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In this study, we analyze Twitter data to understand information spreading activities of social media users during Hur-
ricane Sandy. We create multiple subgraphs of Twitter users based on activity levels and analyze such network prop-
erties. We observe that user information sharing activity follows a power-law distribution suggesting the existence of
few highly active nodes in disseminating information compared to many other nodes. We also observe close enough
connected components and isolates at all levels of activity, and networks become less transitive, but more assortative
for larger subgraphs. We also analyze the association between user activities and characteristics that may influence
user behavior to spread information during a crisis. Users who are centrally placed in the network, less eccentric
and have higher degrees, they are more active in spreading information. Our analyses provide insights on how to ex-
ploit user characteristics and network properties to spread targeted information in major disasters.
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1. Introduction

Communities all over the world are frequently facing disasters in many
forms (Nelson, 2013). Natural disasters alone, over the past three decades,
have caused billions of dollars in property damage and killed 2.5 million
people (Emergency Events Database, n.d.; Klomp and Valckx, 2014). The
National Academies Committee on Increasing National Resilience to Haz-
ards and Disaster established hazards resilience as a national imperative
at all levels (personal, local, state, and national). Disaster resilience has re-
ceived more emphasis in the domains of physical infrastructure systems
and operations (Cutter et al., 2013); however, resilience should also incor-
porate social dimensions (Sadri et al., 2018). To promote disaster resilience
and minimize the adverse impacts, communities need to have sufficient
preparation and information to respond to an upcoming crisis
(Diffenbaugh and Field, 2013; Guikema, 2009; Kennedy, 2002; Press and
Hamilton, 1999). Early detection of influential agents in a crisis communi-
cation network can contribute towards relaying targeted, relevant, and
timely information to the vulnerable communities and concerned
population-groups. As a result, any possible disruption of information
flow in the network can be resisted in such a crisis ahead of time.
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Effective information dissemination constitutes the key to spread
awareness to every individual in a community (Cutter and Finch, 2008;
Helbing, 2013; Vespignani, 2009). It requires systematic planning, collec-
tion, organization, and delivery techniques before circulating to the target
audience using different media and communication means. Online social
media (such as Facebook, Twitter etc.), unlike traditional ones, can serve
as alternative platforms to disseminate information during disasters. Stud-
ies have acknowledged the potential and need to efficiently analyze, record
and utilize the large-scale and rich information available from these online
information sources (Lazer et al., 2009). Examples of such applications can
be found inmany empirical studies related to emergency response (Bagrow
et al., 2011; Guan et al., 2016; Hughes and Palen, 2009; Li and Rao, 2010;
Van Hentenryck, 2013; Wang et al., 2014; Watts et al., 2013), crisis infor-
matics (Caragea et al., 2011; Earle et al., 2012; Freeman, 2011; Guy et al.,
2010; Pickard et al., 2011; Sakaki et al., 2010; Skinner, 2013; Ukkusuri
et al., 2014), and many others (Li et al., 2016; Liang et al., 2015; Shin
et al., 2016;Weng et al., 2013;Wood et al., 2013; Zhong et al., 2016).More-
over, social media connectivity and activity allow researchers to analyze
and predict what happens in the real world via social network amplification
(Korolov et al., 2015; Kryvasheyeu et al., 2016).
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Social science studies have reported that psychological and social fac-
tors are very important in translating hazard warning information into a
collective decision (Gladwin et al., 2007; Lindell et al., 2005; Lindell and
Prater, 2007a, 2007b). Evacuation studies have found significant correla-
tions of local authorities, peers, local and national media, and internet
with evacuation (Lindell et al., 2005). During Hurricane Sandy, for in-
stance, social media played an important role on information sharing. Res-
idents from New York and New Jersey were able to receive information on
smartphones using social media as they had limited access to traditional
sources of information (radio, television and others) (Kaufman et al.,
2012). In areas without power, communications via online social media
continued during and after the storm based on the continuous distribution
of tweets observed throughout the city. Individuals were more likely to
evacuate if they relied on social media for weather-related information dur-
ing Sandy (Sadri et al., 2017). Although social media data has been ana-
lyzed for many disaster studies, a key question remains open: what is the
role of the underlying network structure in spreading information in social
media during disasters?

