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 Abstract: The effect of bootstrap current perturbation on the onset of neoclassical tearing 

modes (NTMs) is studied numerically based on two-fluid equations, using externally applied resonant 

magnetic perturbations (RMPs) as triggers. With increasing the bootstrap current density, a larger 

RMP is found to be required to excite the NTM’s onset when the bi-normal electron fluid velocity is 

in the ion drift direction, being contrary to the conventional understanding that the bootstrap current 

perturbation is always destabilizing. For the electron fluid velocity in the electron drift direction, 

however, the opposite results are found.  
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1. Introduction  

 The onset of neoclassical tearing modes (NTMs) in tokamak experiments is often a type of 

forced magnetic reconnection caused by other MHD instabilities such as sawteeth, which provide the 

required resonant magnetic perturbation (RMP) via mode coupling to generate a sufficiently large 

seed magnetic island for the mode to grow [1-11]. NTMs are of particular importance for fusion 

plasmas, found to degrade tokamak plasma confinement or even cause plasma major disruption [3-

11]. Understanding of the onset of NTMs remains to be important for a fusion reactor. 

 Existing theories for NTMs’ onset are based on the modified Rutherford equation, including 

the tearing mode stability index ′, the curvature (Glasser) effect, and the contributions from the 

bootstrap current density perturbation and ion polarization current [1-3,12-20]. Except for the 

bootstrap current density perturbation, which is considered to be always destabilizing for a positive 

magnetic shear, all other effects are considered to be stabilizing for the mode onset, despite that the 

effect of the ion polarization current depends on the magnetic island rotation frequency and heat 

transport [12-17,21]. The error field and RMPs are also considered to be destabilizing based on single 

fluid results [2], providing seed islands for NTMs’ growth if they are sufficiently large, similar to the 

triggering of NTMs by other instabilities. 

 In this paper the onset of the m/n=3/2 NTM driven by RMPs is studied numerically based on 

two-fluid equations [22-24], where m/n is the poloidal/toroidal mode number. It is found that due to 

the change of the local electron density gradient around the resonant surface by RMPs, the local radial 

profile of the m/n=0/0 component of the bootstrap and plasma current density is significantly changed. 

As a result, when the bi-normal electron fluid velocity is in the ion drift direction, a larger RMP (or 

seed island) is required to trigger the NTM’s onset for a larger bootstrap current density, being 

contrary to the conventional understanding that the bootstrap current perturbation is always 

destabilizing for the NTM growth [1-3]. For the bi-normal electron fluid velocity in the electron drift 

direction, however, the opposite result is found. 

 

2. Numerical model 

 The four-field equations, the continuity equation, the generalized Ohm's law, the plasma 

vorticity equation, and the equation of motion in the parallel (to magnetic field) direction, are utilized 

[22]. Normalizing the length to the plasma minor radius a, the time t to the resistive time R=a20/ 

( the plasma resistivity), the helical magnetic flux  to aB0t (B0t is the equilibrium toroidal field), 

and the electron density ne to its value at the magnetic axis, these equations become [23,24] 

𝑑𝑛𝑒

𝑑𝑡
= 𝑑1𝛻||𝑗 − 𝛻||(𝑛𝑒𝑣||) + 𝛻⊥(𝐷⊥𝛻⊥𝑛𝑒) + 𝑆𝑛,     (1) 
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𝑑𝜓

𝑑𝑡
= 𝐸0 − 𝜂𝑁(𝑗 − 𝑗𝑏) −

𝜂𝑁

𝜈𝑒𝑖

𝑑𝑗

𝑑𝑡
+ 𝛺(

𝑇𝑒

𝑛𝑒
𝛻||𝑛𝑒 + 𝛻||𝑇𝑒),     (2) 

𝑑𝑈

𝑑𝑡
= 𝑆2𝛻||𝑗 + 𝜇𝛻⊥

2𝑈 + 𝑆𝑚,        (3) 

𝑑𝑣||

𝑑𝑡
= −𝐶𝑠

2𝛻||𝑃/𝑛𝑒 + 𝜇𝛻⊥
2𝑣||,        (4) 

using the large aspect ratio approximation and neglecting toroidal mode coupling, where  

 d/dt=/t + v⊥⊥,          (5) 

 j = −∇⊥
2ψ− 2nB0t/(mR)        (6) 

is the parallel plasma current density,  

 U = −∇⊥
2ϕ           (7) 

is the plasma vorticity, and  is the stream function. The magnetic field is defined as B=B0tet-

