
ar
X

iv
:1

80
9.

04
00

3v
3 

 [
m

at
h.

G
T

] 
 1

6 
A

pr
 2

02
0

SUBORBIFOLDS AND GROUPOID EMBEDDINGS

JOÃO NUNO MESTRE AND MARTIN WEILANDT

Abstract. Given the notion of suborbifold of the second author (based on
ideas of Borzellino/Brunsden) and the classical correspondence (up to certain
equivalences) between (effective) orbifolds via atlases and effective orbifold
groupoids, we analyze which groupoid embeddings correspond to suborbifolds
and give classes of suborbifolds naturally leading to groupoid embeddings.

1. Introduction

The study of the geometry of subspaces demands an appropriate notion of em-
beddings. Given the variety of definitions of smooth maps between (effective) orb-
ifolds given by atlases (compare Satake’s different notions of “C∞-map” in [13] and
[14], also see [5, 1]) and the variety of reasonable definitions of suborbifolds in this
class ([15]), it is common to focus on the setting of orbifold groupoids with its
natural notions of homomorphism ([11, 4]) and embedding ([6]). The link between
these two settings is given by the classical correspondence between diffeomorphism
classes of (effective) orbifolds via atlases and Morita equivalence classes of orbifold
groupoids of [8, 10], which we recall briefly at the beginnings of Sections 3 and 4.

This paper is structured as follows: In Section 2 we recall basic definitions of
groupoids and (effective) orbifolds and consider certain classes of subgroupoids and
suborbifolds. In Section 3 we illustrate how a subgroupoid of an effective orbifold
groupoid naturally leads to a suborbifold. In Section 4 we give sufficient criteria
for a suborbifold to lead to a subgroupoid and verify that certain graphs including
the diagonal in any orbifold fall into this category.

It seems reasonable to believe that a closer look at [11] could lead to shorter
proofs of our results, but we prefer to give a self-contained account based only on
the classical correspondence mentioned above instead of working with the rather
complex constructions from [11].

All manifolds and all group actions in this work are assumed to be smooth (C∞)
and all submanifolds are embedded. Manifolds are usually second countable and
Hausdorff, the only exception being the manifold G1 of arrows in a Lie groupoid
G1 ⇒ G0, see Definition 1.

2. Preliminaries

2.1. Groupoids and group actions. Before getting to the theory of orbifolds,
we recall some basic theory of Lie groupoids and subgroupoids, (we refer to [10] for
further detail) and illustrate how group actions lead to natural examples of certain
subgroupoids.

Definition 1. A Lie groupoid is given by a tuple (G0, G1, s, t,m, u, i), where

• G0 and G1 are smooth manifolds, and G0 is second countable and Hausdorff
(but G1 not necessarily);
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• s, t : G1 → G0 are submersions, called the source and target maps;
• the multiplication m : G1 ×s t G1 → G1, the unit u : G0 → G1 and the

inverse i : G1 → G1 are smooth maps.

We will also use the notations 1p = u(p), g−1 = i(g) and gh = m(g, h). The
structure maps s, t,m, u, i are required to satisfy the following axioms:

• s(gh) = s(h) and t(gh) = t(g)
• (gh)k = g(hk)
• s(1p) = t(1p) = p and g1s(g) = 1t(g)g = g

• s ◦ i = t, t ◦ i = s, gg−1 = 1t(g) and g−1g = 1s(g)
We say that G is a Lie groupoid over G0, and we often denote the groupoid G

by G1 ⇒ G0. The manifolds G0 and G1 are called the space of objects and space
of arrows of G, respectively. Given g ∈ G1 with s(g) = p and t(g) = q, we will
sometimes write g : p → q.

Examples 1. (1) Any Lie group G can be seen as a Lie groupoid over a point
G ⇒ {∗}, with m and i given by multiplication and inverse in G, respec-
tively.

(2) Any smooth (Hausdorff, second countable) manifold M can be considered
as a Lie groupoid where the only arrows are unit arrows, M ⇒ M .

(3) Given a smooth action of a Lie group G on a manifold M , we can con-
struct the action groupoid G ⋉M = (G ×M ⇒ M), with structure maps
determined by s(g, p) = p, t(g, p) = gp, (g, hq)(h, q) = (gh, q).

Definition 2. Let G be a Lie groupoid. Two points p, q ∈ G0 are equivalent if and
only if there is an arrow g ∈ G1 such that s(g) = p and t(g) = q. The equivalence
class of p ∈ G0 with respect to this equivalence relation is called the orbit of p,
and denoted by Gp. The quotient topological space of G0 with respect to this
equivalence relation is called the orbit space of G, and is denoted by |G|.

Given p, q ∈ G0, we write G(p, q) for the set of all arrows p → q. Given p ∈ G0,
we write Gp for the group G(p, p) (with composition given by m).

Remark 1. Given a Lie groupoid G, the projection π : G0 → |G| is an open map.
Indeed, given an open subset U of G0, its image π(U) is open in |G| if and only
if π−1(π(U)) is open in G0. That is the case, since π−1(π(U)) = t(s−1(U)), and s
and t are submersions.

Definition 3. Let G,H be Lie groupoids.

(1) A Lie groupoid morphism Φ: H → G is a pair (Φ0,Φ1) of smooth maps
Φi : Hi → Gi, i = 0, 1, which respect all structure maps, i.e., sG◦Φ1 = Φ0◦
sH , tG◦Φ1 = Φ0◦tH , Φ1◦mH = mG◦(Φ1×Φ1)|H1 ×s tH1

, uG◦Φ0 = Φ1◦uH ,

iG ◦ Φ1 = Φ1 ◦ iH .
(2) A Lie groupoid embedding is a Lie groupoid morphism Φ: H → G such that

each Φi : Hi → Gi, i = 0, 1, is a smooth embedding between manifolds.

