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Generic quantum many-body systems typically show a linear growth of the entanglement entropy
after a quench from a product state. While entanglement is a property of the wave function,
it is generated by the unitary time evolution operator and is therefore reflected in its increasing
complexity as quantified by the operator entanglement entropy. Using numerical simulations of a
static and a periodically driven quantum spin chain, we show that there is a robust correspondence
between the entanglement entropy growth of typical product states with the operator entanglement
entropy of the unitary evolution operator, while special product states, e.g. σz basis states, can
exhibit faster entanglement production. In the presence of a disordered magnetic field in our spin
chains, we show that both the wave function and operator entanglement entropies exhibit a power-
law growth with the same disorder-dependent exponent, and clarify the apparent discrepancy in
previous results. These systems, in the absence of conserved densities, provide further evidence for
slow information spreading on the ergodic side of the many-body localization transition.

I. INTRODUCTION

Entanglement is an intrinsic property of quantum
many-body wave functions and describes the amount of
information a subsystem A contains about its comple-
ment B. The entanglement between a bipartition A :: B
of a closed quantum system is quantified by the entan-
glement entropy, which distinguishes separable product
states with zero entanglement from states which are en-
tangled to various degrees. For example, it was found
that ground states of gapped quantum many-body sys-
tems exhibit an entanglement entropy which scales as the
surface area of the subsystem A [1–3]. In generic quan-
tum many-body systems that thermalize and in which
the eigenstate thermalization hypothesis [4–9] is valid,
the entanglement entropy of all eigenstates of the Hamil-
tonian is furthermore identified with the thermodynamic
entropy of the subsystem and is therefore proportional to
the volume of the subsystem for eigenstates correspond-
ing to finite temperatures [10–15].

The phenomenology becomes much richer in a nonequi-
librium setting after a quantum quench: even if the wave
function at early times is prepared as a lowly entangled
state, the complex quantum many-body dynamics leads
to a rapid production of entanglement and typically the
entanglement entropy is found to grow linearly in time
under the evolution with short range Hamiltonians [16–
19]. This was also observed in experiments with ultracold
atomic systems [20].

Although the above situation is true for a large class of
generic quantum systems, strong disorder can completely
destroy thermalization by inducing a phase transition to
a many-body localized (MBL) phase [21–32]. In the MBL
phase – which has also been realized in experiments [33,
34] – there is no transport of particles or energy density.
However, surprisingly it was found that the entanglement
entropy can grow logarithmically with time [17, 35, 36],
which was explained by an emergent set of quasi-local
conserved quantities with residual interactions [37–39].

The production of entanglement is typically observed

in the quench dynamics of wave functions |ψ(t)〉. How-
ever, it is uniquely due to the action of the time evolution
operator U(t) on the wave function and should therefore
be reflected in the growing complexity of U(t). Conse-
quently, a generalization of the entanglement entropy to
operators was introduced in [40, 41], which allows for a
state-independent quantification of the complexity of op-
erators across a bipartition of the system. In Refs. [42–
44], this concept was directly applied to the time evolu-
tion operator U(t), and a generic linear growth of the op-
erator entanglement entropy (opEE) in ergodic quantum
systems was found, while MBL systems are characterized
by a logarithmic growth in time [42].

In the vicinity of the MBL transition, the situation
is more complicated: At intermediate disorder, where
the system still thermalizes, an anomalously slow ther-
malization [14, 45–49] is found, which was connected
to slow, subdiffusive transport [50–64]. The anoma-
lous thermalization is also reflected in a sublinear power-
law growth ∝ tα of the wave function entanglement en-
tropy [65], even in systems which do not have globally
conserved densities [66], suggesting that the generic slow
dynamics is a universal precursor of MBL. In such pre-
MBL systems, the entanglement production exponent α
varies continuously with disorder and vanishes at the
MBL transition, where the logarithmic growth takes over.
The same phenomenology was found for the growth of
the operator entanglement entropy of the time evolu-
tion operator U(t), with a disorder-dependent exponent.
Comparing the exponents found in the disordered Heisen-
berg model [35, 51, 67–70], of the entanglement entropy
growth after a quench from a product state [65] and of
the operator entanglement entropy growth of U(t) [42],
it turns out that these exponents do not agree.

