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In this Supplemental Material we present technical information aimed at practitioners wishing to
use the parallel two-site time dependent variational principle algorithm. We compare two different
methods of approximating power laws by sums of exponentials, which should prove useful for cal-
culations on larger systems. We also provide details of the software, settings, and parameters used
to carry out our numerical experiments, in order to aid reproducibility.

S1. IMPLEMENTATION

The parallel two-site time-dependent variational prin-
ciple (p2TDVP) code was built on top of the Tensor
Network Theory (TNT) Library [S1-S4] — a C code that
implements OpenMP [S5] shared memory parallelism
[S2], and which supports multithreaded linear algebra
libraries. p2TDVP was implemented using the Message
Passing Interface (MPI) standard [S6]. This allowed us to
target distributed memory architectures, hence increas-
ing the total amount of random-access memory (RAM)
available for simulations. For our benchmark calcula-
tions we employed a hybrid parallel approach in which
the MPI network-level parallelism was combined with ex-
isting shared memory parallelism.

S2. APPROXIMATING POWER LAWS

The Hamiltonian matrix product operators (MPOs)
used in our calculations were defined using a MATLAB [S§]
interface written by Coulthard [S4]. This employs the
method described by Pirvu et al. in the Appendix of Ref.
[S7] to approximate power laws by sums of exponentials.
Henceforth, when we refer to the MPO error, we mean
the error in this approximation.

Although the approach suggested by Pirvu et al. is
particularly fast and stable, it does not always give op-
timal results. In some cases it is preferable to employ
a nonlinear least-squares fit. In Fig. S1 we compare the
method from Ref. [S7] to the Levenberg-Marquardt non-
linear least-squares algorithm [S9, S10], by approximat-
ing 1/r? as a sum of nine exponentials.

The Levenberg-Marquardt fit was calculated in
MATLAB using the lsqnonlin() function [S11] with the
options shown in Table S1. We find that the Levenberg-
Marquardt method is slower but gives better results,
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Option Value

Algorithm levenberg-marquardt
MaxFunctionEvaluations 10000

MaxIterations 1000

StepTolerance 1E-6
FunctionTolerance 1E-14

TABLE S1. Options used for the MATLAB 1sqnonlin() func-
tion when calculating the fit shown in Fig. S1.

comparable to those in Ref. [S12]. Using this method
should thus allow for a smaller MPO bond dimension,
and hence a slight speedup. More importantly, the fit
holds over a longer distance, making it valuable for sim-
ulations with larger sized systems.

S3. TEST PLATFORM

We carried out our benchmarks on the Balena high
performance computing (HPC) cluster [S13] at the
University of Bath. We had access to a maximum of
32 compute nodes, with a maximum runtime per job of 5
days. All simulations were run on Dell PowerEdge C8220
nodes, which have two Intel E5-2650 v2 CPUs (20 MB
Cache, 2.60 GHz base frequency), giving a total of 16
cores per node. Each node has a memory of 64 GB (8
GB x 8) DDR3 (1866 MHz).

S4. SIMULATION DETAILS

We linked the TNT Library to ARPACK-NG [S14], and
the multithreaded Intel Math Kernel Library (MKL)
[S15]. We used the same version of the Intel MPT Library
[S16] and compiler, compiling with the -02 and -xHost
optimization flags. We set the OpenMP/MKL environ-
ment variables shown in Table S2 to allow dynamic ad-
justment of the number of threads used (up to a maxi-
mum of 16), whilst also disabling nested threading.
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FIG. S1. Approximation of 1/7? (dashed lines) by a sum of 9 exponentials (solid lines) using (left panel) the method described
by Pirvu et al. in Ref. [S7], and (right panel) the Levenberg-Marquardt nonlinear least-squares algorithm discussed in the text.
The broken lines show the absolute error in the approximations, and the insets show the relative error.

Environment variable Value
OMP_NUM_THREADS 16
MKL_NUM_THREADS 16
OMP_NESTED FALSE
OMP_DYNAMIC TRUE
MKL_DYNAMIC TRUE

KMP_AFFINITY compact,1,0,granularity=fine

Number of sites Number of sites Number of sites

p owned by first owned by cen- owned by last
process tral processes process

8 17 16 16

16 9 8 8

24 10 5 9

32 5 4 4

TABLE S2. Environment variables used to control OpenMP
threading in the TNT Library and Intel MKL.

The linear algebra settings used for all calculations
were as follows. We used the TNT Library default zero
tolerance of 1074 for the automatic blocking of matrices
[S2]. We set a relative truncation tolerance of & = 10712
for singular value decompositions (SVDs), and used the
LAPACK [S17] dense matrix divide-and-conquer [S18-S20]
routine (as implemented in Intel MKL). For the Lanczos
exponentiation in p2TDVP, we created the Krylov sub-
space using ARPACK-NG with a maximum of 8 basis vec-
tors, and a convergence tolerance of 107%. Density ma-
trix renormalization group (DMRG) calculations used
the ARPACK-NG sparse eigenvalue solver [S14, S21] with
these same settings.

A. Long-range Ising model

All Hamiltonian MPOs had a maximum absolute error
< 1078, The other parameters are as described in the
main text. The ground state matrix product state (MPS)
was calculated using two-site DMRG, and was found to

TABLE S3. Partitioning of the 129-site MPS in the long-
range Ising model simulations for p parallel processes.

have a maximum bond dimension of y = 22. For the
p2TDVP calculations, the 129-site MPS was partitioned
as described in Table S3.