Definition 4. Given a Lie groupoid morphism Φ: H → G, the induced continuous
map |H | ∋ Hp 7→ GΦ(p) ∈ |G| between the orbit spaces will be denoted by |Φ|.

Lemma 1. Let Φ: H → G be a Lie groupoid embedding. Then the following
conditions are equivalent.

(1) For every p, q ∈ H0 the existence of an arrow Φ0(p) → Φ0(q) in G1 implies
the existence of an arrow p → q in H1.
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(2) |Φ| : |H | → |G| is injective.
(3) For every p ∈ H0 we have Φ0(Hp) = GΦ0(p) ∩ Φ0(H0).

Proof. To see that (1) implies (2), let p, q ∈ H0 such that GΦ0(p) = GΦ0(q). Since
Φ0(p) and Φ0(q) are in the same G-orbit, then by (1) p and q are in the same
H-orbit and hence Hp = Hq.

To see that (2) implies (3), let p ∈ H0. Since Φ0 is a Lie groupoid morphism, the
inclusion Φ0(Hp) ⊂ GΦ0(p) ∩Φ0(H0) automatically holds. For the other inclusion
let q ∈ H0 such that Φ0(q) ∈ GΦ0(p). Then Φ0(p) and Φ0(q) lie in the same
G-orbit and, by (2), p and q lie in the same H-orbit. Then q ∈ Hp and hence
Φ0(q) ∈ Φ0(Hp).

To see that (3) implies (1), note that the existence of an arrow Φ0(p) → Φ0(q)
means Φ0(q) ∈ GΦ0(p) ∩ Φ0(H0). Since Φ0 is injective, (3) implies q ∈ Hp. �

We should note that the hypothesis of the lemma above can be weakened to
asking that Φ be an injective groupoid morphism, since the smooth structure is
not relevant for the proof. Furthermore, the equivalence of (1) and (2) above has
already been observed in [6] and does not require the injectiveness assumption on
Φ. The following terminology is borrowed from the same source.

Definition 5. A Lie groupoid embedding is called essentially injective if it satisfies
one of the equivalent conditions from Lemma 1.

We also recall the following standard definition.

Definition 6. Let Φ: H → G be a Lie groupoid embedding. Φ is fully faithful if
Φ1|H(p,q) : H(p, q) → G(Φ0(p),Φ0(q)) is a bijection, for every p, q ∈ H0.

From condition (1) in Lemma 1 it is clear that every fully faithful Lie groupoid
embedding is essentially injective. The converse does not hold in general. A very
simple counterexample is given by considering any closed proper Lie subgroup of a
Lie group, e.g., the identity subgroup of any non-trivial Lie group, compare Example
1 (1). (Counterexamples more relevant in the context of orbifolds can be obtained
applying Proposition 1 below to [3, Examples 10, 11, 14].)

Definition 7. Let G = (G1 ⇒ G0) be a Lie groupoid. A Lie subgroupoid of G is
a Lie groupoid H = (H1 ⇒ H0) such that Hi ⊂ Gi for i = 0, 1 and the inclusion
ι : H →֒ G is a Lie groupoid embedding. H is called essentially injective if ι is
essentially injective and full if ι is fully faithful.

Note that the notion of Lie subgroupoid we consider is commonly called by
embedded subgroupoid in the literature.

Group actions provide an easy way to construct essentially injective and/or full
subgroupoids. First recall the following terminology from [15].

Definition 8. Let K be a Lie group acting on a manifold M , let L ⊂ K be a closed
subgroup and let N ⊂ M be an L-invariant submanifold.

(1) N is an L-submanifold if for every k ∈ K, p ∈ N such that kp ∈ N there is
l ∈ L such that lp = kp. If, moreover, the action of L on N is effective, N
is called an effective L-submanifold.

(2) N is a full L-submanifold if for every k ∈ K, p ∈ N such that kp ∈ N we
have k ∈ L.
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Proposition 1. Let K be a Lie group acting on a manifold M , let L ⊂ K be a
closed subgroup and let N ⊂ M be an L-invariant submanifold. Then:

(1) L⋉N is a Lie subgroupoid of K ⋉M .
(2) L⋉N is essentially injective if and only if N is an L-submanifold of M .
(3) L⋉N is full if and only if N is a full L-submanifold of M .

Proof. The proof of (1) is straightforward. (2) follows directly from Lemma 1 (1)
and the definition of an L-submanifold above.

To see (3) first note that fullness of L ⋉N implies that N is an L-submanifold
(by (2)) and Lp = (L ⋉N)p = (K ⋉M)p = Kp for every p ∈ N . These two facts
are easily seen to imply that N is a full L-submanifold (see [15, Lemma 2.4]). Vice
versa, if N is a full L-submanifold, then given an arrow g = (k, p) ∈ (K⋉M)1 from
p ∈ N to q ∈ N , we note that kp = q implies k ∈ L and hence g ∈ (L ⋉N)1. �

2.2. Orbifolds and suborbifolds. In this section we summarize the definitions of
orbifold groupoids and (effective) orbifolds (via charts) and give characterizations
of suborbifolds which will come in handy in the following sections. First recall the
following classical definition.

Definition 9. A Lie groupoid G is called proper if G1 is Hausdorff and the map
(s, t) : G1 → G0 × G0 is proper. It is called étale if s, t : G1 → G0 are local
diffeomorphisms. An orbifold groupoid is a Lie groupoid which is proper and étale.

An orbifold groupoid G is called effective if the map Gp → Diffp taking each
arrow g ∈ Gp to the induced germ of diffeomorphisms around p fixing p is injective.

Example 1. Let G be an orbifold groupoid and let H be a closed Lie sub-
groupoid (i.e., H1 is closed in G1). Then H is also an orbifold groupoid: the
maps sH , tH : H1 → H0 are local diffeomorphisms, since they are the restrictions
of s, t, respectively. Since H1 is closed in G1, the restriction (sH , tH) of (s, t) to H1

is proper.