In the present article, we address the above disagree-
ment and show that it is due to the fact that completely
unentangled σz product states are not typical separa-
ble states, and that the growth of the operator entan-
glement entropy agrees perfectly with the growth of the
wave function entanglement entropy if typical product
states are considered. We provide further evidence that
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the phenomenon of generally slow dynamics is universally
found in one-dimensional systems at disorder strengths
weak enough so that the system still thermalizes and does
not require any conserved densities with associated trans-
port.

Our article is organized as follows: In Sec. II we in-
troduce a static and a periodically driven model repre-
senting generic disordered quantum XYZ spin chains, as
well as the methods used to characterize them. We show
that both models exhibit an MBL transition. The static
model possesses no symmetries nor extensive conserva-
tion laws in addition to energy, while also the energy
conservation is broken in the driven model. In Sec. III
we present the framework of the entanglement measures
considered for both wave functions and operators. In
Sec. IV we compare the growth of the wave function en-
tanglement entropy after a global quench, Sψ(t), with the
growth of the operator entanglement entropy of evolution
operators, SU (t). For both models, we find the same
universal power-law growth tα of Sψ(t) and SU (t) within
the ergodic regime–provided that Sψ(t) is obtained af-
ter a quench from typical initial product states. If the
quench comes from either σz product states or a class of
intermediate states, Sψ(t) and SU (t) differ. Such a class
of intermediate states is characterized by their maximal
bond dimension in a matrix product state representation
and a precise definition is given in Sec. IV C. We fur-
ther elucidate the influence of the initial states on the
wave function entanglement production and argue that
the underlying mechanism is that of monogamy of entan-
glement. Finally, in Sec. V we conclude by summarizing
and discussing our main results.

II. MODEL AND METHOD

A. Static and Driven XYZ chain

We study the generic XYZ chain with open boundary
conditions in the presence of a disordered tilted field. Its
Hamiltonian is given by

H0 =

L−1∑
i=1

(
Jxσ

x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1 + Jzσ

z
i σ

z
i+1

)
+

L∑
i

hi (hxσ
x
i + hyσ

y
i + hzσ

z
i ) , (1)

where σγi denote Pauli matrices, Jγ coupling constants

and hγ ≡ h̃γ/|~h| fixed amplitudes of the tilted field ~h;

γ ≡ x, y, z. The field is fixed in the direction of ~h but
its magnitude is disordered and taken from a box distri-
bution hi ∈ [−W,W ]. We set (Jx,Jy, Jz) = (0.5, 0.7, 1.0)

and (h̃x, h̃y, h̃z) = (0.95, 1.0, 1.1) to remove all the ex-
tensive conservation laws except energy conservation.
This means that we can not further reduce the many-
body Hilbert space and there is only one block of size
dim(H) = 2L.

To also break the energy conservation, we subject the
system (1) to monochromatic driving. The resulting Flo-
quet model is defined by

H(t) =H0 +HD(t);

HD(t) =
A

2
sin(ωt)

L−1∑
i=1

σzi σ
z
i+1, (2)

with driving period T ≡ 2π/ω = 2 and driving ampli-
tude A = 0.5. The Floquet operator over one driving
period is defined as

ÛF (T ) ≡ T e−i
∫ T
0
dtHD(t), (3)

where T denotes the time-ordering operator. Since
ÛF (T ) is a unitary operator, its eigenvalues ωn lie on
the complex unit circle.

B. Method

For the characterization of the models, we fully diag-
onalize the Hamiltonian of the static model (1) up to
system size L = 14 with dim(H) = 16384, and consider
the statistics of adjacent energy spacings. In the case
of the Floquet model (2), we have to generate the time-

evolution operator ÛF (T ). Since our driving protocol is
monochromatic, we use small time steps dt = 0.02 and a
second-order Trotter decomposition to separate the con-
stant part exp(−idtH0) from the (diagonal) driven part
exp(−idtHD(t)), requiring only the diagonalization of H0

to calculate the corresponding matrix exponential and re-
peated matrix products to step through the period T . We
then fully diagonalize ÛF (T ) and consider the statistics
of adjacent eigenphases to establish the ergodic regime
of the model.

