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During the last six years or so, a number of interesting papers discussed systems with line segments of

equilibria, planes of equilibria, and with more general equilibrium configurations. This note draws attention to

the fact that such equilibria were considered previously by Miklós Farkas (1932-2007), in papers published in

1984-2005. He called zip bifurcations those involving line segments of equilibria, and velcro bifurcations those

involving planes of equilibria. We briefly describe prototypical situations involving zip and velcro bifurcations.

I. INTRODUCTION

About ten years ago it was realized that, in addition to the

familiar chaotic attractors associated with saddle points, dy-

namical systems may also contain attractors not connected

to such points, the so-called hidden attractors [1, 2]. This

startling finding induced considerable interest and a large

number of publications concerning the properties of systems

displaying no equilibria, chaotic systems with lines of equi-

libria, as well as systems containing planes and more general

surfaces of equilibria.

For instance, by performing a systematic computer search

among certain families polynomial dynamical systems, Ja-

fari and Sprott [3] found nine chaotic flows with quadratic

nonlinearities which have the unusual feature of displaying a

line segment of equilibrium points. Other similar polynomial

flows were also investigated [4, 5]. As remarked by these au-

thors, such systems belong to a newly introduced category of

chaotic systems with hidden attractors that are important and

potentially problematic in real-life applications. Wang and

Chen [6] reported on how to construct systems having any

number of equilibria. Uyaroǧlu and Kocamaz [7] investigated

the control of a chaotic system having a line of equilibria using

a passive control method. A chaotic flow with a plane of equi-

libria was investigated by Jafari et al. [8]. Very recently, Wu

et al. [9] studied a neural memristor with infinite or without

equilibrium, while Pham and coworkers presented a gallery of

chaotic systems with an infinite number of equilibrium points

[10] and reported simulations and an experimental implemen-

tation of a system with a line of equilibria but no linear term

[11].

The purpose of this note is to draw attention to the fact that

systems with lines and surfaces of equilibria were considered

previously by Miklós Farkas (1932-2007), in a series of pa-

pers published during the years 1984-2005. Farkas called zip
bifurcations those involving line segments of equilibria, and

velcro bifurcations those in systems with planes of equilibria.

In the remainder of this note, we briefly review these concepts.

II. ZIP BIFURCATIONS

Farkas introduced the concept of zip bifurcations in 1984

[12, 13]. An extended and detailed presentation is given in his

1994 book Periodic Motions [14]. Farkas found zip bifurca-

tions while studying the competition dynamics involving one

prey and two predator species:

Ṡ = γS
(

1−
S

K

)

−
m1x1S

a1 + S
−

m2x2S

a2 + S
, (1)

ẋ1 =
m1x1S

a1 + S
− d1x1, (2)

ẋ2 =
m2x2S

a2 + S
− d2x2. (3)

In these equations, x1, x2, S denote the population size of the

two predator and the prey species, respectively. Clearly, in

the absence of predators, the prey follow a standard logistic

growth whose increase is controlled by γ > 0. The carrying

capacity of the environment with respect to the prey is K > 0.

The impact of the predators is assumed to be regulated by the

Michaelis-Menten kinetics [15], where mi > 0, di > 0, and

ai are, respectively, the maximum birth rate, the death rate and

the half saturation constant of the i-th predator.

Now, introduce auxiliary variables

λi =
aidi

mi − di
, βi = mi − di, bi = mi/di,

and assume that 0 < λ = λ1 = λ2 < K , implying βi > 0,

bi > 1. These definitions change Eqs. (1)-(3) into

Ṡ = γS
(

1−
S

K

)

−
m1x1S

a1 + S
−

m2x2S

a2 + S
, (4)

ẋ1 = β1x1

S − λ

a1 + S
, (5)

ẋ2 = β2x2

S − λ

a2 + S
. (6)

Clearly, in the non-negative octant R3
+ the equilibria of the

equations above are (0, 0, 0), (K, 0, 0) as well as the points

on the straight line segment L [14, 16]:

L =
{

(λ, ξ1, ξ2) ∈ R
3
+

∣

∣

∣

m1ξ1
a1 + λ

+
m2ξ2
a2 + λ

= γ
(

1−
λ

K

)

}

(7)

To see what Farkas calls zip bifurcation, fix parameters as

follows [16]:

γ = λ = a2 = 1, a1 = m2 = 2, m1 = 3,
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and consider the triplet of points

PK =
(

1, 0, 1−
1

K

)

,

MK =
(

1, 3−
9

K
,
8

K
− 2

)

,

QK =
(

1, 1−
1

K
, 0
)

,

where K ∈ (3, 4). With the choices above, it is not difficult

to see that the straight line segment L connects the points PK

and QK , and that the point Mk is contained in the line L. As

discussed in Section 7.4 of Farkas’ book [14], the equilibria on

L located betweenPK and Mk are unstable, while the equilib-

ria between Mk and QK are stable. As K increases from 3 to

4, the point Mk moves on the line from PK to QK , so that all

points located on the left ofMk become unstable. As K is var-

ied, the line L undergoes a parallel displacement which, how-

ever, has no effect on the aforementioned scenario. For addi-

tional references and examples in more general contexts and

the corresponding analysis, see Section 7.4 of Farkas’ book

[14].

