limit and without any fine-tuning of microscopic
parameters.

A further remarkable and defining feature of generic
ergodic many-body system follows from the exponential
proliferation of exceptional point arbitrarily close to the
hermitean limit: The many-body spectrum can be under-
stood as a single Riemann surface, where all eigenvalues
are adiabatically connected along smooth paths, as any
of the N(N − 1)/2 possible pairs of eigenvalues can be
interchanged by encircling the corresponding exceptional
points. Here N = dim(H) is the dimension of the Hilbert
space which grows exponentially with the system size L
of the quantum many-body system.

Our results suggest a deeper connection than so far
expected between topology and interactions, and also es-
tablish a new way of thinking about generic quantum
many-body systems.

A general physical implication of our findings is the
resulting exponential-in-sistem-size difficulty of isolating
an ergodic quantum many-body system from an external
bath, as a topologically robust signature of the openness
always remains in the form of exceptional points.

II. MODEL

In order to demonstrate the above scenario we consider
a quantum spin 1

2 chain, described by the Hamiltonian

Ĥ(z) =

L−1∑
i=1

Jxσ̂
x
i σ̂

x
i+1 + Jyσ̂

y
i σ̂

y
i+1 + Jzσ̂

z
i σ

z
i+1

+ ~h1 ·~̂σ1 + ~hL ·~̂σL

+ z

L∑
i=1

(
gxzσ̂

x
i σ̂

z
i+1 + gxyσ̂

x
i σ̂

y
i+1 + gyzσ̂

y
i σ̂

z
i+1

)
,

(1)

with fixed real parameters Jx, Jy, Jz, gxz, gxy, gyz ∈ R
and fixed real boundary fields ~h1,~hL ∈ R3. The site
indices are defined modulo L, where needed (last sum
in Eq. (1)). With these choices, the Hamiltonian is a
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FIG. 1. Minimal eigenvalue distance min
i,j
|λi(z)− λj(z)| be-

tween all eigenvalues λi(z) of the Hamiltonian (1) as a func-
tion of the complex parameter z for different lengths L of the
spin chain. Minima (dark colors) correspond to degeneracies
of the spectrum, which we identify to be exceptional points.

matrix valued function of one scalar complex parameter
z ∈ C. For all z on the real axis, the Hamiltonian is her-
mitean, while it is non-hermitean in general. Through-
out this paper we take the generic choice of parameters
Jx = 1.2, Jy = 1.0, Jz = 0.7, gxz = 0.91, gxy = 0.7,

gyz = 1, ~h1 = (0.0291241, 0.02341097, 0.0567)T , ~hL =
(0.091241, 0.018924, 0.0781652)T , such that the Hamilto-
nian has no symmetries. Note that this parameter set is
not fine tuned and that we find the same phenomenology
with other parameter choices.

We have verified that the Hamiltonian for z ∈ R is
ergodic in the sense that local observables thermalize by
means of the eigenstate thermalization hypothesis53–57,
which is valid in this system (cf. supplementary material
in Sec. A). Furthermore, we have considered the statis-
tics of level spacings of the hermitean Hamiltonian, using
the ratio of adjacent gaps58. We find that the spectral
statistics are in the gaussian unitary ensemble (GUE)
universality class (cf. Sec. A).

III. PROLIFERATION OF EXCEPTIONAL
POINTS

Since exceptional points necessarily are related to a
degeneracy of (at least) two eigenvalues of H(z), it is
natural to consider the distances between all eigenvalues
λi of H(z). We show in Fig. 1 the minimal distance of
all pairs of eigenvalues δ(z) = mini,j |λi(z)− λj(z)| as a
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FIG. 2. Braiding of eigenvalues En(z) along closed paths g(φ)
encircling exceptional points for a chain of length L = 6. a)
Overview of minimal eigenvalue distances mini,j(|λi−λj |) as a
function of the complex parameter z. Closed curves are exam-
ples with the number indicating the number of transpositions
in the permutation linking the final eigenvalues λi(1) with
their initial order λi(0). b) For the white path P in panel a),
we show the evolution along the curve of the relevant eigen-
values (colored). Lower panels: Eigenvalue evolution (real (c)
and imaginary (d) part) λi(φ) along P.