In the main part of this work, we consider both the
production of wave function entanglement when starting
from a product state |ψ(t = 0)〉 as well as the growth
of operator entanglement directly in the time evolution
operator U .

For the wave function dynamics, we use exact-time
evolution with a Krylov-space method [60, 65, 71–73],
which relies on the sparse structure of both H0 and HD.
Again, to faithfully describe the monochromatic driving,
small timesteps dt = 0.02 inside the period are used and
the results analyzed including intraperiod values. This
method allows for the calculation of entanglement en-
tropies in systems up to L = 26 with dim(H) = 226 ≈
6.7 · 107.

For the operator entanglement entropy, we calculate
the time evolution operator U(t) as described above with
the same limitation to system sizes up to L = 14.

Our results are averaged over 50-100 disorder realiza-
tions, for several values of disorder strength within the
ergodic regime at intermediate disorder W ≤ 4.
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FIG. 1. Disorder-averaged level spacing ratio [r] as a function
of disorder strength W and system size L. In the static model;
for energy levels in a neighborhood of energy densities (a)
ε = 0.25 and (b) ε = 0.5. (c) For all pairs of neighboring
quasienergies in the Floquet model. The legend of (a) applies
to all panels.

C. Characterization of the Model

The static model is similar to other disordered spin
chains, in particular, the Heisenberg spin chain given by
Jx = Jy = Jz = 1, hx = hy = 0 and hz = 1, which has in
these units an MBL transition at Wc ≈ 7.5± 2.0 [51, 67–
70], therefore we expect to find an MBL transition at
similar values of disorder.

Using level spacing statistics as diagnosis, we cor-
roborate that for the chosen parameters both mod-
els (1) and (2) undergo an MBL transition at critical
values of disorder W 0

c ≈ 6 and WD
c ≈ 12, respectively.

The adjacent level spacing ratio is defined as [74]

r =
min(δn, δn+1)

max(δn, δn+1)
, (4)

where δn is defined in terms of consecutive energy levels
δn ≡ En+1 − En of (1) or consecutive phase spacings
δn ≡ θn+1−θn extracted from the eigenvalues ωn = e−iθn

of (3), depending on whether the static or the Floquet
model is considered.

For the static model (1) the energy is conserved and
different energy densities ε represent different temper-
atures of the system. Since in the Heisenberg model
numerical evidence for a mobility edge (i.e. an energy
density-dependent critical disorder Wc) was found, we
study the average level spacing ratio [r] for different en-
ergy densities ε = (En − Emin)/(Emax − Emin) defined
as in Ref. [69]. We include the eigenvalues En of the
Hamiltonian on a vicinity of radius δE = 0.1 around
ε = 0.5 and ε = 0.25 and average over 100-10000 re-
alizations of the disorder. The results of this analy-
sis for different system sizes L are shown as a func-
tion of disorder strength W in Fig. 1(a),(b), revealing
a transition from a mean level spacing expected from the
Gaussian unitary ensemble (GUE) at weak disorder with
[r]GUE ≈ 0.59982(8) [75] to the value predicted by a Pois-
son distribution [r]POI ≈ 0.38629 [76] at strong disorder.
Results for different system sizes show a crossing at in-
termediate disorder which, although the precise location
still drifts with system size seems compatible with the ex-
istence of a mobility edge, as the crossing appears at sig-
nificantly lower disorder for ε = 0.25 compared to ε = 0.5.

In contrast, Floquet models which have an MBL tran-
sition do not exhibit mobility edges [29, 46]. Therefore,
we include eigenvalues from the full unit circle to cal-
culate the level spacing statistics. The result is shown
in Fig. 1(c), where the crossing of [r] with L is now
enclosed between the limit values corresponding to the
Poisson and the circular unitary ensemble (CUE) distri-
butions, [r]POI ≈ 0.38629 and [r]CUE ≈ 0.59982(8) [77],
respectively. As expected [29], the critical disorder of the
Floquet model is larger than in the static case. In the re-
mainder of this paper, we will focus on the region of weak
enough disorder such that both models are well located
in the ergodic phase (W ≤ 4).