Remark 2. We should note that an orbifold groupoid is often defined to be any
Lie groupoid which is Morita equivalent to a proper étale groupoid (see for example
[9]), but such a definition is essentially equivalent to the notion used in this text.

We now recall the definition of an (effective) orbifold in terms of charts (compare
[5, 8, 10]).

Definition 10. Let X be a second countable Hausdorff space. An n-dimensional

orbifold chart on X is a quadruple (U, Ũ/Γ, π) in which U ⊂ X is open, Ũ is
an n-dimensional connected manifold, Γ is a finite group acting smoothly and ef-

fectively on Ũ and π : Ũ → U is a continuous Γ-invariant map which induces a

homeomorphism π : Ũ/Γ → U . Given charts (Ui, Ũi/Γi, πi), i = 1, 2, such that

U1 ⊂ U2, an injection from π1 to π2 is a smooth embedding λ : Ũ1 → Ũ2 such

that π2 ◦ λ = π1. Two charts (Ui, Ũi/Γi, πi), i = 1, 2, are compatible if for every

x ∈ U1 ∩ U2 there is a chart (W, W̃/K, σ) such that x ∈ W ⊂ U1 ∩ U2 and, for

each i = 1, 2, an injection λi : W̃ → Ũi from σ to πi. An orbifold atlas on X is a

collection {(Uα, Ũα/Γα, πα)}α of compatible charts on X such that X =
⋃

α Uα.
An n-dimensional orbifold is a pair (X,A) of a second countable Hausdorff space

X and a maximal orbifold atlas A.
Given a point x in an orbifold (X,A), its isotropy is the isomorphism class of Γx̃

for some (hence every) chart (U, Ũ/Γ, π) in A and x̃ ∈ π−1(x). x is regular if its
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isotropy is trivial, otherwise x is called singular. By (X,A)reg we will denote the
(open and dense) subset of regular points in an orbifold (X,A).

Given two orbifolds (X,A), (X ′,A′), the product orbifold is the set X × X ′

together with the maximal atlas (denoted by A × A′) containing all charts of the

form (U×U ′, (Ũ× Ũ ′)/(Γ×Γ′), π×π′) where (U, Ũ/Γ, π) ∈ A and (U ′, Ũ ′/Γ′, π′) ∈
A′.

Remark 3. Note that, following [5], we allow that each chart domain Ũ is a
manifold. Choosing these domains sufficiently small as in [5, Lemma 4.1.1], we
could assume that they are open subsets of R

n and obtain an equivalent (and
apparently more common) orbifold definition.

We should also emphasize that the term “orbifold groupoid” does not include ef-
fectiveness conditions, whereas every “orbifold” (sometimes referred to as “reduced”
or “effective” orbifold) is assumed to be equipped with effective group actions as
above. (Note, however, that there is a notion of “ineffective orbifold” using charts
which corresponds to the class of orbifold groupoids [12].)

Definition 11. Let A = {(Ui, Ũi/Γi, πi)}i∈I be an n-dimensional orbifold atlas on
a second countable Hausdorff space X and let Y ⊂ X be a subset. A k-dimensional
suborbifold cover on Y ⊂ X with respect to A is a subset J ⊂ I together with a

family {Ṽj}j∈J of connected k-dimensional manifolds such that

(1) for every j ∈ J there is a subgroup ∆j of Γj such that Ṽj is a ∆j-submanifold

of Ũj with the property that πj(Ṽj) is open in Y ,

(2)
⋃

j πj(Ṽj) = Y .

If each Ṽj is closed in Ũj, we call {Ṽj}j∈J a closed cover.

Note that, by [15, Proposition 3.3] a closed suborbifold cover as above defines

an orbifold atlas {(Vj , Ṽj/(∆j/Kj), πj |Ṽj
)}j∈J on Y (with Kj ⊂ ∆j denoting the

corresponding kernel).

Definition 12. Given an orbifold atlas A on a second countable Hausdorff space

X and a closed suborbifold cover {Ṽj} on Y ⊂ X as in Definition 11, the orbifold

atlas {(Vj , Ṽj/(∆j/Kj), πj |Ṽj
)}j∈J is called the atlas on Y induced by {Ṽj}j∈J (and

A).

Remark 4. Strictly speaking, the groups ∆j satisfying the conditions from Def-
inition 11 (1) may not be unique. But since the choice of another ∆′

j would just

induce an equivalent effective action (by ∆′
j/K

′
j) on Ṽj (as follows from [7, Corollary

3.10]), we still refer to the induced atlas in the definition above.

Definition 13. A suborbifold cover as in Definition 11 is embedded if each ∆j can

be chosen to act effectively on Ṽj . It is called fully embedded if each ∆j can be

chosen such that Ṽj is a full effective ∆j-submanifold.

Remark 5. By [15, Remark 3.2] the existence of a (embedded) suborbifold cover
implies the existence of a closed (embedded) suborbifold cover. By the same argu-
ment, an analogous statement holds for a fully embedded cover.

The first two items of the definition below are just [15, Definition 3.1], now using
the suborbifold cover terminology introduced above.
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Definition 14. (1) A suborbifold of an orbifold (X,A) is a subset of X which
admits a suborbifold cover with respect to A.

(2) An embedded suborbifold of an orbifold (X,A) is a subset of X which admits
an embedded suborbifold cover with respect to A.

(3) A fully embedded suborbifold of an orbifold (X,A) is a subset of X which
admits a fully embedded suborbifold cover with respect to A.

Remark 6. In this text we introduce the notion of fully embedded suborbifolds
instead of working with “full” suborbifolds as in [15] (inspired by the homonymous
notion in [2]) to guarantee that isotropy is preserved. For instance, a single point
in an orbifold is always “full” (and embedded) but it is only fully embedded if it is
regular in the ambient orbifold.

[15, Proposition 3.3] shows that every suborbifold carries a canonical orbifold
structure, for which we introduce the following notation.