The interdependence between network topology and the function of
network agents has important consequences on the robustness and resil-
ience of real networks as they respond to random failure, targeted attacks
or any other external perturbations (Albert et al., 2000). Understanding
the coupled dynamics between network structure and function has mani-
fold applications in various fields including infrastructure systems, supply
chain and logistics, biology, social and financial systems, information and
communication networks, and many others (Boccaletti et al., 2006;
Newman, 2003; Ukkusuri et al., 2016). This joint association of network
structure with the entities also allows the experiment of highly dynamic be-
havior of the network agents that exist and interact within the complex ar-
chitecture. Complex network approaches have been used inmany empirical
studies of real world systems, such as, disease transmission (Anderson et al.,
1992; Murray, 2002); transmission of computer viruses (Balthrop et al.,
2004; Newman et al., 2002); collapse in financial systems (Sornette,
2009), failures of power grid (Kinney et al., 2005; Sachtjen et al., 2000); in-
formation diffusion through social networks (Coleman et al., 1966), and
many others.

In this study, we investigate information spreading activities and associ-
ated network properties in social media during disasters.We have analyzed
active Twitter subgraphs to understand information spreading activities of
Twitter users during Hurricane Sandy. Multiple Twitter subgraphs have
been created based on user activities and followee list during Hurricane
Sandy. We analyze different structural properties of the subgraphs follow-
ing the concepts of network science. This study contributes towards a better
Table 1
Tobit regression for activity frequency.

N Mean

Activity frequency 152,933 24.87351
Degree 152,933 148.7643
In-degree 152,933 94.80183
Out-degree 152,933 94.80183
Clustering coefficient 152,933 0.195215
Eccentricity 152,933 5.790215
Avg. neighbor degree 152,933 2745.791
Betweenness centrality 152,933 1.14E−05
Closeness centrality 152,933 0.369475
Eigenvector centrality 152,933 0.00109
Degree centrality 152,933 0.000973

Activity frequency: Tobit regression

Coeff. Std. err.

Constant 18.92990 2.73118
In-degree 0.00917 0.00057
Out-degree 0.00658 0.00026
Eccentricity −5.53433 0.30563
Closeness centrality 87.82817 3.54151
No. of observations 152,933
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understanding of user activities and interactions in social media platforms
during a major crisis such as Hurricane Sandy. The information spreading
patterns will be useful for the early detection of influential network agents
in such crisis. Our tobit regression indicates nodes being less eccentric,
more central, and having larger degrees are more capable of spreading rel-
evant information (Table 1). Such nodes, because of higher reachability to
many other nodes, can make meaningful contributions in crisis contagion
and help disseminate early awareness in the hurricane prone regions.

2. Review of network science

Many new network concepts, properties andmeasures have been devel-
oped by running experiments on large-scale real networks. A number of sta-
tistical properties and unifying principles of real networks have been
identified from these studies. Significant amount of research efforts have
helped to develop new network modeling tools, reproduce the structural
properties observed from empirical network data, and design such net-
works efficiently with a view to obtaining more advanced knowledge of
the evolutionary mechanisms of network growth (Hasan and Ukkusuri,
2011). Many real networks possess interesting properties unlike random
graphs indicative of possible mechanisms guiding network formation and
ways to exploit network structure with specific objectives (Newman,
2003). Some of these properties, common across many real networks, are
described below:

Small-world property: This property refers to the existence of relatively
short paths between any pair of nodes in most networks despite their
large size. The existence of this property is evident in many real networks
(Milgram, 1967; Travers and Milgram, 1969; Watts and Strogatz, 1998).
The small-world effect has important implications in explaining dynamics
of processes occurring on real networks. In case of spreading information
or ideas through a network, the small-world property suggests that the
propagation will be faster on most real world networks because of short av-
erage path lengths (Newman, 2003). Three important measures to explain
this property are eccentricity, radius and diameter. While the eccentricity
of a node in a graph is the maximum distance (number of steps or hops)
from that node to all other nodes; radius and diameter are the minimum
and maximum eccentricity observed among all nodes, respectively.

Degree distributions: The degree of a node (k) is the number of direct links
to other nodes in a graph. The degree distribution P(k) in real networks
(probability that a randomly chosen node has degree k, issignificantly dif-
ferent from the Poisson distribution, typically assumed in the modeling of
randomgraphs. In fact, real networks exhibit a power law (or scale-free) de-
gree distribution characterized by higher densities of triangles (cliques in a
S.D. Min. Max.

37.59742 10 2267
484.8861 1 32,406
219.0143 0 9640
447.848 0 32,397

0.13114 0 1
0.456218 5 8

2326.095 1.5 32,406
0.000231 0 0.037856
0.040014 0.178652 0.530577
0.002313 8.86E−13 0.071367
0.003171 6.54E−06 0.211898

t-Stat [95% Conf. int.]