B. Long-range XY model

The ground state of the antiferromagnetic XY Hamil-
tonian is twofold degenerate when there are an odd num-
ber of lattice sites. To break this degeneracy we added a
small perturbation to the Hamiltonian, so that we actu-
ally considered the ground state of
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with 6B = 107%. We calculated this ground state using
parallel two-site DMRG [S22] with 16 processes. As in
Ref. [S23], we used a maximum MPS bond dimension of
x = 128 [S24], and a Hamiltonian MPO with maximum
absolute error < 1078,



Number of sites

Number of sites

Number of sites

p owned by first owned by cen- owned by last
process tral processes process

8 15 12 14

16 9 6 8

24 7 4 6

32 6 3 5

TABLE S4. Partitioning of the 101-site
range XY model simulations.

MPS in the long-

Number of sites

Number of sites

Number of sites

P owned by first owned by cen- owned by last
process tral processes process
32 11 6 10

TABLE S5. Partitioning of the 201-site MPS in the long-
range XXX model simulation.

For the time evolution we used Ymax = 256 [S24] as in
Ref. [S23]. No truncation error tolerance was set. The
101-site MPS was partitioned as described in Table S4.

C. Long-range XXX model

To calculate the thermodynamic limit results, we nu-
merically integrated the exact expression for Cu(x,t)
(given in the main text) using the integral2() function
in MATLAB with the iterated option [S25].

For the 201-site p2TDVP calculation we approximated
the 1/r? power law by a sum of 12 exponentials, giving
an MPO bond dimension of 38 with a maximum abso-
lute error of 1.5 x 10~ and a maximum relative error of
5.3 x 1073, As shown in Fig. S1, it is possible to use the
Levenberg-Marquardt nonlinear least-squares algorithm
to approximate the power law more efficiently using just
9 exponentials, albeit with a slightly larger error. This
would give an MPO bond dimension of 29, and hence a
potential speedup of =~ 1.3.

The ground state of the model |¢p) was found using
two-site DMRG with a U(1) symmetric MPS of max-
imum bond dimension xy = 512. The energy per site
converged to

Eo/N = —0.410611165931, (S2)

with a total discarded weight of 2.1 x 107%. In Fig. S2
we show the magnitude of the ground state correlation
function (6Zof) for k = 101. This appears to follow a
power law with exponent equal to 1 (dashed line), except
towards the edges where the correlations decay exponen-
tially due to the open boundaries.

The initial state for our p2TDVP calculation was
[) = o%91 |t0). We time evolved |¢) on 32 processes,
using a truncation error tolerance of wyax = 10716, and
a maximum bond dimension of xmax = 1024. The MPS
was partitioned as shown in Table S5. As in Ref. [S26],
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FIG. S2. Ground state correlations in the 201-site long-range
(o = 2) XXX model. The dashed line is proportional to
(r—101)""

we used a timestep of §t = 0.025 and computed the dy-
namical spin-spin correlation function,

C(r = k.t) = e (g |07 |(2)) (S3)

every eight timesteps.

Although a full scaling analysis was impractical for
this simulation, we used different numbers of processes
to time evolve the final state at the end of the simulation
for an additional timestep. With one process, this took
71.6 minutes; with 32 processes, it took 7.8 minutes —
a speedup of 9.1 (in comparison, the 65-site simulation
gave a speedup of 11.0 on 32 processes). This suggests
that our partitioning of the MPS was not optimal. By
looking at the final bond dimensions we were able to de-
vise a better partitioning scheme, which gave a speedup
of 15.4 with 32 processes. The scaling results are shown
in Fig. S3, with the corresponding partitions described in
Table S6. We see close to ideal scaling up to 4 processes,
with reasonable scaling up to 16 processes. A speedup of
15.1 was achieved with 24 processes, after which it tails
off due to load imbalance. The reason for this is that
the dynamics of the system are fairly localized, so the

Process ID(s) 0 1

No. of sites owned 101 100

Process ID(s) 0 1-2 3

No. of sites owned 85 16 84

Process ID(s) 0 1-6 7

No. of sites owned T 8 76

Process ID(s) 0 1 2-13 14 15

No. of sites owned 65 12 4 12 64

Process ID(s) 0 1 2-21 22 23

No. of sites owned 60 11 3 11 59

Process ID(s) 0 1 2-3 4-27  28-29 30-31
No. of sites owned 33 32 6 2 6 32

TABLE S6. (top to botttom) MPS partitions for 2, 4, 8, 16,
24, and 32 processes, corresponding to the single timestep
scaling shown in Fig. S3.
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FIG. S3. Scaling plot for the extra timestep at the end of the
201-site XXX model p2TDVP simulation.

relatively large bond dimension is only saturated by the
central tensors.

This example highlights the fact that the choice of
partitioning scheme and number of processes is nontriv-
ial for simulations in which the MPS bond dimensions
X; grow inhomogeneously. Unless necessitated by mem-
ory requirements, using “too many” compute nodes is a
waste of resources. On the other hand, sub-optimal par-
titioning is a performance issue. It should be possible
to address this using a dynamic load balancer, as has
previously been done for the parallel time-evolving block
decimation algorithm [S27].
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