Definition 15. Given a suborbifold Y of an orbifold (X,A), the maximal orbifold
atlas containing all atlases on Y induced by closed suborbifold covers with respect
to A will be denoted by A|Y .

3. Subgroupoids leading to suborbifolds

Following [8], to an effective orbifold groupoid G one can associate a canonical
orbifold atlas on |G| : Let x = Gp ∈ |G|. By the proof of the implication (4) ⇒ (1)
in [8, Theorem 4.1], each g ∈ Gp has an open neighborhood Og in G1 such that
s|Og

and t|Og
are embeddings and there is a connected open neighborhood Np of p

such that

(1) (s, t)−1(Np ×Np) =
∐

g∈Gp

Og

and Np is invariant under the effective Gp-action given by g · q := g̃(q) := t ◦
(s|Og

)−1(q). Note that condition (1) implies that two points in Np are in the same
Gp-orbit if and only if they are in the same G-orbit. Using the canonical projection
πp : Np → Np/Gp, we obtain an orbifold chart (πp(Np), Np/Gp, πp) on |G| around
x.

It has been shown in [8] that any two charts as above are compatible. In partic-
ular, the maximal atlas on |G| containing the charts (πp(Np), Np/Gp, πp), p ∈ G,
does not depend on the choice of concrete Og, Np with the properties above. We
shall denote this atlas by At(G). Applying the construction above to subgroupoids,
we obtain the following theorem. (For item (2) also recall Definition 15.)

Theorem 1. Let H be a Lie subgroupoid of an effective orbifold groupoid G such
that |ι| : |H | → |G| is a topological embedding. Then:

(1) The orbit space |H | is a suborbifold of (|G|,At(G)).
(2) If H is an effective orbifold groupoid, then At(G)||H| = At(H) and |H | is

an embedded suborbifold of (|G|,At(G)). If, moreover, H is full in G, then
|H | is a fully embedded suborbifold of (|G|,At(G)).

Proof. To see (1), first let x = Hp ∈ |H | and consider the chart (Np/Gp, Np/Gp, πp)
of |G| around x as above. Now consider Hp = H1 ∩Gp and let Sp denote the con-
nected component of H0 ∩Np containing p. Then Sp is an Hp-invariant submani-
fold of Np. To see that it is an Hp-submanifold, let q ∈ Sp and g ∈ Gp such that
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g̃(q) ∈ Sp. Since q, g̃(q) ∈ Np, we have g̃(q) ∈ Gq. Since H is essentially injective
in G, we obtain g̃(q) ∈ H0 ∩ Gq = Hq. This means that there is an arrow h ∈ H1

from q to g̃(q) and hence h̃(q) = g̃(q).
To finish our argument for (1), we are left to show that πp(Sp) is an open subset

of |H |. It obviously is a subset. To see that it is open, note that the projection
σ : H0 → |H | of the Lie groupoid H is open and hence σ−1(πp(Sp)) = σ−1(σ(Sp))
is open in H0.

To see (2), note that for each p ∈ H0 and h ∈ Hp we have (sH , tH)−1(Sp ×
Sp) =

∐
h∈Hp

Ph with Ph ⊂ Oh ∩ H1 an open neighborhood of h in H1 and that

Sp is invariant under the Hp-action given by h ◦ q := h̃(q) := tH ◦ (sH|Ph
)−1(q),

which coincides with the restriction of the Gp-action on Np to Sp. Diminishing
Np, we can assume that Sp is closed and that Hp acts effectively on Sp. Hence,
(πp(Sp), Sp/Hp, πp|Sp

) lies both in At(H) and At(G)||H|. Maximality implies the

first statement of (2).
For the full case in (2) note that if H is a full subgroupoid, then Hp = Gp and

hence Sp is a full Hp-submanifold of Np. �

As a rather simple application of the theorem above we can give an alternative
proof of a special case of [15, Corollary 4.6].

Corollary 1. Let K be a discrete group acting smoothly, properly and effectively
on a manifold M . If L is a subgroup of K, N is an L-submanifold of M and
N/L ∋ Lp 7→ Kp ∈ M/K is a topological embedding, then N/L is a suborbifold of
M/K.

Proof. Since |K ⋉M | = M/K and |L⋉N | = N/L, the result follows from part (1)
of Theorem 1 . �

4. Suborbifolds leading to subgroupoids

Given a countable orbifold atlas A = {(Ui, Ũi/Γi, πi)}i∈I on a second countable
Hausdorff space X , we consider the groupoid G(A) given by the following construc-
tion (see [8]):

Set G(A)0 =
∐

i∈I Ũi. A transition (on G(A)0) is a diffeomorphism between open
subsets of G(A)0. Writing π =

∐
i∈I πi and denoting by P (A) the pseudogroup of

transitions f which satisfy π ◦ f = π| dom f , set

G(A)1 = {[f ]p; f ∈ P (A), p ∈ dom f},

where [f ]p denotes the germ of f at p. The topology and smooth structure on
G(A)1 are determined by requiring that, for each f ∈ P (A), the bijection dom f ∋
p 7→ [f ]p ∈ {[f ]q; q ∈ dom f} be a diffeomorphism. The structure maps are given
by s([f ]p) = p, t([f ]p) = f(p), m([g]f(p), [f ]p) = [g ◦ f ]p, u(p) = [id]p, i([f ]p) =

[f−1]f(p). With these definitions G(A) becomes an effective orbifold groupoid. By
εA we denote the homeomorphism |G(A)| ∋ G(A)p 7→ π(p) ∈ X .

Recall from [10] that, up to certain equivalences, the construction above can be
seen as inverse to the construction of an orbifold out of an effective orbifold groupoid
given in Section 3: Given an orbifold (X,A), the orbifold (|G(A)|,At(G(A))) is
diffeomorphic to (X,A). On the other hand, given an effective orbifold groupoid
G, the groupoid G(At(G)) is Morita equivalent to G. Since we will not work with
the latter concept, we refer the reader to [10] for more details.