III. WAVE FUNCTION AND OPERATOR
ENTANGLEMENT ENTROPY

In this section, we provide a technical discussion perti-
nent to the concepts of the entanglement entropy of both
quantum wave functions |ψ〉 and quantum evolution op-

erators Û for the case of a complementary real-space bi-
partition in terms of two subsystems A and B ≡ A, with
a tensor product Hilbert spaceH = HA⊗HB . For a more
detailed discussion we refer the reader to [40, 42, 43].

The system in a pure state |ψ〉 ∈ H has a density
matrix ρ = |ψ〉 〈ψ| with unit purity Tr

(
ρ2
)

= 1. The
state of the subsystem A is described by the reduced
density matrix ρA, given by the partial trace of ρ over
the subsystem B,

ρA = TrB(ρ). (5)
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FIG. 2. Upper panel: Comparison between the disorder-averaged time evolution of the wave function entanglement entropy,
[Sψ(t)] (solid lines), and the operator entanglement entropy, [SU (t)] (dashed lines); for the static model and for several values of
disorder (a)-(d) on the ergodic side of the transition. Lower panel: The (discretized) logarithmic derivative of the data points
in the upper panel, taken over time windows of size δt = 0.1, starting from tmin. The power-law behavior is visible by the
emergent plateaus whose range increases with system size L. The legends in (a) and (b) apply to all panels.

Even if ρ is a pure state, the reduced density matrix is
in general a mixed state with purity Tr

(
ρ2A
)
≤ 1.

The von Neumann entropy of the reduced density ma-
trix ρA is called the entanglement entropy and defined
as

Sψ = −Tr (ρAlnρA) . (6)

Any pure state |ψ〉 ∈ H in turn can be expressed in terms
of its Schmidt decomposition

|ψ〉 =
∑
i

√
λi |ψAi 〉 ⊗ |ψBi 〉 , (7)

where
√
λi are the singular values of the matrix Ψ ∈

Cdim(HA)×dim(HB) with ΨiA,iB = 〈iA, iB |ψ〉, where
|iA, iB〉 are computational basis states of HA⊗HB . The
states {|ψAi 〉} ({|ψBi 〉}) form a complete orthonormal ba-
sis of HA (HB) and are obtained from the left and right
singular vectors of the matrix Ψ. Algorithmically, (when
using a complete computational basis ordered such that
the tensor product structure is preserved), the entangle-
ment spectrum {λi } of a wave function |ψ〉 is obtained
by reshaping the wave function into a matrix Ψ such that
the row indices correspond to basis states of subsystem A
and the column indices correspond to basis states of sub-
system B. Then, a singular value decomposition (SVD)
of Ψ yields the singular values {

√
λi }.

The von Neumann entanglement entropy (6) is read-
ily generalized to the α Rényi entropy in terms of
the squared singular values (the entanglement spec-
trum) {λi};

Sαψ =
1

1− α ln
∑
i

λαi , (8)

from which (6) is recovered in the limit α→ 1.
From the foregoing concepts, the generalization of the

entanglement entropy to the space of linear operators is
straightforward. Linear operators Ô : H → H form a
basis of the Hilbert space H̃ : H → H, endowed with
the inner product 〈·, ·〉 : H̃ × H̃ → C, which in turn is

inherited from H. Given two linear operators Ô, Ô
′ ∈ H̃,

their inner product is defined as

〈Ô, Ô′〉 :=
1√

dim(H̃)
Tr
(
Ô†Ô

′
)
. (9)

The same extension can be done for the aforementioned
bipartition (A :: B) in terms of the Hilbert spaces as-

sociated to each subsystem, H̃A : HA → HA and H̃B :
HB → HB , respectively. Given any linear operator–in
particular–a unitary quantum evolution operator

Û ≡ T e−i
∫ t
0
dsH(s), (10)

which obeys the orthonormality (unitarity) condi-

tion 〈Û , Û〉 = 1, the above definitions (5)-(8) can be
extended using Eq.(9).