(kt/k)B0te+et, where k=m/r, kt=n/R, e and et are the poloidal and toroidal unit vectors, and r 

and R are the minor and the major radius. The ion velocity v=v|| + v⊥, including both the parallel and 

perpendicular component, and v⊥=et. P=Pe=neTe is the electron pressure, N=1 the normalized 

resistivity. The bootstrap current density jb=- cb(cTne𝑇𝑒
′+Te𝑛𝑒

′ )/Bp, where cb is a constant of the 

order of unity, =r/R, cT=0.367, Bp the poloidal magnetic field, and the prime is for /r. E0 is the 

equilibrium electric field, Sn the particle source, and Sm the poloidal momentum source leading to an 

equilibrium poloidal plasma rotation. =d1, d1=ce/ei, =4πPe/B0t
2 , ce and ei are the electron 

cyclotron and the collisional frequency, S=R/A, where A=a/VA is the toroidal Alfven time. Cs,  and 

D⊥ are the normalized ion sound velocity, plasma viscosity, and perpendicular particle diffusivity. 

The cold ion assumption is made. The third term on the right hand side of equation (2), being 

proportional to 1/ei, takes into account the electron inertia. The electron temperature Te is assumed 

to be a constant in above equations, and this assumption will be removed later in the last part of 

Section 3.  

 Equations (1)-(7) are solved simultaneously using the initial value code TM1 [23,24]. The 

effect of the m/n=3/2 RMP is taken into account by the boundary condition  

 3/2|r=a = a,3/2 aB0t cos(3+2),       (8) 

where  and  are the poloidal and toroidal angle, and a,3/2 is the normalized amplitude of the 3/2 

component helical flux at r=a.  

 

3. Numerical results 

 The radial profile of the original equilibrium plasma current density is of the form j0 ~ [1-

(r/a)2]4, leading to a monotonically increasing profile of the safety factor q with the q=3/2 surface 

located at rs=0.611a.  
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The input parameters are based on ASDEX Upgrade experimental parameters: B0t=2T, a=0.5m, 

R=1.7m, Te=2keV, and ne=3×1019m-3, leading to S=2.6×108, Cs=2×107(a/R) and d1=3.1×107. A 

parabolic profile for the equilibrium electron density is assumed, and the local equilibrium electron 

diamagnetic drift frequency is *e0=2.34×105/R (f*e0=1.6kHz) at rs for m=3 and =2×104. The 

perpendicular plasma momentum and particle transport is assumed to be at an anomalous transport 

level of =0.2m2/s=18.8 (a2/R) and D⊥=.  

 In tokamak experiments the core plasma rotation is essentially toroidal, while only the 

poloidal rotation is included in Eqs. (1)-(7) due to the large aspect ratio approximation. To guarantee 

a reasonable balance between the electromagnetic (EM) and viscous force, a larger plasma viscosity 

for the m/n=0/0 component, =18.8×102, is used in calculations based on the following 

considerations [25]: (a) The EM force in the toroidal direction is smaller by a factor (n/m)(rs/R) than 

that in the poloidal direction. (b) To have the same mode frequency due to the plasma rotation, the 

toroidal rotation velocity should be (m/n)(R/rs) times larger than the poloidal one. These two effects 

lead to a larger viscous force compared to the EM force for the toroidal rotation case by a factor 

[(m/n)(R/rs)]
2, which is of the order 102.  

 The normalized (to *e0) local equilibrium electron fluid frequency at rs is defined as 

  n(1-0),         (9) 

where −E0/*e0, and E0 the local equilibrium plasma rotation (the EB rotation) frequency. A 

negative (positive) value of n (0) corresponds to a bi-normal electron fluid (EB rotation) velocity 

in the ion drift direction.  

 The time evolution of the normalized m/n=3/2 magnetic island width, calculated from 

W=4[3/2/(Bp q′/q)]1/2 at rs, is shown in figure 1 for n=-0.76. When the equilibrium bootstrap current 

density fraction, fb, is taken to be zero in calculations (red curves), the island width is less than 0.01a 

for a,3/2=710-5 (dashed) but grows to about 0.04a for a slightly large RMP, a,3/2=810-5 (solid), 

indicating the field penetration. Including the bootstrap current in calculations with fb=0.36 at rs (black 

curves), the island width however remains at a low value about 0.01a up to a,3/2=1.210-4 (dashed) 

revealing the stabilizing role of the bootstrap current perturbation for the field penetration or the 

NTM’s onset in this case. Slightly increasing the RMP amplitude to a,3/2=1.310-4 (solid), the island 

width grows to 0.13a, being much larger than that for fb=0 and showing the destabilizing role of the 

bootstrap current perturbation for a sufficiently large island, as expected from existing theories [1-3]. 