6.93 13.57685 24.28295
16.10 0.008053 0.010285
25.63 0.006081 0.007088

−18.11 −6.13336 −4.9353
24.80 80.88689 94.76944
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social network, for example) (Barabási andAlbert, 1999). In addition,many
real networks also exhibit significant correlations in terms of node degrees
or attributes. This scale-free property validates the existence of hubs, or a
few nodes that are highly connected to other nodes in the network. The
presence of large hubs results in a degree distribution with long tail (highly
right-skewed), indicating the presence of nodes with a much higher degree
than most other nodes. For an undirected network, the degree distribution
Pdegree(k) can be written as follows:

Pdegree kð Þ∝k−γ ð1Þ

where γ is some exponent and Pdegree(k) decays slowly as the degree k in-
creases, increasing the probability of obtaining a node with a very high de-
gree. Networks with power-law distributions are called scale-free networks
(Albert and Barabási, 2002) that hold the same functional form (power
laws) at all scales. The power law Pdegree(k) remains unchanged (other
than a multiplicative factor) when rescaling the independent variable k
by satisfying:

Pdegree xkð Þ ¼ x−γ Pdegree kð Þ ð2Þ

The presence of hubs that are orders of magnitude larger in degree than
most other nodes is a characteristic of power law networks. In this study, we
test the scale free property both for the activity frequency of all active nodes
and the degree distribution of subgraphs being active at different activity
levels.

Transitivity: This property is a distinctive deviation from the properties
of random graphs. Network transitivity implies that two nodes are highly
likely to be connected in a network, given each of the nodes are connected
to some other node. This is indicative of heightened number of triangles
that exist in real networks (sets of three nodes each of which is connected
to each of the others) (Newman, 2003). The existence of triangles can be
quantified by Clustering Coefficient, C:

C ¼ 3 � Number of triangles in the network
Number of connected triples of nodes

ð3Þ

A connected triple refers to a single node with links running to an un-
ordered pair of others. In case of social networks, transitivity refers to
the fact that the friend of one's friend is likely also to be the friend of
that person. Another important notion is Network Density, frequently
used in the sociological literature (Scott, 2012). The density is 0 for a
graph without any link between nodes and 1 for a completely connected
graph.

Network resilience: This property, related to degree distributions, refers
to the resilience of networks as a result of removing random nodes in the
network and the level of resilience to such vertex removal varies across net-
works depending on the network topology (Newman, 2003). Networks in
which most of the nodes have low degree have less disruption since these
nodes lie on few paths between others; whereas removal of high degree
nodes in a large real network can result in major disruption. The usual
length of these paths will increase if nodes are removed from a network,
resulting in disconnected pairs of nodes andmaking itmore difficult for net-
work agents to communicate.

Node-level properties: The node degree is the number of edges adjacent to
that node (degi). In-degree is the number of edges pointing in to the node
(in_degi) and out-degree is the number of edges pointing out of the node
(out_degi). Average neighbor degree refers average degree of the neighbor-
hood (zn, i) of each node i is:

zn;i ¼ 1
j Ni j

X

j∈Ni

z j ð4Þ

where, N(i) are the neighbors of node i; zj is the degree of node j that be-
longs to Ni. In case of weighted graphs, weighted degree of each node can
3

be used (Barrat et al., 2004). In case of an unweighted graph, the clustering
coefficient (cci) of a node i refers to the fraction of possible triangles that
exist through that node:

cci ¼ 2 Ti

degi � degi−1½ � ð5Þ

where, Ti is the number of triangles that exist through node i and degi is the
degree of node i. In case of weighted graphs, this clustering coefficient can
be defined as the geometric average of the sub-graph edge weights
(Saramäki et al., 2007). The eccentricity of node i is the maximum distance
from node i to every other nodes in the graph G (ecci).

Out of a number centrality measures, betweenness centrality (BCi) of
node i is the sum of the fraction of all-pairs of shortest path that pass
through node i:

BCi ¼
X

x;y∈V

θ x;yð j jÞ
θ x;yð Þ

ð6Þ

where, V is the set of nodes inG, θ(x,y) is the number of shortest (x,y) paths,
and θ(x,y | j) is the number of paths that pass through some node j other than
(x,y). Please refer to Brandes (2001, 2008) and Brandes and Pich (2007) for
more details. The closeness centrality (CCi) of node i is the reciprocal of the
sum of the shortest path distances from node i to all (n− 1) other nodes in
the graph G:

CCi ¼ n−1
∑ j¼1

n−1θ j;ið Þ
ð7Þ

where, θ(j,i) is the shortest path distance between node j and node i and n is
the number of total nodes in graphG. Closeness is normalized by the sum of
minimum possible distances of (n − 1) since the sum of the distances de-
pends on the number of nodes in the graph. Higher values of closeness
imply higher centrality. Please refer to Freeman (1978) for details. The ei-
genvector centrality (ECi) computes the centrality for a node i based on
the centrality of its neighbors. The eigenvector centrality for node i is:

A x ¼ λ x ð8Þ

where A is the adjacency matrix of the graph Gwith eigenvalue λ. Perron–
Frobenius theorem suggests that there is a unique and positive solution if λ
is the largest eigenvalue associated with the eigenvector of the adjacency
matrix A (Bonacich, 1987; Newman, 2010). Finally, degree centrality for
a node is just the fraction of nodes it is connected to.