function of the complex interaction parameter z. If this
distance δ(z) vanishes, it corresponds to a degeneracy of
at least two eigenvalues. While δ(z) is a continuous func-
tion of z, it is not analytic, and exhibits a large number
of kinks, when the closest pair of eigenvalues changes.

We observe that as a function of system size the num-
ber of very small eigenvalue distances increases signifi-
cantly. It is also clear that the minima of δ(z) appear
to be very sharp, consistent with the typical square root
singularity of exceptional points. The extreme prolifera-
tion of degeneracies seems to occur most strongly close
to the real axis, when Im(z) = 0.

While the results of Fig. 1 are already a strong indica-
tion of the proliferation of exceptional points and their
accumulation on the real axis Im(z) = 0, in order to
have solid quantitative characterization we need to re-
sort to the defining feature of exceptional points: the
occurrence of a square root branching point, distinguish-
ing them from other possible degeneracies. This leads
to the swapping of a pair (or more in the case of higher
order exceptional points, which we do not observe here)
of eigenvalues when following a closed path round an ex-
ceptional point. We will extensively use this property to
study the density of exceptional points with respect to
the distance from the real axis in parameter space.
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IV. BRAIDING ON A SINGLE RIEMANN
SHEET

In Fig. 2 we demonstrate that the degeneracies ap-
pearing in Fig. 1 are indeed associated with exceptional
points. Panel a) contains a colormap of the minimal
eigenvalue distance mini,j(|λi − λj |) as in Fig. 1 for a
chain of length L = 6. The location of degeneracies in
the spectrum is clearly visible in dark spots. The rectan-
gluar and elliptical paths drawn in Fig. 2 a) correspond
to example paths we consider, encircling different num-
bers of exceptional points. Next to each path, we list the
number of transpositions in the permutation of eigenval-
ues after closure of the path. This is achieved by tracking
the eigenvalues along the path as described in Appendix
B and afterwards analyzing the resulting permutation as
described in Appendix C. Within one half plane of the
complex plane, these numbers correspond to the number
of encircled exceptional points, while exceptional points
at conjugate locations (z and z∗) have opposite handed-
ness and therefore undo swaps mutually. We note here
that in our system each exceptional point has a conju-
gate partner, since H(z∗) = H(z)†, and the spectra of
H and H† are identical (since this corresponds to the
adjoint eigenvalue problem). The swapping of eigenval-
ues (crosses) λi is exemplified in Fig. 2 b), where each
colored line corresponds to the trajectory in the complex
eigenvalue space of one eigenvalue along one traversal of
the path labelled by P in Fig. 2 a). It is apparent that
the four exceptional points enclosed by the path swap two
pairs of eigenvalues, and permute three more eigenvalues
in a cycle corresponding to two transpositions.

Any conjugate pair of exceptional points in the com-
plex parameter plane is connected by a branch cut, inter-
connecting the Riemann sheets on which each eigenvalue
evolves. Due to the proliferation of exceptional points,
the Riemann surface of our ergodic quantum many-body
model becomes massively interconnected. As we shall see
next, the proliferation is exponential in the system size
L such that there is one exceptional point for each pos-
sible pair of eigenvalues. This means that starting from
one eigenvalue λi, any other eigenvalue can be reached
by adiabatic parameter changes in the complex plane,
that is, the spectrum of an ergodic quantum many-body
system actually belongs to a single Riemann surface.