8 JOÃO NUNO MESTRE AND MARTIN WEILANDT

Now consider a closed suborbifold cover {Ṽj}j∈J on a set Y with respect to
a countable orbifold atlas A on some second countable Hausdorff space X and
denote the induced orbifold atlas on Y by B. We would like to construct a certain
Lie groupoid embedding G(B) → G(A).

Definition 16. Let X be a second countable Hausdorff space, let A be a countable

orbifold atlas on X and let Y be a subset of X . Let {Ṽj}j∈J be a closed suborbifold

cover on Y with respect to A. {Ṽj}j∈J is called strong if, with B denoting the
induced orbifold atlas on Y , there is a Lie groupoid embedding Φ: G(B) → G(A)
such that (with Y →֒ X denoting the inclusion) the following diagram commutes.

|G(B)| |G(A)|

X Y

|Φ|

εB εA

Examples 2. (1) Every closed embedded suborbifold cover {Ṽ1} (i.e. consist-
ing of a single element) with respect to a countable orbifold atlas A =

{(Ui, Ũi/Γi, πi)}i∈I is strong: Letting B = {(V1, Ṽ1/∆1, π1|Ṽ1
)} (with ∆1 ⊂

Γ1) denote the induced atlas on the suborbifold, arrows in G(B) correspond
to elements of ∆1 (as follows directly from [10, Lemma 2.11]) and hence the
inclusion ∆1 →֒ Γ1 induces a canonical embedding Φ1 : G(B)1 → G(A)1.

Together with the inclusion Φ0 : G(B)0 = Ṽ1 →֒
∐

i∈I Ũi = G(A)0, we
obtain a Lie groupoid embedding Φ satisfying εA ◦ |Φ| = εB.

(2) The following example illustrates that the groupoid embedding Φ in Defini-

tion 16 is not necessarily unique: We can consider an open disk Ũ in R2 with
center (0, 0) and the rotation ρ by π. Setting Γ = 〈ρ〉 ≃ Z2, we obtain the

orbifold U = Ũ/Γ. Taking A to consist of two copies Ũi → Ui, i = 1, 2 of

the chart given by the canonical projection Ũ → U and Ṽ1 = Ṽ2 = {(0, 0)},

we obtain a strong suborbifold cover on V = Ṽ1/{id} ⊂ U with respect to

A. Letting Φ0 :
∐

i Ṽi →
∐

i Ũi denote the inclusion, we can define Φ1 by

sending id : Ṽ1 → Ṽ2 either to the identity Ũ1 → Ũ2 or to ρ and obtain two
different groupoid embeddings Φ as in Definition 16.

Remark 7. (1) The commutative diagram in the definition above directly im-
plies that Φ is essentially injective.

(2) The term “strong” refers to the idea of a “strong map” of orbifolds in [8].

Definition 17. Let (X,A) be an orbifold. A subset Y of X is a strong suborbifold

if there is a strong suborbifold cover {Ṽj}j∈J on Y with respect to some countable
atlas contained in A.

Example 2. Every discrete subset of an orbifold is a zero-dimensional strong sub-
orbifold: If (X,A) is an orbifold and Y ⊂ X is discrete, then Y = {x1, x2, . . .}. For

each j let (Uj , Ũj/Γj , πj) ∈ A such that xj ∈ Uj and complete {(Uj, Ũj/Γj, πj)}j≥1

to a countable atlas A′ ⊂ A on X . Fixing x̃j ∈ π−1
j (xj) and setting Ṽj := {x̃j}, the

family {Ṽj}j≥1 is a closed suborbifold cover of Y with respect to A′. Since every

transformation on
∐

j Ṽj is a restriction of the identity, we can just extend it to the

identity on Ũj to obtain an embedding Φ1. Together with Φ0 given by the inclusions

Ṽj →֒ Ũj , we obtain an embedding Φ: G(B) → G(A′) such that εA′ ◦ |Φ| = εB.
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The following proposition gives an alternative definition of a strong suborbifold.

Proposition 2. Given an orbifold (X,A), a subset Y of X is a strong suborbifold

if and only if there is a suborbifold cover {Ṽ ′
j }j∈J with respect to some countable

atlas A′ ⊂ A and (with B′ denoting the orbifold atlas on Y induced by {Ṽ ′
j }j∈J ) a

groupoid embedding Φ′ : G(B′) → G(A′) such that Φ′
0 is the inclusion.

Proof. Given {Ṽj}j∈J as in Definition 17 and an embedding Φ : G(B) → G(A′) such

that εA′◦|Φ| = εB, it suffices to define Ṽ ′
j = Φ0(Ṽj) and Φ′

1([f ]p) = Φ1([f◦Φ0]Φ−1

0
(p))

for [f ]p ∈ G(B′)1. The other implication is clear. �

Example 3. An example of a suborbifold which is not strong is given by the (non-
embeded) suborbifold from [3, Example 12]: If M = C2 and G ≃ Z4 is the group

generated by

(
i 0
0 −1

)
, then X = M/G is a good orbifold (equipped with the

maximal atlas A containing the canonical global chart) and Y = ({0} × C)/G is a
suborbifold. Assume that Y is a strong suborbifold. Then there is a a countable

atlas A′ = {(Ui, Ũi/Γi, πi)}i∈I ⊂ A and a closed suborbifold cover {Ṽj}j∈J with

respect to A′ as in Proposition 2. Consider j0 such that [(0, 0)] ∈ πj0 (Ṽj0) and
let ∆j0 be a subgroup of Γj0 as in Definition 11. By the existence of Φ′ as in
Proposition 2 (and [10, Lemma 2.11]), we can assume that ∆j0 acts effectively on

Ṽj0 . Using that the isotropy of [(0, 0)] in (Y,A) is Z2, we can now conclude that
〈(−1 0

0 1

)〉
has to act effectively on an open neighborhood of (0, 0) in {0} × C

(compare the end of [15, Example 5.4]) – a contradiction.