Other network properties: Some other common properties are observed in
many real networks such as mixing patterns (selective linking), network
homophily or similarity, degree correlations, preferential attachment, com-
munity structure, network navigation, size of giant components among
others (Newman, 2003).

3. Data description

In 2012, residents in the coastal areas of New York and New Jersey ex-
perienced a massive storm surge produced by Hurricane Sandy, a late sea-
son hurricane causing about $50 B in property damage, 72 fatalities in
the mid-Atlantic and northeastern United States, and at least 147 direct
deaths across the Atlantic basin (Blake et al., 2013). Sandy's wind and
flood are the key contributors of the heightened number of fatalities
(Gladwin et al., 2013). In addition, 570K buildings were destroyed, 20K
flights were cancelled, and 8.6M power outages in 17 states among other
direct impacts of Sandy (Halverson and Rabenhorst, 2013). Moreover,
thousands of people were displaced from their homes (Abramson and
Redlener, 2012) and 230K cars were destroyed by the floods even though
the residents were given early warnings about the oncoming storm and
the likely impact (Meyer et al., 2014). The specific date, time, location



Table 2
Specific events along the path of Hurricane Sandy.

Date Time Nearby location Event

October 22, 2012 12:00 UTC Kingston, Jamaica Sandy formed and officially assigned name
October 24, 2012 19:00 UTC Jamaica First landfall as a Category 1 hurricane
October 25, 2012 05:30 UTC Cuba Second landfall as a Category 3 hurricane
October 29, 2012 12:00 UTC Atlantic City Re-intensified to the maximum wind speeds
October 29, 2012 23:30 UTC Near Brigantine in New Jersey Final landfall as a post-tropical storm
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and event, attributed to Hurricane Sandy, are presented in Table 2. Please
see Kryvasheyeu et al. (2015) for further details.

Twitter users can share short messages up to 140 characters and follow
other users creating a network of a large number of accounts with charac-
teristics both of a social network and an informational network (Myers
et al., 2014). As of 2017, messages can contain up to 280 characters, as
such the Hurricane Sandy tweets analyzed in this study was significantly
shorter than current tweets. The social network properties of Twitter pro-
vide access to geographically and personally relevant information and the
information network properties instigate information contagion globally
(Kryvasheyeu et al., 2016). These specific features make Twitter particu-
larly useful for effective information dissemination during crises. From an
emergency research perspective, many researchers used Twitter to study
the service characteristics (Guy et al., 2010; Li and Rao, 2010), retweeting
activity (Kogan et al., 2015; Starbird and Palen, 2010), situational aware-
ness (Power et al., 2014; Vieweg et al., 2010), online communication of
emergency responders (Hughes et al., 2014; St Denis et al., 2014), text clas-
sification and event detection (Caragea et al., 2011; Earle et al., 2012;
Imran et al., 2013; Kumar et al., 2014; Sakaki et al., 2010), devise sensor
techniques for early awareness (Kryvasheyeu et al., 2015), quantifying
human mobility (Wang and Taylor, 2014, 2015), and disaster relief efforts
(Gao et al., 2011).

In this study, we analyze raw data (~52 M tweets, ~13 M users, Oct
14–Nov 12, 2012) obtained from Twitter. Please see Kryvasheyeu et al.
(2015) for the detailed steps involved in data collection. The data in-
cludes a text database with user and text identifiers, texts, and some ad-
ditional useful information. The network database includes the
relationship graphs of active users i.e. the list of followees for each
user. These were reconstructed using Twitter API. Only a minor fraction
of the texts (~1.35%) are geo-tagged by Twitter. For relevance, user ac-
tivity was assessed on the basis of number of tweets (~11.83 M) in the
data that included the word ‘sandy’, co-appeared with other words
after filtering out ~46.45 M tweets that are in English i.e. non-English
tweets were removed. Here, the rationale is certain keywords, such as
“storm”, “power”, “gas”, etc. are contaminated by irrelevant messages
simply due to their convoluted nature. For example, the keyword
“storm” may belong to small-scale local weather events. Similarly,
“power” can be used in the context of politics and “gas”may refer to reg-
ular user concerns about gas. Strict relevance filtering to avoid “false
positives” (messages with no relevance to Hurricane Sandy) also helps
to suppress noise messages prior to the formation of the hurricane
(Kryvasheyeu et al., 2015).