Again, using a computational basis order which re-
spects the tensor-product structure of the Hilbert space,
we can write any basis state |i〉 = |iA, iB〉 = |iA〉 ⊗ |iB〉
in terms of basis states of the subsystems A and B.
Then, the time evolution operator Û has a matrix
representation in the form Ui,j = U(iA,iB),(jA,jB) =

〈iA, iB |Û |jA, jB〉.
Similarly to the case of wave functions, but now dealing

with two pairs of indices, we can calculate the operator
entanglement spectrum by first vectorizing the matrix U
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FIG. 3. Upper panel: Comparison between the disorder-averaged time evolution of the wave function entanglement entropy,
[Sψ(nT )] (solid lines), and the operator entanglement entropy, [SU (nT )] (dashed lines); for the Floquet model and several
values of disorder (a)-(d) on the ergodic side of the transition. Lower panel: The (discretized) logarithmic derivative of the data
points in the upper panel, taken over intraperiod time windows of size δt = 0.1, starting from nmin. The power-law behavior
is visible by the plateaus whose range increases with system size L. The legends in (a) and (b) apply to all panels.

(interpreting it as a vector in H̃⊗H̃) and then writing it
as a matrix u with all the indices corresponding to the A
subsystem as row indices and the indices corresponding
to the B subsystem as column indices:

U(iA,iB),(jA,jB) → u(iA,jA),(iB ,jB) ∈ Cdim(HA)2×dim(HB)2 .
(11)

Algorithmically, this corresponds to interpreting the
unitary matrix U as a tensor of rank 4, then performing
a tensor transposition to sort the A and B indices, fol-
lowed by a reinterpretation as a (rectangular) matrix u.
The operator entanglement spectrum {λopi } is readily ob-
tained by an SVD of u.

In the following, we will concern ourselves with com-
paring the entanglement dynamics of wave functions and
time evolution operators Û in the static (1) and the Flo-
quet model (2), taking into account the following con-
sideration. Since there is a Hilbert space isomorphism
between the space of states and the space of linear opera-
torsH⊗H ∼= H̃, the comparison between Sψ(t) and SU (t)
should be done with respect to system sizes L and L/2,
respectively, which correspond to the same Hilbert space
dimension. The Hilbert space dimension determines the
maximal entanglement entropy in a finite system, which
is given by Sψmax = ln min [dim(HA),dim(HB)] for wave

functions and SUmax = ln min
[
dim(H̃A),dim(H̃B)

]
=

2Sψmax for operators, where the dynamics in ergodic sys-
tems is expected to reach values close to the maximum
at late times [78].

While in the case of the time evolution operator, there
is no ambiguity with respect to the initial state (Û(t =
0) = 1 and therefore SU (t = 0) = 0), we are free to

choose any wave function |ψ(t = 0)〉 as an initial state
for the time evolution. Since we are interested in the
production of entanglement, it is natural to require that
the initial state be a product state |ψ(t = 0)〉 = |ψA〉 ⊗
|ψB〉 which has minimal entanglement Sψ(t = 0) = 0.

In this work, we mostly focus on typical product states,

|ψAB〉 ≡ |ψA〉 ⊗ |ψB〉 (12)

which are defined by random Haar measure states |ψA〉
and |ψB〉 on each subsystem. These states are the most
general product states and have zero entanglement be-
tween A and B, while being maximally entangled in-
side each subsystem. We will discuss the dependence
on initial states for different classes of product states in
Sec. IV C, including the much simpler (and less typical)
σz basis states which are widely used in related numerical
studies.

IV. NUMERICAL RESULTS

A. Static model

In Fig. 2 we show the growth of the entanglement en-
tropy of |ψ(t)〉 (solid lines) following a global quench from
a typical product state of the form (12), and compare it
with the growth of the operator entanglement entropy of
U(t) (dashed lines) for disorder strengths W = 1, 2, 3, 4,
all well in the ergodic regime, as discussed in Sec. II C.
All results are averaged over ≈ 100 realizations of the dis-
order and for each disorder realization a different initial
product state is used.

In the upper panels of Fig. 2 we observe that for all val-
ues of disorder (starting from zero entanglement) there
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is a rapid growth of both entropies at short times and a
saturation at late times. The saturation values are close
to the Page value (indicated by dotted-dashed lines), as
expected [42]. Interestingly, the growth of the opera-
tor entanglement entropy is almost identical to the wave
function entanglement entropy growth, clearly showing
that they encode the same information.

The doubly logarithmic scale reveals that the growth
of both entropies follows a power law tα in time until
saturation, and the domain of the power law extends to
later times for larger systems due to the larger saturation
value (proportional to L).