Remark 8. Examples 2 (1) and 3 suggest a close relation between strong and em-
bedded suborbifolds. However, it is not clear to us if the two notions are equivalent
in general.

We shall now consider another type of suborbifold cover and the corresponding
suborbifolds. In Theorem 2 we will verify that the definition below indeed gives a
special kind of strong suborbifold cover.

Definition 18. Let A = {(Ui, Ũi/Γi, πi)}i∈I be a countable n-dimensional orbifold
atlas on a second countable Hausdorff space X and let Y be a subset of X . A closed

k-dimensional suborbifold cover {Ṽj}j∈J on Y with respect to A is called very strong
if it satisfies the following conditions:

(1) If j ∈ J and γ ∈ Γj fixes some open subset of Ṽj , then γ = e.

(2) For any j1, j2 ∈ J and x ∈ πj1(Ṽj1 ) ∩ πj2(Ṽj2 ), there is some orbifold chart

(W, W̃/K, σ) on X , a subgroup Λ ⊂ K, a k-dimensional Λ-submanifold Z̃

of W̃ such that σ(Z̃) is an open neighborhood of x in Y containing x and

there are injections λm : W̃ → Ũjm , m = 1, 2, such that λm(Z̃) ⊂ Ṽjm for
every m.

Remark 9. (1) Note that condition (1) above directly implies that every very
strong cover is embedded.

(2) Readers familiar with [5] may note that item (2) above is equivalent to the

condition that the inclusions Ṽj →֒ Ũj, j ∈ J , induce a “C∞-lifting” of the
inclusion Y →֒ X in the sense of [5].
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Definition 19. Let (X,A) be an orbifold. A subset Y of X is a very strong

suborbifold if there is a very strong suborbifold cover {Ṽj}j∈J on Y with respect to
some countable atlas contained in A.

Example 4. (1) Let (X,A) be an n-dimensional orbifold and let Y be an
open subset of X . Then Y is an n-dimensional very strong suborbifold

of (X,A): Given x ∈ Y , pick some chart {(U, Ũ/Γ, π)} ∈ A such that
x ∈ U . Diminishing U if necessary, we can assume that U ⊂ Y . Since
X is second countable, we can use this construction to obtain an atlas

{(Uj , Ũj/Γj , πj)}j∈J of Y contained in a countable atlas A′ ⊂ A. In this

special setting the suborbifold cover {Ũj}j∈J satisfies (2) simply due to the
compatibility of the corresponding charts in A′. Since every Γj is finite and

acts effectively on Ũj , the suborbifold cover satisfies (1) as well.
(2) Note that condition (1) in Definition 18 directly implies that a singular point

in an orbifold is not a very strong suborbifold (but a strong suborbifold by
Example 2).

Theorem 2. Every very strong suborbifold (cover) is strong.

Proof. Let A = {(Ui, Ũi/Γi, πi)}i∈I be a countable orbifold atlas on a second count-

able Hausdorff space X . If {Ṽj}j∈J is a very strong suborbifold cover on a subset

Y ⊂ X with respect to A and B = {(Vj , Ṽj/∆j , πj |Ṽj
)}j∈J denotes the induced

orbifold atlas on Y , then we have to show that there is a Lie groupoid embedding
Φ: G(B) → G(A) such that εA ◦ |Φ| = εB.

Let H = G(B) and G = G(A). First note that H0 =
⋃

j∈J Ṽj ⊂
⋃

i∈I Ũi = G0.

Now let [f ]p ∈ H1 and let j1, j2 ∈ J such that p ∈ Ṽj1 and f(p) ∈ Ṽj2 . Without
loss of generality, assume j1 = 1 and j2 = 2. Diminishing the domain of f , we

can assume that it is contained in Ṽ1. Since π2(f(p)) = π1(p), by condition (2)

from Definition 18 there is an orbifold chart (W, W̃/K, σ) on X a subgroup Λ ⊂ K

and a Λ-submanifold Z̃ ⊂ W̃ such that π1(p) ∈ σ(Z̃) together with injections

λk : W̃ → Ũk, k = 1, 2, such that each λk(Z̃) is an open subset of Ṽk. Diminishing

Z̃, W̃ if necessary, we can assume that Z̃ is closed in W̃ and connected (see [15,
Lemma 2.6]) and hence we obtain a chart σ|Z̃ on Y . Let γ ∈ Γ1 such that γp ∈

λ1(Z̃). Since Ṽ1 is a ∆1-submanifold, there is δ ∈ ∆1 such that δp = γp. Thus

replacing λ1 by δ−1 ◦ λ1 if necessary, we can assume that p ∈ λ1(Z̃). Analogously,

we can assume that f(p) ∈ λ2(Z̃). Since f ◦ λ1|Z̃ and λ2|Z̃ are injections Z̃ → Ṽ2

from σ|Z̃ to π2|Ṽ2
, by [8, Proposition A.1] we can, if necessary, replace λ2 by a

composition with an appropriate element of ∆2 to guarantee f ◦ λ1|Z̃ = λ2|Z̃ . Set

Φ1([f ]p) = [λ2 ◦ λ−1
1 ]p ∈ G1. Condition (1) from Definition 18 implies that this

extension of [f ]p to an element of G1 is unique. (Two such extensions would differ

by some γ ∈ Γ2 fixing the image of f . Since this image is open in Ṽ2, we conclude
γ = e.) Therefore Φ1 is well-defined and injective. Since Φ1 locally corresponds to

inclusions of the form dom f →֒ λ1(W̃ ), it is an embedding.
Together with the inclusion Φ0 : H0 →֒ G0, we obtain a groupoid embedding

Φ: H → G. Since Φ0 is just the inclusion, we easily see that εA ◦ |Φ| = εB. �

Remark 10. The proof above shows that if A is a countable atlas on a second

countable Hausdorff space X , {Ṽj}j∈J is a very strong suborbifold cover on Y ⊂ X
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with respect to A and B is the induced orbifold atlas on Y , then there is a unique
Lie groupoid embedding Φ: G(B) → G(A) such that Φ0 is the inclusion.