V. STATISTICS OF EXCEPTIONAL POINTS

To characterize the proliferation of exceptional points
with increasing system size, we compute their distribu-
tion in the complex plane Re(z), Im(z). In Fig. 3 we show
the density of exceptional points as a function of the dis-
tance from the real axis Im(z). We compute the density
ρEP = M/A by counting the number M of exceptional
points within a given area A in the complex plane (as
described above). In order to collect enough statistics
still keeping computational times feasible, we choose the
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FIG. 3. Density ρEP of exceptional points per unit area in
the complex parameter plane. We consider parameter areas
at Re(z) = 0.5 and count the number of exceptional points in
areas of size dRe(z)dIm(z), with exponentially decreasing bin
size dRe(z) ∝ 2−L. a) Density versus distance from the real
axis in parameter space for different system sizes. b) Density
versus distance from the real axis rescaled by 1/L. c) Density
rescaled by the total number of exceptional points 22L. d)
Density versus distance rescaled by 1/2−L.

area A such that it typically contains between 100 and
1000 exceptional points in the bulk of the distribution,
independently of the system’s size (which as we shall see
implies exponential down-scaling of A with L). As ap-
parent from Fig. 1, the density becomes more and more
independent of the position on Re(z) as L is increased.
Selecting areas A of a finite width along Re(z), we effec-
tively average over Re(z) to improve the statistics.

Panel a) shows the density up to large distances from
the real axis, so that the tails of the distribution (compat-
ible with an exponential decay) are visible. More inter-
esting is the distribution in the vicinity of the real axis, as
shown in panels b) to d). In panel b), we see that the dis-
tribution extends up to distances from the real axis which
scale with the system size L. Moreover, as apparent from
panel c), the overall scale of the density increases expo-
nentially as 22L. Taking into account the fact that the
tails of the distribution extend to values of Im(z) of the
order of L, this scaling is consistent with having a pro-
liferation of exceptional points such that we have one for
each possible pair of eigenvalues of the Hamiltonian (1)
i.e. N(N − 1)/2 with N = dim(H) = 2L. Finally, panel
d) shows that the bottom of the distribution has a gap
from the real axis which vanishes like 2−L, which demon-
strates the exponentially fast accumulation of exceptional
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FIG. 4. a) Zoomed overview of the minimal eigenvalue dis-
tance mini,j |λi − λj | for a system of size L = 10. Solid lines
are the two exemplary paths connected to the real parameter
axis for which eigenvalue traces are shown in c) and d). b)
Average distance of swapped eigenvalues of the hermitean sys-
tem by exceptional points as a function of their distance from
the real axis for L = 8 and L = 10. c) and d) exemplary eigen-
value cluster traces swapped (colored) by exceptional points
encircled by the paths shown in panel a).

points at the hermitean line Im(z) = 0. This scaling of
the gap is to be expected under two assuptions: i) the ex-
ceptional points at the bottom of the distribution are the
ones connected to the avoided crossings between nearest-
neighbor levels of the hermitean Hamitonian Im(z) = 0
(see discussion below and Fig. 4); ii) the distance of each
exceptional point from the real axis is proportional to the
real gap characterizing the corresponding avoided level
crossing. Assumption ii) is actually a mathematical fact
for a single exceptional point but not trivial in presence
of multiple exceptional points, which are known to in-
fluence each-other strongly. This issue, which has been
investigated in toy models50 and fine-tuned semiclassical
models without local degrees of freedom51,52, is even less
trivial for our quantum many-body model showing an
exponential proliferation of exceptional points. Since the
number of avoided level crossings in the hermitean case
Im(z) = 0 scales as 2L and the spectral bandwidth only
as L, the corresponding real gaps must scale down expo-
nentially like 2−L. Therefore, making the assumptions
i) and ii) we can conclude that the exceptional points at
the bottom of the distribution approach the real axis like
2−L.