To analyze the value of the dynamical exponent α, we
show the discretized logarithmic derivative d lnS(t)/d ln t
of both entropies as a function of time in the lower panels
of Fig. 2, where the derivative is taken over small time
windows of size δt = 0.1 (results are essentially indepen-
dent of the choice of δt). This analysis clearly shows that
both the operator entanglement entropy of U(t) and the
wave function entanglement entropy of |ψ(t)〉 grow like a
power law with the same exponent α. The domain of the
power law grows with system size, stabilizing the plateau
in the logarithmic derivative. And, most importantly, the
value of the exponent decreases continuously as a func-
tion of disorder, confirming that there is slow dynamics
in the system before it undergoes an MBL transition.
These results appear to be converged with system size at
short enough times, and due to the slower dynamics the
domain of the power law is larger for stronger disorderW .

At weak disorder, the dynamical exponent α ap-
proaches the ballistic limit (α = 1) for clean noninte-
grable systems [17–19] consistent with a saturated Lieb-
Robison bound [79].

B. Floquet model

Analogously to the case of the static model, in Fig. 3
we show the comparison between the growth of the
wave function entanglement entropy of typical prod-
uct states |ψ(t)〉 and the operator entanglement entropy
of U(t), generated by the monochromatic drive (2).

The results are very similar to the static case: We find
a power law growth of both entropies at short times un-
til it saturates to a value close to the Page value at late
times. The domain of the power law grows with system
size L and the operator entanglement entropy of U(t) fol-
lows very closely the wave function entanglement entropy
(comparing the entanglement entropy of a system of size
L to the opEE of a system of size L/2).

We find again that at stronger disorder (still well in
the ergodic regime), the exponent α of this power law
is strongly suppressed, indicating slow dynamics in this
system prior to the MBL transition.
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FIG. 4. Upper panels: Disorder-averaged entanglement en-
tropy growth after a quench from AB,χ = 64, σz, χ = 1, and
intermediate random product initial states of bond dimen-
sion χ; in dashed lines the operator entanglement entropy
growth, SU (t) for L = 12. (a) For the static model, (b) for
the Floquet model; L = 24, and W = 2.0. Lower panels:
The (discretized) logarithmic derivative of the data points in
the upper panel, taken over time windows of size δt = 0.1,
starting from tmin, where (c) and (d) correspond to (a) and
(b), respectively. The legends in (a) and (b) apply to all the
panels.

C. Initial state dependence

In Figs. 2 and 3, we have shown results for the en-
tanglement entropy production starting from a typical
product state, which is maximally entangled inside the
subsystems A and B.

It is interesting to ask the question whether other
classes of product states (which are less strongly entan-
gled inside the subsystems) yield the same results. We
therefore introduce the following general matrix product
state (MPS) ansatz for any product state with respect to
the A :: B bipartition:

|ψχ〉 =
1√
N
∑
{σ }

χ∑
{i}=1

Mσ1
i1
Mσ2
i1i2
· · ·Mσ`A−1

i`A−1i`A
M

σ`A
i`A
⊗

M
σ`A+1

i`A+1
M

σ`A+2

i`A+2i`A+3
· · ·MσL−1

iL−1iL
MσL
iL
|σ1 · · ·σL〉.

(13)

Here, `A is the length of the subsystem A and Mσk ∈
Cχ×χ are independent random matrices with i.i.d Gaus-
sian elements associated to each site and spin polarization
of the system. At the edges k = 1, L of the system and
at the boundary k = `A, `A + 1, Mσ

k ∈ Cχ are vectors in-
stead, making the wave function a product state if cut at
the boundary between A and B. The wave function |ψχ〉
is normalized by a proper choice of the constant N .

The typical product states used in Figs. 2 and 3 cor-
respond to the maximal bond dimension χ = 2`A/2 (for
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FIG. 5. Upper panels: Disorder-averaged entanglement en-
tropy (in colorbar) as a function of the cut `A = 1 − L and
time; for the static model, L = 24, and W = 1.0. Follow-
ing a quench from: (a) AB,χ = 64 product states and (b)
σz, χ = 1 product states. Lower panels: (c) sublinear and (d)
linear entanglement entropy growth for the first half of the
cuts `A = 1−L/2, corresponding to (a) and (b), respectively.
The legends in (c) apply to all panels and legends in (d) apply
to the lower panel.

even `A = L− `A).
If we choose instead χ = 1, we recover product states

with random phases on each site but zero entanglement,
independently of the bipartition of the system. The typ-
ical product states were also considered in [80], and the
special case of χ = 1 with and without random phases in
Refs. [18, 19, 65, 66].