Definition 20. Let A = {(Ui, Ũi/Γi, πi)}i∈I be an n-dimensional orbifold atlas on a
second countable Hausdorff space X . A regular suborbifold cover on a subset Y ⊂ X

is a closed suborbifold cover {Ṽj}j∈J on Y such that every {p ∈ Ṽj ; Γjp
= {e}} is

dense in Ṽj and connected.

Remark 11. Note that the set {p ∈ Ṽj ; Γjp
= {e}} considered above is automat-

ically open, as it is the intersection of the set of points with trivial isotropy in Ũj

with Ṽj .

Definition 21. Let (X,A) be an orbifold. A subset Y of X is a regular suborbifold

if there is a regular suborbifold cover {Ṽj}j∈J on Y with respect to some countable
atlas contained in A.

Remark 12. Our definitions above are inspired by the definition of a “regular”
map in [5, Definition 4.4.10]: Remark 9 (2) and Proposition 4 below imply that

given a regular cover {Ṽj}j∈J in the sense of Definition 20, the inclusions Ṽj →֒ Ũj,
j ∈ J , define a “regular C∞” lifting (in the sense of [5]) of the inclusion. However,
the converse does not hold: If ρ denotes the rotation of R2 around the origin by
π/2, the inclusion of R× {0} into R

2 gives a “regular C∞” lifting ([5]) between the
orbifolds (R×{0})/〈ρ2〉 and R2/〈ρ〉 but the suborbifold is not regular in the sense
of Definition 21.

Before verifying that every regular suborbifold is very strong, we will consider
certain graphs as a basic example. In order to talk about graphs we will need the
following rather simple notion of a smooth map, which is sufficient to guarantee
well-behaved graphs and to guarantee that embedded suborbifolds are images of
embeddings ([15]). (We just consider certain continuous maps between the under-
lying spaces in the spirit of [13], other sources including [14, 5] consider equivalence
relations on collections of smooth local lifts or even more complex structures ([11]).)

Definition 22. Given two orbifolds (X,A), (X ′,A′), a smooth map f : (X,A) →
(X ′,A′) is a continuous map f : X → X ′ such that for each x ∈ X there is a

chart (U, Ũ/Γ, π) ∈ A around x, a chart (U ′, Ũ ′/Γ′, π′) ∈ A′ around f(x), a smooth

map f̃ : Ũ → Ũ ′ and a homomorphism f : Γ → Γ′ such that π′ ◦ f̃ = f ◦ π and

f̃(γp) = f(γ)f̃(p) for every γ ∈ Γ, p ∈ Ũ .

Given any map f , we will denote its graph by gr f . Recall from [15, Proposition
3.7] that the graph of a smooth map between orbifolds is an embedded suborbifold
and note that the given proof shows that gr f is fully embedded if all points in the
image of f are regular. Modifying the latter condition gives a criterion for a graph
to be a regular suborbifold:

Proposition 3. Let (X,A) and (X ′,A′) be orbifolds such that the singular strata
of (X,A) have codimension at least two. If f : (X,A) → (X ′,A′) is a smooth
map such that f((X,A)reg) ⊂ (X ′,A′)reg, then gr f is a regular suborbifold of (X ×
X ′,A×A′).

Proof. Let {(Ui, Ũi/Γi, πi)}i∈I ⊂ A be a countable atlas on X and consider charts

{(U ′
i , Ũ

′
i/Γ

′
i, π

′
i)}i∈I ⊂ A′ on X ′ such that for every i ∈ I there is a smooth
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map f̃i : Ũi → Ũ ′
i and a homomorphism f i : Γi → Γ′

i such that π′
i ◦ f̃i = fi ◦

πi and f̃i(γp) = f i(γ)f̃i(p). Completing {(U ′
i , Ũ

′
i/Γ

′
i, π

′
i)} to a countable atlas

{(U ′
j, Ũ

′
j/Γ

′
j, π

′
j)}j∈J ⊂ A′, we obtain a countable atlas

C = {(Ui × U ′
j , (Ũi × Ũ ′

j)/(Γi × Γ′
j), πi × π′

j)}(i,j)∈I×J ⊂ A×A′.

For each i ∈ I set Ṽi = gr f̃i ⊂ Ũi × Ũ ′
i and ∆i = gr f i ⊂ Γi × Γ′

i and note that

Ṽi is a closed ∆i-submanifold such that (πi × π′
i)(Ṽi) = gr f ∩ (Ui × U ′

i) is open in

gr f . Since the union of the latter sets cover gr f , the family {Ṽi}i∈I is a closed
suborbifold cover of gr f with respect to C.

To see that this suborbifold cover is regular, we have to show that for each

i ∈ I the set S = {(p, f̃i(p)); p ∈ Ũi, (Γi × Γ′
i)(p,f̃i(p)) = {e}} is dense in Ṽi

and connected. Note that the regular part Ũ reg
i = {(p ∈ Ũi; Γip = {e}} is dense

in Ũi and connected due to the codimension condition. Hence the graph of the

restriction of f̃i to Ũ reg
i is dense in Ṽi and connected. Moreover, it is contained in

S, since f((X,A))reg ⊂ (X ′,A′)reg. We conclude that S is also dense in Ṽi and
connected. �

Example 5. (1) Applying the proposition above to the identity on an orbifold
(X,A) whose singular stratum has codimension at least two, we observe
that the diagonal D = {(x, x); x ∈ X} is a very strong suborbifold of
(X ×X,A×A). (Note that the diagonal is often taken as a litmus test if
a suborbifold definition is sufficiently general ([1], also compare [6] for the
groupoid setting). For instance, a simple isotropy argument shows that the
diagonal is not fully embedded if the orbifold contains a singular point.)