More recent work by Ferreira and Rao deals with zip-

bifurcation in a predator-prey model with diffusion [17],

and in systems involving discrete delay [18, 19] and cross-

diffusion [20]. Zip bifurcations are also discussed by Escobar-

Callejas et al. [21], and by Echeverri et al. [22].

III. VELCRO BIFURCATIONS

Velcro bifurcations were considered in 2003 by Bocsó and

Farkas [23], in the context of a political and economic ra-

tionality economic problem modelled by a set of four differ-

ential equations taking into account information concerning

the problem spread among the people who support the politi-

cal alternatives. In such model, velcro bifurcation occurs for

specific parameter combinations destabilizing the equilibrium

points when information spreads [23].

The model consists of the following equations:

v̇ = γv
(

1−
y

K

)

−

3
∑

i=1

mi

v

ai + v
ui −M

v

A+ v

u1

u2

,(8)

u̇1 = m1

v

v + a1
u1 − d1u1, (9)

u̇2 = m2

v

v + a2
u1 − d2u2, (10)

u̇3 = m3

v

v + a3
u1 − d3u3. (11)

The model has similarities with the previous one, control pa-

rameters obey similar relations but have rather different mean-

ings [23] which are of no concern for our purpose here.

The last three equations of the model above may be simpli-

fied to

u̇i = βi

v − λi

v + ai
ui, i = 1, 2, 3 (12)

where, similarly as before,

βi = mi − di, bi = mi/di, λi =
aidi
βi

=
ai

b1 − 1
.

Under specific but realistic relations of the parameters the

equilibrium points of the system form a surface [23]

S =
{

(v, u1, u2, u3) ∈ R
4 | v = λ, u1, u2, u3 > 0,

γ
(

1−
v

K

)

=

3
∑

i=1

( miui

ai + v
+

M

A+ v

u1

u2

) }

In the above context, the dynamics of the velcro bifurca-

tions is defined as a sort of generalized zip bifurcations, as

spelled out in Theorem 2 of Bocsó and Farkas [23]:

The surface S is divided into two parts by a curve

g; the equilibria on the upper part of S are still

stable, and this part is an attractor of the system

(in the sense described in [14]); the equilibria on

the lower parts are already unstable. The curve g
moves upwards as K is increased leaving behind

the destabilized equilibria.

Velcro bifurcations were also reported in 2005 by Farkas,

Sáez, and Szántó in competition models with generalized

Holling functional response [24, 25]. Specifically, their ba-

sic model is given by the equations:

Ṡ = rS
(

1−
S

K

)

−

3
∑

i=1

mixi

Sn

an
i
+ Sn

, (13)

ẋi = mixi

Sn

an
i
+ Sn

− dixi, i = 1, 2, 3 (14)

where n > 2 is an integer. For a detailed analysis and several

figures of the equilibrium surfaces, consult the original article

[24, 25].

IV. CONCLUSIONS AND OUTLOOK

The purpose of this note is to bring the works of Farkas

and co-workers to the attention of researchers working in the

interesting field of systems with line and surfaces of equilib-

ria. As remarked in 1996 by Freedman [26], “For those who

don’t know, zip bifurcations were first discovered by Professor

Farkas, describing how a singular curve unfolds into periodic

solutions when a parameter changes, just like a zipper opening

up.”

It is interesting to note that while most of the recent sys-

tems found to contain lines and surfaces of equilibria deal with

interesting but abstract polynomial systems, arising from ex-

haustive computer searches, that are not yet associated with

any applications. In contrast, Farkas and co-workers found

zip and velcro bifurcations in standard systems that contain

typical nonlinearities of the sort encountered in popular mod-

els used in biology and economy. A publication list contain-

ing 76 works of Farkas is given in Ref. [16], while a list with
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78 works, signed by “students and colleagues”, is given in

Ref. [27]. A special issue of the journal Differential Equa-

tions and Dynamics Systems was dedicated to Farkas [28].

As it is clear from the literature, there is presently great

interest in investigating changes in the topology of attractors

not restricted to small neighborhoods of points. The works

of Farkas still contain a plethora of theorems and unexplored

materials that deserve attention, and that will certainly con-

tribute to the understanding of the rich dynamics of systems

with equilibria defined by extended mathematical structures.

The author is indebted to J.D. Ferreira, S. Jafari, and

V.T. Pham for their interest, and the first one for pointing out

Ref. [20] to him. Work done in the framework of an Ad-
vanced Study Group on Forecasting with Lyapunov vectors,

at the Max-Planck Institute for the Physics of Complex Sys-

tems, Dresden. The author was supported by CNPq, Brazil.
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