Thus, relevance filtering was carefully done before applying
network models on massive subgraphs of Twitter users being
concerned about Hurricane Sandy. For the analysis of directed graphs,
we considered a network link received by user from his followee. From
Twitter perspective, a followee is the user who is being followed by
another user and the information flows from the followee to the
followers. In the network data, we observed that a number of highly
active nodes did not have any followee, however they appeared in
the followee list less active users which is indicative of the direction
and rate of information flow. Some active users did not appear in the
network database for which we assumed zero followee since the
current length of followee list on Twitter is close to zero, even after
three years of data collection.
4

4. Methods and results

4.1. Subgraph construction

Given the scope, this study is focused on exploring the social media user
interaction network properties in a major disaster. As such, Twitter data
was obtained covering the warning, response and early recovery phases
of Hurricane Sandy. Since it is almost impossible to observe the complete
graph of Twitter especially and we focused only on the Sandy related com-
munication patterns, our network analyses were based on the subgraphs of
Twitter that included only users who interacted about Hurricane Sandy. In
order to create subgraphs at any given activity level (Bondy and Murty,
1976), we first observe the followees of an active user and identify all the
active followees of that user. We construct a directed subgraph of all active
users having links from user followees directed towards the active nodes.
We then observe the association between the frequencies of user activity
(i.e. number of tweets during the analysis period) and network properties
(both global and local) by running networks models for these subgraphs.
Global i.e. graph-level network properties that we assessed include number
of nodes and links (both for the graph and the largest connected compo-
nent); number of isolates and connected component; mean degree, radius
and diameter; network density, transitivity, and assortativity. Local i.e.
node-level properties include node activity, degree, average neighbor de-
gree, clustering coefficient, eccentricity, and different measures of central-
ity. The larger the size of the subgraphs, the more nodes it includes from
a lower activity level. Fig. 1 visualizes the subgraphs of different sizes and
their largest connected components. Network visualization shows highly
active nodes in the active subgraphs appearing both at the largest con-
nected component and as isolates in the periphery (Fig. 1a).Within the larg-
est connected component, highly active nodes appear at different positions
(Fig. 1b‑d). The ego node of the largest hub depicts its influential position in
the subgraph connectivity directing our attention towards a node-level
analysis of the subgraphs (Fig. 1e).

We followed the following definition (Bondy and Murty, 1976) to con-
struct the subgraphs:

A graph G is an ordered triple (V(G), E(G),ψG) consisting of a non-empty set
V(G) of nodes, a set E(G) of links being disjoint from V(G) and an incidence func-
tion ψG that associates with each edge of G an unordered pair of (not necessarily
distinct) vertices of G. If e is an edge and u and v are vertices such that ψG(e) =
uv, then e is said to join u and v; the nodes u and v are called the ends of e. A
graph H is a subgraph of G (H ⊆ G) if V(H) ⊆ V(G), E(H) ⊆ E(G), and ψH is
the restriction of ψG to E(H). When H ⊆ G but H ≠ G, we write H ⊂ G and call
H a proper subgraph of G. If H is a subgraph of G, G is a supergraph of H.

4.2. Activity and degree distributions

We analyze the relationship between user activity and the correspond-
ing degree distributions. We obtain the best fitting to the user activity and
subgraph degree distributions (see Fig. 2 for details) and a value of xmin

which refers to the minimal value of x at which the power law begins to be-
come valid (Alstott et al., 2014). User activity frequency based on all rele-
vant keywords follows a power law distribution (γ = 2.71 ± 0.005; p <
0.001; xmin = 39), whereas, activity frequency (AF) based on keywords
co-appeared with ‘sandy’ follows a truncated power law distribution (γ
= 2.795 ± 0.016; p < 0.001). This indicates the existence of few nodes



Fig. 1. Snapshots of active subgraphs with their elements. (a) Full subgraph (~0.16M nodes, ~14.50M links, AF≥ 10, ~3.92M tweets); (b) largest connected component of
the subgraph (~0.15 M nodes, ~11.38M links, AF≥ 10); (c) circular tree visualization of largest connected component (~12 K nodes, ~0.50 M links, AF≥ 50); (d) regular
visualization of largest connected component (~12 K nodes, ~0.50 M links, AF≥ 50); (e) largest hub (AF≥ 50). ***Node size is proportional to node activity in each case.