(2) We should note that a graph of an arbitrary smooth map need not be a
very strong suborbifold. Consider, for instance, a map {∗} → (X,A) whose
domain is a single point and whose image is a singular point (compare
Example 4 (2)).

To verify that every regular cover is very strong, we will need the following
lemma.

Lemma 2. Let M be a manifold, let Γ be a finite group acting smoothly and
effectively on M and let π : M → M/Γ denote the canonical projection. Let N1

be a submanifold of M and let N2 be a closed ∆-submanifold of M with respect
to some subgroup ∆ of Γ. If π(N1) ⊂ π(N2) and N ′

1 := {p ∈ N1; Γp = {e}} is
connected and dense in N1, then there is γ ∈ Γ such that γN1 ⊂ N2.

Proof. First note that N ′
1 is open in N1.

Given p ∈ N ′
1, we shall show that there is an open neighborhood Up ∈ N ′

1 of
p and γp ∈ Γ such that γpUp ⊂ N2: Since π(N1) ⊂ π(N2), there is γp such that
γpp ∈ N2. If there was no neighborhood Up as desired, there would be a sequence
(pn) ⊂ N1 converging to p such that γppn /∈ N2 for every n ∈ N. Let (γn) ⊂ Γ
be a sequence such that γnpn ∈ N2. Since Γ is finite, we can assume that (γn) is
constant, say γ0. Since N2 is closed, we obtain γ0p = γ0 lim pn = lim(γ0pn) ∈ N2

and γpp ∈ N2 implies that there is δ ∈ ∆ such that δγ0p = γpp. Since p ∈ N ′
1, we

obtain γ−1
p δγ0 ∈ {e} and conclude that γppn = δγ0pn ∈ N2 – a contradiction.

Fix p0 ∈ N ′
1 and write γ = γp0

. To see that γN ′
1 ⊂ N2, let q0 ∈ N ′

1. For each
p ∈ N ′

1 let γp ∈ Γ and Up ⊂ N1 be as in the preceding paragraph. Being a connected
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submanifold of N1, N
′
1 is path-connected. Let c : [0, 1] → N ′

1 be a smooth curve
such that c(0) = p0, c(1) = q0. Let p0, . . . , pk = q0 be points in the image im(c) of c

such that im(c) ⊂
⋃k

i=0 Upi
and Upi

∩ Upi+1
6= ∅ for each i. Given ri ∈ Upi

∩Upi+1
,

we have γpi
ri, γpi+1

ri ∈ N2. Since N2 is a ∆-submanifold and Γri = {e}, we obtain
γpi

γ−1
pi+1

∈ ∆. Since this holds for every i, we can write

γUq0 = (γp0
γ−1
p1

)(γp1
γ−1
p2

) · · · (γpk−1
γ−1
pk

)γpk
Upk

⊂ N2.

In particular, γq0 ∈ N2.
Since N ′

1 is dense in N1 and N2 is closed, we conclude that γN1 ⊂ N2. �

Remark 13. Note that, in the setting of the lemma above, it is not sufficient to
demand π(N ′

1) (instead of N ′
1 itself) to be connected and dense in π(N1): Consider

M = R2. Let f : R → R be a strictly increasing odd function such that f (k)(0) = 0
for all k ≥ 0, let N1 be its graph and let N2 be the graph of |f |. Let ρ denote
the rotation of R2 by π/2 and let s denote the reflection along the y-axis. Let D4

denote the dihedral group generated by ρ and s and set Γ = D4, ∆ = 〈s〉 ≃ Z2.
Then N1, N2 satisfy almost all conditions from Lemma 2, the only exception being
that N ′

1 = N1 \ {(0, 0)} is disconnected (but π(N ′
1) is connected). It is easy to see

that there is no γ as in the conclusion of the lemma.

Proposition 4. Let A = {(Ui, Ũi/Γi, πi)}i∈I be a countable n-dimensional orbifold

atlas on a second countable Hausdorff space X. If {Ṽj}j∈J is a regular suborbifold
cover on a subset Y ⊂ X, then it is very strong.

Proof. To verify condition (1) from Definition 18, let j ∈ J and let γ ∈ Γj such

that γ|S = idS for some open S ⊂ Ṽj . Since our cover is regular, there is p ∈ S
such that Γjp

= {e}. Hence γ = e.

To verify condition (2), let j1, j2 ∈ J and x ∈ πj1(Ṽj1 ) ∩ πj2(Ṽj2 ). Assume

j1 = 1, j2 = 2 and write Vm := πm(Ṽm) for m = 1, 2. By the compatibility of

π1 and π2, there is an orbifold chart (W, W̃/K, σ) on X around x with injections

λm : W̃ → Ũm. Diminishing W if necessary, we can assume that W ∩ Y ⊂ V1 ∩ V2.

Let x̃ ∈ σ−1(x), let Z̃ be the connected component of λ−1
1 (Ṽ1) containing x̃ and set

Λ := {k ∈ λ
−1

1 (∆1); kZ̃ ⊂ Z̃}. Then Z̃ is a connected Λ-submanifold of W̃ and

σ(Z̃) is open in σ(λ−1
1 (Ṽ1)) = V1 ∩W and hence an open neighborhood of x in Y .

Regularity of the cover implies that λ2(Z̃)′ = {p ∈ λ2(Z̃); Γ2p = {e}} is connected

and dense in λ2(Z̃). Since π2(λ2(Z̃)) = σ(Z̃) ⊂ W ∩Y ⊂ V2 and Ṽ2 is closed in Ũ2,

by Lemma 2, there is γ ∈ Γ2 such that γ ◦ λ2(Z̃) ⊂ Ṽ2. Replacing λ2 by γ ◦ λ2, we
finally obtain injections λ1, λ2 as in condition (2) of Definition 18. �

Example 6. If (X,A) is an orbifold and Y is a fully embedded suborbifold whose
singular stratum has codimension at least 2 (in (Y,A|Y )), then Y is a regular
suborbifold.
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