As a result, the local electron density profile is flattened, and the plasma rotation velocity is reduced 

to zero around the q=3/2 surface. Without applying the RMP, the 3/2 mode is stable in the linear 

phase for fb=0 to 0.36. 
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Figure 1 Time evolution of the m/n=3/2 island width with n=-0.76 (the bi-normal electron fluid 

velocity in the ion drift direction). The red curves are for fb=0, with a,3/2= 710-5 (dashed) and 810-5 (solid). 

The black curves are for fb=036, with a,3/2= 1.210-4 (dashed) and 1.310-4 (solid). A larger RMP is required 

for field penetration for fb=0.36 than that for fb=0.  

 

 By scanning over the applied RMP amplitude in calculations with n=-0.76, the m/n=3/2 

magnetic island width in steady state is shown as a function of a,3/2 in figure 2 for fb=0, 0.18 and 

0.36. The different values of fb are obtained by using different values of cb, so that other input 

parameters are unchanged (If using different equilibrium electron density profiles for different values 

of fb, the diamagnetic drift frequency would be different). With fb=0 (black curve), the island width 

jumps from a small value to about 0.04a at a,3/2=810-5 due to the field penetration. With fb=0.18 

(red), a larger RMP amplitude, a,3/2=1.110-4, is required for the penetration. Further increasing the 

local bootstrap current density fraction to fb=0.36 (blue), the penetration threshold is even larger. This 

differs from existing theories that a larger bootstrap current density is more destabilizing for the 

NTM’s onset or field penetration [1-3]. With increasing the bootstrap current density, the saturated 

island width is larger after the field penetration, as expected [1-3].  

 

  

Figure 2 The m/n=3/2 magnetic island width in steady state as a function of a,3/2 for fb=0 (black curve), 

0.18 (red) and 0.36 (blue) at rs with n=-0.76. The penetration threshold is larger for a larger bootstrap 

current density fraction. The dashed green (magenta) curve is also for fb= 0.36, but the m/n=0/0 (3/2) 

component bootstrap current density is taken to be zero in calculations.   
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 In order to identify the underlying mechanism, calculations have also been carried out by 

taking the m/n=0/0 component of the bootstrap current density, jb,0/0, to be zero, while keeping other 

input parameters the same as those for the blue curve (fb= 0.36), and the corresponding results are 

shown by the dashed green curve in figure 2. In this case the penetration threshold is significantly 

reduced compared to that shown by the blue curve, revealing the stabilizing role due to the change of 

jb,0/0 from the equilibrium one by RMPs. When only the 3/2 component bootstrap current density is 

take to be zero in calculations, keeping other input parameters unchanged, the penetration threshold 

remains the same (dashed magenta curve in figure 2).   

 By changing the momentum source in equation (3) to let the electron fluid velocity be in the 

electron drift direction with n=1.6, the m/n=3/2 island width in steady state is shown as a function 

of a,3/2 in figure 3 for fb=0 (black curve), 0.18 (red) and 0.36 (blue). The penetration threshold is 

however smaller for a larger bootstrap current density in this case, showing the destabilizing role of 

the bootstrap current perturbation. Taking the m/n=0/0 (3/2) component of the bootstrap current 

density to be zero in calculations, while keeping other input parameters the same as those for the blue 

curve, the results are shown by the dashed green (magenta) curve. In both cases the penetration 

threshold is significantly increased, showing the destabilizing roles of both the 0/0 and the helical 

(3/2) component of the bootstrap current perturbations.  

 

  

Figure 3 For the electron fluid velocity in the electron drift direction with n=1.6, the m/n=3/2 

magnetic island width in steady state is shown as a function of a,3/2 for fb=0 (black curve), 0.18 (red) and 0.36 

(blue) at rs. The dashed green (magenta) curve is also for fb= 0.36, but the m/n=0/0 (3/2) component bootstrap 

current density is taken to be zero in calculations. 