A.M. Sadri et al. Transportation Research Interdisciplinary Perspectives 6 (2020) 100143
capable of spreading information quickly while many other nodes being
less active. The degree distributions of the subgraphs at different activity
frequency (AF) levels follow a truncated power law (γ = 3.057 ± 0.067;
p< 0.01; AF≥ 10). Here, γ is the slope of the distribution. This replicates
the scale-free property of many real networks having fewer nodes with
larger degrees and many nodes having relatively low degree. When γ is
high, the number of nodes with high degree is smaller than the number
of nodes with low degree. We may thus think that a low value of γ denotes
a more equal distribution, and higher values of γ denotemore andmore un-
fair degree distributions.

However, this might not be the case and the opposite may become true
i.e. a high value of γ represents a network inwhich the distribution of edges
is fairer. The best fit power law may only cover a portion of the
distribution's tail (Alstott et al., 2014). There are domains in which the
power law distribution is a superior fit to the lognormal (Klaus et al.,
2011). However, difficulties in distinguishing the power law from the log-
normal are common and well-described, and similar issues apply to the
stretched exponential and other heavy-tailed distributions (Malevergne
et al., 2009; Malevergne et al., 2005). Our comments on the distributions
fitting are based on pairwise comparison between power law, truncated
power law, lognormal, and exponential distributions.

4.3. Network analyses

Fig. 3 shows the variation of the subgraph network properties at various
activity levels. It is important to note here that the larger the size of the sub-
graphs, the more nodes it include from a lower activity level. We observe
that the number of nodes and links generated in these subgraphs (both di-
rected and undirected) grow exponentially for larger subgraphs. A similar
pattern is observed for the nodes and links that exist in the largest con-
nected component. There exists almost equal number of connected compo-
nents and isolates for all levels of activity. Network densities of the
subgraphs (both directed and undirected) tend to zero for larger subgraphs,
having slightly higher densities in the largest connected component in each
case. This implies that the connectivity between nodes do not follow the
rate at which the network grows for larger subgraphs.

Network transitivity implies the probability of any two given nodes in
the graph to be connected if they are already connected to some other
5

node. The average clustering coefficient of the undirected subgraphs
range from 0.2 to 0.4 and decreases with the size of the subgraphs (see
Fig. 4). The network transitivity, based on average clustering coefficient,
suggests that the subgraphs become less transitive as their size grows. The
increase in average degree of the nodes is indicative of more nodes that
are reachable in larger subgraphs on average. The degree Pearson correla-
tion coefficient approaches 0 for larger subgraphs. This is a measure of
graph assortativity in terms of node degree and a network is said to be as-
sortative when high degree nodes are, on average, connected to other
nodes with high degree and low degree nodes are, on average, connected
to other nodes with low degree. Since degree assortativity measures the
similarity of connections in the graph with respect to the node degree, we
observe that the networks become more assortative for larger subgraphs.
While the eccentricity of a node in a graph is the maximum distance (num-
ber of steps or hops) from that node to all other nodes; radius and diameter
are the minimum and maximum eccentricity observed among all nodes, re-
spectively. For a larger subgraph, we observe that the radius takes a con-
stant value of 5, while diameter approaches 8.

Node level properties are important to understand the role and contri-
bution of different nodes (network agents) on the information propagation
at a local scale. To obtain node level properties, we first construct an active
subgraph with activity frequency (AF)≥ 10 that includes a directed graph
of 157,622 nodes and 14,498,349 links. Then we run different network
models to obtain node-level properties of the undirected largest connected
component with 152,933 nodes and 11,375,485 links. We observe that
most of these nodes had a degree close to ~25 with activity frequency
around 13.While some of the nodes, having equivalent degree, were highly
active; most of the nodes in this degree region remained less active. We ob-
serve fewer nodes in the higher degree zones who remain less active than
some lower degree nodes (Fig. 5a–d). However, these nodes can play im-
portant role during a crisis or emergency because of their higher access to
many other nodes. Similar but less smooth trend was observedwith respect
to average neighbor degree. This node property is related to assortativity
that measures the similarity of connections in the graph with respect to
the node degree. An important insight here is that we see a chunk of
nodes having very high degree neighbors who remained less active
(Fig. 5a–b). Since high degree nodes are more likely to be active individu-
ally, nodes having high degree neighbors would be less summoned by
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Fig. 3. Subgraph properties at different activity levels (where activity level is defined by the number of tweets made by a node). (a) Number of nodes and links, (b) network
densities, (c) number of isolates and connected components.
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their neighbors because those neighboring nodes already self-sufficient in
disseminating or obtaining information. On the other hand, those nodes
having degree neighbors might need extra time to process oversaturated in-
formation from highly active neighbors.