The assumption i) can actually be tested by analyz-
ing the braidings between eigenvalues along closed paths

taken at different distances from the real axis. The result
of this analysis is shown in Fig. 4. Taking paths which
start and end at the real axis we can attribute a given
order to the swap generated by an exceptional point. As
illustrated by panels c) and d), this is given by the num-
ber of real eigenvalues of the initial hermitean Hamilto-
nian, which lie between the two which get swapped. For
large system sizes such a path encircles so many excep-
tional points that only the analysis of the permutation
of the levels after closure of the path remains possible.
As described in section D, from the cycle-structure of
the permutation we can extract an average swap order
as a function of the distance from the real axis, shown in
panel b). The bottom of the distribution of exceptional
points shown in Fig. 3 lies well within the region where
the average swap order is well below 2. Panel b) also
indicates a linear growth of the average swap order as
a function of the distance from the real axis. This sup-
ports the hypothesis that assumption ii) above not only
applies to nearest neighbour avoided level crossings but
also to eigenvalues which are not neighbours in the her-
mitean limit. Indeed, applying this assumption to a pair
of levels in the hermitean spectrum which are separated
by a given number of levels k = 0, . . . , 2L − 2, we would
conclude that the typical distance from the real axis of
an exceptional point swapping such levels would scale
as dk ∼ (L/2L)k, since the spectral bandwidth of the
hermitian Hamiltonian scales as L and the typical level
separation scales like 2L. This argument reproduces the
linear scaling observed in Fig. 4b). The estimated slope
however does not agree with our numerics, probably be-
cause this rough argument does not take into account the
inhomogeneity of the density of states. The above scal-
ing expression for dk also predicts the exceptional point
distribution to extend up to values of Im(z) scaling with
L, in agreement with Fig. 3 b).

The picture that emerges from these findings is that,
while increasing the system size L, exceptional points
generating a braiding with swapping order k � 2L ap-
proach the real axis exponentially fast. The fastest class
corresponding to the nearest-neighbour swaps k = 0,
defining the bottom of the exceptional point distribution.

VI. DISCUSSION AND OUTLOOK

The results presented here provide a way of charac-
terizing ergodicty in quantum many-body systems which
was so far unexplored in the field of condensed matter
physics.

One interesting physical implication concerns the in-
teraction between the levels. In the purely hermitean
picture these interactions take place pairwise between
nearest-neighbours, which underlies the emergence of
random Gaussian spectral statistics and the eigenstate
thermalization hypothesis (see discussion at the end of
section II). Here we verify – for the first time to the
best of our knowledge in a generic quantum many-body
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system – the hypothesis that this scenario is a pro-
jected manifestation of the more complex phenomenol-
ogy of eigenvalue-braiding through exceptional points in
the complex plane. More interestingly, we show that ex-
ponentially close to the hermitean limit actually not only
nearest-neighbour levels interact via exceptional points,
but also all levels which are separated by a number of
levels which is not exponentially large in system size.

A further (and even more physically transparent) im-
plication emerging from our findings is that the diffi-
culty of isolating an ergodic quantum many-body system
from its environment is exponentially large in system’s
size. By this we mean that the coupling strength be-
tween the ergodic system and the environment needs to
be exponentially small in order for the system not to
be affected by the exceptional points. Indeed, the non-
hermitean component of the Hamiltonian is generated
by tracing out the environment and is thus proportional
to the strength of the coupling to the latter. It is im-
portant to note at this point that our results are indeed
directly applicable to open systems in contact with an
environment despite the fact that they consider only a
non-hermitean Hamiltonian without the corresponding
bath-induced fluctuations59. The reason is that we are
interested in the exceptional points, and these proliferate
even for exponentially small non-hermitean component,
where the damping as well as the corresponding noise are
exponentially small, so that only the topological signa-
ture of the exceptional point is left.

Apart from suggesting a deep connection between
topology and interactions which seems worth pursuing
further, the present findings and the above implications
open a new perspective on many-body quantum ergodic-
ity which is also very timely, as there is currently a large
interest in studying the effect of the openness on generic
scenarios for relaxation and thermalization60,61.