 

The relative change in the m/n=0/0 component of the bootstrap and plasma current density by 

RMPs can be defined as jb,0/0=[jb,0/0(r) - jb0(r)]/j0(rs) and j0/0=[j0/0(r) - j0(r)]/j0(rs), respectively, where 

jb,0/0 and j0/0 are the 0/0 component of the bootstrap and plasma current density in nonlinear steady 

state, jb0 and j0 are the original equilibrium bootstrap and plasma current density. Local radial profiles 
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of j0/0 (solid curve) and jb,0/0 (dashed) are shown in figure 4 by black curves for fb= 0.18, a,3/2= 

910-5 and n=-0.76. In this case the RMP has not penetrated in, and the island width is 0.01a. The 

amplitude of j0/0 is about 7%, largely corresponding to the change of the 0/0 component bootstrap 

current density (the positive value of jb,0/0 will be explained later by equation (10)). The difference 

between them is due to the nonlinearity from the v  term, the parallel electron pressure gradient 

and electron inertia in Ohm's law, which act as an effective parallel electric field to change the 

m/n=0/0 component plasma current density [26]. More importantly, the radial j0/0 profile reveals 

that, compared to that of the original equilibrium one, the local radial gradient of 𝑗0/0 is reversed on 

the inner side of the q=3/2 surface but is decreased on the outer side (the absolute value of 𝑗0/0
′ /𝑗0/0 

is increased since it is negative). This is similar to that caused by a local rf current drive at the resonant 

surface in the ion drift direction (co-current direction). Such a change in the local radial profile of j0/0 

by RMPs is stabilizing for the island growth, since it is known to decrease the ′ value. This explains 

the results shown in figures 1 and 2, i.e., the stabilizing effect of the bootstrap current perturbation on 

NTMs’ onset for the electron fluid velocity in the ion drift direction. The amplitude of the m/n=3/2 

component of the bootstrap current density perturbation is about two times smaller than that of the 

0/0 component in this case.  

 

   

Figure 4 Local radial profiles of j0/0 (solid curve) and jb,0/0 (dashed) with fb= 0.18. The black curves 

are for n=-0.76 and a,3/2= 910-5, and the red curves are for n=1.6 and a,3/2=10-4. The vertical dotted line 

shows the q=3/2 surface location. 

 

 For the electron fluid velocity in the electron drift direction with n=1.6, local radial profiles 

of j0/0 (solid curve) and jb,0/0 (dashed curve) are shown in figure 4 by red curves for fb=0.18 and 

a,3/2=10-4. In this case the RMP has not penetrated in neither, and the island width is 0.0054a. The 

local radial gradient of j0/0 is decreased (|𝑗0/0
′ /𝑗0/0| is increased) on the inner side of the q=3/2 surface 

except in a thin layer very close to the surface, similar to that caused by a local rf current drive around 

the resonant surface in the electron drift direction (counter-current direction). This is known to 
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increase the ′ value and is destabilizing for the island growth, being consistent with the results shown 

in figure 3. However, in this case the amplitude of jb,0/0 is smaller than that of j0/0, and their radial 

locations are slightly shifted, indicating the role of the nonlinearity in Ohm's law in affecting the local 

𝑗0/0 profile.  

 It is known theoretically that RMPs can increase (decrease) the local electron density of the 

m/n=0/0 component around the resonant surface for the plasma rotation in the ion (electron) drift 

direction [23,24], as also observed in experiments [25,27-30]. In agreement with numerical 

calculation results, the quasi-linear formula shows that [23] 

  rs(ne)ne0=d1(*e0rs
2/D⊥)(1-0)|b1r/B0t|

2/m     (10) 

at r=rs for a static RMP, where ne=(ne,0/0-ne0) is the difference between the m/n=0/0 component of 

electron density in steady state and the original equilibrium one, and b1r is the local radial magnetic 

field perturbation. The local electron density gradient decreases (|ne/ne| increases since the 

equilibrium density gradient is negative) around the resonant surface for 0>1 or n<0, while in the 

opposite limit (ne)>0. As the bootstrap current density is proportional to the electron density 

gradient, equation (10) explains the change in the m/n=0/0 component bootstrap current density 

shown in figure 4.  

 Corresponding to figure 4, local radial profiles of the radial electron density gradient of the 

0/0 component are shown in figure 5, The density gradient decreases (|ne/ne| increases) around the 

resonant surface for n=-0.76 but increases for n=1.6, as expected from equation (10). 

 

 

Figure 5 Corresponding to figure 4, local radial profiles of the radial electron density gradient of the 

0/0 component with fb= 0.18. The black curve is for n=-0.76 and a,3/2= 910-5, and the red curve is for 

n=1.6 and a,3/2=10-4. The dashed curve shows the radial gradient of the original equilibrium electron density. 

The vertical dotted line marks the q=3/2 surface location. 