The association of activity frequency with node-level clustering co-
efficient and eccentricity (Fig. 6a–b) also show well-defined range.
Since eccentricity of a node is the maximum distance from that node
to all other nodes, we observe that most of the nodes had an eccentricity
of 6, many of them remained less active while only a few of them were
highly active. More importantly, for some nodes having less eccentric-
ity, we observed their rigidity to be less active during crisis. Fig. 6a–b
shows that many nodes, even being part of the largest connected
Fig. 2. Activity and degree distributions. (a) Activity distribution based on all tweet
(b) Activity distribution of different users after the ‘sandy’ filtering (~11.83 M tweet
largest directed subgraph (~0.16 M nodes, ~14.50 M links, AF ≥ 10, ~3.92 M tweets)
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component, did form any cluster and remained less active. These
nodes are less reachable from the nodes who are more central and
form clusters. Such nodes should be given due consideration for effec-
tive information dissemination during crises. Turning to the centrality
measures (Fig. 6c–d), we observe that only closeness centrality shows
a well-defined range (Fig. 6c–d). Degree centrality and eigenvector cen-
trality shows similar patterns. Betweenness centrality suggests that al-
most all the nodes were having centralities equal to zero in terms of
their betweenness in the network. The key take away from the centrality
parameters is the pattern presented by the closeness centrality which is
indicative of a lot of nodes being highly central in terms of their close-
ness with many other nodes who remained significantly less active.
s after initial filtering (~46.45 M tweets). This follows a power law distribution.
s). This follows a truncated power law distribution. (c) Degree distribution of the
. This also follows a truncated power law distribution.



Fig. 4. Subgraph properties at different activity levels. (a) Radius and diameter of the largest connected component, (b) average degree, (c) average clustering coefficient, and
(d) the degree Pearson correlation coefficient.
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4.4. Information spreading activity of network agents

To assess how network agents performed in terms of spreading relevant
information about Sandy,wefit both linear and quadraticmodels of the form:

y � θ0 þ θ1 xþ ϵ ð9Þ

y � θ0 þ θ1 xþ θ1 x2 þ ϵ ð10Þ

respectively, where y represents activity frequency of nodes and x is a node-
level network attribute. This has been done by observing node-level network
properties of the largest directed subgraphAF≥ 10 that includes 157,622 ac-
tive nodes originally and 152,933 active nodes in the largest connected com-
ponent. We examined the effects of degree, in-degree, out-degree,
eccentricity, and closeness centrality on spreading capacity i.e. frequency of
relevant tweeting activity (see Fig. 7). The quadratic model fit the data well
in each case and was chosen over the linear model. Fig. 7a–e shows the max-
imum likelihood fit of both the quadratic and linear model (dashed line),
where the shaded area is the 95% confidence interval of the quadratic
model, and the dots show the performance of each of the network agents.
In addition to this univariate analysis, we also run amultivariate tobit regres-
sion to determine the combined effects of network variables on information
spreading. Since activity frequency (AF) is left-censored at 10, we used tobit
regressionwhich is designed for left-censored dependent variables.We report
(Table 1) the mean, standard deviation, minimum, and maximum of the var-
iables tested in the tobit regression.Weobserve higher variability of closeness
centrality; however, the variability of other centrality measures is insignifi-
cant while their means close to being zero.
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Our analysis indicates higher spreading activity for nodes having larger
in-degrees and out-degrees in a directed network (larger degrees for undi-
rected graph). This implies that the more information (links) a given node
receives from other nodes, the more active is that node during crisis. On
the other hand, a node is also highly likely to be influential in case of having
more out-degrees i.e. links directing to other nodes that allow them to dis-
seminate crisis information. The coefficient estimated for closeness central-
ity suggests more influential capability of a node by being more central in
the active subgraph. Such nodes occupy a very convenient position in a net-
work to be able to contribute highly in the information spreading dynamics.
We also observed that less eccentric nodes are more capable of spreading
information because of their higher reachability to any given node in the
network. All the network variables tested under tobit regression are signif-
icant at p < 0.001.

5. Conclusions

The primary focus of this study is to understand the interdependence be-
tween network topology and activities of network agents during disasters.
Social communication networks play a critical role during emergencies
since people may obtain weather information from traditional media such
as radio or television and social media such as Facebook, Twitter, or the in-
ternet. In this study, Twitter subgraphs have been analyzed based on user
activity during Hurricane Sandy to reveal the information spreading activ-
ity of network agents and the associated network properties that evolved
during this major disaster. For user activity at any given level, subgraphs
of social networks were constructed from the user followee list obtained
at the time of data collection. For relevance, user activity was assessed on



Fig. 5. Node-level properties: (a) Degree, (b) avg. neighbor degree, (c) in-degree and (d) out-degree.
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the basis of number of tweets in the data that included the word ‘sandy’, co-
appeared with other words. For the analysis of directed graphs, we consid-
ered a network link received by user from his followee. Based on our sub-
graph analysis at different activity levels, we reveal several information
spreading characteristics of Hurricane Sandy.