The general ansatz in Eq. (13) allows for a smooth
interpolation between these extreme cases by choosing
different intermediate bond dimensions χ.

In Fig. 4, we present the growth of the entanglement
entropy in both the static and Floquet models for W=2.0
for different classes of initial product states defined by
Eq. 13, labelled by their bond dimensions χ. In addition
to χ = 1, we show data for the χ = 1 case without
random phases, i.e. for pure σz basis states.

Somewhat surprisingly, different classes of product
states show a remarkably different behavior in terms
of their entanglement growth even though we consider
only the ergodic phase of our models. We note in pass-
ing that different (logarithmic) entanglement production
rates were found in the MBL phase when considering dif-
ferent types of χ = 1 product states [81].

The entanglement in completely unentangled product
states grows the fastest, while it grows more slowly in typ-
ical product states which are maximally entangled within
the subsystems. This different growth rate seems to be
reflected in different exponents α of the power law in
time.

We argue here that typical product states with maxi-

mal χ are the most representative for the overall behavior
of the system in the sense that they contain the largest
number of degrees of freedom. This means that if one
generates a random product state, the likelihood of find-
ing a χ = 1 state vanishes compared to a maximal χ
state.

Why is the growth of entanglement slower if we start
from a product state which is initially already entan-
gled inside each subsystem, compared to an unentangled
χ = 1 product state? The different behavior in the two
cases is illustrated in Fig. 5, where the top panels exhibit
the entanglement entropy growth as a function of time for
different sizes of the subsystem. Panel (a) shows the case
of a typical product state, which has zero entanglement
for `A = L/2 by construction and maximal entanglement
for all other values of `A given this constraint. Panel (c)
shows the same data as line plots for different `A. It
is clear that the entanglement entropy for a bipartition
which is already close to maximally entangled can only
grow very little. However, due to the monogamy of en-
tanglement [82, 83], in order to generate entanglement
across the cut at `A = L/2, highly nontrivial processes
have to occur to “free” some degrees of freedom before
they can entangle with the other subsystem. This is re-
flected in the flat behavior (no growth) of cuts at e.g.
`A = 5 at short times and slows down the entanglement
growth across the cut at the centre.

Conversely, the case of a χ = 1 σz product state does
not impose such constraints and the entanglement for all
cuts builds up homogeneously.

The entanglement production at very early times t� 1
is different from the situation described above, the typical
product states produce entanglement much faster, com-
pared to the χ = 1 product states, and it is after this fast
start that the entanglement production becomes slower.
Interestingly, this t� 1 behavior was observed for simi-
lar typical product states [80], where the faster entangle-
ment production was attributed to the positive curvature
∂2S(`A, t)/∂`

2
A at the central cut `A = L/2, compared to

the flat structure produced by the χ = 1 initial condi-
tion. This situation is reflected in Fig. 5 (a),(b) at t� 1
around the central cut. The aforementioned second par-
tial derivative is the subleading correction to the coarse-
grained behavior of the local entanglement entropy in-
crease rate and it is explained by the phenomenology of
entanglement production [80, 84, 85], which is conjec-
tured to apply to generic non-integrable systems.

V. DISCUSSION

We have systematically compared the operator entan-
glement entropy of the time evolution operator U of dis-
ordered static and driven quantum spin chains, well in
the ergodic regime of the phase diagram. Our models
are chosen such that they exhibit a many-body localiza-
tion transition at strong disorder.

It is known that such systems in general exhibit slow
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dynamics, most notably reflected in subdiffusive trans-
port [45, 50–57, 60–64], and it was found that slow dy-
namics is also visible in the spreading of quantum infor-
mation [65, 86], even in the absence of conserved quanti-
ties which could be transported [66].