 

 To further take into account the electron temperature perturbations, the electron heat transport 

equation [24],  
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3

2
𝑛𝑒

𝑑𝑇𝑒

𝑑𝑡
= 𝑑1𝑇𝑒𝛻||𝑗 − 𝑇𝑒𝑛𝑒𝛻||𝑣|| + 𝑛𝑒𝛻 ⋅ (𝜒||𝛻||𝑇𝑒) + 𝑛𝑒𝛻 ⋅ (𝜒⊥𝛻⊥𝑇𝑒) + 𝑆𝑝,  (11) 

is solved together with equations (1)-(7), where  the heat conductivity, and Sp is the heat source. A 

parabolic profile for the equilibrium electron temperature is assumed, and the equilibrium electron 

diamagnetic drift frequency is *e0=4.82×105/R (f*e0=3.3kHz) at the q=3/2 surface for m=3. 

 

  

Figure 6 The m/n=3/2 magnetic island width in steady state as a function of a,3/2 for (1) n=-0.70 with 

fb=0 (black curve) and 0.25 (red); (2) n=1.6 with fb=0 (blue) and 0.25 (green). 

   

Assuming ⊥= and the ratio between the parallel and perpendicular heat conductivity to be 

/⊥=109, the m/n=3/2 island width in steady state is shown as a function of a,3/2 in figure 6 for fb=0 

and 0.25 with n=-0.70 and 1.6, respectively, keeping other input parameters unchanged. For the 

electron fluid velocity in the ion drift direction (n=-0.70), the penetration threshold is larger for 

fb=0.25 (red curve) than that for fb=0 (black), indicating again the stabilizing role of the bootstrap 

current perturbation in this case. For the electron fluid velocity in the electron drift direction (n=1.6), 

the opposite results are again obtained. The radial profiles of j0/0 and jb,0/0 are similar to that shown 

in figure 4, and the change in the local electron density and temperature gradient by RMPs is similar 

to that found before [23,24]. With fb=0.25, the penetration threshold is larger for n=-0.70 (red) than 

that for n=1.6 (green), showing the asymmetry of field penetration on the two sides of n=0, as 

observed in experiments [31]. Comparing the red curves in figures 2 and 3 with fb=0.18, such an 

asymmetry is also seen, since the penetration threshold is the same for n=-0.70 and n=1.6.  

Due to the inclusion of the heat transport equation, the 3/2 mode is linearly unstable without 

applying RMPs, being a micro-tearing type mode driven by the electron temperature gradient as found 

before [21]. The mode saturates in the small island regime in the nonlinear phase with a saturated 

island width around 0.01a for fb=0 and 0.25.  

  In addition to the results for the m/n=3/2 NTM shown above, similar results have also been 

found for NTMs of other mode numbers. 
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4. Discussion and summary 

 In existing theory for NTMs’ onset, only the helical component of bootstrap current 

perturbations, resulting from the (partial) flattening of plasma pressure inside a magnetic island, is 

taken into account [1-3]. This helical component is destabilizing for the mode onset when the electron 

fluid velocity is in the electron drift direction, as shown in figure 3, but it is not so important for the 

electron fluid velocity in the opposite direction, as shown in figure 2.  

 In addition to this helical component, the local m/n=0/0 component of the electron density 

gradient can also be significantly changed by RMPs or error field [23], leading to a corresponding 

change of the local bootstrap and plasma current density gradient. When the electron fluid velocity is 

in the ion drift direction, the most common case in tokamak experiments with neutral bean injection 

in the plasma current (ion drift) direction, this effect is stabilizing for NTMs’ onset and is larger than 

that due to the helical bootstrap current perturbation, so that a larger bootstrap current density leads 

to a larger onset threshold. For the electron fluid velocity in the electron drift direction, however, 

NTMs are more easily to be triggered by RMPs with increasing bootstrap current density. In this case, 

in addition to the helical bootstrap current, the change in the m/n=0/0 component of local plasma 

current density gradient, caused by both the bootstrap current perturbation and the nonlinearity in 

Ohm's law, is also destabilizing.  

 Our results indicate that the bootstrap current term in the modified Rutherford equation, 

utilized to study the onset of NTMs for many years [1-3], should be revised to take into account the 

nonlinear two-fluid effects. The plasma current density perturbation of the 0/0 component 

corresponds to a nonlinear modification of the ′ value, and it can be either stabilizing or destabilizing, 

depending on the electron fluid velocity. The effects studied in this paper are expected to be more 

important for the advanced scenario of a reactor plasma with a large fraction of bootstrap current.  

In summary, the NTM’s onset driven by RMPs is studied numerically based on two-fluid 

equations. Due to the change of the local radial profile of the bootstrap and plasma current density of 

the m/n=0/0 component, a larger onset threshold of NTMs is found for a larger bootstrap current 

density, when the bi-normal electron fluid velocity is in the ion drift direction. For the electron fluid 

velocity in the electron drift direction, the opposite results have been found. 
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