We observe that information spreading activity of nodes follows a
power-law showing the existence of few nodes highly active disseminat-
ing information and many other nodes being less active. The degree dis-
tributions of the communication network also follow a power-law,
executing the scale-free property of many real networks (fewer nodes
with larger degrees and many other nodes with fewer degrees). Network
visualization shows highly active nodes in the active subgraphs
appearing both at the largest connected component and as isolates in
the periphery. Within the largest connected component, highly active
nodes appear at different positions. The ego node of the largest hub de-
picts its influential position in the subgraph connectivity directing our
attention towards node level analysis.
9

Network analysis at different activity levels suggests that the number of
nodes and links in these subgraphs (both directed and undirected) grow
log-linearly with the size of subgraphs that includes close enough con-
nected components and isolates. In contrast, the overall network connectiv-
ity (i.e. subgraph densities) tends to become zero for larger subgraphs
implying that having a large number of active nodes does not help much
in spreading the information or awareness even though they heavily load
the network. Also, the existence of significant number of network isolates
at all levels does not help in crisis because of their individual activity not
contributing enough to the hazard warning dissemination. For larger sub-
graphs, networks become less transitive, but more assortative. This implies
that active network agents are more likely to connect with similar agents
(for example, having similar degrees) without contributing much in
forming clusters in the neighborhood at large. The radius of the largest con-
nect components in the larger subgraphs becomes stable at 5 that is indica-
tive of the reachability from a given node to any other node in five steps at
the maximum.



Fig. 6. Node-level properties: (a) Clustering coefficient, (b) eccentricity, (c) betweenness centrality and (d) closeness centrality.
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Node-level information spreading activity of network agents was
assessed by running univariate linear and quadratic models with tweeting
activity as a function of several topological attributes. We examined the ef-
fects of degree, in-degree, out-degree, eccentricity, and closeness centrality
on spreading capacity i.e. frequency of relevant tweeting activity. The qua-
dratic model fit the data well in each case and was chosen over the linear
model. Our analysis is indicative of higher spreading capacity for nodes
having larger in-degrees and out-degrees in a directed network (larger de-
grees for undirected graph). A node is also highly likely to be influential
in case of having more out-degrees i.e. links directing to other nodes that
allow them to disseminate crisis information. Nodes are more capable of
spreading information if occupying more central positions in the network
and being less eccentric.

This study contributes towards a better understanding of user inter-
actions in social media platforms during a major crisis such as Hurricane
Sandy. The information spreading patterns will be useful for the early
10
detection of influential network agents (more central, higher degrees,
and less eccentric) in such crisis. From warning to evacuation to the
post-storm recovery, such influential nodes can help disseminate more
targeted information to reach out vulnerable communities at all phases
of the disaster. For example, celebrities or political leaders typically oc-
cupy such positions on social media and may contribute to faster dis-
semination of relevant crisis information. The findings of this study
are specific to Hurricane Sandy, future studies should validate these re-
sults with other major hurricanes and check if such insights can be gen-
eralized to other forms of disaster. The time frame in which tweets were
gathered may have included a lead-up to the event as well as post-event
study. Future data analysis should include breakdown of datasets (i) by
stage of event e.g. before, during, after; (ii) by location (geo-parsing text or
using geo-tag); (iii) by topic (e.g. power outage, flooding report, crises for
help, damage reports); (iv) posts re-posting mainstream media VS original
posts among others.



Fig. 7. Information spreading capacity. (a) Degree, (b) in-degree, (c) out-degree, (d) eccentricity and (e) closeness centrality.
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Future studies should also consider the dynamics of information spread-
ing activities of network agents. This study motivates such reproducible ef-
forts for disaster scholars and use network science concepts to analyze
disaster communication networks. Recently, transportation researchers
11
used these data sources extensively for problems related to human mobility
patterns (Hasan et al., 2013), origin-destination demand estimation
(Cebelak, 2013; Chen and Mahmassani, 2016; Jin et al., 2014; Lee et al.,
2016b; Yang et al., 2014), activity-pattern modelling (Hasan and Ukkusuri,
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2014, 2015; Lee et al., 2016a; Zhao and Zhang, 2016), social influence in ac-
tivity patterns (Hasan et al., 2016), travel survey methods (Abbasi et al.,
2015; Maghrebi et al., 2015), transit service characteristics (Collins et al.,
2013), and crisis informatics (Ukkusuri et al., 2014) among others. The find-
ings of this study also provide prominent directions towards transportation
policy and practice perspectives such as identifying influential social media
users as part of efficient evacuation planning and management.
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