In the case of the disordered quantum Heisenberg
chain, the operator entanglement entropy of the time evo-
lution operator was calculated in Ref. [42], and a slow,
sublinear power-law growth was found. However, com-
paring these exponents to the exponents of the power-law
growth of the wave function entanglement entropy after
a quench from a χ = 1 σz product state revealed a dis-
crepancy of these exponents.

Here, we clarify this discrepancy: Our argument given
above based on the concept of monogamy of entangle-
ment explains why χ = 1 product states can exhibit gen-
uinely faster entanglement production compared to typ-
ical product states. However, since the time evolution
operator needs to encode the entanglement production
for any initial state, its entanglement entropy can only
be expected to grow with a rate similar to that seen in
typcial wave functions, which are given by initial product
states with maximal bond dimension χ and represent an
overwhelming majority in the class of all A :: B separable
pure states.

This becomes even more apparent if we consider the
time evolution operator U in the computational σz basis:
Take an σz product state |φ〉, which is given by a single
basis state |j〉: 〈i|φ〉 = φi = δi,j . Then, the time evolu-
tion of this state is given by Uikφk = Uij , which is the
j-th column of U . On the other hand, when considering
a product state with maximal χ, we will get a random
average over all columns of U , which will therefore reflect
the typical behavior of all columns.

At times t � 1 the opposite situation happens, the
typical product states exhibit faster entanglement pro-
duction compared to the χ = 1 product states.

In summary, we have clarified the apparent discrep-
ancy between the growth of entanglement entropies of
wave functions and time evolution operators in the slow
dynamical regime prior to the MBL transition, showing
that typical product states display identical power law
entanglement entropy growth exponents compared with
the operator entanglement entropy of the evolution oper-
ator. This is in agreement with the same correspondence
recently observed in the case of linear growth in [80].
Furthermore, our results show that this correspondence
is valid across the full ergodic phase and holds both for
a static model with a mobility edge as well as for a peri-
odically driven system.

Our results furthermore provide additional evidence
that the slow dynamics in the ergodic phase is visible
even in general situations of systems without conserva-
tion laws and can be observed in power-law growths of
quantum information measures such as the operator en-
tanglement entropy of the evolution operator and the en-
tanglement production in wave functions.
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Appendix A: Rényi operator entanglement entropies

In this appendix we provide further results on Rényi
operator entanglement entropies. Rényi entropies are
a generalization of the von Neumann-Shannon entropy.
They highlight the behavior of different scales in the en-
tanglement spectrum via the Rényi index α. Here, we
show results for the growth of the α Rényi operator en-
tanglement entropy of the time evolution operator U(t)
of the static model in Eq. (1). In Fig. 6, the top panel
shows that the Rényi entropies grow for all values of α.
Large α highlights the behavior of the largest singular
value, while smaller α > 0 represent their average behav-
ior. The lower panel shows the discretized logarithmic
derivative, which reveals that all Rényi entropies with
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FIG. 6. (a) Disorder-averaged entanglement Rényi entropies
[SαU (t)] (solid lines). In dashed lines − lnλop

max which is ob-
tained in the limit α >> 1 (λop

max denotes the maximum
singular value of SαU (t)); for the static model, L = 24, and
W = 2.0. (b) The (discretized) logarithmic derivative of the
data points in the upper panel, taken over time windows of
size δt = 0.1, starting from tmin. The legends in (a) and (b)
apply to both panels.
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0.4 ≤ α ≤ 2 essentially have the same power law growth
exponent in time. For very large Rényi index α = 100,
the behavior of the largest singular value is recovered and

the entropy is identical to the limit α→∞. Interestingly,
in this case we observe a slightly slower entropy growth
with a smaller exponent.
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Dmitry A. Abanin, “Periodically driven ergodic and
many-body localized quantum systems,” Annals of
Physics 353, 196 – 204 (2015).

[31] Pedro Ponte, Z. Papić, Franois Huveneers, and
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“Universal Slow Growth of Entanglement in Interact-
ing Strongly Disordered Systems,” Phys. Rev. Lett. 110,
260601 (2013).

[39] David A. Huse, Rahul Nandkishore, and Vadim
Oganesyan, “Phenomenology of fully many-body-
localized systems,” Phys. Rev. B 90, 174202 (2014).

[40] Paolo Zanardi, “Entanglement of quantum evolutions,”
Phys. Rev. A 63, 040304 (2001).
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