Several lines of further investigation emerge naturally
out of the present work, like the analysis of spectral
statistics in the complex plane and its connection to ex-
ceptional points, the investigation of the consequences of
the exceptional points-proliferation for the dynamics, as
well as the extension of the present study to disordered
and driven systems.
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Appendix A: Ergodicity of the hermitean model

Here we show additional data to demonstrate that the
model with the parameters used in the main text is in-
deed fully ergodic in the hermitean limit. We consider
in Fig. 5 two aspects of ergodicity: In the left panel,
we compare the statistics of the ratio of adjacent en-
ergy levels58 rn = min((En+1−En)/(En−En−1), (En−
En−1)/(En+1−En)) for different system sizes L with the
result from random matrix theory in the gaussian unitary
ensemble (GUE), the distributions match very well and
strong level repulsion is visible as predicted in random
matrix theory.

The second criterion we use to quantify ergodic-
ity is the validity of the eigenstate thermalization
hypothesis53–57 (ETH), which ensures thermalization of
the closed system. One condition is that eigenstate
expectation values of local operators should become a
smooth function of the eigenenergy in the thermody-
namic limit L → ∞, coinciding with the expectation
value of the operator in the microcanonical ensemble. In
the right panel of Fig. 5, we show results for the operator
σ̂x4 σ̂

x
5 , which is a term in the Hamiltonian and a part of

the energy density, therefore showing a strong positive
correlation with the energy eigenvalue. The results are
clearly consistent with the eigenstate thermalization hy-
pothesis. We therefore conclude that the model used in
the main text is fully ergodic.
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FIG. 5. Left: Distribution of adjacent energy gap ratios rn =
min((En+1 − En)/(En − En−1), (En − En−1)/(En+1 − En))
in comparison with the result for random matrices from the
gaussian unitary ensemble (GUE). Right: Eigenstate expec-
tation value 〈n |σ̂x

4 σ̂
x
5 |n〉 as a function of eigenenergy En for

different system sizes. Both panels show data for the same
parameters as used in the main text and real z = 0.5, for
which the Hamiltonian is hermitean.

Appendix B: Tracking eigenvalues

To extract the number of swaps of eigenvalues, it is
necessary to track the evolution of each eigenvalue along
a periodic curve g(φ) : [0, 1]→ C with g(0) = g(1). After

closing the curve, the spectra of Ĥ(g(0)) and Ĥ(g(1)) are
identical, up to a permutation of the eigenvalues, where
each eigenvalue is a continuous function of the curve pa-
rameter φ.

It is in general a formidable task to track the evolution
of eigenvalues of a quantum many-body Hamiltonian Ĥ
as a function of a (scalar) parameter. Here, we consider a
complex parameter z ∈ C, including the possibility that
eigenvalues undergo branch cuts. We are using pertur-
bation theory for this task, which allows us to calculate
the derivatives of each eigenvalue with respect to the pa-
rameter change along the curve. Comparing the exact
new eigenvalues after a small step along the curve with
the predictions, we can match each new eigenvalue to the
previous ones.

Consider the eigenvalues E
(0)
n of Ĥ(z0) at a point z0

in the complex plane. We can predict the eigenvalues of
Ĥ(z0+ε) for a small (complex) parameter change ε using
non-hermitean perturbation theory.

Let |n0〉 be the right eigenvectors of Ĥ(z0) with eigen-

value E
(0)
n . Let further |ñ0〉 be the left eigenvectors of

Ĥ(z0) with eigenvalue E
(0)∗
n . The normalization of the

eigenvectors can be chosen such that left and right eigen-
vectors are orthonormal (note that right/left eigenvectors
themselves are in general not orthogonal)62:

〈 ñ0 |m0 〉 = δn,m. (B1)

Then, perturbation theory for non-hermitean
operators63 yields:

En(z0 + ε) = En(z0)

+ ε〈 ñ0 |D̂(z0, ε)|n0〉

+ ε2
∑
m 6=n

〈 ñ0 |D̂(z0, ε)|m0〉〈 m̃0 |D̂(z0, ε)|n0〉
Em − En

,

(B2)

with the perturbation D̂(z0, ε) = Ĥ(z0+ε)−Ĥ(z0)
ε . Due to

level repulsion in our system, the denominators (Em −
En) do not lead to problems if the step size ε is small
enough. While degeneracies are possible at exceptional
points, the sampled points on the curve did not coincide
with exact exceptional points in practice for the system
sizes we considered.

This approach allows us to predict for each eigenvalue
at z0 its change at z0 + ε, taking into account level cross-
ings and avoided crossings. We fully diagonalize Ĥ(z0+ε)
and compare the eigenvalues to their predicted locations
to attach the labels n to each eigenvalue. This is nec-
essary for two reasons: firstly, complex eigenvalues do
not have a natural ordering and secondly, any ordering
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of eigenvalues used for the labeling would miss swaps and
level crossings.

Our procedure depends on a good choice of the step
size ε and it is clear that in the proximity of exceptional
points very small step sizes have to be used. There-
fore, we developed an adaptive method for tracking all
eigenvalues along the curve g(φ), which for each step
g(φ) → g(φ + δφ) checks if the eigenvalues at g(φ + δφ)
are sufficiently close to the predictions (compared to the
distances between the eigenvalues). If this is not the case,
instead of one step δφ, two steps of size δφ/2 are carried
out. Applying this procedure recursively, the step size is
adjusted as needed, allowing a faithful tracking of eigen-
values of very large non-hermitean Hamiltonians, here up
to dimensions of N = 4096.

Appendix C: Counting of exceptional points

In order to quantify the extreme proliferation of excep-
tional points with system size visible in Fig. 1, we need
a method to count the number of exceptional points in
a region in the complex parameter space. Since each
exceptional point swaps two eigenvalues of H(z) if a
closed path round the exceptional point is followed, we
can count the number of exceptional points enclosed by
a closed path by counting the number of swaps. Con-
cretely, the number of exceptional points enclosed by a
curve g(φ) : [0, 1] → C is obtained by tracking all eigen-
values En(φ) of H(g(φ)) along the curve and comparing
the labels of the eigenvalues of the initial φ = 0 and the
final point φ = 1. Since the spectra are identical, they
differ only by a permutation π: En(0) = Eπ(n)(1).

The number of exceptional points encircled by the
curve is than equal to the number of transpositions in
the permutation π:

nEP = N − ncycles(π). (C1)

Appendix D: Obtaining the order of swaps

In Fig. 4, we also analyze which eigenvalues are
swapped by exceptional points, when following a path
which begins and ends on the real axis in parameter
space. For z ∈ R, the eigenvalues En(z) of H(z) are
real and can be ordered by their magnitude. Following a
closed path in the complex parameter plane, we investi-
gate which eigenvalues are swapped by exceptional points
as a function of their location relative to the real parame-
ter axis. Since for large systems typical loops g(φ) encir-
cle always multiple exceptional points, we have to unravel
this information from the final permutation of eigenval-
ues after closing the loop En(0) = Eπ(n)(1). The permu-
tation π is decomposed into cycles of indices, such that
indices inside the cycle are shuffled around under multi-
ple applications of the permutation (multiple traversals
of the loop), while no other indices are involved in this
cycle. Therefore, we can analyze each cycle of the per-
mutation separately, as only the involved eigenvalues are
exchanged with each other by the exceptional points en-
closed by the path. If only nearest neighbor eigenvalues
are involved in each circle, we call this swaps of order
0. If on the other hand an exceptional point exchanges
eigenvalues separated by m other eigenvalues not in the
cycle, we refer to this as a swap of order m.
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